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Introduction.

This paper is concerned with the stability theory for several properties of
linear operators in Banach and Hilbert spaces.

Let $A$ be a linear operator with domain $D(A)$ and range $R(A)$ in a Banach
space $X$. Let $B$ be a linear operator in $X$, with $D(B)\supset D(A)$ . Assume that

(i) there are constants $a_{0},$ $b_{0}\geqq 0$ such that for all $u\in D(A)$ ,

(0.1) $\Vert Bu\Vert\leqq a_{0}\Vert u\Vert+b_{0}\Vert$ Au $\Vert$ .
In the perturbation theory it is frequently assumed that

(ii) $b_{0}$ is less than one.
In fact, under these conditions the following three facts, for example, are well
known:

(P1) $A+B$ is closed if and only if $A$ is closed;
(P2) if $A$ is m-accretive, with $D(A)$ dense in $X$, and $B$ is accretive then

$A+B$ is also m-accretive, $i$ . $e.$ , if $-A$ is the generator of a contraction semigroup
on $X$ then so is $-(A+B)$ , too;

(P3) if $A$ is selfadjoint and $B$ is symmetric then $A+B$ is also selfadjoint
(when $X$ is a Hilbert space).

The main purpose of this paper is to show that condition (ii) can be re-
placed by (indeed generalized to)

(iii) for every $u\in D(A)$ there is $g\in F(Au)$ such that

${\rm Re}(Bu, g)\geqq-c\Vert u\Vert^{2}-a\Vert$ Au $\Vert\Vert u\Vert-b\Vert Au\Vert^{2}$ ,

where $a,,,$ $b(b<1)$ and $c$ are nonnegative constants.
The appearance of the duality map $F$ on $X$ to its adjoint $x*$ may be

somewhat unfamiliar in the theory of linear operators. But, we need only
elementary properties of the duality map. In this connection, we denote by
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$(w, g)$ the pairing between $w\in X$ and $g\in X^{*}:$ $(w, g)$ is linear in $w$ and semilinear
in $g$ . Noting further that if $g\in F(Au)$ then (Au, $g$) $=\Vert Au\Vert^{2}$ , we see by (P1)

under conditions (i) and (iii) that $2A=A+A$ is closed if $A$ is closed. In this
case of $B=A$ , however, we can not take $b_{0}<1$ in (0.1). This point seems to be
an advantage of condition (iii).

In \S 1 we consider the stability of closedness and bounded invertibility. The
latter property is treated in a slightly generalized form. Namely, we introduce
the notion of deficiency of a closed linear operator $A$ : def $A=co\dim R(A)$ , and
establish a stability theorem for invertible operators with closed ranges. \S 2 is
devoted to the preliminaries to \S 3.

Now let $A$ be a closed linear accretive operator in a Banach space. Then
by definition $ A+\xi$ is invertible and $R(A+\xi)$ is closed for $\xi>0$ . In \S 3 we con-
sider the perturbation of deficiencies of closed accretive operators. First we
show that def $(A+B+\xi)=def(A+\xi)$ for $\xi>0$ if $A$ and $B$ satisfy conditions (i)

and (iii) above, with some additional ones (Theorem 3.2). The same fact under
conditions (i) and (ii) is due to Behncke-Focke [1]. In order to prove the
fundamental lemma, we can apply the result prepared in \S 1. Furthermore, we
try to generalize Theorem 3.2 (see Theorems 3.3 and 3.7). The main theorems
in Okazawa [18] are special cases of these theorems. Nevertheless, the idea
for proofs is similar to that in [18]. It may be a singular perturbation of the
case (I) in the sense of Kato [11]. But, we have not yet succeeded in proving
this. In other words, we can assert nothing about cores of the unperturbed
operator. In the same manner we can generalize Theorems 4.1 and 4.5 in [18]
(cf. [1], Theorem 4) although we shall not mention it.

\S 4 is concerned with the m-accretiveness of the sum of two linear m-accre-
tive operators in a reflexive Banach space. We shall generalize and unify the
theorems in Okazawa [17] and Sohr [20], [21]. The key lemma has already
been noted in Okazawa [16]. We collect in \S 5 several stability theorems for
(essentially) selfadjoint operators in a Hilbert space. They are applied in the
last \S 6 to the selfadjointness problem for Schr\"odinger operators. We can prove

that if $t>-\frac{N}{4}(N-4)$ then $A+tB=-\Delta+t|x|^{-2}$ with $D(A+tB)=D(A)\cap D(B)$ is

selfadjoint in $L^{2}(R^{N})$ . Using the famous result of Kato [10], we shall recon-
struct the proof of the Faris-Lavine theorem (cf. [4] and Reed-Simon [19]).

\S 1. Stability of closedness and bounded invertibility.

Let $X,$ $Y$ be two Banach spaces. Let $A$ be a linear operator from $X$ to $Y$ .
Namely, $A$ is a linear operator with domain $D(A)$ in $X$ and range $R(A)$ in $Y$ .
$A$ linear operator $B$ from $X$ to $Y$ is said to be A-bounded if $D(A)\subset D(B)$ and
there exist nonnegative constants $a_{0}$ and $b_{0}$ such that for all $u\in D(A)$ ,
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(1.1) $\Vert Bu\Vert\leqq a_{0}\Vert u\Vert+b_{0}\Vert Au\Vert$ .
For the notion of A-boundedness we refer to Kato [8], IV-\S 1.1. Now let $Y^{*}$

be the adjoint space of $Y$ . Then $F$ denotes the duality map on $Y$ to $Y^{*}:$ for
every $y\in Y$ ,

$F(y)=\{g\in Y^{*} ; (y, g)=\Vert y\Vert^{2}=\Vert g\Vert^{2}\}$ .

We start with the following
LEMMA 1.1. Let $A,$ $B$ be linear operators from $X$ to Y. Set $D(A+B)=$

$D(A)\cap D(B)$ . Assume that for every $u\in D(A+B)$ there is $g\in F(Au)$ such that

(1.2) ${\rm Re}(Bu, g)\geqq-c\Vert u\Vert^{2}-a\Vert$ Au $\Vert\Vert u\Vert-b\Vert Au\Vert^{2}$ ,

where $a,$ $b(b<1)$ and $c$ are nonnegative constants.
Then $A$ is $(A+B)$-bounded:

(1.3) $\Vert$ Au $\Vert\leqq(1-b)^{-1}\Vert(A+B)u\Vert+K\Vert u\Vert$ , $u\in D(A+B)$ ,

and hence $B$ is also $(A+B)$-bounded:

(1.4) $\Vert Bu\Vert\leqq[(1-b)^{-1}+1]\Vert(A+B)u\Vert+K\Vert u\Vert$ , $u\in D(A+B)$ ,

where $K=a(1-b)^{-1}+\sqrt{c(1-b)^{-1}}$ . Furthermore, for every $h\in F((A+B)u)$ we have

(1.5) ${\rm Re}(Bu, h)\geqq-b(1-b)^{-1}\Vert(A+B)u\Vert^{2}-K\Vert(A+B)u\Vert\Vert u\Vert$ .
PROOF. It follows from (1.2) that

$||Au\Vert^{2}={\rm Re}$ (Au, g)

$\leqq{\rm Re}((A+B)u, g)+c\Vert u\Vert^{2}+a\Vert Au\Vert\Vert u\Vert+b\Vert Au\Vert^{2}$ .
So, we have

$(1-b)\Vert$ Au $\Vert^{2}\leqq[\Vert(A+B)u\Vert+a\Vert u\Vert]\Vert Au\Vert+c\Vert u\Vert^{2}$ .
Solving this inequality, we obtain (1.3) and (1.4).

Next, let $h\in F((A+B)u)$ . Then we have

$\Vert(A+B)u\Vert^{2}={\rm Re}$ (Au, $h$ ) $+{\rm Re}(Bu, h)$

and hence ${\rm Re}(Bu, h)\geqq\Vert(A+B)u\Vert^{2}-\Vert Au\Vert\Vert(A+B)u\Vert$ . Therefore, (1.5) follows
from (1.3). Q. E. D.

REMARK 1.2. Let $A,$ $B$ be linear operators from $X$ to $Y$ . If $B$ is A-bounded,
then for every $g\in F(Au)$ the inequality (1.2) (with $c=0$) holds. In fact, since
${\rm Re}(Bu, g)\geqq-\Vert Bu\Vert\Vert Au\Vert$ , it follows from (1.1) that

${\rm Re}(Bu, g)\geqq-a_{0}\Vert$ Au $\Vert\Vert u\Vert-b_{0}\Vert Au\Vert^{2}$ .
THEOREM 1.3. Let $A,$ $B$ be linear operators from $X$ to $Y$ , and $B$ be A-
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bounded. Assume that for every $u\in D(A)$ there is $g\in F(Au)$ such that (1.2) with
$b<1$ holds. Then $A+B$ is closed if and only if $A$ is closed.

PROOF. Let $A$ be closed. Then the closedness of $A+B$ follows from (1.3)

and (1.1). To prove the converse, it suffices to note that $\Vert(A+B)u\Vert\leqq a_{0}\Vert u\Vert+$

\langle $1+b_{0}$) $\Vert$ Au $\Vert$ for $u\in D(A)$ , where $a_{0}$ and $b_{0}$ are constants in (1.1). Q. E. D.
PROPOSITION 1.4. Let $A,$ $B$ be linear operators from $X$ to $Y$, and $B$ be A-

bounded. Assume that for every $u\in D(A)$ there is $h\in F(Bu)$ such that

\langle 1.6) ${\rm Re}$ (Au, $h$ ) $\geqq-c\Vert u\Vert^{2}-a\Vert Bu\Vert\Vert u\Vert$ ,

where $c$ and $a$ are nonnegative constants.
If $A$ is closed, then $A+tB$ is closed for all $t>0$ .
PROOF. Let $t>0$ . Then we see from (1.6) that

${\rm Re}$ (Au, $g$) $\geqq-tc\Vert u\Vert^{2}-a\Vert tBu\Vert\Vert u\Vert$ ,

where $g=th\in F(tBu)$ . Therefore, it follows from Lemma 1.1 $(b=0)$ that $A$ is
$(A+tB)$-bounded:

(1.7) $\Vert Au\Vert\leqq 2\Vert(A+tB)u\Vert+(a+\sqrt{tc})\Vert u\Vert$ , $u\in D(A)$ .

The closedness of $A+tB$ follows from (1.7) and (1.1). Q. E. D.
REMARK 1.5. In Theorem 1.3 and Proposition 1.4 the term “closed” can be

replaced by ”closable”.
Let $A$ be a closed linear operator from $X$ to $Y$ . Then $A$ is said to be $sem\iota-$

Fredholm if $R(A)$ is closed and at least one of nul $A$ and def $A$ is finite. Here
nul $A$ and def $A$ are the nullity and deficiency of $A$ , respectively:

nul $A=\dim N(A)$ , $N(A)=\{u\in D(A);Au=0\}$ ,

def $A=co\dim R(A)=\dim Y/R(A)$ .

For a semi-Fredholm operator $A$ the index is well-defined as

ind $A=nu1A-$def $A$ .

We note further that a closed linear operator $A$ from $X$ to $Y$ has closed range
if and only if

$\gamma(A)=\inf\{\frac{\Vert Au\Vert}{dist(u,N(A))}$ ; $u\in D(A)\}>0$ .

If $A$ is invertible, $i.e.,$ $N(A)=\{0\}$ , then $\Vert Au\Vert\geqq\gamma(A)\Vert u\Vert$ for $u\in D(A)$ . For these
facts we refer to Kato [8] and Goldberg [5].

PROPOSITION 1.6. Let $A,$ $B$ be linear operators from $X$ to $Y$ , with $ D(A)\subset$

$D(B)$ . Assume that for all $t\in[0,1],$ $A+tB$ is closed and invertible, with $\gamma(A+tB)$

$>0$ . Then ind $(A+tB)$ is constant and hence ind $(A+B)=indA$ .
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PROOF. By assumption there are constants $c(t),$ $k(t)>0$ such that for all
$u\in D(A)$ ,

$\Vert(A+tB)u\Vert\leqq c(t)\Vert$ Au $\Vert$ , $\Vert$ Au $\Vert\leqq k(t)\Vert(A+tB)u\Vert$ ;

see Kato [8], IV-\S 1.1. Therefore, $B$ is $(A+tB)$-bounded for $ t\in[0,1]:\Vert Bu\Vert\leqq$

$[c(1)+1]k(t)\Vert(A+tB)u\Vert,$ $u\in D(A)$ . Now set

$M=$ {$t\in[0,1]$ ; ind $(A+tB)\neq indA$}.

We want to show that $M$ is empty. Assuming the contrary, set $t_{0}=\inf M$.
Then it follows from the stability theorem for semi-Fredholm operators that
$t_{0}>0$ and that ind $(A+tB)$ is constant near $t=t_{0}$ (see Kato [8], Theorem IV-5.22).

But, since ind $(A+tB)=ind$ $A$ for $t<t_{0}$ , this leads to a contradiction: ind $(A+tB)$

$=ind$ $A$ near $t=t_{0}$ . Q. E. D.
REMARK 1.7. The above proposition generalizes both Theorem 1 in W\"ust

[23] and Corollary 1 to Theorem 1 in Behncke-Focke [1].

LEMMA 1.8. Let $A,$ $B$ be linear operators from $X$ to $Y$ , with $D(A)\subset D(B)$ .
Let $A$ be closed and invertible, with $\gamma(A)>0$ . Assume that for every $u\in D(A)$

there is $g\in F(Au)$ such that (1.2) holds and $c\gamma^{-2}+a\gamma^{-1}+b<1$ , where $\gamma=\gamma(A)$ .
Then $A+B$ is invertible, with the estimate

(1.8) $\Vert Au\Vert\leqq\frac{1}{1-c\gamma^{-2}-a\gamma^{-1}-b}\Vert(A+B)u\Vert$ , $u\in D(A)$ .

PROOF. Since $\Vert u\Vert\leqq\gamma^{-1}\Vert Au\Vert$ , it follows from (1.2) that

${\rm Re}(Bu, g)\geqq-(c\gamma^{-2}+a\gamma^{-1}+b)\Vert$ Au $\Vert^{2}$ , $u\in D(A)$ .
So, we see that

${\rm Re}((A+B)u, g)=\Vert$ Au $\Vert^{2}+{\rm Re}(Bu, g)$

$\geqq(1-c\gamma^{-2}-a\gamma^{-1}-b)\Vert Au\Vert^{2}$ , $u\in D(A)$ .
Therefore, we obtain (1.8) and $A+B$ is also invertible. Q. E. D.

THEOREM 1.9. Let $A$ and $B$ be linear operators from $X$ to $Y$ , and $B$ be A-
bounded. Let $A$ be closed and invertible, with $\gamma(A)>0$ . Assume that for every
$u\in D(A)$ there is $g\in F(Au)$ such that (1.2) holds. If

$c[\gamma(A)]^{-2}+a[\gamma(A)]^{-1}+b<1$ ,

then $A+B$ is closed and invertible, with $\gamma(A+B)>0$ and ind $(A+B)=indA$ .
PROOF. It follows from Theorem 1.3 and Lemma 1.8 that for all $t\in[0,1]$ ,

$A+tB$ is closed and invertible, with $\gamma(A+tB)>0$ . Therefore, by Proposition 1.6,
ind $(A+tB)$ is constant. Q. E. D.

Finally, let $B(Y, X)$ be the set of all bounded linear operators on $Y$ to $X$.
COROLLARY 1.10. Let $A,$ $B$ be linear operators from $X$ to $Y$ , and $B$ be A-
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bounded. Let $A$ be invertible and $A^{-1}\in B(Y, X)$ (so that $A$ is closed). Assume
that for every $u\in D(A)$ there is $g\in F(Au)$ such that (1.2) holds and $c\Vert A^{-1}\Vert^{2}+$

$a\Vert A^{-1}\Vert+b<1$ . Then $A+B$ is invertible and $(A+B)^{-1}\in B(Y, X)$ with

(1.9) $|(A+B)^{-1}\Vert\leqq[1-c\Vert A^{-1}\Vert^{2}-a\Vert A^{-1}\Vert-b]^{-1}\Vert A^{-1}\Vert$ .
PROOF. Since $\gamma(A)=\Vert A^{-1}\Vert^{-1}$ , the assumption of Theorem 1.9 is satisfied and

(1.9) follows from (1.8). Q. E. D.
REMARK 1.11. Theorem 1.3 and Corollary 1.10 are respectively generaliza-

tions of Theorems IV-I.I and IV-1.16 in Kato [8].

\S 2. Preliminaries.

Let $X$ be a Banach space and $X^{*}$ be the adjoint space of $X$. Let $S$ be a
linear operator with domain $D(S)$ and range $R(S)$ in $X$. We denote by $S^{*}$ the
adjoint operator of $S$ when $D(S)$ is dense in $X$. Let $S$ be a closed linear operator
in $X$. Following Kato [8], we denote by def $S$ the deficiency of $S$ :

def $S=co\dim R(S)=\dim X/R(S)$ .
In this paper we shall assume that $R(S)$ is closed.

The following lemma is simple but useful (see [8], Problem III-1.42).

LEMMA 2.1. Let $Y$ and $Z$ be subspaces of a linear space. If codim $Y<\dim Z$

$<\infty$ , then dim $(Y\cap Z)>0$ .
We denote by $\tilde{A}$ the closure of $A$ when $A$ is closable.
PROPOSITION 2.2. Let $S$ be a densely defined linear operator in $X$, with $D(S^{*})$

dense in $X^{*}$ . Let $A$ be a closable linear operator in X. Let $tS+A$ be closed for
all $t\in(O, 1$]. Assume that

(i) there is $\xi>0$ such that $R(\tilde{A}+\xi)$ is closed;
(ii) for every $v(t)\in R(tS+A+\xi)$ there is $u(t)\in D(S)\cap D(A)$ and a constant

$M>0$ such that

(2.1) $tSu(t)+Au(t)+\xi u(t)=v(t)$ , $t\in(O, 1$] ,

and

(2.2) $|u(t)\Vert+\Vert Au(t)\Vert\leqq M\Vert v(t)\Vert$ , $t\in(O,$ $1_{-}^{\urcorner}$ .
If def $(tS+A+\xi)$ is constant, then we have

def $(\tilde{A}+\xi)\leqq def(tS+A+\xi)$ .
PROOF. We may assume that def $(tS+A+\xi)=k<\infty$ . Consequently, $R(tS|-$

$A+\xi)$ is closed (see $e.g$ . $[5]$ , Corollary IV-1.13). First suppose that def $(\tilde{A}+b\zeta)=$

$ l<\infty$ and $l>k$ . Then there exist two subspaces $Y(t)$ and $Y_{0}$ such that

$R(tS+A+\xi)\oplus Y(t)=X=R(\tilde{A}+\xi)\oplus Y_{0}$ .
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Since dim $Y(t)<\dim Y_{0}$ , we can find $v(t)\in R(tS+A+\xi)\cap Y_{0}$ with $\Vert v(t)\Vert=1$ (see

Lemma 2.1). Since $Y_{0}$ is locally compact, there are a sequence $\{t_{n}\}$ and $v\in Y_{0}$

such that $t_{n}\rightarrow+0$ and $v(t_{n})\rightarrow v(n\rightarrow\infty)$ . We shall show that $v=0$ in contradiction
to $\Vert v(t_{n})\Vert=1$ . Let $f\in X^{*}$ be an annihilator of $R(\tilde{A}+\xi):(u, f)=0$ for all $ u\in$

$R(\tilde{A}+\xi)$ , with the property $(v, f)=\Vert v\Vert$ and $\Vert f\Vert=\Vert v\Vert/dist(v, R(\tilde{A}+\xi))$ (see $e.g$ .
[8], Theorem III-1.22). Let $u(t)$ be as in condition (ii). Then, since $D(S^{*})$ is
dense in $x*$ , it follows from (2.2) that $t_{n}Su(t_{n})\rightarrow 0(n\rightarrow\infty)$ weakly. Also, we see
from (2.1) that $(v(t_{n}), f)=t_{n}(Su(t_{n}), f)$ . Going to the limit $ n\rightarrow\infty$ , we obtain
$(v, f)=0$ and hence $v=0$ because of $(v, f)=\Vert v\Vert$ .

Next, suppose that def $(\tilde{A}+\xi)=\infty$ . Let $Y_{0}$ be a $(k+1)$-dimensional subspace
such that $R(\tilde{A}+\xi)\cap Y_{0}=\{0\}$ . Arguing as above, we are led to a contradiction.

Q. E. D.
We note that $w\in R(tS+A+\xi)$ for all $t\in(O, 1$] implies $w\in R(\tilde{A}+\xi)$ . In fact,

$w-(A+\xi)u(t)=tSu(t)\rightarrow 0(t\rightarrow+0)$ weakly and $R(\tilde{A}+\xi)$ is weakly closed.
REMARK 2.3. The above proposition extends Theorem 2 in [1] (see also

Remark 3.5 below).

\S 3. Stability of indices of closed accretive operators.

Let $X$ be a Banach space. A linear operator $A$ with domain $D(A)$ and
range $R(A)$ in $X$ is said to be accretive if

$\Vert(A+\xi)u\Vert\geqq\xi\Vert u\Vert$ for all $u\in D(A)$ and $\xi>0$ .
It is well known that $R(A+\xi)=X$ either for every $\xi>0$ or for no $\xi>0$ ; in the
former case we say that $A$ is m-accretive. Accordingly, an m-accretive operator
is necessarily closed.

Let $F$ be the duality map on $X$ to $X^{*}$ . Then a linear operator $A$ in $X$ is
accretive if and only if for every $u\in D(A)$ there is $f\in F(u)$ such that ${\rm Re}$ (Au, f)
$\geqq 0$ (see Kato [9]). In this connection, we note that if $A$ is m-accretive and
densely defined then

(3.1) ${\rm Re}$ (Au, $f$ ) $\geqq 0$ for all $f\in F(u)$ ;

see Tanabe [22], Theorem 2.1.5.
Now let $A$ be a closed linear accretive operator in $X$. Then by definition

the nullspace $N(A+\xi)$ is trivial and $R(A+\xi)$ is closed for $\xi>0$ . Namely, $ A+\xi$

is a semi-Fredholm operator, with

(3.2) ind $(A+\xi)=-def(A+\xi)$ .
$A$ is m-accretive if and only if ind $(A+\xi)=0$ for some $\xi>0$ .

The following lemma, which was first noted by Behncke-Focke $--1_{-}^{\neg}$ $\sim s$

fundamental.
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LEMMA 3.1. Let $A,$ $B$ be linear operators in $X$, with $D(A)\subset D(B)$ . Assume
that for all $i\in[0,1],$ $A+tB$ is closed and accretive. Then ind $(A+tB+\xi)$ is con-
stant. In particular, ind $(A+B+\xi)=ind(A+\xi)$ for $\xi>0$ .

PROOF. By assumption $(A+\xi)+tB$ is closed and invertible, with $\gamma(A+\xi+tB)$

$\geqq\xi$, for $t\in[0,1]$ and $\xi>0$ . Therefore, the conclusion follows from Proposition
1.6. Q. E. D.

In view of this lemma and Theorem 1.3, we obtain
THEOREM 3.2. Let $A$ be a densely defined and closed bnear operator in $X$.

Let $B$ be a linear accretive operator in $X$, with $D(B)\supset D(A)$ . Let $A+tB$ be ac-
cretive $(0\leqq t\leqq 1)$ . Assume that for every $u\in D(A)$ there is $g\in F(Au)$ such that

${\rm Re}(Bu, g)\geqq-c\Vert u\Vert^{2}-a\Vert Au\Vert\Vert u\Vert-b\Vert$ Au $\Vert^{2}$ ,

where $a,$ $b(b<1)$ and $c$ are nonnegative constants.
Then $A+B$ is closed and ind $(A+B+\xi)=ind(A+\xi)$ for $\xi>0$ .
PROOF. It suffices to show that $B$ is A-bounded. But, since $D(B)$ is dense

in $X,$ $B$ must be closable (see Lumer-Phillips [13], Lemma 3.3). Applying the
closed graph theorem, we can conclude the A-boundedness of $B$ . Q. E. D.

When $X$ is a Hilbert space, it is easy to see that the above theorem is a
corollary of Theorem 1.9. But, the details may be omitted.

THEOREM 3.3. Let $A$ be a linear accretive operatOr in X. Let $S$ be a densely

defined and closed linear accretive operator in $X$, with $D(S)\subset D(A)$ . Assume that
for every $u\in D(S)$ [there is $f\in F(u)$ such that ${\rm Re}(Su, f)\geqq 0$ and ${\rm Re}$ (Au, $f$ ) $\geqq 0$ .
Assume further that

(i) for every $u\in D(S)$ there is $h\in F(Su)$ such that

(3.3) ${\rm Re}$ (Au, $h$ ) $\geqq-c\Vert u\Vert^{2}-a\Vert Su\Vert\Vert u\Vert$ ,

where $c$ and $a$ are nonnegative constants;
(ii) $D(S^{*})$ is dense in $x*$ .
Then ind $(\tilde{A}+\xi)\geqq ind(S+\xi)$ for $\xi>0$ .
If in particular $X$ is reflexive, then condition (ii) is redundant.
PROOF. First we note that $A$ is closable and $R(\tilde{A}+\xi)$ is closed for $\xi>0$ .

Now let $t>0$ . Then it follows from (3.3) that

${\rm Re}$ (Au, $g(t)$) $\geqq-tc\Vert u\Vert^{2}-a\Vert$ tSu $\Vert\Vert u\Vert$ ,

where $g(t)=th\in F(tSu)$ . Therefore, by Theorem 3.2, $tS+A$ is closed and ind $(tS$

$+A+\xi)=ind(tS+\xi)=ind(S+\xi)$ for $\xi>0$ . Next, let $v(i)\in R(tS+A+\xi)$ for $t\in(O, 1$].

Then there exists a unique family $\{u(t)\}$ in $D(S)$ such that

(3.4) $tSu(t)+Au(t)+\xi u(t)=v(t)$ , $t\in(O, 1$].

Taking a suitable $h(t)\in F(Su(t))$ , we see from (3.3) that
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$t\Vert Su(t)\Vert^{2}\leqq{\rm Re}((tS+A)u(t), h(t))+a\Vert Su(t\rangle||\# u(t)\Vert+c\Vert u(t)\Vert^{2}$

$\leqq(\Vert v(t)\Vert+(\xi+a)\Vert u(t)\Vert)\Vert Su(t)\Vert+c\Vert u(t)\Vert^{2}$ .
Since $\Vert u(t)\Vert\leqq\xi^{-1}\Vert v(t)\Vert$ , it follows that

$t\Vert Su(t)\Vert^{2}\leqq(2+a\xi^{-1})\Vert Su(t)\Vert\Vert v(t)\Vert+c\xi^{-2}\Vert v(t)\Vert^{2}$ .
Solving this inequality, we have $\Vert tSu(t)\Vert\leqq[2+(a+\sqrt{tc})\xi^{-1}]\Vert v(t)\Vert$ . Thus, we
obtain (2.2) with $M=4+(1+a+\sqrt{c})\xi^{-1}$ . In view of (3.2), the conclusion follows
from Proposition 2.2. The final assertion is well known (see $e.g$ . $[8]$ , Theorem
III-5.29). Q. E. D.

COROLLARY 3.4. Let $S$ be a densely defined and closed accretive operator in
X. Let $B$ be a linear accretive operator in $X$, with $D(B)\supset D(S)$ . Assume that
for every $u\in D(S)$ there is $f\in F(u)$ such that ${\rm Re}(Su, f)\geqq 0$ and ${\rm Re}(Bu, f)\geqq 0$ .
Assume further that for every $u\in D(S)$ there is $h\in F(Su)$ such that

(3.5) ${\rm Re}(Bu, h)\geqq-c\Vert u\Vert^{2}-a\Vert Su\Vert\Vert u\Vert-\Vert Su\Vert^{2}$ ,

where $c$ and $a$ are nonnegative constants. Assume that $D(S^{*})$ is dense in $X^{*}when$

$X$ is non-reflexive. Then

ind $((S+B)^{\sim}+\xi)\geqq ind(S+\xi)$ for $\xi>0$

In fact, (3.5) implies (3.3) with $A=S+B$ .
REMARK 3.5. (3.5) with $c=0$ is satisPed if

$\Vert Bu\Vert\leqq a\Vert u\Vert+\Vert Su\Vert$ for all $u\in D(S)\subset D(B)$ .

In this case the same conclusion can be obtained under the assumption that
$D(B^{*})$ , rather than $D(S^{*})$ , is dense in $X^{*}$ (see Behncke-Focke [1], Theorem 2).

Combining Lemma 3.1 with Proposition 1.4, we obtain
PROPOSITION 3.6. Let $A$ be a densely defined and closed linear operator in $X$.

Let $B$ be a linear accretive operator in $X$, with $D(B)\supset D(A)$ . Let $A+tB$ be ac-
cretive $(0\leqq t\leqq 1)$ . Assume that for every $u\in D(A)$ there is $h\in F(Bu)$ such that
(1.6) holds.

Then $A+B$ is closed and ind $(A+B+\xi)=ind(A+\xi)$ for $\xi>0$ .
In fact, the A-boundedness of $B$ was noted in the proof of Theorem 3.2.
Here, we present another application of Proposition 2.2.
THEOREM 3.7. Let $A$ be a linear accretive operator in X. Let $S$ be a densely

defined and closed linear accretive operator in $X$, with $D(S)\subset D(A)$ . Assume that
for every $u\in D(S)$ there is $f\in F(u)$ such that ${\rm Re}(Su, f)\geqq 0$ and ${\rm Re}$ (Au, $f$) $\geqq 0$ .
Assume further that

(i) for every $u\in D(S)$ there is $h\in F(Au)$ such that

(3.6) ${\rm Re}(Su, h)\geqq-c\Vert u\Vert^{2}-a\Vert Au\Vert\Vert u\Vert$ ,
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where $c$ and $a$ are nonnegative constants;
(ii) $D(S^{*})$ is dense in $X^{*}$ .
Then ind $(\tilde{A}+\xi)\geqq ind(S+\xi)$ for $\xi>0$ .
If in particular $X$ is reflexive, then condition (ii) is redundant.
PROOF. As noted in the proof of Theorem 3.3, condition (i) of Proposition

2.2 is satisfied. Now let $t>0$ . Then it follows from (3.6) that

${\rm Re}(tSu, h)\geqq-tc\Vert u\Vert^{2}-ta\Vert Au\Vert\Vert u\Vert$ .
Therefore, by Proposition 3.6, $tS+A$ is closed and

ind $(tS+A+\xi)=ind(tS+\xi)=ind(S+\xi)$ , $\xi>0$ .

It remains to show that $\Vert Au(t)\Vert$ is bounded by $\Vert v(t)\Vert$ , where $u(t)$ is a unique
solution of (3.4). By virtue of (3.6) there is $g(t)\in F(Au(t))$ such that

$\Vert Au(i)\Vert^{2}=(Au(t), g(t))$

$\leqq{\rm Re}((tS+A)u(t), g(t))+tc\Vert u(t)\Vert^{2}+ta\Vert Au(t)\Vert\Vert u(i)\Vert$

$\leqq[\Vert(tS+A)u(t)\Vert+ta\Vert u(t)\Vert]$ I Au $(t)\Vert+tc\Vert u(t)\Vert^{2}$

$\leqq(2+ta\xi^{-1})\Vert Au(t)\Vert\Vert v(t)\Vert+tc\xi^{-2}\Vert v(t)\Vert^{2}$ ,

where we have used $\Vert u(t)\Vert\leqq\xi^{-1}\Vert v(t)\Vert$ . Solving this inequality, we can obtain
(2.2) with $M=2+(1+a+\sqrt{c})\xi^{-1}$ . Therefore, the conclusion follows from Prop-
osition 2.2. Q. E. D.

REMARK 3.8. The m-accretive version of Theorem 3.7 improves Theorem
3.3 in [18] in which $D(A^{*})$ is also assumed to be dense in $x*$ .

REMARK 3.9. Let $X$ be reflexive. Let $A$ and $B$ satisfy the assumption of
Theorem 3.2. Then we have (3.5) with $S$ replaced by $A$ . Therefore, by Corol-
lary 3.4,

ind $(A+B+\xi)\geqq ind(A+\xi)$ , $\xi>0$ ;

note that $A+B$ is closed (use Theorem 1.3). On the other hand, (3.5) (with

$S=A)$ implies (3.6) with $S$ replaced by $A+B$ . So, by Theorem 3.7,

ind $(A+\xi)\geqq ind(A+B+\xi)$ , $\xi>0$ .
Thus, the conclusion of Theorem 3.2 holds. This means that Theorem 3.3
together with Theorem 3.7 generalizes Theorem 3.2.

For the later use, we want to state
THEOREM 3.10. Let $X$ be reflexive. Let $S$ and $B$ be linear accretive operators

in $X$, with $D(S)\subset D(B)$ . Assume that for every $u\in D(S)$ there is $h\in F(Su)$ such
that

${\rm Re}(Bu, h)\geqq-c\Vert u\Vert^{2}-a\Vert Su\Vert\Vert u\Vert-b\Vert Su\Vert^{2}$ ,
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where $a,$ $b(b\leqq 1)$ and $c$ are nonnegative constants.
In the case of $b<1,$ $S+B$ is m-accretive if and only if $S$ is m-accretive. $In$

the case of $b=1,$ $(S+B)^{\sim}is$ m-accretive if $S$ is m-accretive.
PROOF. First we note that an m-accretive operator in a reflexive space is

necessarily densely defined (see Kato [7] or Yosida [24], VIII-\S 4). Suppose that
$S$ is m-accretive. Then we see from (3.1) that $S+tB$ is accretive $(0\leqq t\leqq 1)$ .
Therefore, the conclusion for the case of $b<1$ follows from Lemma 3.1 and
Theorem 1.3. By virtue of (3.1) the case of $b=1$ is contained in Corollary 3.4.

Q. E. D.
The following corollary is due to Nelson [14], Gustafson [6], Chernoff [2]

and Okazawa [15].

COROLLARY 3.11. Let $X$ be reflexive. Let $S,$ $B$ be linear accretive operatOrs
in $X$, with $D(S)\subset D(B)$ . Assume that there are constants $a,$ $b\geqq 0(b\leqq 1)$ such that
for all $u\in D(S),$ $\Vert Bu\Vert\leqq a\Vert u\Vert+b\Vert Su\Vert$ . Then the conclusion of Theorem 3.10 holds.

\S 4. The sum of $m$-accretive operators in a reflexive space.

Throughout this section $X$ is assumed to be reflexive. Let $A$ be a linear
m-accretive operator in $X$. Then $\{A_{n}\}$ denotes the Yosida aPprommafjon of $A$ :

$A_{n}=A(1+\frac{1}{n}A)^{-1}=n[1-(1+\frac{1}{n}A)^{-1}]\in B(X)$ , $n=1,2,$ $\cdots$

where $B(X)$ is the set of all bounded linear operators on $X$ to X. $A$ is ap-
proximated by $\{A_{n}\}$ in the following sense:

$\Vert Au-A_{n}u\Vert\rightarrow 0$ $(n\rightarrow\infty)$ for every $u\in D(A)$ .
Let $B$ be a linear m-accretive operator in $X$ and consider the sequence $\{A_{n}+B\}$ .
Since $A_{n}\in B(X),$ $A_{n}+B$ is m-accretive by Corollary 3.11. Consequently, for
every $v\in X$ there is a unique $u_{n}\in D(B)$ such that

(4.1) $A_{n}u_{n}+Bu_{n}+u_{n}=v$ , $n=1,2,$ $\cdots$

LEMMA 4.1. Let $A$ and $B$ be linear m-accretive operators in $X$, and $u_{n}$ be a
umque solution of the equation (4.1). Assume that for every $v\in X,$ $\{\Vert A_{n}u_{n}\Vert\}$ is
bounded. Then $A+B$ is also m-accretive.

A proof of this lemma will be found in [16].

Let $A$ be an arbitrary closed linear operator in $X$. Then a linear manifold
$D$ contained in $D(A)$ is called a core of $A$ if the closure of the restriction of $A$

to $D$ is again $A:(A|D)^{\sim}=A$ .
Let $F$ be the duality map on $X$ to $x*$ .
THEOREM 4.2. Let $X$ be reflexive. Let $A$ and $B$ be linear m-accretive

operat0rs in X. Assume that for every $u\in D(B)$ there is a sequence $\{f_{n}\}$ such
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that $f_{n}\in F(A_{n}u)$ and

(4.2) ${\rm Re}(Bu, f_{n})\geqq-c\Vert u\Vert^{2}-a\Vert A_{n}u\Vert\Vert u\Vert-b\Vert A_{n}u\Vert^{2}$ ,

where $a,$ $b(b\leqq 1)$ and $c$ are nonnegative constants.
If $b<1$ then $A+B$ is m-accretive and $D(A+B)$ is a core of A. If in Par-

ticular $b=0$ then $D(A+B)$ is a core of both $A$ and B. If $b=1$ then $(A+B)^{\sim}is$

m-accretive and

$[(A+B)^{\sim}+\zeta]^{-1}=s-\lim_{n\rightarrow\infty}(A_{n}+B+\zeta)^{-1}$ , ${\rm Re}\zeta>0$ .

PROOF. First let $b<1$ . Then it follows from Lemma 1.1 that for every
$u\in D(B)$ ,

$\Vert A_{n}u\Vert\leqq(1-b)^{-1}\Vert(A_{n}+B)u\Vert+K\Vert u\Vert$

$\leqq(1-b)^{-1}\Vert A_{n}u+Bu+u\Vert+[K+(1-b)^{-1}]\Vert u\Vert$ .
Now let $u_{n}$ be a unique solution of (4.1). Then, since $\Vert u_{n}\Vert\leqq\Vert v\Vert$ , we obtain

$\Vert A_{n}u_{n}\Vert\leqq[K+2(1-b)^{-1}]\Vert v\Vert$ for every $v\in X$ .
Therefore, $A+B$ is m-accretive by Lemma 4.1.

Next, let $b=1$ . Then (4.2) can be written as

(4.3) ${\rm Re}(\frac{1}{2}Bu,$ $f_{n})\geqq-\frac{c}{2}\Vert u\Vert^{2}-\frac{a}{2}\Vert A_{n}u\Vert\Vert u\Vert-\frac{1}{2}\Vert A_{n}u\Vert^{2}$ .

Thus, $A+\frac{1}{2}B$ is m-accretive as shown above and hence $D(A+B)$ is dense in

X. Let $u\in D(A+B)$ . Then, since $\Vert f_{n}\Vert=\Vert A_{n}u\Vert\rightarrow\Vert$ Au $\Vert,$ $\{f_{n}\}$ is bounded as $n$

tends to infinity. Consequently, there exists $f\in X^{*}$ such that $f_{n_{p}}\rightarrow f(p\rightarrow\infty)$

weakly and $\Vert f\Vert\leqq\lim_{p\rightarrow}\inf\Vert f_{n_{p}}\Vert=\Vert Au\Vert$ . On the other hand, $\Vert Au\Vert^{2}=\lim_{p\rightarrow}(A_{n_{p}}u, f_{n_{p}})$

$=(Au, f)$ and hence $\Vert Au\Vert\leqq\Vert f\Vert$ . Namely, $f\in F(Au)$ . Going to the limit in (4.3)
with $n=n_{p}$ , we obtain for every $u\in D(A+B)$ ,

(4.4) ${\rm Re}(\frac{1}{2}Bu,$ $ f)\geqq-\frac{c}{2}\Vert u\Vert^{2}-\frac{a}{2}\Vert Au\Vert\Vert u\Vert-\frac{1}{2}\Vert$ Au $\Vert^{2}$ .

It then follows from Lemma 1.1 that for every $g\in F((A+\frac{1}{2}B)u)$ ,

${\rm Re}(\frac{1}{2}Bu,$ $ g)\geqq-\Vert(A+\frac{1}{2}B)u\Vert^{2}-(a+\sqrt{c})\Vert(A+\frac{1}{2}B)u\Vert||u\Vert$ .

Applying Theorem 3.10, we see that the closure of $A+B=(A+\frac{1}{2}B)+\frac{1}{2}B$

is m-accretive.
Here we mention the assertions on cores. It follows from (4.4) that
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${\rm Re}((A+B)u, f)\geqq-c\Vert u\Vert^{2}-a\Vert Au\Vert\Vert u||$ , $f\in F(Au)$ .
Since $A+B$ is m-accretive, $D(A+B)$ is a core of $A$ (see [18], Theorem 3.3).

If $b=0$ then we have

${\rm Re}(Bu, f)\geqq-c\Vert u\Vert^{2}-a\Vert Au\Vert\Vert u\Vert$ , $f\in F(Au)$ .
So, we see from Lemma 1.1 that for every $h\in F((A+B)u)$ ,

${\rm Re}(Bu, h)\geqq-(a+\sqrt{c})\Vert(A+B)u\Vert\Vert u\Vert$ .
Therefore, $D(A+B)$ is a core of $B$ (see [18], Theorem 3.1).

The final assertion follows from the fact that $(A_{n}+B)u\rightarrow(A+B)u(n\rightarrow\infty)$

for every $u\in D(A+B)$ and $D(A+B)$ is a core of $(A+B)^{\sim}$ (see Kato [8], Theorem
VIII-1.5). Q. E. D.

REMARK 4.3. Let $A,$ $B$ be as in Theorem 4.2. Suppose that for every $ u\in$

$D(B)$ there is $f\in F(Bu)$ such that

${\rm Re}(A_{n}u, f)\geqq-c\Vert u\Vert^{2}-a\Vert Bu\Vert\Vert u\Vert-b\Vert Bu\Vert^{2}$ , $n=1,2,$ $\cdots$

where $a,$ $b(b<1)$ and $c$ are nonnegative constants.
Then $A+B$ is m-accretive and $D(A+B)$ is a core of $B$ . If in particular

$b=0$ then $D(A+B)$ is a core of both $A$ and $B$ .
In fact, by using Lemma 1.1 again, we can show that $\{\Vert Bu_{n}\Vert\}$ (and hence

$\{\Vert A_{n}u_{n}\Vert\})$ in (4.1) is bounded for every $v\in X$. The proof for the statement on
cores is similar to that in Theorem 4.2.

In the assumption of the next theorem, the Yosida approximation is not
contained explicitly while the proof of it is based on Theorem 4.2.

THEOREM 4.4. Let $A$ and $B$ be linear m-accretive operators in X. Let $D$ be
a core of $B$ such that $(1+n^{-1}A)^{-1}D\subset D(n=1, 2, )$ . Assume that for every $ u\in$

$D_{0}=(1+A)^{-1}D$ there is $f\in F(Au)$ such that

${\rm Re}(Bu, f)\geqq-c\Vert u\Vert^{2}-a\Vert Au\Vert\Vert u\Vert-b\Vert$ Au $\Vert^{2}$ ,

where $a,$ $b(b\leqq 1)$ and $c$ are nonnegative constants.
Then the conclusion of Theorem 4.2 holds.
PROOF. We shall show that the assumption of Theorem $4.2_{A}^{R}$ is satisfied.

Let $v\in D$ and $g_{n}\in F(A_{n}v)$ . Then

$\frac{1}{n}g_{n}\in F(v-(1+\frac{1}{n}A)^{-1}v)$

and we have

(4.5) ${\rm Re}(Bv, g_{n})$

$=n{\rm Re}(Bv-B(1+\frac{1}{n}A)^{-1}df\frac{1}{n}g_{n})+{\rm Re}(B(1+\frac{1}{n}A)^{-1}v,$ $g_{n})$
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$\geqq{\rm Re}(B(1+\frac{1}{n}A)^{-1}v,$ $g_{n})$ .

Noting that $(1+n^{-1}A)^{-1}v\in D_{0}$ , we see by assumption that there is $f_{n}\in F(A_{n}v)$

such that

${\rm Re}(B(1+\frac{1}{n}A)^{-1}v,$ $f_{n})$

$\geqq-c\Vert(1+\frac{1}{n}A)^{-1}v\Vert^{2}-a\Vert A_{n}v\Vert\Vert(1+\frac{1}{n}A)^{-1}v\Vert-b\Vert A_{n}v\Vert^{2}$ .

Setting $g_{n}=f_{n}$ in (4.5), we obtain (4.2) with $u$ replaced by $v\in D$ . Now let $ u\in$

$D(B)$ . Then there exists a sequence $\{u_{p}\}$ in $D$ such that $u_{p}\rightarrow u$ and $Bu_{p}\rightarrow Bu$

as $ p\rightarrow\infty$ . Let $f_{n}^{(p)}\in F(A_{n}u_{p})$ . Then it follows that

(4.6) ${\rm Re}(Bu_{p}, f_{n}^{(p)})\geqq-c\Vert u_{p}\Vert^{2}-a\Vert A_{n}u_{p}\Vert\Vert u_{p}\Vert-b\Vert A_{n}u_{p}\Vert^{2}$ .

In the same way as in the proof of Theorem 4.2, we can show that there is
$f_{n}\in F(A_{n}u)$ such that

$f_{n}=w-\lim_{k\rightarrow\infty}f_{n}^{(p_{k})}$ ,

where $\{f_{n}^{(pk)}\}$ is a suitable subsequence of $\{f_{n}^{(p)}\}$ . Going to the limit $ k\rightarrow\infty$ in
(4.6) with $p$ replaced by $p_{k}$ , we obtain just (4.2). Q. E. D.

REMARK 4.5. As an example of $D$ in the above theorem we have in mind

$D(A^{\infty})=\bigcap_{n=1}^{\infty}D(A^{n})$ . In this case $D_{0}=(1+A)^{-1}D=D(A^{\infty})$ is also a core of $A$ .

REMARK 4.6. When $X$ is a Hilbert space, the difference of the above
theorems from those in [17] is the fact that $a\neq 0$ . This makes sense if $b=1$ .
We note further that Satz 2.1 in Sohr [20] corresponds to the case of $b<1$ and
$c=0$ in our Theorem 4.4.

If in particular $X$ is a Hilbert space, then there is another corollary of
Theorem 4.2.

Let $H$ be a Hilbert space. Then we have
THEOREM 4.7. Let $A,$ $B$ be linear m-accretive operators in H. Assume that

there is a constant $\alpha>0$ such that ${\rm Re}$ (Au, $u$ ) $\geqq\alpha\Vert u\Vert^{2}$ for all $u\in D(A)$ . Assume
further that there is a nonnegative constant $b\leqq 1$ such that for all $u\in D(B^{*})$ ,

(4.7) ${\rm Re}(B^{*}u, A^{-1}u)\geqq-b\Vert u\Vert^{2}$ ,

where $B^{*}$ is the adjoint of $B$ .
Then we have (4.2) with $c=a=0$ and $f_{n}=A_{n}u$ .
PROOF. Since $A^{-1}$ and $B^{*}$ are also accretive, it follows from (4.7) that for

$m=1,2,$ $\cdots$

(4.8) ${\rm Re}(B^{*}u,$ $A^{-1}(1+\frac{1}{m}B^{*})u)\geqq-b\Vert u\Vert^{2}$
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$\geqq-b\Vert(1+\frac{1}{m}B^{*})u\Vert^{2}$

Let $v\in H$. Then $(1+\frac{1}{m}B^{*})^{-1}v\in D(B^{*})$ ; note that $B^{*}$ is m-accretive. Setting

$u=(1+\frac{1}{m}B^{*})^{-1}v$ in (4.8), we have

(4.9) ${\rm Re}(B_{m}^{*}v, A^{-1}v)\geqq-b\Vert v\Vert^{2}$ , $v\in H$ ,

where $B_{m}^{*}$ is the Yosida approximation of $B^{*}$ .
Noting that $A_{n}=A(1+\frac{1}{n}A)^{-1}1$ and $B_{m}=B(1+\frac{1}{m}B)^{-1}=m[1-(1+\frac{1}{m}B)^{-1}]$ ,

we have $A_{n}^{-1}=A^{-1}+\overline{n}$ and $(B_{m})^{*}=B_{m}^{*}$ . Since $B_{m}$ is also accretive, it follows

that

${\rm Re}(v, B_{m}A_{n}^{-1}v)={\rm Re}(v,$ $B_{m}(A^{-1}+\frac{1}{n})v)$

$\geqq{\rm Re}(B_{m}^{*}v, A^{-1}v)\geqq-b\Vert v\Vert^{2}$ , $v\in H$ ,

where we have used (4.9). Thus, for all $u\in H$ we obtain

(4.10) ${\rm Re}(A_{n}u, B_{m}u)\geqq-b\Vert A_{n}u\Vert^{2}$ , $m,$ $n=1,2,$ $\cdots$

Going to the limit $ m\rightarrow\infty$ in (4.10) with $u\in D(B)$ , we obtain the desired in-
equality. Q. E. D.

REMARK 4.8. Going to the limit $ n\rightarrow\infty$ in (4.10) with $u\in D(A)$ , we obtain
an estimate of the form which is mentioned in Remark 4.3 (exchange $A$ and $B$).

REMARK 4.9. Theorem 4.7 generalizes a result of Sohr (see [21], Lemma
3.1) in which both $A$ and $B$ are assumed to be selfadjoint.

\S 5. Stability of selfadjointness.

Here we collect several stability theorems for (essential) selfadjointness.
l.et $H$ be a Hilbert space. We begin with

THEOREM 5.1. Let $A$ be a symmetric operator in H. Let $S$ be a nonnegative
selfadjoiint operator in $H$, with a core D. Assume that $D\subset D(A)$ and

(i) there are constants $a_{0},$
$b_{0}\geqq 0$ such that

$\Vert$ Au $\Vert\leqq a_{0}\Vert u\Vert+b_{0}\Vert Su\Vert$ for all $u\in D$ ;

(ii) there are constants $c,$ $a\geqq 0$ such that for all $u\in D$ ,

(5.1) $|{\rm Im}(Au, Su)|\leqq c\Vert u\Vert+a\Vert Su\Vert\Vert u\Vert$ .

Then $A$ is essentially selfadjoint on $D$ .
PROOF. By virtue of condition (i) we can obtain condition (ii) with $A$ and

$D$ replaced by $\tilde{A}$ and $D(S)$ , respectively. Thus, (5.1) is equivalent to the in-
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equality
${\rm Re}(\pm i\tilde{A}u, Su)\geqq-a\Vert u\Vert^{2}-b\Vert Su\Vert\Vert u\Vert$ , $u\in D(S)$ .

Therefore, $\tilde{A}$ is selfadjoint and $D(S)$ is a core of $\tilde{A}$ (see [18], Theorem 4.5).

Namely, $D$ is a core of $\tilde{A}$ and $A$ is essentially selfadjoint on $D$ . Q. E. D.
THEOREM 5.2. Let $S$ and $B$ be symmetric operators in $H$, with $D(S)\subset D(B)$ .

Assume that there are nonnegative constants $a,$ $b(b\leqq 1)$ and $c$ such that for all
$u\in D(S)$ ,

${\rm Re}(Bu, Su)\geqq-c\Vert u\Vert^{2}-a\Vert Su\Vert\Vert u\Vert-b\Vert Su\Vert^{2}$ .
In the case of $b<1,$ $S+B$ is selfadjoint if and only if $S$ is selfadjoint. In the
case of $b=1,$ $S+B$ is essentially selfadjoint on $D(S)$ if $S$ is selfadjoznt.

PROOF. Apply Theorem 3.10 to the pairs of $\pm iS$ and $\pm iB$ . A direct proof
for the case of $b=1$ will be found in Kuroda [12] (see also [18], Remark 4.3).

Q. E. D.
The following corollary is the well known Kato-Rellich theorem supplemented

by W\"ust [23].

COROLLARY 5.3. Let $S,$ $B$ be symmetric operators in $H$, with $D(S)\subset D(B)$ .
Assume that there are nonnegative constants $a$ and $b(b\leqq 1)$ such that for all
$u\in D(S),$ $\Vert Bu\Vert\leqq a\Vert u\Vert+b\Vert Su\Vert$ . Then the concluszon of Theorem 5.2 holds.

Here, we present a corollary of Theorem 4.2.
THEOREM 5.4. Let $A$ and $B$ be nonnegative selfadjoint operators in H. As-

sume that there are nonnegative constants $a,$ $b(b\leqq 1)$ and $c$ such that for all
$u\in D(A)$ ,

(5.2) ${\rm Re}$ (Au, $B_{n}u$ ) $\geqq-c\Vert u\Vert^{2}-a\Vert B_{n}u\Vert\Vert u\Vert-b\Vert B_{n}u\Vert^{2}$ ,

where $B_{n}=B(1+\frac{1}{n}B)^{-1}$ is the Yosida approximation of $B$ .

If $b<1$ then $A+B$ with $D(A+B)=D(A)\cap D(B)$ is also selfadjoint. If in
particular $b=0$ , then $D(A+B)$ is a core of both $A$ and B. If $b=1$ then $A+B$ is
essentially selfadjoint on $D(A+B)$ .

COROLLARY 5.5. Let $A,$ $B$ be nonnegative selfadjoint operators in H. Assume
that there are constants $c,$ $a\geqq 0$ and $k>-1$ such that for all $u\in D(A)$ ,

(5.3) ${\rm Re}$ (Au, $B_{n}u$ ) $\geqq k\Vert B_{n}u\Vert^{2}-c\Vert u\Vert^{2}-a\Vert B_{n}u\Vert\Vert u\Vert$ .
Then $A+tB$ is selfadjoint for $-k<t\leqq 1$ and $A-kB$ is essentially selfadjoint

on $D(A+B)$ .
PROOF. (5.3) implies (5.2) with $b=-k<1$ . Therefore, $A+B$ is selfadjoint.

Going to the limit $ n\rightarrow\infty$ in (5.3) with $u\in D(A+B)$ , we have

(5.4) ${\rm Re}$ (Au, $Bu$) $\geqq k\Vert Bu\Vert^{2}-c\Vert u\Vert^{2}-a\Vert Bu\Vert\Vert u\Vert$ .
So, we see that for all $u\in D(A+B)$ ,
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$\Vert Bu\Vert\leqq(1+k)^{-1}\Vert(A+B)u\Vert+K\Vert u\Vert$ ,

where $K=a(1+k)^{-1}+[c(1+k)^{-1}]^{1/2}$ (cf. Lemma 1.1). Let $t<1$ . Then we have

$\Vert(t-1)Bu\Vert\leqq\frac{1-t}{1+k}\Vert(A+B)u\Vert+(1-t)K\Vert u\Vert$ .

Since $(1-t)(1+k)^{-1}\leqq 1$ for $-k\leqq t<1$ , the conclusion follows from Corollary 5.3:
$A+tB=(A+B)+(t-1)B$ is selfadjoint for $-k<t<1$ and essentially selfadjoint
for $t=\cdot-k$ . Q. E. D.

REMARK 5.6. If in particular $k>0$ in (5.3), then $B$ must be A-bounded. In
fact, it follows from (5.4) that

$k\Vert Bu\Vert^{2}\leqq{\rm Re}$ (Au, $Bu$) $+a\Vert Bu\Vert\Vert u\Vert+c\Vert u\Vert^{2}$

$\leqq(\Vert Au\Vert+a\Vert u\Vert)\Vert Bu\Vert+c\Vert u\Vert^{2}$ .
Solving this inequality, we have for all $u\in D(A+B)$ ,

(5.5) $\Vert Bu\Vert\leqq k^{-1}\Vert Au\Vert+[ak^{-1}+(ck^{-1})^{1/2}]\Vert u\Vert$ .

But, since $D(A+B)$ is a core of $A$ , we see from (5.5) that $D(A)\subset D(B)$ and
hence (5.5) holds for all $u\in D(A)$ .

The following theorem is concerned with the essential selfadjointness of the
difference of two nonnegative symmetric operators.

THEOREM 5.7. Let $S$ and $C$ be nonnegative symmetric operatOrs in H. Let
$D$ be a linear manifold on which $S+C$ is essentially selfadjoint: $D$ is a core of
$[(S+C)|D]^{\sim}$ . Assume that for all $u\in D$ ,

(5.6) $\Vert Su\Vert+\Vert Cu\Vert\leqq a_{0}\Vert u\Vert+b_{0}\Vert(S+C)u\Vert$ ,

(5.7) $|{\rm Im}(Cu, Su)|\leqq c\Vert u\Vert^{2}+a\Vert(S+C)u\Vert\Vert u\Vert$ ,

where $a_{0},$ $b_{0},$ $c$ and $a$ are nonnegative constants.
Then $S-C$ is also essentially selfadjoint on $D$ .
PROOF. It follows from (5.6) that $S-C$ is $(S+C)$-bounded. Also, we have

${\rm Im}((S-C)u, (S+C)u)=2{\rm Im}(Su, Cu)$

and by (5.7)

$|{\rm Im}((S-C)u, (S+C)u)|\leqq 2c\Vert u\Vert^{2}+2a\Vert(S+C)u\Vert\Vert u\Vert$ , $u\in D$ .
Therefore, the conclusion follows from Theorem 5.1. Q. E. D.

\S 6. Applications to Schr\"odinger operators.

In this section we consider the (essential) selfadjointness of some simple
Schrodinger operators in $L^{2}=L^{2}(R^{N})$ .
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Let $V(x)>0$ be locally in $L^{2}(R^{N}\backslash \{0\})$ and set

$V_{n}(x)=V(x)[1+\frac{1}{n}V(x)]^{-1}$ , $n=1,2,$ $\cdots$

Let $B$ be the maximal multiplication operator by $V(x)$ :

$Bu(x)=V(x)u(x)$ for $u\in D(B)=\{u, V(x)u\in L^{2}\}$ .
Then $B$ is a nonnegative selfadjoint operator in $L^{2}$ . Let $A$ be the minus
Laplacian:

Au$(x)=-\Delta u(x)$ for $u\in D(A)=H^{2}(R^{v}\wedge)$ .

Then $A$ is also selfadjoint and nonnegative in $L^{2}$ .
First we consider the (essential) selfadjointness of $A+B=-\Delta+V(x)$ with

$D(A+B)=H^{2}(R^{N})\cap D(B)$ .
THEOREM 6.1. Let $A$ and $B$ be as above. Assume that $V_{n}(x)$ is a function

of class $C^{1}(R^{N})$ and

(6.1) grad $V_{n}(x)|^{2}\leqq cV_{n}(x)+a[V_{n}(x)]^{2}+b[V_{n}(x)]^{3}$ , $x\in R^{N}$ $n\geqq 1$ ,

where $a,$ $b(b\leqq 4)$ and $c$ are nonnegative constants.
If $b<4$ then $A+B=-\Delta+V(x)$ is also selfadjoint in $L^{2}$ . If $b=4$ then $A+B$

$=-\Delta+V(x)$ is essentially selfadjoint on $D(A+B)$ .
PROOF. We shall show that for all $u\in D(A)$ ,

(6.2) ${\rm Re}$ (Au, $B_{n}u$ ) $\geqq-\frac{c}{4}\Vert u\Vert^{2}-\frac{a}{4}(u, B_{n}u)-\overline{4}\Vert B_{n}u\Vert^{2}$ .
$b$

So, we can apply Theorem 5.4. Let $u(x)\in C_{0}^{\infty}(R^{N})$ . Then, since $B_{n}u(x)=$

$V_{n}(x)u(x)$ , we have

(Au, $B_{n}u$ ) $=\int_{R^{N}}V_{n}(x)|gradu(x)|^{2}dx+i_{R^{N}}\sim\overline{u(x)}\sum_{f=1}^{N}\frac{\partial V_{n}}{\partial v_{i}}\frac{\partial u}{\partial x_{j}}dx$

and hence

${\rm Re}$ (Au, $B_{n}u$ ) $-\int_{R^{N}}V_{n}(x)|$ grad $u(x)|^{2}dx$

$\geqq-\int_{R^{N}}|u(x)|\sum_{j=1}^{N}|\frac{\partial V_{n}}{\partial x_{j}}||\frac{\partial u}{\partial x_{j}}|dx$

$\geqq-\int_{R^{N}}V_{n}(x)|gradu(x)|^{2}dx-\frac{1}{4}\int_{R^{N}}\frac{|u(x)|^{2}}{V_{n}(x)}|gradV_{n}(x)|^{2}dx$ .
Therefore, (6.1) implies (6.2). Q. E. D.

Let $W(x)>0$ be locally in $L^{2}(R^{N}\backslash \{0\})$ . Then we have
COROLLARY 6.2. Let $A$ and $B$ be as in Theorem 6.1. Let $C$ be the maximal

muliiplication operator by $W(x)$ . Assume that $V_{n}(x)$ and $W_{n}(x)$ are functions of
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class $C^{1}(R^{N})$ satisfying (6.1) with $b<4$ .
Then $A+B+C=-\Delta+V(x)+W(x)$ is selfadjoint in $L^{2}$ .
In fact, we have (6.2) with $A$ and $B$ replaced by $A+B$ and $C$, respectively.
Next, we present a sufficient condition which guarantees the estimate (6.1).

COROLLARY 6.3. Let $A$ and $B$ be as in Theorem 6.1. Assume instead of (6.1)

that $V(x)\geqq 0$ is of class $C^{1}(R^{N})$ and

(6.3) grad $V(x)|^{2}\leqq c+b[V(x)]^{3}$ , $x\in R^{N}$ ,

where $b(b\leqq 4)$ and $c$ are nonnegative constants.
Then the conclusion of Theorem 6.1 holds. If in particular $b<4$ , then $C_{0}^{\infty}(R^{N})$

is a core of $A+B$ .
PROOF. It suffices to show that $A+B+1$ is (essentially) selfadjoint. So, we

may assume that $V(x)\geqq 1$ . In fact, $V(x)$ in (6.3) can be replaced by $V(x)+1$ .
Noting that $V_{n}(x)=n-n[1+\frac{1}{n}V(x)]^{-1}$ , we see from (6.3) that (6.1) with $a=0$

is satisfied:

$\frac{|gradV_{n}(x)|^{2}}{V_{n}(x)}=\frac{|gradV(x)|^{2}}{V(x)}[1+\frac{1}{n}V(x)]^{-3}$

$\leqq\frac{c+b[V(x)]^{3}}{V(x)}[1+\frac{1}{n}V(x)]^{-2}\leqq c+b[V_{n}(x)]^{2}$ .

Since $V(x)\geqq 0$ is locally in $L^{2}(R^{N})$ , the latter assertion follows from the famous
result of Kato [10] (cf. also Reed-Simon [19], Theorem X. 28). Q. E. D.

It should be noted that the case of $b<4$ in Corollary 6.3 is nothing but the
main result in Everitt-Giertz [3] (the case of $G=R^{N}$ ). In [3], however, the
result is not formulated as an application of the perturbation theory for self-
adjoint operators.

REMARK 6.4. The proof of Corollary 6.3 (the case of $b<4$) can be easily
completed also by applying Lemma 3.1 in Sohr [21] (cf. Remark 4.9 above);

this observation is due to the referee.

EXAMPLE 6.5. Let $V(x)=|x|^{2}=\sum_{j=1}^{N}x_{f}^{2}$ . Then grad $V(x)|^{2}=4V(x)$ . So, we

have ${\rm Re}$ (Au, $B_{n}u$ ) $\geqq-\Vert u\Vert^{2}$ for $u\in H^{2}(R^{N})$ . Therefore, $-\Delta+|x|^{2}$ is selfadjoint
in $L^{2}$ .

EXAMPLE 6.6. Let $V(x)=\beta|x|^{-2}$ , where $\beta\geqq 1$ is a constant. Then $V_{n}(x)=$

$\beta(|x|^{2}+\frac{\beta}{n})^{-1}$ and

(6.4) grad $V_{n}(x)|^{2}=4\beta^{2}|x|^{2}(|x|^{2}+\frac{\beta}{n})^{-4}\leqq\frac{4}{\beta}[V_{n}(x)]^{3}$ .

So, we have ${\rm Re}$ (Au, $B_{n}u$ ) $\geqq-\frac{1}{\beta}\Vert B_{n}u\Vert^{2}$ for $u\in H^{2}(R^{N})$ . Therefore, $A+B=$
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$-\Delta+\beta|x|^{-2}(\beta>1)$ is selfadjoint in $L^{2}$ and $-\Delta+|x|^{-2}$ is essentially selfadjoint
on $D(A+B)$ . We note that in the case of $\beta>N$ the selfadjointness $of-\Delta+\beta|x|^{-2}$

was proved by Sohr (see [21], Folgerung 2.4).

To improve this result we prepare
LEMMA 6.7. Let $A$ and $B$ be as in Theorem 6.1. If $V_{n}(x)>0$ is a function

of class $C^{1}(R^{N})$ , then we have for all $u\in C_{0}^{\infty}(R^{N})$ ,

(6.5) ${\rm Re}$ (Au, $B_{n}u$ ) $=\int_{R^{N}}|grad[u(x)\sqrt{V_{n}(x)}]|^{2}dx$

$-\frac{1}{4}\int_{R^{N}}\frac{|u(x)|^{2}}{V_{n}(x)}$ grad $V_{n}(x)|^{2}dx$ .

Furthermore, if $N\geqq 2$ then we have for all $u\in C_{0}^{\infty}(R^{N})$ ,

(6.6) ${\rm Re}$ (Au, $B_{n}u$ ) $\geqq\frac{(N-2)^{2}}{4}\int_{R^{N}}(|x|^{2}+\frac{1}{n})^{-1}V_{n}(x)|u(x)|^{2}dx$

$-\frac{1}{4}\int_{R^{N}}\frac{|u(x)|^{2}}{V_{n}(x)}$ grad $V_{n}(x)|^{2}dx$ .

If in particular $N=1$ then we have for all $u\in C_{0}^{\infty}(R)$ ,

(6.7) ${\rm Re}$ (Au, $B_{n}u$ ) $\geqq\frac{1}{4}\int_{-\infty}^{\infty}(x^{2}+\frac{1}{n})^{-1}V_{n}(x)|u(x)|^{2}dx$

$-\frac{3}{4n}\int_{-\infty}^{\infty}(x^{2}+\frac{1}{n})^{-2}V_{n}(x)|u(x)|^{2}dx$

$-\frac{1}{4}\int_{-\infty}^{\infty}\frac{|u(x)|^{2}}{V_{n}(x)}|V_{n}^{\prime}(x)|^{2}dx$ .

PROOF. Let $u\in C_{0}^{\infty}(R^{N})$ . Then we have

(Au, $B_{n}u$ ) $=-\int_{R^{N}}\overline{u(x)}\sqrt{V_{n}(x)}\sqrt{V_{n}(x)}\Delta u(x)dx$

$=\int_{R^{N}}\sum_{f=1}^{N}\sqrt{V_{n}(x)}\frac{\partial u}{\partial x_{j}}\frac{\partial}{\partial x_{f}}[\overline{u(x)}\sqrt{V_{n}(x)}]dx$

$+\frac{1}{2}\int_{R^{N}}\overline{u(x)}\sum_{j=1}^{N}\frac{\partial V_{n}}{\partial x_{f}}\frac{\partial u}{\partial x_{j}}dx$ .

So, we see that

(Au, $B_{n}u$ ) $=i{\rm Im}\int_{R^{N}}\overline{u(x)}\sum_{j=1}^{N}\frac{\partial V_{n}}{\partial x_{j}}\frac{\partial u}{\partial x_{f}}dx+\int_{R^{N}}|grad[u(x)\sqrt{V_{n}(x)}]|^{2}dx$

$-\frac{1}{4}\int_{R^{N}}\frac{|u(x)|^{2}}{V_{n}(x)}$ grad $V_{n}(x)|^{2}dx$ .

Therefore, we obtain (6.5). Since (6.6) is trivial for $N=2$, it remains to show



Perturbation of linear operators 697

that (6.6) with $N\geqq 3$ and (6.7) hold. Let $N\geqq 3$ . Then (6.6) is a consequence of
the well known inequality for $u\in H^{1}(R^{N})$ :

(6.8) $\int_{R^{N}}|gradu(x)|^{2}dx\geqq\frac{(N-2)^{2}}{4}\int_{R^{N}}\frac{|u(x)|^{2}}{|x|^{2}}dx$ .
We note that (6.8) follows from the identity:

$\sum_{j=1}^{N}\int_{R^{N}}|\frac{\partial u}{\partial x_{f}}+\frac{N-2}{2}x_{f}|x|^{-2}u(x)|^{2}dx$

$=\int_{R^{N}}|$ grad $u(x)|^{2}dx-\frac{(N-2)^{2}}{4}\int_{R^{N}}\frac{|u(x)|^{2}}{|x|^{2}}dx$ , $u\in C_{0}^{\infty}(R^{N})$ .

Now, let $N=1$ . Then we have for all $u\in C_{0}^{\infty}(R)$ ,

$\int_{-\infty}^{\infty}|u^{\prime}(x)-\frac{1}{2}x(x^{2}+\frac{1}{n})^{-1}u(x)|^{2}dx=\int_{-\infty}^{\infty}|u^{\prime}(x)|^{2}dx$

$-\frac{1}{4}\int_{-\infty}^{\infty}(x^{2}+\frac{1}{n})^{-1}|u(x)|^{2}dx+\frac{3}{4n}\int_{-\infty}^{\infty}(x^{2}+\frac{1}{n})^{-2}|u(x)|^{2}dx$ .

So, we obtain (6.7). Q. E. D.
THEOREM 6.8. Let $V(x)=|x|^{-2}$ . Then $A+tB=-\Delta+t|x|^{-2}$ is selfadjoint for

$t>-(N-4)N/4$ and essentially selfadjoint on $D(A+B)$ for $t=-(N-4)N/4$ .
Furthermore, if $N\geqq 5$ then $B$ is A-bounded:

$\Vert Bu\Vert\leqq\frac{4}{(N-4)N}\Vert Au\Vert$ for all $u\in H^{2}(R^{N})$ .

PROOF. First we note that if $t>1$ then $A+tB$ is selfadjoint (see Example

6.6). Since $V_{n}(x)=(|x|^{2}+\frac{1}{n})^{-1}$ is of class $C^{\infty}(R^{N})$ , we can apply Lemma 6.7.

Let $N\geqq 3$ . Then by (6.4) we have grad $V_{n}(x)|^{2}\leqq 4[V_{n}(x)]^{3}$ . Therefore, it fol-
lows from (6.6) that for all $u\in H^{2}(R^{N})$,

${\rm Re}$ (Au, $B_{n}u$ ) $\geqq\frac{1}{4}[(N-2)^{2}-4]\Vert B_{n}u\Vert^{2}$ .

Next, let $N=1$ . Then $|V_{n}^{\prime}(x)|^{2}=4x^{2}(x^{2}+\frac{1}{n})^{-4}$ and we have

$\frac{3}{4n}(x^{2}+\frac{1}{n})^{-2}V_{n}(x)+\frac{1}{4}\frac{|V_{n}^{\prime}(x)|^{2}}{V_{n}(x)}\leqq[V_{n}(x)]^{2}$ .

Therefore, it follows from (6.7) that for all $u\in H^{2}(R)$ ,

${\rm Re}$ (Au, $B_{n}u$ ) $\geqq-\frac{3}{4}\Vert B_{n}u\Vert^{2}$ .

So, in the case of $N\neq 2$ , we obtain (5.3) with
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$k=\frac{N}{4}(N-4)>-1$ .

Therefore, the (essential) selfadjointness of $A+tB$ follows from Corollary 55;
for all $u\in D(A+B)$ ,

$||Bu\Vert\leqq\frac{4}{(N-2)^{2}}\Vert(A+B)u\Vert$ , $N\neq 2$ .

The case of $N=2$ has already been treated in Example 6.6. Noting that $(N-4)$

$N/4>0$ if $N\geqq 5$, we see from Remark 5.6 that $B$ is A-bounded. Q. E. D.
In connection with the above theorem, it should be noted that if $ t\geqq$

$-(N-4)N/4$ then $-\Delta+t|x|^{-2}$ is essentially selfadjoint on $C_{0}^{\infty}(R^{N}\backslash \{0\})$ (see $e$ . $g$ .
[19], Theorem X. 11). Consequently, $C_{0}^{\infty}(R^{N}\backslash \{0\})$ is a core of $A+tB=$

$-\Delta+t|x|^{-2}$ for $t>-(N-4)N/4$ .
In the rest of this section we shall present an application of Theorem 5.7.
Let $U(x)\leqq 0$ be a function in $L^{p}(R^{N})$ , where we assume that $p\geqq 2$ if $N\leqq 3$ ,

$p>2$ if $N=4$ and $p\geqq N/2$ if $N\geqq 5$ . Let $B$ be the maximal multiplication operator
by $U(x)$ . Then $B$ is selfadjoint in $L^{2}$ and, moreover, $B$ is A-bounded with A-
bound zero, where $A$ is the minus Laplacian (see $e$ . $g$ . Reed-Simon [19]). Hence
it follows that for any $\epsilon>0(0\leqq\epsilon<1)$ there is a constant $c(\epsilon)>0$ such that for
all $u\in H^{1}(R^{N})$ ,

(6.9) $|(u, Bu)|\leqq(1-\epsilon)(u, Au)+c(\epsilon)\Vert u\Vert^{2}$ ;

see Kato [8], VI-\S 1.7. Therefore, $A+B+c(O)$ is nonnegative.
Next, let $W(x)\geqq 0$ be a function of class $C^{1}(R^{N})$ and $C$ be the maximal

multiplication operator by $W(x)$ . Then $C$ is selfadjoint and nonnegative in $L^{2}$ .
LEMMA 6.9. Let $A,$ $B$ and $C$ be as above. Assume that there are constants

$c_{1},$ $c_{2}\geqq 0$ such that

(6.10) grad $W(x)|^{2}\leqq c_{1}+c_{2}W(x)$ , $x\in R^{N}$ .
Then for all $u\in C_{0}^{\infty}(R^{N})$ ,

(6.11) 2 ${\rm Re}((C+1)u, [A+B+c(0)]u)\geqq-c\Vert u\Vert^{2}$

where $c(O)$ is a constant in (6.9) and $c=(c_{1}+c_{2})/2$ .
PROOF. Let $u\in C_{0}^{\infty}(R^{N})$ . Then we see from (6.5) with $B_{n}$ replaced by $C+1$

that

${\rm Re}$ $((C+1)u, Au)=\int_{R^{N}}|$ grad $[u(x)\frac{Wx1}{()+}]|^{2}dr$

$-\frac{1}{4}\int_{R^{N}}\frac{|u(x)|^{2}}{W(x)+1}$ grad $W(x)|^{2}dx$ .
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Since we can write $((C+1)u, Bu)=\int_{R^{N}}U(x)|u(x)\sqrt{W(x)+1}|^{2}dx$ , it follows from

(6.9) with $\epsilon=0$ that

${\rm Re}((C+1)u, (A+B)u)\geqq-c(0)\int_{R^{N}}|u(x)\sqrt{W(x)+1}|^{2}dx$

$-\frac{1}{4}(c_{1}+c_{2})\int_{R^{N}}|u(x)|^{2}dx$ .
So, we obtain (6.11). Q. E. D.

Now let $V(x)\geqq 0$ be locally in $L^{2}(R^{N})$ and replace $U(x)$ by $U(x)+V(x)$ in
the definition of the operator $B$ . Then it is obvious that Lemma 6.9 holds with
this change.

THEOREM 6.10. Let $A$ be the minus Laplacian. Let $B$ and $C$ be the maximal
multiplication operator by $U(x)+V(x)$ and $W(x)$ , respecfively. Assume that (6.10)

holds.
Then $A+B-C=-\Delta+U(x)+V(x)-W(x)$ is essentially selfadjoint on $C_{0}^{\infty}(R^{N})$ .
PROOF. Since $V(x)+W(x)\geqq 0$ is locally in $L^{2}(R^{N}),$ $A+B+C=-\Delta+U(x)+$

$[V(x)+W(x)]$ is essentially selfadjoint on $C_{0}^{\infty}(R^{N})$ (see $e$ . $g$ . Reed-Simon [19],

Theorem X. 29). Also, we see from (6.11) that for all $u\in C_{0}^{\infty}(R^{N})$ ,

$\Vert[A+B+c(0)]u\Vert^{2}+\Vert(C+1)u\Vert^{2}\leqq c\Vert u\Vert^{2}+\Vert[A+B+C+1+c(0)]u\Vert^{2}$ .
So, we obtain (5.6) with $S$ and $D$ replaced by $A+B+c(O)$ and $C_{0}^{\infty}(R^{N})$ , respec-
tively. On the other hand, we have

${\rm Im}$ $(Cu, Au)={\rm Im}\int_{R^{N}}u(x)\sum_{j=1}^{N}\frac{\partial W\overline{\partial u}}{\partial x_{j}\partial x_{f}}dx$ , $u\in C_{0}^{\infty}(R^{N})$ ,

and hence

$|{\rm Im}$ ($Cu$ , Au) $|\leqq\frac{1}{2}\int_{R^{N}}|gradW(x)|^{2}|u(x)|^{2}dx+\frac{1}{2}\int_{R^{N}}|gradu(x)|^{2}dx$ .

It then follows from (6.10) that

$|{\rm Im}(Cu, [A+B+c(O)]u)|\leqq\frac{c_{1}}{2}\Vert u\Vert^{2}+\frac{c_{2}+1}{2}(u, (A+C)u)$ .

Thus, we see from (6.9) that for all $u\in C_{0}^{\infty}(R^{N})$ ,

lIm $(Cu, [A+B+c(0)]u)|\leqq[\frac{c_{1}}{2}+\frac{c(\epsilon)}{\epsilon}]\Vert u\Vert^{2}+\frac{c_{2}+1}{2\epsilon}(u, [A+B+C+c(0)]u)$ .

Therefore, the conclusion follows from Theorem 5.7. Q. E. D.
As a typical example of $W(x)$ in Theorem 6.10 we have in mind $W(x)=$

$a+b|x-c|^{2},$ $c\in R^{N}$ (cf. Example 6.5).

COROLLARY 6.11. Let $V(x)$ be locally in $L^{2}(R^{N})$ and assume that $ V(x)\geqq$

$-a-b|x-c|^{2}$ for some $c\in R^{N}$ , where $a,$ $b\geqq 0$ are constants. Then $-\Delta+U(x)+$

$V(x)$ is essentially selfadjoint on $C_{0}^{\infty}(R^{N})$ .
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In fact, $V(x)$ can be written as

$V(x)=[V(x)+a+b|x-c|^{2}]-(a+b|x-c|^{2})$ ,

where the first term is nonnegative and locally in $L^{2}(R^{N})$ .
REMARK 6.12. The case of $c=0$ in Corollary 6.11 is treated by Faris-Lavine

[4] (see also Reed-Simon [19], the first corollary of Theorem X. 38).

ACKNOWLEDGEMENT. It was pointed out by the referee that the result in
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