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Introduction.

Let $D$ be the Riemann sphere punctured at three points. We consider the
existence problem of bounded functions on its homology covering surface $R$ ,

that is, the normal covering surface of $D$ determined by the commutator sub-
group of its fundamental group. We shall prove the following

THEOREM I. The homology covering surface of the Riemann sphere punctured
at three points belongs to the class $O_{AB}$ .

A complex manifold is said to belong to the class $O_{AB}$ if and only if it
carries no bounded, holomorphic, uniform and nonconstant function.

The motivation of this study rose from the question if the universal cover-
ing manifold of the complement of $n+2$ hyperplanes in general position in the
$n$ dimensional complex projective space $P^{n}$ belongs to the class $O_{AB}$ . By means
of Theorem I, we solved this question affirmatively as follows.

THEOREM II ([7]). If $n\geqq 2$ , the universal covering manifold of the comple-
ment of $n+2$ hyperplanes in general position in $P^{n}$ belongs to the clas$sO_{AB}$ .

In our previous paper [7] we announced Theorem I and derived Theorem II
from Theorem I. The purpose of the present paper is to give the proof of
Theorem I.

The proof of Theorem I is based on the criterion of A. Pfluger [5] which
asserts that a Riemann surface having an exhaustion with some suitable prop-
erties belongs to the class $O_{AB}$ .

The proof will be carried out as follows. In order to study topological and
analytic properties of the homology covering surface $R$ , we divide it into an
infinite number of triangles. Then we place all these triangles on the complex
plane properly, and glue them according to a certain rule, and thus we recon-
struct the surface $R$ , realizing it on the complex plane. This enables us to
have a visual image of $R$ and to treat it with ease.
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To apply Pfluger’s criterion to our surface $R$ , first we construct an increasing
sequence of polygons $P_{n}$ consisting of a finite number of the above triangles.
But the problem is very delicate, and the standard construction of $P_{n}$ such as
found in [1] p. 243 is not convenient for our purpose, even though it is con-
venient enough just to show that $R$ belongs to the class $O_{AD}$ . Therefore our
first task is to choose proper $P_{n}$ with great care. Secondly, since $P_{n}$ is not
relatively compact in $R$ we must replace it by a relatively compact subdomain
$\Omega_{n}\subset P_{n}$ and obtain an exhaustion of $R$ . Then we construct annuli by enlarging
the boundary components of $\Omega_{n}$ . In this process too, we must construct these
$\Omega_{n}$ carefully enough to obtain sufficiently wide annuli and to be able to apply
Pfluger’s criterion.

In \S 1, we study the topological and analytic structure of our homology
covering surface. In \S 2, we recall Pfluger’s criterion. \S 3 is consecrated to the
construction of annuli on our surface. In \S 4, we estimate the harmonic module
of each annulus constructed in \S 3, and we show that Pfluger’s criterion is
applicable to our surface.

I would like to express my sincere thanks to Professor K\^otaro Oikawa for
his encouragement and many valuable suggestions during the course of this
work. I am grateful also to the referee for his suggestion to use an appropri-
ate linear density, which made the proof simpler.

After we finished this work, we were informed that J. P. Demailly [2], [3]

proved Theorem I by a completely different method.

\S 1. Structure of $R$ .
1.1. Triangulation of $R$ and numbering of triangles.
DEFINITION 1. The homology covering surface of a Riemann surface is the

normal covering surface determined by the commutator subgroup of its funda-
mental group.

This covering surface has an Abelian group of cover transformations, and
is the strongest normal covering surface with this property (cf. [1]).

We shall divide the homology covering surface $R$ of the complement $D$ of
three points $\{0,1, \infty\}$ in the Riemann sphere into an infinite number of triangles.
Then we study how they are arranged in $R$ . In the following we consider
triangles without vertices, so our triangulation differs slightly from the usual
triangulation.

Let $A$ be the segment $(0,1)$ , let $B$ be the segment $(1, \infty)$ and let $C$ be the
segment $(\infty, 0)$ on the real axis. Let us set $\Delta_{1}=\{z\in C|{\rm Im} z\geqq 0, z\neq 0,1\}$ and
$\Delta_{2}=\{z\in C|{\rm Im} z\leqq 0, z\neq 0,1\}$ . We regard $\Delta_{1}$ and $\Delta_{2}$ as triangles with three sides
$A,$ $B$ and $C$ . We note that these triangles have no vertices. For $\nu=1,2$, the
inverse image of $\Delta_{\nu},$ $\pi^{-1}(\Delta_{\nu})$ , by the canonical projection $\pi;R\rightarrow D$ consists of an
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infinite number of connected components conformally equivalent to A., which
we call also triangles.

REMARK 1. To simplify the notation, we shall use the same letters $A,$ $B$

and $C$ also for the sides of every triangle of $\pi^{-1}(\Delta_{1})$ or of $\pi^{-1}(\Delta_{2})$ which lie
over the segments $A,$ $B$ and $C$ respectively.

We give numbers to the triangles of $\pi^{-1}(\Delta_{1})$ and to those of $\pi^{-1}(\Delta_{2})$ in the
following way.

Let us take an interior point $p$ of $\Delta_{1}$ . Let $G=\pi_{1}(D, p)$ be the fundamental
group of $D$ with base point $p$ , and let $G^{\prime}$ be the commutator subgroup of $G$ .
Let $\alpha$ be a closed curve in $D$ from $P$ which goes round the point $0$ once in
the positive sense. Likewise, let $\beta$ be a closed curve in $D$ from $P$ which goes
round the point 1 once in the positive sense. Then $G$ is a free group generated
by $\alpha$ and $\beta$ . So each element of $G$ can be expressed as $\alpha^{t_{1}}\beta^{j_{1}}\cdots\beta^{j_{h}}$ , where
$i_{1},$ $j_{1},$ $\cdots$ , $j_{h}$ belongs to the set of integers $Z$ . We see easily that it belongs to
the commutator subgroup $G^{\prime}$ if and only if $i_{1}+\cdots+i_{h}=0$ and $j_{1}+\cdots+j_{h}=0$ .
This implies that each element of the quotient group $G/G^{\prime}$ can be represented
uniquely by an element of the form $\alpha^{i}\beta^{j}(i, j\in Z)$ . Furthermore, the group of
cover transformations of the homology covering surface $R$ is by definition none
other than $G/G^{\prime}$ . Hence, if we choose once and for all a point $p_{00}$ of $\pi^{-1}(p)$ ,
then each element of $G/G^{\prime}$ determines a unique point of $\pi^{-1}(p)$ . Namely, the
element of $G/G^{\prime}$ represented by $\alpha^{i}\beta^{j}$ determines the end point of the curve in
$R$ from $p_{00}$ lying over the curve $\alpha^{i}\beta^{j}$ . On the other hand, for each point of
$\pi^{-1}(p)$ , there exists a unique element of $G/G^{\prime}$ which determines the point in
that manner. So let us denote by $p_{ij}$ the point of $\pi^{-1}(p)$ determined by the
element of $G/G^{\prime}$ which is represented by $\alpha^{i}\beta^{j}$ . Then, let us denote by $\Delta_{1}^{ij}$ the
connected component of $\pi^{-1}(\Delta_{1})$ which contains the point $p_{ij}$ . Next we denote
by $\Delta_{2}^{if}$ the connected component of $\pi^{-1}(\Delta_{2})$ which is adjacent to $\Delta_{1}^{ij}$ along the
common side $A$ . It is clear that if $(i, j)\neq(i^{\prime}, j^{\prime})$ , then $\Delta_{\nu}^{ij}\neq\Delta_{\nu}^{i^{l}j^{r}}$ for $\nu=1,2$ , and
that $\pi^{-1}(\Delta_{\nu})=U\Delta_{\nu}^{ij}((i, $]) $\in Z\times Z$ ) for $\nu=1,2$ . Thus all the connected compo-
nents of $\pi^{-1}(\Delta_{1})$ and $\pi^{-1}(\Delta_{2})$ are numbered.

1.2. Reconstruction of $R$ . Let us study the topological and analytic
structure of the surface $R$ . To this aim we construct a Riemann surface in
the following way.

First let us prepare a countable number of equilateral triangles of the same
size. We denote them by $4_{1}^{ij}$ and 4’ $j$ where $i$ and $j$ range over $Z$ . Since
later it will be convenient for us, we assume that the lengths of the sides of
these triangles are equal to 1. We assume also that the vertices do not belong
to $4_{\nu}^{ij}$ , but that the sides belong to $\underline{\Delta}_{\nu}^{ij}$ .

We denote by $A,$ $B$ and $C$ the sides of $\underline{\Delta}_{1}^{ij}$ and those of $\underline{\Delta}_{2}^{ij}$ as illustrated
in Figure 1. Let us note that the order of arrangement of the sides $A,$ $B$ and
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$C$ of $\underline{\Delta}_{1}^{ij}$ is different from that of $4_{2}^{ij}$ . We assume that in Figure 1 the triangles
$\underline{\Delta}_{\nu}^{ij}$ are placed on the complex plane, and that they have the induced analytic
structure. So each $\underline{\Delta}_{\nu}^{ij}$ has an orientation as Figure 1. Now we place first the
triangles $4_{1}^{ij}(i, j\in Z)$ as indicated in Figure 2.

Figure 1.

Figure 2.

Then, for each $(i, J)$ , reversing the triangle $\underline{\Delta}_{2}^{ij}$ face downward, we place it
below the triangle $\underline{\Delta}_{1}^{ij}$ so that we obtain Figure 2.

After having placed all the triangles like this, we now consider each pair
of sides which are adjacent in Figure 2. Let us consider for example the side
$A$ of $4_{1}^{ij}$ and the side $A$ of $A_{2}^{j}$ . Let $Q_{0}$ be the middle point of $A$ of $\underline{\Delta}_{1}^{ij}$, and
let $Q_{0}^{\prime}$ be the middle point of $A$ of $\underline{\Delta}_{2}^{ij}$ . Let $Q$ be any point on $A$ of $4_{1}^{if}$ , and
let $Q^{\prime}$ be the symmetric point of $Q$ with respect to the middle point of the
segment $Q_{0}Q_{0}^{\prime}$ ; so $Q^{\prime}$ lies on the side $A$ of $4_{2}^{ij}$ , and the distance between $Q$

and $Q_{0}$ is equal to the distance between $Q^{\prime}$ and $Q_{0}^{\prime}$ , and the segments $QQ_{0}$ and
$Q^{\prime}Q_{0}^{\prime}$ are situated in the symmetric position with respect to the middle point
of the segment $Q_{0}Q_{0}^{\prime}$ . Now we identify the point $Q$ with the point $Q^{\prime}$ . We
do this identiPcation for all the points on $A$ of $\underline{\Delta}_{1}^{ij}$ and $A$ of $\underline{\Delta}_{2}^{ij}$ . In the same
manner as we did of the side $A$ , we identify the side $B$ of $\underline{\Delta}_{1}^{ij}$ with the side
$B$ of $\underline{\Delta}_{2}^{i.j- 1}$ , using the analogous symmetry, and also we identify the side $C$ of
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$4_{1}^{ij}$ with the side $C$ of $4_{2}^{i+1.j}$ in the same way. We perform this identification
for all $i$ and $j$ . Then of each pair of sides which are adjacent in Figure 2, the
sides are identified. We verify easily that the orientations of $4_{\nu}^{ij}$ coincide after
this identification. Furthermore it is clear that the analytic structures of $4_{\nu}^{ij}$

coincide on each side after this gluing, so the surface constructed in this way
has an analytic structure. Thus we have obtained a Riemann surface, which
we denote by $R^{\prime}$ .

PROPOSITION 1. The Riemann surface $R^{\prime}$ const ructed above is conformally
equivalent to the Riemann surface $R$ .

PROOF. Step1. First we wish to prove that the surfaces $R$ and $R^{\prime}$ are
homeomorphic. Since $R$ is divided into the triangles $\Delta_{\nu}^{ij}$ , and $R^{\prime}$ is also divided
into the triangles $\underline{\Delta}_{\nu}^{ij}$ , it is sufficient to show that $\Delta_{\nu}^{ij}$ are arranged on $R$ in the
same manner as $4_{\nu}^{ij}$ are arranged on $R^{\prime}$ . So we show that $\Delta_{\nu}^{j}$ are arranged on
$R$ as follows.

(i) $\Delta_{1}^{ij}$ and $\Delta_{2}^{ij}$ are adjacent to each other, having the side $A$ in common.
From the way of our numbering, this is clear.
(ii) $\Delta_{1}^{j}$ and $\Delta_{2}^{i,j-1}$ are adjacent, having the side $B$ in common.
To show this, let us start from the point $p_{i,j-1}$ and let us go round the

point 1 once, following the curve on $R$ over the closed curve $\beta$ . Then we
arrive, by definition, at the point $p_{ij}$ . This means that, starting from $\Delta_{1}^{i.j-1}$ ,
we enter the triangle $\Delta_{2}^{j-1}$ across the side $A$ as (i) shows, and then we arrive
at $\Delta_{1}^{ij}$ , crossing the side $B$ . Hence $\Delta_{2}^{i,j- 1}$ and $\Delta_{1}^{ij}$ have the side $B$ in common.

(iii) $\Delta_{1}^{ij}$ and $\Delta_{2}^{i+1,j}$ are adjacent, having the side $C$ in common.
To show this, we start from $p_{i+1,j}$ and go round the point $0$ once in the

negative sense, following the curve on $R$ over the closed curve $\alpha^{-1}$ . Then we
arrive, by definition, at the point $p_{ij}$ . This shows that, starting from $\Delta_{1}^{i+1,j}$ ,
we enter $\Delta_{2}^{+1,j}$ across the side $A$ , and we arrive at $\Delta_{1}^{ij}$ , crossing the side $C$ .
Hence $\Delta_{2}^{i+1,j}$ and $\Delta_{1}^{ij}$ have the side $C$ in common.

(i), (ii) and (iii), together with the way of construction of $R^{\prime}$ by means of
Figure 2, show that $\Delta_{\nu}^{ij}$ are arranged on $R$ in the same manner as $\underline{\Delta}^{ij}$ are
arranged on $R^{\prime}$ , which implies that $R$ and $R^{\prime}$ are homeomorphic, as required.

Step2. Next we wish to prove that the Riemann surfaces $R$ and $R^{\prime}$ are
conformally equivalent. To this aim let us take the triangle $\Delta_{1}^{0.0}$ of $R$ . As $\Delta_{1}^{0,0}$

is conformally equivalent to the upper half plane, there exists a unique con-
formal mapping $\psi$ of $\Delta_{1}^{0,0}$ onto the equilateral triangle $4_{1}^{0,0}$ such that the sides
$A,$ $B$ and $C$ of $\Delta_{1}^{0,0}$ are sent to the sides $A,$ $B$ and $C$ of $4_{1}^{0,0}$ respectively. By
the Schwarz principle of reflexion, $\psi$ is analytically continuable to $\Delta_{2}^{0,0}$ across
the side $A$ . Since $\Delta_{1}^{0,0}$ and $\Delta_{2}^{0,0}$ are symmetric with respect to $A$ , and after the
gluing $\underline{\Delta}_{1}^{0,0}$ and $\underline{\Delta}_{2}^{0,0}$ are symmetric with respect to $A$ , the image $\psi(\Delta_{2}^{0,0})$ under
the extended mapping $\psi$ coincides with $\underline{\Delta}_{2}^{0,0}$ . Hence the extended mapping $\psi$
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is a conformal mapping of $\Delta_{1}^{0,0}\cup\Delta_{2}^{0.0}$ onto $\underline{\Delta}_{1}^{0.0}\cup\underline{\Delta}_{2}^{0.0}$ . The same argument holds
good for the other sides $B$ and $C$ , and for the other triangles. On the other
hand the triangles $\Delta_{\nu}^{ij}$ are arranged on $R$ in the same way as the triangles $4_{\nu}^{ij}$

on $R^{\prime}$ , so $\psi$ is extended to a conformal mapping of $R$ onto $R^{\prime}$ by using the
Schwarz principle of reflexion infinite times. This is what we wished to prove.

From Proposition 1 the Riemann surfaces $R$ and $R^{\prime}$ are conformally equiv-
alent, so we may take off the underline from the equilateral triangles $4^{ij}$ , and
write them as $\Delta^{ij}$ in the following.

REMARK 2. Our triangles $\Delta^{ij}$ contain no vertex. But when we regard $\Delta^{ij}$

as an equilateral triangle described in Figure 2, we permit us to say ‘
$0$ of $\Delta_{\nu}^{ij}$ ‘,

‘1 of $\Delta_{\nu}^{tj}$
‘ and ‘

$\infty$ of $\Delta_{\nu}^{ij}$ to indicate the vertex between the sides $A$ and $C$ ,
the vertex between the sides $A$ and $B$ and the vertex between the sides $B$ and
$C$ respectively.

\S 2. Pfluger’s criterion.

To prove Theorem I, we shall use Pfluger’s criterion which gives a suffi-
cient condition for a Riemann surface to carry no bounded, holomorphic, uniform
and nonconstant functions. Pfluger stated and proved this criterion in terms of
conformal metric. A. Mori [4] gave a variant of the criterion in terms of
harmonic module. For domains in the complex plane $C$, N. Suita [6] gave an
alternative proof of this criterion. In this section we shall recall Pfluger’s
criterion in the form stated by Mori.

2.1. Statement of Pfluger’s criterion. Let $W$ be an open Riemann surface,
and let $A_{n}^{k},$ $k=1,2,$ $\cdots$ , $k(n)<\infty,$ $n=1,2,$ $\cdots$ , be a collection of doubly connected
domains of $W$ satisfying the following conditions:

(1.1) each $A_{n}^{k}$ is bounded by two piecewise analytic, closed curves $\gamma_{n}^{k}$ and
$\gamma_{n}^{\prime k}$ ,

(1.2) any two of $A_{n}^{k}$ are disjoint,

(1.3) the complement of $\bigcup_{k=1}^{p(n)}A_{n}^{k}$ in $W$ has a unique compact connected com-
ponent $B_{n}$ ,

(1.4) $B_{n}$ is bounded by $k(n)$ closed curves $\gamma_{n}^{\prime k},$ $k=1,2,$ $\cdots$ , $k(n)$ , and contains
all $A_{n^{\prime}}^{k^{\prime}}$ such that $n^{\prime}<n$ .

In this paper a doubly connected domain in a Riemann surface will be called
an annulus.

We denote by $\mu_{n}^{k}$ the harmonic module of $A_{n}^{k}$ . It is well known that the
harmonic module of an annulus conformally equivalent to $\{z\in C|r<|z|<R\}$ is
log $R/r$ (cf. [4]).

We set
$\mu_{n}={\rm Min}\mu_{n}^{k}k$ and $K(N)={\rm Max} k(n)n\leqq N$
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PFLUGER $S$ CRITERION. If

$\varlimsup_{N\rightarrow\infty}\{\sum_{n=1}^{N}\mu_{n}-\frac{1}{2}$ log $ K(N)\}=\infty$ , (1)

then the Riemann surface $W$ belongs to the class $O_{AB}$ .

2.2. Extremal length. The harmonic module $\mu(V)$ of an annulus $V$ can
be calculated also by the extremal length. Let $\Gamma$ be the family of all the curves
$\gamma$ in $V$ joining its two boundary components. Let $\lambda(\Gamma)$ be the extremal length
of the family $\Gamma$ For simplicity’s sake, we shall often denote it by $\lambda(V)$ .
Actually the extremal length of $\Gamma$ is given by

$\lambda(\Gamma)=\lambda(V)=\sup_{\rho}\frac{\inf_{\gamma\in\Gamma}(\int_{\gamma}\rho|dz|)^{2}}{\int\int_{V}\rho^{2}dxdy}$

where $\rho$ ranges over the set of all linear densities in $V$ . A linear density is
by dePnition an invariant form $\rho|dz|$ which is nonnegative and Borel meas-
urable. An easy calculation shows (cf. [1], p. 224) that, if $V$ is conformally
equivalent to $\{z\in C|r<|z|<R\}$ , then

$\lambda(V)=\frac{1}{2\pi}\log\frac{R}{r}$ .

So, for any linear density $\rho$ in $V$ , we have

$\mu(V)=2\pi\times\lambda(V)\geqq 2\pi\times\gamma\frac{\inf_{\in\Gamma}(\int_{\gamma}\rho|dz|)^{2}}{\int\int_{V}\rho^{2}dxdy}$ (2)

Therefore, if the quantity of the right hand side of (2) is sufficiently large for
a suitably chosen linear density $\rho$ , then the harmonic module $\mu$ itself is large.
In the following we shall estimate by means of (2) the harmonic module $\mu_{n}^{k}$ of
$A_{n}^{k}$ which we shall construct in \S 3.

\S 3. Construction of annuli $A_{n}^{k}$ .
To apply Pfluger’s criterion to our Riemann surface $R$ , we shall construct

on $R$ the annuli $A_{n}^{k}$ introduced in \S 2. In our construction the number $k(n)$ of
the family $A_{n}^{k},$ $k=1,2,$ $\cdots$ , $k(n)$ , increases as an arithmetic progression. So to
apply Pfluger’s criterion to our Riemann surface, it is sufficient, from (1), to
construct $A_{n}^{k}$ so that their harmonic modules $\mu_{n}^{k}$ are greater than $c/n$ for a
certain constant $c>1/2$ which is independent of $n$ and $k$ .
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3.1. Construction of polygons $P_{n}$ . We shall construct on the surface $R$ ,

a sequence of polygons $P_{n}$ such that
(a) each $P_{n}$ consists of a finite number of triangles $\Delta_{\nu}^{ij}$ ,

(b) each $P_{n}$ is contained in $P_{n+1}$ , and

(c) the union $\bigcup_{n}^{\infty}P_{n}$ is equal to $R$ .

We note that for our purpose it will be sufficient to construct these polygons
$P_{n}$ only for sufficiently large integers. We shall use later the polygons $P_{n}$ to
construct an exhaustion $\{\Omega_{n}\}$ of $R$ .

Now let us define $P_{n}$ to be the union of the two families of triangles given
below:

the triangles $\Delta_{1}^{ij}$ such that the indices $i$ and $j$ satisfy one of the following
conditions

$(i)_{n}$ $-n-1\leqq i\leqq n$ , $-n\leqq j\leqq n-1$ ,
$(ii)_{n}$ $-n\leqq i\leqq n$ , $j=n$ , and
$(iii)_{n}$ $-n+1\leqq i\leqq n$ , $j=n+1$ ,

and the triangles $\Delta_{2}^{ij}$ such that the indices $i$ and $j$ satisfy one of the following
conditions

$(i^{\prime})_{n}$ $-n\leqq i\leqq n+1$ , $-n+1\leqq j\leqq n$ ,
$(ii^{\prime})_{n}$ $-n\leqq i\leqq n$ , $j=-n$ , and
$(iii^{\prime})_{n}$ $-n\leqq i\leqq n-1$ , $j=-n-1$ .
The polygons defined in this way satisfy the three conditions (a), (b) and

(c). The shape of $P_{n}$ is illustrated in Figure 3.
DEFINITION 2. A triangle of $P_{n}$ is a border triangle if two of its sides are

not adjacent to any sides of other triangles of $P_{n}$ in Figure 3, and a triangle
which is adjacent to a border triangle is also a border triangle. A triangle of
$P_{n}$ which is not a border triangle is an inner triangle.

3.2. Construction of an exhaustion $\{\Omega_{n}\}$ . By using the polygons $P_{n}$

constructed in 3.1, we shall construct an exhaustion of $R$ , namely a sequence
$\{\Omega_{n}\}$ of relatively compact subdomains of $R$ such that $\Omega_{n}\Subset\Omega_{n+1}$ and $\bigcup_{n}^{\infty}\Omega_{n}=R$ .
We shall later construct annuli $A_{n}^{k}$ by enlarging the boundary components of $\Omega_{n}$ .

Now in order to construct $\Omega_{n}$ , suppose Figure 3 is placed on the complex
z-plane. Regarding $\Delta_{\nu}^{ij}$ of $P_{n}$ as the equilateral triangle described in Figure 3,
we denote by $a_{0},$ $a_{1}$ and $a_{2}$ the coordinates of the vertices $0,1$ and $\infty$ of $\Delta_{\nu}^{ij}$

respectively. For example we may suppose $a_{0}=-1/2,$ $a_{1}=1/2$ and $a_{2}=i\sqrt{3}/2$

for $\Delta_{1}^{0.0}$ , and $a_{0}=1/2$ , $a_{1}=-1/2$ and $a_{2}=-i\sqrt{3}/2$ for $\Delta_{2}^{0,0}$ . To simplify the
notation we shall use the same letters $a_{0},$ $a_{1}$ and $a_{2}$ for all triangles $\Delta_{\nu}^{ij}$ , even
though the values may be different.

Let $\epsilon$ be a positive number such that
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Figure 3.
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$\epsilon<\frac{1}{2}e^{-2\pi/3}$ , (3)

and we set
$r_{t}=\epsilon e^{-\pi t/3}$ . (4)

Now let us define $\Omega_{n}$ to be the remaining part of $P_{n}$ after having taken
off from the triangles of $P_{n}$ the sectors as mentioned in the following (a), (b)

and (c).

(a) We take off from $\Delta_{1}^{ij}$ the sectors $\{|z-a_{0}|\leqq r_{2n+3}\},$ $\{|z-a_{1}|\leqq r_{2n+3}\}$ and
$\{|_{Z}-a_{2}|\leqq r_{2n+3-|i-j|}\}$ .

(b) We take off from $\Delta_{2}^{ij}$ the sectors $\{|z-a_{0}|\leqq r_{2n+3}\},$ $\{|z-a_{1}|\leqq r_{2n+3}\}$ and
$\{|z-a_{2}|\leqq r_{2n+\$-|i-j-1|\}}$ .

(c) If two of the sides of $\Delta_{\nu}^{ij}$ are not adjacent to any sides of other
triangles in Figure 3, and $a_{h}$ is the coordinate of the vertex between the two
sides, then we take off furthermore from $\Delta_{\nu}^{ij}$ the sector $\{|z-a_{h}|\leqq\epsilon\}$ .

Then it is veriPed by aid of Figure 3 that the remaining part $\Omega_{n}$ is a

relatively compact subdomain of $R$ such that $\Omega_{n}\Subset\Omega_{n+1}$ and $\bigcup_{n}^{\infty}\Omega_{n}=R$ .
REMARK 3. The sizes of the sectors which are taken off depend not only

on $n$ but also on the indices $i$ and $j$ . We shall later construct $A_{n}^{k}$ using these
$\Omega_{n}$ , and it will be shown that owing to this choice of sectors the area of the
part of $A_{n}^{k}$ contained in the border triangles is reduced small enough for us to
apply Pfluger’s criterion to our surface $R$ . If we took off certain sectors such
that their sizes depend only on $n$ , then $A_{n}^{k}$ would be too large to satisfy the
condition (1) of Pfluger’s criterion.

3.3. Boundary of $\Omega_{n}$ . Let us try to find the boundary components of $\Omega_{n}$ .
We denote by $\partial\Omega_{n}$ the boundary of $\Omega_{n}$ .

Among the triangles of $P_{n}$ , let us consider first a border triangle $\Delta_{2}^{k.-n-1}$

such that $-n+1\leqq k\leqq n-1$ . This triangle and $\Delta_{1}^{k.-\hslash}$ have the side $B$ in common,
and $\Delta_{1}^{k.-n}$ belongs to $P_{n}$ by definition. Hence this side $B$ does not belong to
the boundary of $P_{n}$ . Therefore by the definition of $\Omega_{n}$ , it is easy to see that
this side $B$ does not contain any part of $\partial\Omega_{n}$ except their two intersection
points. But on account of the shape of $P_{n}$ and by the definition of $\Omega_{n}$ , we
see that the side $A$ contains some part of a boundary component of $\Omega_{n}$ . Let
us denote this boundary component by $\gamma_{n}^{k}$ (see Figures 3 and 4). In $\Delta_{2}^{k.-n-1},$ $\gamma_{n}^{k}$

consists of two segments contained in the sides $A$ and $C$ of $\Delta_{2}^{k.-n-1}$ , and of
three arcs near $0,1$ and $\infty$ . Here we mean by an arc near $0,1$ or $\infty$ , the arc
of the sector which is given in (a), (b) or (c) of 3.2 and whose vertex is $0,1$

or $\infty$ .
Let us follow $\gamma_{n}^{k}$ , starting from a point of $\gamma_{n}^{k}$ on the side $A$ of $\Delta_{2}^{k.-n-1}$ . We

go along $A$ to the arc near $0$ , and follow this arc, and arrive at the side $C$ .
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Figure 4.

We go along $C$ , follow the arc near $\infty$ and arrive at the side $B$ . As the
triangles $\Delta_{2}^{k.-n-1}$ and $\Delta_{1}^{k.-n}$ are adjacent along $B$ , we then enter $\Delta_{1}^{k,-n}$ . Note
that, since the side $B$ of $\Delta_{2}^{k,-n-1}$ and the side $B$ of $\Delta_{1}^{k,-n}$ are glued by use of
the symmetry described in 1.2, we enter $\Delta_{1}^{k.-n}$ at a point near $\infty$ of $\Delta_{1}^{k,-n}$ . We
further follow the arc near $\infty$ and enter $\Delta_{2}^{k+1.-n}$ . Going on in this way, we
arrive at $\Delta_{1}^{n.-k}$ . We follow the arc near $\infty$ of $\Delta_{1}^{n.-k}$ . Then we enter $\Delta_{2}^{n+1,-k}$ .
In $\Delta_{2}^{n+1,-k}$ we follow successively the arc near $\infty$ , the side $B$ , the arc near 1,
the side $A$ and the arc near $0$ . We then enter $\Delta_{1}^{n.-k}$ , follow the arc near $0$

and enter $\Delta_{2}^{n.-k}$ . We continue to follow $\gamma_{n}^{k}$ in this way. Then after having
passed a finite number of triangles, we finally return to the starting point.
Thus we know completely the boundary component $\gamma_{n}^{k}$ . To sum up, we write
down below the triangles which the boundary component $\gamma_{n}^{k}$ passes successively:

$\gamma_{n}^{k}$ : $\Delta_{2}^{k,-n-1},$ $\Delta_{1}^{k,-n},$ $\Delta_{2}^{k+1,-n},$ $\Delta_{1}^{k+1,-n+1},$ $\Delta_{2}^{k+i.-n-1+i}$ ,

$\Delta_{1}^{k+i,-n+i},$ $\cdots$ $\Delta_{2}^{n.-k- 1},$ $\Delta_{1}^{n.-k},$ $\Delta_{2}^{n+1,-k},$ $\Delta_{1}^{n,-k}$ ,

$\Delta_{2}^{n,-k},$ $\cdots$ $\Delta_{1}^{n-i.-k},$ $\Delta_{2}^{n-i.-k},$ $\Delta_{1}^{-n,-k},$ $\Delta_{2}^{-n.-k}$ ,

$\Delta_{1}^{-n- 1,-k},$ $\Delta_{2}^{-n,-k}$ , Ar $n.-k+1$ $\Delta_{2}^{-n+i.-k+i}$ ,
$\Delta_{1}^{-n+i,-k+1+i},$ $\Delta_{1}^{k-1,n},$ $\Delta_{2}^{k,n},$ $\Delta_{1}^{k.n+1},$ $\Delta_{2}^{k,n}$ ,

$\Delta_{1}^{k.n},$ $\cdots$ $\Delta_{2}^{k,n-i},$ $\Delta_{1}^{k,n-t},$ $\Delta_{2}^{k,-n},$ $\Delta_{1}^{k.-n},$ $\Delta_{2}^{k,-n-1}$ .
To each integer $k$ such $that-n+1\leqq k\leqq n-1$ there corresponds one bound-

ary component $\gamma_{n}^{k}$ . Hence $\Omega_{n}$ has $2n-1$ boundary components of this kind.
Now let us consider the border triangle $\Delta_{1}^{n.-}‘‘.$ We find that another bound-



618 I. WAKABAYASHI

ary component of $\Omega_{n}$ passes it. Let us denote it by $\gamma_{n}^{n}$ . Following $\gamma_{n}^{n}$ exactly
in the same manner as above, we observe that the triangles which $\gamma_{n}^{n}$ passes
successively are the following:

$\gamma_{n}^{n}$ : $\Delta_{1}^{n.-n},$ $\Delta_{2}^{n.-n},$ $\Delta_{1}^{n-1,-n},$ $\Delta_{2}^{n- i,-n},$ $\Delta_{1}^{n- 1-i.-n},$ $\cdots$

$\Delta_{1}^{-n.-}$ , AE $n,$ -n Ain-l-n AE $n,-n$ Ar $ n-n+1\ldots$

$\Delta_{2}^{-n+i,-n+i},$ $\Delta_{1}^{-n+i.-n+1+i},$ $\Delta_{1}^{n-1.n},$ $\Delta_{2}^{n.n},$ $\Delta_{1}^{n.n+1}$ ,

$\Delta_{2}^{n.n},$ $\Delta_{1}^{n,n},$ $\Delta_{2}^{n.n-i},$ $\Delta_{1}^{n.n-l},$ $\Delta_{1}^{n.-n+1}$ ,

$\Delta_{2}^{n.-n},$ $\Delta_{1}^{n.-n}$ .

Finally let us consider the border triangle $\Delta_{2}^{-n,n}$ . Another boundary com-
ponent of $\Omega_{n}$ passes it. Let us denote it by $\gamma_{n}^{-n}$ . The triangles which $\gamma_{n}^{-n}$

passes successively are the following:

$\gamma_{n}^{-n}$ : $\Delta_{2}^{-n.n},$ $\Delta_{1}^{-n}\cdot,$ $\Delta_{2}^{-n,n-1},$ $\Delta_{1}^{-n.n-i},$ $\Delta_{2}^{-n.n-1- l},$ $\cdots$

AE $n.-n\Delta_{1}^{-n,-n},$ $\Delta_{2}^{-n.-n-1},$ $\Delta_{1}^{-n,-n},$ $\Delta_{2}^{-n+1,-n},$ $\cdots$

$\Delta_{1}^{-n+i,-n+i},$ $\Delta_{2}^{-n+1+i,-n+i},$ $\Delta_{2}^{n.n-1},$ $\Delta_{1}^{n.n}$ ,

$\Delta_{2}^{n+1.n},$ $\Delta_{1}^{n.n},$ $\Delta_{2}^{n.n},$ $\Delta_{1}^{n-i.n},$ $\Delta_{2}^{n-i.n},$ $\cdots$

$\Delta_{2}^{-n+1.n},$ $\Delta_{1}^{-n,n},$ $\Delta_{2}^{-n,n}$ .

Thus we have obtained $2n+1$ boundary components $\gamma_{n}^{k},$ $k=-n,$ $-n+1$ ,
, $n$ , in all. We see easily by means of Figure 3 that there is no other

boundary component of $\Omega_{n}$ , which concludes the following
PROPOSITION 2. The boundary of $\Omega_{n}$ consists of the above mentioned $2n+1$

boundary components $\gamma_{n}^{k},$ $k=-n,$ $-n+1,$ $\cdots$ $n$ .
REMARK 4. By Figure 3 we find that the number of the triangles which

the boundary component $\gamma_{n}^{k}$ passes is almost equal to $12n$ . The number depends
on the shape of the polygon. It may increase if the shape is different from
the diamond. It is a standard way to take, for the n-th polygon, the union of
all the triangles of generation smaller than a certain number that depends on
$n$ , say $2n$ (cf. [1] p. 243). The union in this case is hexagonal, and each
boundary component passes 18n triangles. Even though this choice is just
sufficient to show that our Riemann surface $R$ belongs to the class $O_{AD}$ , this is
not sufficient to show that $R$ belongs to the class $O_{AB}$ . Namely, as we shall
see later in the calculation of the area of $A_{n}^{k}$ , the value 18n is too large to
obtain the relation $\mu_{n}^{k}\geqq c/n$ with $c>1/2$ , and the condition (1) of Pfluger’s
criterion would not probably be satisfied.

3.4. Construction of annuli $A_{n}^{k}$ . We have seen in 3.3 that $\Omega_{n}$ has $2n+1$

boundary components $\gamma_{n}^{k},$ $k=-n,$ $-n+1,$ $\cdots$ , $n$ . We shall construct annuli $A_{n}^{k}$
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by enlarging $\gamma_{n}^{k}$ . To this aim, in every equilateral triangle $\Delta_{\nu}^{ij}$ , we define once
and for all a linear density $\rho$ given by

$\rho|dz|={\rm Max}\frac{|dz|}{|z-a,|}0\leqq i\leqq 2$ (5)

where $a_{0},$ $a_{1}$ and $a_{2}$ are the coordinates of the vertices $0,1$ and $\infty$ of $\Delta_{v}^{ij}$

respectively. The collection of such $\rho$ defines evidently a linear density on $R$ ,

which will be denoted also by $\rho$ . The distance between two sets $E$ and $F$

measured by $\rho$ will be called the $\rho$ -distance between $E$ and $F$ and denoted by
$d(E, F)$ .

Roughly speaking, $A_{n}^{k}$ will be defined to be the set of all the points $z$ of
$\Omega_{n}$ such that $d(z, \gamma_{n}^{k})<2\pi/3$ . In inner triangles $\Delta_{\nu}^{ij}$ we shall adopt this defini-
tion, but in border triangles $\Delta_{\nu}^{ij}$ we need a slight modification.

(a) Case of $A_{n}^{k}$ with $-n+1\leqq k\leqq n-1$ . In order to define $A_{n}^{k}$ , let us con-
sider in the triangles which $\gamma_{n}^{k}$ passes, the sets as follows:

(a-1) in each inner triangle $Ai^{j}$ (also in $\Delta_{2}^{n.-n}$ for $k=n-1$ , and in $\Delta_{1}^{-n,n}$

for $k=-n+1$), the set $\{z\in\Omega_{n}|d(z, \gamma_{n}^{k})<2\pi/3\}$ ,
(a-2) in each of the border triangles $\Delta_{2}^{k,-n-1},$ $\Delta_{2}^{n+1.-k},$ $\Delta_{1}^{-n-1,-k}$ and $\Delta_{1}^{k,n+1}$ ,

the set of all points of $\Omega_{n}$ , and
(a-3) in the border triangles $\Delta_{1}^{k,-n},$ $\Delta_{1}^{n,-k},$ $\Delta_{2}^{-n,-k}$ and $\Delta_{2}^{k,n}$ , the sets $\{z\in\Omega_{n}|$

$|z-a_{0}|>\epsilon\}$ , $\{z\in\Omega_{n}||z-a_{1}|>\epsilon\}$ , $\{z\in\Omega_{n}||z-a_{1}|>\epsilon\}$ and $\{z\in\Omega_{n}||z-a_{0}|>\epsilon\}$

respectively.
Now we define $A_{n}^{k}(-n+1\leqq k\leqq n-1)$ to be the union of all the sets given

by (a-1), (a-2) and (a-3) (see Figure 4).

(b) Case of $A_{n}^{n}$ . In order to define $A_{n}^{n}$ , let us consider in the triangles
which $\gamma_{n}^{n}$ passes, the sets as follows:

(b-1) in each of the border triangles $\Delta_{1}^{n,-n}$ , Arn-l-n and $\Delta_{1}^{n,n+1}$ , the set of
all points of $\Omega_{n}$ ,

(b-2) in the border triangles $\Delta_{2}^{n,-n},$ $\Delta_{2}^{-n,-n}$ and $\Delta_{2}^{n,n}$ , the sets $\{z\in\Omega_{n}|$

$|z-a_{2}|>\epsilon\},$ $\{z\in\Omega_{n}||z-a_{1}|>\epsilon\}$ and $\{z\in\Omega_{n}||z-a_{0}|>\epsilon\}$ respectively, and
(b-3) in each triangle other than (b-1) and (b-2), the set $\{z\in\Omega_{n}|d(z, \gamma_{n}^{n})$

$<2\pi/3\}$ .
We define $A_{n}^{n}$ to be the union of all the sets given by (b-1), (b-2) and (b-3).

(c) Case of $A_{n}^{-n}$ . In order to dePne $A_{n}^{-n}$ , let us consider in the triangles
which $\gamma_{n}^{-n}$ passes, the sets as follows:

(c-1) in each of the border triangles $\Delta_{2}^{-n,n},$ $\Delta_{2}^{-n,-n-1}$ and $\Delta_{2}^{n+1,n}$ , the set of
all points of $\Omega_{n}$ ,

(c-2) in the border triangles $\Delta_{1}^{-n,n}$ , $\Delta_{1}^{-n,-n}$ and $\Delta_{1}^{n,n}$ , the sets $\{z\in\Omega_{n}|$

$|z-a_{2}|>\epsilon\},$ $\{z\in\Omega_{n}||z-a_{0}|>\epsilon\}$ and $\{z\in\Omega_{n}||z-a_{1}|>\epsilon\}$ respectively, and
(c-3) in each triangle other than (c-1) and (c-2), the set $\{z\in\Omega_{n}|d(z, \gamma_{n}^{-n})$

$<2\pi/3\}$ .
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We define $A_{n}^{-n}$ to be the union of all the sets given by (c-1), (c-2) and (c-3).

3.5. Conditions for $A_{n}^{k}$ . Let us show that the family of $A_{n}^{k}$ constructed
in 3.4 satisPes the conditions (1.1), $\cdots$ , (1.4) given in 2.1. It is easily veriPed by
using Figures 3 and 4 that $A_{n}^{k}$ is an annulus bounded by two piecewise analytic
and closed curves of which one is $\gamma_{n}^{k}$ . The other will be denoted by $\gamma_{n}^{\prime k}$ .
Hence (1.1) is satisfied.

Next let us show that the annuli $A_{n}^{k}$ are disjoint. It is clear by definition
that $A_{n}^{k}$ is contained in $\Omega_{n}$ . We wish to show that $A_{n}^{k}$ is in fact contained in
$\Omega_{n}-\Omega_{n-1}$ . If $\Delta_{\nu}^{ij}$ is a border triangle of $P_{n}$ , then it is not contained in $P_{n-1}$ .
Hence $\Delta_{\nu}^{ij}\cap A_{n}^{k}\subset\Omega_{n}-\Omega_{n-1}$ . If $\Delta_{\nu}^{ij}$ is an inner triangle of $P_{n}$ , then from (a) and
(b) of 3.2, $\partial\Omega_{n}\cap\Delta_{\nu}^{ij}$ consists of arcs of the form $\{|z-a_{h}|=r_{2n+3+S}\}$ , and
$\partial\Omega_{n-1}\cap\Delta_{\nu}^{ij}$ consists of arcs of the form $\{|z-a_{h}|=r_{2n+1+S}\}$ with certain $h$ and $s$ .
But by (4) and (5) the $\rho$-distance between the arcs $\{|z-a_{h}|=r_{2n+3+s}\}$ and
$\{|z-a_{h}|=r_{2n+1+s}\}$ is equal to

$\int_{r_{2n+3+s}}^{r_{2n+1+s}}\frac{dx}{x}=\frac{2\pi}{3}$ .

So in an inner triangle $\Delta_{\nu}^{ij}$ , the points $z$ of $\Delta_{\nu}^{ij}$ such that $d(z, \gamma_{n}^{k})<2\pi/3$ do not
belong to $\Omega_{n-1}$ . From this and (a-1), (b-3) and (c-3) in 3.4, we see that
$\Delta_{\nu}^{ij}\cap A_{n}^{k}\subset\Omega_{n}-\Omega_{n-1}$ . Hence $A_{n}^{k}\subset\Omega_{n}-\Omega_{n-1}$ . It follows that if $n\neq n^{\prime}$ , then
$ A_{n}^{k}\cap A_{n^{\prime}}^{k^{\prime}}=\emptyset$ . We wish to show furthermore that if $k\neq k^{\prime}$ , then $ A_{n}^{k}\cap A_{n}^{k^{\prime}}=\emptyset$ .
In fact, in inner triangles of $P_{n}$ which both $\gamma_{n}^{k}$ and $\gamma_{n}^{k^{\prime}}$ pass, we see from the
same argument as above that not only $\gamma_{n}^{h}$ and $\gamma_{n}^{k^{\prime}}$ but also $A_{n}^{h}$ and $A_{n}^{k^{\prime}}$ are
separated by $\Omega_{n-1}$ . In border triangles $\Delta_{\nu}^{ij}$ we have only to show that $A_{n}^{n}$ is
disjoint from other $A_{n}^{k}$ , and so is $A_{n}^{-n}$ . But this holds by the definitions of $\Omega_{n}$

and $A_{n}^{k}$ , and by the fact that the $\rho$ -distance between the arcs $\{|z-a_{h}|=r_{2}\}$

and $\{|z-a_{h}|=\epsilon\}$ is $2\pi/3$ (see Figure 4). Consequently (1.2) holds.
We dePned $\Omega_{n}$ to be the remaining part of $P_{n}$ after having taken off

certain sectors with vertices $0,1$ and $\infty$ . Hence any point of the complement
of $\Omega_{n}$ in $R$ can be joined to one of the vertices $0,1$ and $\infty$ by a curve in the
complement. Since the vertices $0,1$ and $\infty$ do not belong to $R$ actually, this
implies that the complement of $\Omega_{n}$ in $R$ has no compact connected component.

Therefore, by the definition of $A_{n}^{k}$ , the complement of $\bigcup_{k=-n}^{n}A_{n}^{k}$ in $R$ has clearly

a unique compact connected component, which is denoted by $B_{n}$ . Hence (1.3)

holds.
Since $A_{n}^{k}$ is contained in $\Omega_{n}-\Omega_{n-1},$ $B_{n}$ contains $\Omega_{n-1}$ . This implies that $B_{n}$

contains all $A_{n^{\prime}}^{k^{\prime}}$ such that $n^{\prime}<n$ . Hence (1.4) holds. Thus all the four condi-
tions (1.1), $\cdots$ $(1.4)$ are satisfied.
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\S 4. Harmonic module of $A_{n}^{k}$ .
We shall evaluate the harmonic module of our annulus $A_{n}^{k}$ by calculating

the extremal length of the family $\Gamma$ of all the curves joining $\gamma_{n}^{k}$ and $\gamma_{n}^{\prime k}$ . We
shall use to this aim the linear density $\rho$ given by (5), and show that the width
of $A_{n}^{k}$ measured by this $\rho$ is $2\pi/3$ and that its area measured by $\rho$ is almost
equal to $(2\pi/3)\times(\pi/3)\times 24n$ .

This area is obtained roughly as follows. The contribution to it of the
area of the part contained in inner triangles is $(2\pi/3)\times(\pi/3)\times 12n$ , since the
number of the inner triangles intersecting $A_{n}^{k}$ is almost equal to $12n$ . The
contribution of the area of the part contained in border triangles is $(2\pi/3)\times 4n\pi$ ,

since the total length of this part is $ 4n\pi$ .
Thus our estimate will show that the harmonic module of $A_{n}^{k}$ is greater

than

$2\pi\times\frac{(2\pi/3)^{2}}{16\pi^{2}n/3}=\frac{\pi}{6n}\sim 0.52\times\frac{1}{n}$ .

In the following we shall estimate it precisely.

4.1. Lengths of curves of $\Gamma$ Let $\gamma$ be a curve in $A_{n}^{k}$ joining its boundary
components $\gamma_{n}^{k}$ and $\gamma_{n}^{\prime k}$ . We wish to establish the following inequality

$\int_{\gamma}\rho|dz|\geqq\frac{2\pi}{3}$ (6)

where $\rho$ is the linear density given by (5). We divide the proof into cases.
(i) Suppose $\gamma$ is contained in an inner triangle. Then by definition

$A_{n}^{k}\cap\Delta_{\nu}^{ij}=\{z\in\Delta_{\nu}^{ij}\cap\Omega_{n}|d(z, \gamma_{n}^{k})<2\pi/3\}$ . Hence (6) holds.
(ii) Suppose $\gamma$ is contained in the union of a finite number of inner

triangles. In this case also we obtain (6) with no additional difficulty. If
necessary, it is sufficient to note that $\{z\in\Delta_{\nu}^{ij}\cap\Omega_{n}|d(z, \gamma_{n}^{k})<2\pi/3\}$ is nothing
but the set $\{r_{2n+3+S}<|z-a_{h}|<r_{2n+1+s}\}$ with certain $h$ and $s$ , and that the inter-
section of $A_{n}^{k}$ with the union of a finite number of inner triangles is mapped
by $w=\log(z-a_{h})$ onto a rectangle of width $2\pi/3$ .

(iii) Suppose $\gamma$ is contained in the union of two border triangles. Since
the proof is just the same, we suppose for example that $\gamma\subset\Delta_{1}^{k,-n}\cup\Delta_{2}^{k.-n-1}$, and
that $\gamma$ starts from $\gamma_{n}^{\prime k}$ and ends at $\gamma_{n}^{k}$ (see Figure 4). This case is further
divided into three cases.

(iii-l) Suppose $\gamma$ starts from the side $A$ of $\Delta_{1}^{k,-n}$ . If $\gamma$ ends at the arc
$\{|z-a_{1}|=r_{2n+3}\}$ in $\Delta_{1}^{k,-n}$ or $\Delta_{2}^{k.-n-1}$ , then (6) holds, because the $\rho$ -distance
between the arcs $\{|z-a_{1}|=r_{2n+3}\}$ and $\{|z-a_{1}|=r_{2n+1}\}$ is $2\pi/3$ . If $\gamma$ ends at
the arc $\{|z-a_{2}|=r_{n-k+3}\}$ in $\Delta_{1}^{k.-n}$ or $\Delta_{2}^{k,-n-1}$, then $\gamma$ crosses the arc $\{|z-a_{2}|$

$=r_{n- k+1}\}$ in $\Delta_{1}^{k,-n}$ or $\Delta_{2}^{k,-n-1}$ too, and again (6) holds for the same reason. If
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$\gamma$ ends at the side $A$ of $\Delta_{2}^{k,-n-1}$ , then (6) holds, because the angle between the
sides $A$ and $B$ of $\Delta_{1}^{k,-n}$ is $\pi/3$ , and that of $\Delta_{2}^{k,-n-1}$ is also $\pi/3$ . If necessary,
replace $\gamma$ , using the reflexion, by a curve with the same length. If $\gamma$ ends at
the side $C$ of $\Delta_{2}^{k.-n-1}$ , then (6) holds according to the same argument. If $\gamma$ ends
at the arc $\{|z-a_{0}|=\epsilon\}$ in $\Delta_{2}^{k.-n-1}$, then $\gamma$ crosses the arc $\{|z-a_{0}|=1/2\}$ in
$\Delta_{2}^{k.-n-1}$ . As $\epsilon<(e^{-2\pi/3})/2$ by (3), the $\rho$ -distance between these arcs is greater
than $2\pi/3$ . Hence (6) holds.

(iii-2) Suppose $\gamma$ starts from the side $C$ of $\Delta_{1}^{k,-n}$ . Then by symmetry and
(iii-l), (6) holds.

(iii-3) Suppose $\gamma$ starts from the arc $\{|z-a_{0}|=\epsilon\}$ in $\Delta_{1}^{k.-n}$ . Then $\gamma$ crosses
the arc $\{|z-a_{0}|=1/2\}$ in $\Delta_{1}^{k.-n}$ , and (6) holds, because the $\rho$ -distance between
these arcs is larger than $2\pi/3$ .

(iv) Suppose $\gamma$ is contained in the union of border triangles and inner
triangles. Then we obtain (6) by an analogous argument to (ii) and (iii).

Consequently (6) holds for all curves of $\Gamma$

4.2. Area of $A_{n}^{k}$ . For a set $E$ in the homology covering surface $R$ and
the linear density $\rho$ given by (5), we write $z=x+iy$ and set

$S(E)=\int\int_{E}\rho^{2}$dxdy

and call it simply the area of $E$ . We wish to show the inequality

$S(A_{n}^{k})\leqq\frac{16\pi^{2}}{3}n+c$ (7)

where $c$ is a constant independent of $n$ and $k$ . In the following we shall
denote by $c$ all constants which are independent of $n$ and $k$ . By an easy
calculation we have the relation

$S(\{r_{t}<|z-a_{h}|<1/2\}\cap\Delta_{\nu}^{ij})=\frac{\pi^{2}}{9}r+c$ (8)

which will be used below.
(a) Case of $A_{n}^{k}$ with $-n+1\leqq k\leqq n-1$ . We set

$S_{1}=\Sigma S(A_{n}^{k}\cap\Delta_{\nu}^{ij})$

where the sum is over all inner triangles $\Delta_{\nu}^{ij}$ , and set

$S_{2}=\Sigma S(A_{n}^{k}\cap\Delta_{\nu}^{ij})$

where the sum is over all border triangles, so that we have $S(A_{n}^{k})=S_{1}+S_{2}$ .
First let $\Delta_{\nu}^{tj}$ be an inner triangle of $P_{n}$ such that $ A_{n}^{k}\cap\Delta_{\nu}^{ij}\neq\emptyset$ . Then, since

$A_{n}^{k}\cap\Delta_{\nu}^{if}$ is of the form $\{r_{2n+3+s}<|z-a_{h}|<r_{2n+1+s}\}$ with certain $h$ and $s$ , we
have $S(A_{n}^{k}\cap\Delta_{\nu}^{ij})=2\pi^{2}/9$ by (8). By using Figure 3, we find that there are
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$12n-2$ such inner triangles. Hence

$S_{1}=\frac{2\pi^{2}}{9}(12n-2)$ .

Next we calculate the area of the part of $A_{n}^{k}$ in border triangles. Since
$A_{n}^{k}\cap\Delta_{1}^{k.-n}=\{|z-a_{0}|>\epsilon\}\cap\{|z-a_{1}|>r_{2n+3}\}\cap\{|z-a_{2}|>r_{n-k+3}\}$ , and $A_{n}^{k}\cap\Delta_{2}^{k.-n-1}$ ,
$A_{n}^{k}\cap\Delta_{1}^{n.-k}$ and $A_{n}^{k}\cap\Delta_{2}^{n+1,-k}$ have the same shape as $A_{n}^{k}\cap\Delta_{1}^{k,-n}$ , we have, by (8),

$S(A_{n}^{k}\cap\Delta_{1}^{k.-n})=S(A_{n}^{k}\cap\Delta_{2}^{k,-n-1})=S(A_{n\cap}^{k}\Delta_{1}^{n,-k})=S(A_{n}^{k}\cap\Delta_{2}^{n+1.-k})$

$=\frac{\pi^{2}}{9}(3n-k)+c$ .

On the other hand, since $A_{n\cap}^{k}\Delta r^{n-1,-k}=\{|z-a_{0}|>r_{2n+3}\}\cap\{|z-a_{1}|>\epsilon\}\cap\{|z-a_{2}|$

$>r_{n+k+\rangle}\lrcorner\}$ , and $A_{n}^{k}\cap\Delta_{2}^{-n,-k},$ $A_{n}^{k}\cap\Delta_{2}^{k,n}$ and $A_{n}^{k}\cap\Delta_{1}^{k,n+1}$ have the same shape as
$A_{n}^{k}\cap\Delta_{1}^{-n-1.-k}$ , we have

$S(A_{n\cap}^{k}\Delta_{1}^{-n-1,-k})=S(A_{n\cap}^{k}\Delta_{2}^{-n,-k})=S(A_{n\cap}^{k}\Delta_{2}^{k,n})=S(A_{n}^{k}\cap\Delta_{1}^{k,n+1})$

$=\frac{\pi^{2}}{9}(3n+k)+c$ .

Summing these eight areas together, we have

$8\pi^{2}$

$S_{2}=n+c\overline{3}$

Therefore in this case we have

$S(A_{n}^{k})=\frac{16\pi^{2}}{3}n+c$ .

(b) Case of $A_{n}^{n}$ . By using Figure 3, we find that there are $12n-3$ triangles
$\Delta_{\nu}^{j}$ such that $A_{n}^{n}\cap\Delta_{\nu}^{ij}$ is of the form $\{r_{2n+3+S}<|z-a_{h}|<r_{2n+1+S}\}$ . Let $S_{1}$ be
the area of the part of $A_{n}^{n}$ in the union of such triangles. Then clearly we
have

$2\pi^{2}$

$S_{1}=(12n-3)\overline{9}$

Let $S_{2}$ be the area of the part of $A_{n}^{n}$ in the union of $\Delta_{1}^{n,-n},$ $\Delta_{2}^{n,-n},$ $\Delta_{2}^{-n,-n}$ ,
$\Delta_{1}^{-n-1,-n},$ $\Delta_{2}^{n.n}$ and $\Delta_{1}^{n,n+1}$ . Since $A_{n}^{n}\cap\Delta_{1}^{n.-n}$ and $A_{n}^{n}\cap\Delta_{2}^{n.-n}$ are of the form
$\{|z-a_{0}|>r_{2n+3}\}\cap\{|z-a_{1}|>r_{2n+3}\}\cap\{|z-a_{2}|>\epsilon\}$ , we have, by (8),

$S(A_{n\cap}^{n}\Delta_{1}^{n,-n})=S(A_{n}^{n}\cap\Delta_{2}^{n,-n})=\frac{4\pi^{2}}{9}n+c$ .

Since $A_{n}^{n}\cap\Delta_{2}^{-n,-n}=\{|z-a_{0}|>r_{2n+3}\}\cap\{|z-a_{1}|>\epsilon\}\cap\{|z-a_{2}|>r_{2n+2}\}$ , and $A_{n\cap}^{n}$

Ar $n- l,$
$-nA_{n}^{n}\cap\Delta_{2}^{n}\cdot$ “ and $A_{n}^{n}\cap\Delta_{1}^{n,n+1}$ have the same shape as $A_{n}^{n}\cap\Delta_{2}^{-n.-n}$ , we have
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$S(A_{n}^{n}\cap\Delta_{2}^{-n,-n})=S(A_{n}^{n}\cap\Delta_{1}^{-n-1.-n})=S(A_{n}^{n}\cap\Delta_{2}^{n.n})=S(A_{n}^{n}\cap\Delta_{1}^{n,n+1})$

$=\frac{4\pi^{2}}{9}n+c$ .

Summing these six areas together, we obtain

$S_{2}=\frac{8\pi^{2}}{3}n+c$ .

Hence in this case too, we have

$16\pi^{2}$

$S(A_{n}^{n})=n+c\overline{3}$

(c) Case of $A_{n}^{-n}$ . We calculate the area of $A_{n}^{-n}$ exactly in the same way
as $A_{n}^{n}$ , and we obtain

$S(A_{n}^{-n})=\frac{16\pi^{2}}{3}n+c$ .

From the results of (a), (b) and (c), noting that the constant $c$ in the three
cases may be different, we obtain the inequality (7), which is what we wished
to show.

4.3. Application of Pfluger’s criterion. We obtain, by (2), (6) and (7),

the following inequality for the harmonic module $\mu_{n}^{k}$ of $A_{n}^{k},$ $k=-n,$ $-n+1$ ,
... , $n$ :

$\mu_{n}^{k}\geqq 2\pi\frac{(2\pi/3)^{2}}{16\pi^{2}n/3+c}$ .
It follows that $\mu_{n}=_{k}{\rm Min}\mu_{n}^{k}$ is greater than or equal to the right hand side. As

to the number $k(n)$ of the annuli $A_{n}^{k}$ , we have $k(n)=2n+1$ , and so

$K(N)={\rm Max} k(n)=2N+1n\leqq N$

Therefore, from the relation

$\frac{2\pi(2\pi/3)^{2}}{16\pi^{2}/3}=\frac{\pi}{6}=0.52\cdots>\frac{1}{2}$ ,

we obtain the relation (1). Consequently, by grace of Pfluger’s criterion, the
proof of Theorem I is entirely achieved.
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