Linear evolution equations $d u / d t+A(t) u=0$: a case where $A(t)$ is strongly uniform-measurable

By Susumu IshiI

(Received Feb. 28, 1978)
(Revised Nov. 7, 1980)

§ 1. Introduction.

Kato [1,2] studied the Cauchy problem for a linear evolution equation of hyperbolic type in a Banach space X :

$$
(d / d t) u(t)+A(t) u(t)=0, \quad u(s)=y \in Y, \quad 0 \leqq s \leqq t \leqq T<\infty,
$$

where Y is a Banach space dense in X and $-A(t)$ is the generator of a $\left(C_{0}\right)$ semigroup of bounded linear operators on X for each t. He proved a basic existence theorem (Theorem 4.1 of [1]) of the solution for the Cauchy problem when the family $A=\{A(t)\}$ is stable (see P .244 of [1]) and $A(\cdot)$ is (Y, X) normcontinuous, i. e., $A(t)$ belongs to $\boldsymbol{B}(Y, X)$ and it is continuous in the norm of $\boldsymbol{B}(Y, X)$. Here $\boldsymbol{B}(Y, X)$ denotes the set of all bounded linear operators on Y to X. Though he used Cauchy's method in the proof, the author gave another proof by means of the Yosida approximation in [6]. Kato also proposed to solve the Cauchy problem when $A(\cdot)$ is (Y, X) strongly continuous.

In this paper we prove an existence theorem Theorem 2.1) directly by the Yosida approximation method for a case where $A(\cdot)$ is (Y, X) strongly uniformmeasurable. Since our method involves no process of step function approximations of time-dependent operators, it is distinguished from Cauchy's method as well as from the usual Yosida approximation method for evolution equations (see [7, 8]). Some additional assumption ((A4) (c) in § 2) is needed for the proof but we hope it is not so restrictive. We remark that Kobayasi [9] obtained a similar result by Cauchy's method with no additional assumptions when $A(\cdot)$ is (Y, X) strongly continuous but it seems difficult to extend his result to a case where $A(\cdot)$ is (Y, X) strongly measurable.

The author would like to express his hearty thanks to Professors H. Sunouchi, T. Kato and the referee for their kind and valuable advices.

§ 2. Theorem.

In this section we state our theorem with some preliminary considerations. Our assumptions are the following.

Let $0 \leqq t \leqq T<\infty$. Further assume (A1) to (A4).
(A1) Y is a Banach space densely and continuously embedded in a real Banach space X.
(A2) $-A(t)$ is the generator of a $\left(C_{0}\right)$ semigroup on X for a.e. t. A is quasi-stable with index $\{M, \beta(\cdot)\}$:

$$
\left\|\left(I+\lambda_{k} A\left(t_{k}\right)\right)^{-1} \cdots\left(I+\lambda_{1} A\left(t_{1}\right)\right)^{-1}\right\|_{X} \leqq M \prod_{j=1}^{k}\left(1-\lambda_{j} \beta\left(t_{j}\right)\right)^{-1}
$$

for $0 \leqq t_{1} \leqq \cdots \leqq t_{k} \leqq T, 1>\lambda_{j} \beta\left(t_{j}\right), 1 \leqq j \leqq k, k \in N$, where M is a constant, β is a real-valued upper-integrable function (in the Lebesgue sense) on [0,T] and $\|\cdot\|_{X}$ denotes the norm of $\boldsymbol{B}(X)=\boldsymbol{B}(X, X)$.
(A3) $Y \subset D(A(t))$ a. e., so that $A(t) \in \boldsymbol{B}(Y, X)$ a. e. $\|A(\cdot)\|_{Y, X}$ is upper-integrable on $[0, T]$ and $A(\cdot)$ is (Y, X) strongly uniform-measurable on $[0, T]$, i.e., there is a sequence of finite partitions $\left\{I_{n k}: k=1, \cdots, k(n)\right\}, n=1,2, \cdots$, of $[0, T]$ into subintervals and Riemann step functions A_{n}, such that A_{n} takes a constant value $A\left(t_{n k}\right)$ on $I_{n k}$ for some $t_{n k} \in I_{n k}, \sup _{k}\left|I_{n k}\right| \rightarrow 0$, and $A_{n}(t) \rightarrow A(t)$ strongly for a.e. t.
(A4) There is a family $\{S(t)\}$ of isomorphisms from Y onto X such that:
(a) $S(t) A(t) S(t)^{-1}=A(t)+B(t), B(t) \in \boldsymbol{B}(X)$ for a. e. t, where $B(\cdot)$ is (X) strongly measurable with $\|B(\cdot)\|_{x}$ upper-integrable on $[0, T]$.
(b) There is a strongly measurable function $\dot{S}:[0, T] \rightarrow \boldsymbol{B}(Y, X)$ a. e., with $\|\dot{S}(\cdot)\|_{Y, X}$ upper-integrable on $[0, T]$, such that S is equal to an indefinite strong integral of \dot{S}, where $\|\cdot\|_{Y, X}$ denotes the norm of $\boldsymbol{B}(Y, X)$.
(c) $(I+\alpha S(t))^{-1}$ is uniformly bounded in $\boldsymbol{B}(X)$ for $0 \leqq t \leqq T, 0<\alpha \leqq \alpha_{0}$, where α_{0} is some positive constant.

REmARK 2.1. If $D(A(t))$ is equal to Y for all t with the graph norm and $A(\cdot)$ is (Y, X) strongly continuously differentiable, then $\mathrm{A}(3)$ and $\mathrm{A}(4)$ are satisfied by taking $S(t)=I+\alpha A(t)$ for some $\alpha>0$.

Next we state the definition of evolution operators.
DEFINITION 2.1. A family $U=\{U(t, s): 0 \leqq s \leqq t \leqq T\}$ of bounded linear operators in $\boldsymbol{B}(X)$ is called an evolution operator for A if the following conditions are satisfied.
(a) $U(\cdot, \cdot)$ is (X) strongly continuous.
(b) $U(t, s) U(s, r)=U(t, r), U(s, s)=I, 0 \leqq r \leqq s \leqq t \leqq T$.
(c) $U(t, s) Y \subset Y$ and $U(\cdot, \cdot)$ is (Y) strongly continuous.
(d) For each $y \in Y, U(\cdot, \cdot) y$ satisfies the following:

$$
\begin{aligned}
& U(t, s) y-y=-\int_{s}^{t} A(\sigma) U(\sigma, s) y d \sigma \\
& U(t, s) y-y=-\int_{s}^{t} U(t, \sigma) A(\sigma) y d \sigma
\end{aligned}
$$

So that $U(\cdot, \cdot) y$ is strongly absolutely continuous in X and satisfies

$$
\begin{array}{ll}
\frac{\partial}{\partial t} U(t, s) y=-A(t) U(t, s) y & \text { a.e. } t \\
\frac{\partial}{\partial s} U(t, s) y=U(t, s) A(s) y & \text { a.e. } s
\end{array}
$$

which exist in the strong sense in X.
Now we can state our theorem.
Theorem 2.1. Under the assumptions (A1) to (A4) there is a unique evolution operator U for A.

In the proof of Theorem 2.1 we often use the following lemmas.
Lemma 2.1. 1) Let $P(t) \in \boldsymbol{B}\left(X_{1}\right)$ and $Q(t) \in \boldsymbol{B}\left(X_{2}\right)$ be uniformly bounded for $t_{1} \leqq t \leqq t_{2}$, where X_{1}, X_{2} are Banach spaces with X_{2} continuously embedded in X_{1}. If $Q(\cdot) y, y \in X_{2}$, is strongly absolutely continuous in X_{1} and $P(\cdot)$ is strongly absolutely contiruous in $\boldsymbol{B}\left(X_{2}, X_{1}\right)$-norm, then $P(\cdot) Q(\cdot) y$ is strongly absolutely continuous in X_{1}.
2) Let X_{1} be a Banach space. If $P(\cdot), Q(\cdot) \in \boldsymbol{B}\left(X_{1}\right)$ are strongly absolutely continuous in $\boldsymbol{B}\left(X_{1}\right)$-norm, then $P(\cdot) Q(\cdot) \in \boldsymbol{B}\left(X_{1}\right)$ is also strongly absolutely continuous in $\boldsymbol{B}\left(X_{1}\right)$-norm.
3) Let $f(t)$ be strongly absolutely continuous in X_{1} for $t_{1} \leqq t \leqq t_{2}$, where X_{1} is a Banach space. If $f(\cdot)$ is a.e. differentiable and $(d / d t) f(t)$ is strongly integrable, then

$$
f\left(t_{2}\right)-f\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} \frac{d f(t)}{d t} d t
$$

Proof. 1) It suffices to note the following.

$$
\begin{aligned}
& \|P(a) Q(a) y-P(b) Q(b) y\|_{x_{1}} \\
& \leqq \leqq P(a)-P(b)\left\|_{x_{2}, X_{1}}\right\| Q(a)\left\|_{x_{2}}\right\| y\left\|_{x_{2}}+\right\| P(b)\left\|_{x_{1}}\right\| Q(a) y-Q(b) y \|_{x_{1}} \\
& \leqq \mathrm{Const}\left(\|P(a)-P(b)\|_{x_{2}, x_{1}}\|y\|_{x_{2}}+\|Q(a) y-Q(b) y\|_{x_{1}}\right), \\
& t_{1} \leqq a \leqq b \leqq t_{2}, \quad y \in X_{2} .
\end{aligned}
$$

The proof of 2) and 3) is straightforward.
Lemma 2.2. Let $P(\cdot) \in B\left(X_{1}, X_{2}\right)$ and $Q(\cdot) \in B\left(X_{2}, X_{3}\right)$ be strongly measurable, where X_{1}, X_{2} and X_{3} are Banach spaces. Then $Q(\cdot) P(\cdot) \in B\left(X_{1}, X_{3}\right)$ is strongly measurable [2: Lemma A4].

Hereafter we assume, without loss of generality, that β is Lebesgue integrable with some positive constant $\beta_{0}<\beta(t)$ a.e., if necessary, by replacing β with a dominating integrable function. Then we define the Yosida approximation A_{λ} of A by the relation:

$$
\begin{equation*}
A_{\lambda}(t)=\left(I-J_{\lambda}(t)\right) / \lambda(t), \quad \text { a.e. } t \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{\lambda}(t)=(I+\lambda(t) A(t))^{-1}, \quad \text { a. e. } t \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\lambda(t)=\lambda /(\beta(t)+M b(t)), \quad \text { a.e. } t, \quad 0<\lambda<1, \tag{2.3}
\end{equation*}
$$

and $b(\cdot)$ is a Lebesgue integrable function such that $\|B(t)\|_{X} \leqq b(t)$ a.e.
Lemma 2.3. Let $0 \leqq t \leqq T$ and $0<\alpha<\alpha_{0}$. Under the assumptions above we have the following.
(B1) For each $y \in Y,(d / d t) S(t) y=\dot{S}(t) y$ a.e.
(B2) $S(t)$ is strongly absolutely continuous in $\boldsymbol{B}(Y, X)$-norm. Hence $\|S(t)\|_{Y, X}$ is uniformly bounded in t.
(B3) $S(\cdot)^{-1}$ is strongly absolutely continuous in $\boldsymbol{B}(X, Y)$-norm. Hence $\left\|S(t)^{-1}\right\|_{X, Y}$ is uniformly bounded in t.
(B4) $(I+\alpha S(\cdot))^{-1}$ is strongly absolutely continuous in $\boldsymbol{B}(X, Y)$-norm for each α. $(I+\alpha S(t))^{-1}$ is uniformly bounded for t, α both in $\boldsymbol{B}(X)$ and in $\boldsymbol{B}(Y)$.
(B5) $J_{\lambda}(t)=S(t)^{-1}\left(I+\lambda(t) A_{1}(t)\right)^{-1} S(t)$
a.e. t,
where $A_{1}=A+B$.

$$
\begin{aligned}
& \left\|J_{\lambda}(t)\right\|_{X} \leqq \frac{M}{1-\lambda}, \quad \text { a.e. } t, \quad 0<\lambda<1 \\
& \left\|J_{\lambda}(t)\right\|_{Y} \leqq \frac{M}{1-\lambda} \cdot \sup \left\|S(t)^{-1}\right\|_{X, Y} \cdot \sup \|S(t)\|_{Y, X}, \quad \text { a.e. } t, \quad 0<\lambda<1
\end{aligned}
$$

(B6) $J_{\lambda}(\cdot)$ is (X) strongly measurable for $0<\lambda<1$ and (Y) strongly measurable for $0<\lambda<1 / 2$.
(B7) A_{1} is quasi-stable with index $\left\{M, \beta(\cdot)+M\|B(\cdot)\|_{x}\right\}$. Since $A_{1}(t)=$ $S(t) A(t) S(t)^{-1}, Y$ is $A(t)$-admissible (a.e.t $)$, i.e., the semi-group generated by $-A(t)$ leaves Y invariant and forms a $\left(C_{0}\right)$ semi-group on Y.
(B8) $\left\|\left(I+\lambda(t) A_{1}(t)\right)^{-1}\right\|_{x} \leqq \frac{M}{1-\lambda} \quad$ a.e. $t, \quad 0<\lambda<1$.
(B9) $\left(I+\lambda(\cdot) A_{1}(\cdot)\right)^{-1}$ is (X) strongly measurable for $0<\lambda<1 / 2$.
(B10) $A_{\lambda}(\cdot)$ is (X) strongly measurable for $0<\lambda<1$ and (Y) strongly measurable for $0<\lambda<1 / 2$.
(B11) $\left\|A_{\lambda}(t)\right\|_{X} \leqq \frac{1}{\lambda}(\beta(t)+M b(t))\left(1+\frac{M}{1-\lambda}\right)$ a.e. $t, \quad 0<\lambda<1$.

$$
\begin{aligned}
& \left\|A_{\lambda}(t)\right\|_{Y} \leqq \frac{1}{\lambda}(\beta(t)+M b(t))\left(1+\frac{M}{1-\lambda} \sup \left\|S(t)^{-1}\right\|_{X, Y} \sup \|S(t)\|_{Y, X}\right), \\
& \quad \text { a.e. } t, \quad 0<\lambda<1 .
\end{aligned}
$$

Proof. (B1) to (B3) is a simple consequence of (A4) (b). To prove (B4) we note the following.

$$
\left\|(I+\alpha S(t))^{-1}\right\|_{Y} \leqq \sup \left\|S(t)^{-1}\right\|_{X, Y} \sup \|S(t)\|_{Y, X} \sup \left\|(I+\alpha S(t))^{-1}\right\|_{X} .
$$

In fact,

$$
\begin{aligned}
\left\|(I+\alpha S(t))^{-1} y\right\|_{Y} & =\left\|S(t)^{-1} S(t)(I+\alpha S(t))^{-1} y\right\|_{Y} \\
& \leqq\left\|S(t)^{-1}\right\|_{X, Y}\left\|S(t)(I+\alpha S(t))^{-1} y\right\|_{X} \\
& =\left\|S(t)^{-1}\right\|_{X, Y}\left\|(I+\alpha S(t))^{-1} S(t) y\right\|_{X} \\
& \leqq\left\|S(t)^{-1}\right\|_{X, Y}\left\|(I+\alpha S(t))^{-1}\right\|_{X}\|S(t)\|_{Y, X}\|y\|_{Y} .
\end{aligned}
$$

Hence $(I+\alpha S(t))^{-1}$ is uniformly bounded for t, α in $\boldsymbol{B}(Y)$ by (A4) (c), (B2) and (B3). Similarly we have

$$
\left\|(I+\alpha S(t))^{-1}\right\|_{X, Y} \leqq \frac{1}{\alpha} \sup \left\|S(t)^{-1}\right\|_{X, Y}\left(1+\sup \left\|(I+\alpha S(t))^{-1}\right\|_{X}\right) .
$$

Thus $(I+\alpha S(\cdot))^{-1}$ is strongly absolutely continuous in $\boldsymbol{B}(X, Y)$-norm by (B2), completing the proof of (B4).

For the proof of (B7) we refer to Proposition 2.4 of [1]. Then (B5) and (B8) are obtained from (A2) and (B7) since $J_{\lambda}(t)=S(t)^{-1} \cdot\left(I+\lambda(t) A_{1}(t)\right)^{-1} S(t)$ a.e.

Now we prove the strong measurability of $J_{\lambda}(\cdot)$. Since $\lambda(\cdot)$ is measurable by definition (2.3), we can take a sequence of Riemann step functions $\lambda_{n}(\cdot)$ such that $\lambda_{n}(t) \rightarrow \lambda(t)$ a.e. A sequence of Riemann step functions $\left(I+\lambda_{n}(t) A_{n}(t)\right)^{-1} y$ strongly converges in X to $(I+\lambda(t) A(t))^{-1} y$ by (B5) where $y \in Y, 0<\lambda<1$ and A_{n} is defined in (A3). Thus $J_{\lambda}(\cdot) y$ is strongly measurable in X for each $y \in Y$ and $0<\lambda<1$, so that $J_{\lambda}(\cdot) x$ is strongly measurable in X by continuity for each $x \in X$.
(B9) is verified as follows. First we note that $\left(I+\lambda(t) A_{1}(t)\right)^{-1}=\left(I+\lambda(t) J_{\lambda}(t) B(t)\right)^{-1}$ $\cdot J_{\lambda}(t)$ for a.e. $t, 0<\lambda<1$ and $\left(I+\lambda(\cdot) J_{\lambda}(\cdot) B(\cdot)\right)^{-1}$ is (X) strongly measurable for $0<\lambda<1 / 2$. The latter is obtained by development into series for $0<\lambda<1 / 2$ since $\lambda(\cdot) J_{\lambda}(\cdot) B(\cdot)$ is (X) strongly measurable by Lemma 2.2 with the estimate:

$$
\left\|\lambda(t) J_{\lambda}(t) B(t)\right\|_{X} \leqq \frac{\lambda}{\beta(t)+M b(t)} \cdot\left\|J_{\lambda}(t)\right\|_{X}\|B(t)\|_{X} \leqq \frac{\lambda}{1-\lambda} \quad \text { a. e. } t, \quad 0<\lambda<1 .
$$

Thus we complete the proof of (B9) by Lemma 2.2. Hence we can also get (B6) by $J_{\lambda}(t)=S(t)^{-1}\left(I+\lambda(t) A_{1}(t)\right)^{-1} S(t)$ since $J_{\lambda}(\cdot)$ is (Y) strongly measurable for $0<\lambda$ $<1 / 2$.
(B10) and (B11) are simple results of (B5), (B6) since $\lambda(\cdot)^{-1}$ is measurable.
Remark 2.2. If $A(\cdot)$ is (Y, X) strongly piecewise continuous, then it is (Y, X) strongly uniform-measurable. In case X is separable (so that Y is also separable by (A4)) or $A(t)$ is uniformly bounded in $\boldsymbol{B}(X)$, strong measurability of $J_{\lambda}(\cdot)$ is implied by that of $A(\cdot)$ for small $\lambda>0$ (see Lemma A2 of [2]).

Remark 2.3. If we assume (X) strong measurability of $J_{\lambda}(\cdot), A(\cdot)$ is (Y, X) strong measurable as the limit of strongly measurable function $A_{\lambda}(\cdot)$ in $\boldsymbol{B}(X)$. But this assumption seems to be difficult to verify because of the complicated structure of $J_{\lambda}(\cdot), A_{\lambda}(\cdot)$.

§ 3. Proof of Theorem 2.1.

We use the Yosida approximation method to construct an evolution operator for A. We will show that a family of evolution operators U_{λ} for the Yosida approximation A_{λ} of A has a unique strong limit U as $\lambda \searrow 0$, which corresponds to a unique evolution operator for A.

Since $J_{\lambda}(\cdot)$ is (X) strongly measurable by (B6) and $\left\|J_{\lambda}(t)\right\|_{X} \leqq M /(1-\lambda)$ for a.e. t and $0<\lambda<1$ by (B5), we can define an operator U_{λ} :

$$
\begin{align*}
& U_{\lambda}(t, s)=\exp \left[-\int_{s}^{t} \frac{d \tau}{\lambda(\tau)}\right] \tag{3.1}\\
& \cdot\left[I+\int_{s}^{t} \frac{J_{\lambda}(\tau)}{\lambda(\tau)} d \tau+\cdots+\int_{s}^{t}\left(\int_{s}^{t_{1}} \cdots\left(\int_{s}^{t_{n-1}} \frac{J_{\lambda}\left(t_{1}\right)}{\lambda\left(t_{1}\right)} \cdots \frac{J_{\lambda}\left(t_{n}\right)}{\lambda\left(t_{n}\right)} d t_{n}\right) \cdots\right) d t_{1}+\cdots\right], \\
& 0 \leqq \leqq \leqq t \leqq T, \quad 0<\lambda<1,
\end{align*}
$$

in the strong sense in $\boldsymbol{B}(X)$. Now we will show that U_{λ} is the evolution operator for A_{λ}. First we note that this operator is estimated by (A2) as follows.

$$
\begin{equation*}
\left\|U_{\lambda}(t, s)\right\|_{X} \leqq M \cdot \exp \left[\frac{1}{1-\lambda} \int_{s}^{t} \beta(\tau) d \tau\right], \quad 0<\lambda<1 . \tag{3.2}
\end{equation*}
$$

By definition $U_{\lambda}(\cdot, \cdot)$ satisfies the integral equations:

$$
\begin{aligned}
& U_{\lambda}(t, s) x-x=-\int_{s}^{t} A_{\lambda}(\tau) U_{\lambda}(\tau, s) x d \tau, \\
& U_{\lambda}(t, s) x-x=-\int_{s}^{t} U_{\lambda}(t, \tau) A_{\lambda}(\tau) x d \tau, \quad x \in X,
\end{aligned}
$$

so that U_{λ} is strongly absolutely continuous in $\boldsymbol{B}(X)$-norm for a fixed λ and in $\boldsymbol{B}(Y, X)$-norm uniformly for λ by (3.2) and (B11). It also satisfies the relation:

$$
\begin{align*}
& \frac{\partial}{\partial t} U_{\lambda}(t, s) x=-A_{\lambda}(t) U_{\lambda}(t, s) x \quad \text { a.e. } t, \quad x \in X, \tag{3.3}\\
& \frac{\partial}{\partial s} U_{\lambda}(t, s) x=U_{\lambda}(t, s) A_{\lambda}(s) x \quad \text { a.e. } s, \quad x \in X, \tag{3.4}
\end{align*}
$$

and

$$
U_{\lambda}(s, s)=I \quad \text { for } \quad 0 \leqq s \leqq T .
$$

The relation $U_{\lambda}(t, s) U_{\lambda}(s, r)=U_{\lambda}(t, r), 0 \leqq r \leqq s \leqq t \leqq T$, is verified by Lemma 2.1 (3), if we use strong absolute continuity of $U_{\lambda}(t, \cdot) \cdot U_{\lambda}(\cdot, r)$ in $B(X)$-norm and the relation $(\partial / \partial s)\left[U_{\lambda}(t, s) U_{\lambda}(s, r) x\right]=0$ a.e. $s, x \in X$.

Moreover U_{λ} satisfies the following lemma as $\boldsymbol{B}(Y)$-valued operator.
Lemma 3.1. $U_{\lambda}(t, s)$ is uniformly bounded in $\boldsymbol{B}(Y)$ for $0<\lambda<1 / 2,0 \leqq s \leqq t \leqq T$, and strongly absolutely continuous in $\boldsymbol{B}(Y)$-norm for each λ.

Remark 3.1. Since $J_{\lambda}(\cdot)$ is (Y) strongly measurable by (B6), the operator U_{λ} in (3.1) is well defined also in $\boldsymbol{B}(Y)$, if we notice the stability of A restricted in Y (see Proposition 4.4 of [1]). But we prove Lemma 3.1 only by the essential boundedness of $J_{\lambda}(t)$ in $\boldsymbol{B}(Y)$ (see (B5)).

Proof of Lemma 3.1. Let $0 \leqq r \leqq t \leqq T$. We note that $U_{\lambda}(t, \cdot) S(\cdot)^{-1} U_{\lambda}(\cdot, r)$ is,strongly absolutely continuous in $\boldsymbol{B}(X)$-norm for $0<\lambda<1$. Consider the relation:

$$
\begin{aligned}
\frac{\partial}{\partial s} & {\left[U_{\lambda}(t, s) S(s)^{-1} U_{\lambda}(s, r) x\right] } \\
& =U_{\lambda}(t, s)\left[A_{\lambda}(s) S(s)^{-1}-S(s)^{-1} A_{\lambda}(s)+\frac{d}{d s} S(s)^{-1}\right] U_{\lambda}(s, r) x, \quad \text { a.e. } s, \quad x \in X
\end{aligned}
$$

The right hand side of this equation is strongly integrable for s in X, so we get

$$
\begin{align*}
& S(t)^{-1} U_{\lambda}(t, r) x-U_{\lambda}(t, r) S(r)^{-1} x \tag{3.5}\\
& \quad=\int_{r}^{t} U_{\lambda}(t, s)\left[A_{\lambda}(s) S(s)^{-1}-S(s)^{-1} A_{\lambda}(s)-S(s)^{-1} \frac{d S(s)}{d s} S(s)^{-1}\right] U_{\lambda}(s, r) x d s
\end{align*}
$$

Omitting the argument s, we notice the following:

$$
\begin{align*}
A_{\lambda} S^{-1}-S^{-1} A_{\lambda} & =\lambda^{-1}\left(I-J_{\lambda}\right) S^{-1}-S^{-1} \lambda^{-1}\left(I-J_{\lambda}\right) \tag{3.6}\\
& =\lambda^{-1}\left(S^{-1} J_{\lambda}-J_{\lambda} S^{-1}\right) \\
& =\lambda^{-1} J_{\lambda}\left[(I+\lambda A) S^{-1}-S^{-1}(I+\lambda A)\right] J_{\lambda} \\
& =J_{\lambda}\left(A S^{-1}-S^{-1} A\right) J_{\lambda} \\
& =J_{\lambda} S^{-1} B J_{\lambda} .
\end{align*}
$$

Hence from (3.5) we have

$$
\begin{equation*}
V_{\lambda}(t, r) x=S(t)^{-1} U_{\lambda}(t, r) x+\int_{r}^{t} V_{\lambda}(t, s) C_{\lambda}(s) U_{\lambda}(s, r) x d s \tag{3.7}
\end{equation*}
$$

where

$$
\begin{gather*}
V_{\lambda}(t, r)=U_{\lambda}(t, r) S(r)^{-1} \tag{3.8}\\
C_{\lambda}(s)=\frac{d S(s)}{d s} S(s)^{-1}-S(s) J_{\lambda}(s) S(s)^{-1} B(s) J_{\lambda}(s), \tag{3.9}
\end{gather*}
$$

with the estimate

$$
\left\|C_{\lambda}(s)\right\|_{X} \leqq\|\dot{S}(s)\|_{Y, X}\left\|S(s)^{-1}\right\|_{X, Y}+\frac{M}{1-\lambda}\|B(s)\|_{X} \cdot \frac{M}{1-\lambda}, \quad 0<\lambda<1 / 2 .
$$

Since $\left\|C_{\lambda}(\cdot)\right\|_{X}$ is upper-integrable and $C_{\lambda}(\cdot)$ is (X) strongly measurable, we can define a family $\left\{W_{\lambda}\right\}$ of bounded linear operators in X :

$$
\begin{equation*}
W_{\lambda}(t, r)=U_{\lambda}(t, r)+U_{\lambda} *\left(C_{\lambda} U_{\lambda}\right)(t, r)+U_{\lambda} *\left(C_{\lambda} U_{\lambda}\right) *\left(C_{\lambda} U_{\lambda}\right)(t, r)+\cdots, \tag{3.10}
\end{equation*}
$$

where $U_{1} *\left(P U_{2}\right)(t, r)=\int_{r}^{t} U_{1}(t, s) P(s) U_{2}(s, r) d s$. By use of the estimate:

$$
\left\|W_{\lambda}(t, r)\right\|_{X} \leqq \sum_{k=0}^{\infty} \frac{1}{k!}\left(\int_{(r, t)}^{*}\left\|C_{\lambda}(s)\right\|_{X} d s\right)^{k}\left(\sup \left\|U_{\lambda}(t, s)\right\|_{X}\right)^{k+1}
$$

where \int^{*} denotes upper-integral, we can conclude that $W_{\lambda}(t, r)$ is uniformly bounded in $\boldsymbol{B}(X)$ for λ, t, r and strongly absolutely continuous for t, r in $\boldsymbol{B}(X)$ norm as the limit of a uniformly convergent sequence since $U_{\lambda}(\cdot, \cdot)$ is strongly absolutely continuous. Moreover W_{λ} satisfies the following relation by definition.

$$
\begin{equation*}
W_{\lambda}(t, r)=U_{\lambda}(t, r)+\int_{r}^{t} W_{\lambda}(t, s) C_{\lambda}(s) U_{\lambda}(s, r) d s . \tag{3.11}
\end{equation*}
$$

Since the solution of (3.7) is unique, we obtain (see $[4,5]$)

$$
V_{\lambda}(t, r) x=S(t)^{-1} W_{\lambda}(t, r) x, \quad x \in X .
$$

Thus by (3.8) we have

$$
\begin{equation*}
U_{\lambda}(t, r) y=S(t)^{-1} W_{\lambda}(t, r) S(r) y, \quad y \in Y . \tag{3.12}
\end{equation*}
$$

This relation implies that $U_{\lambda}(t, r)$ is uniformly bounded in $\boldsymbol{B}(Y)$ for λ, t, r and strongly absolutely continuous for t, r in $\boldsymbol{B}(Y)$-norm. The lemma is proved.

By using this lemma, we can conclude that U_{λ} is a unique evolution operator for A_{λ}.

To show that the family $\left\{U_{\lambda}(t, s) x: \lambda \searrow 0\right\}$ has a strong limit in X for each $x \in X$, we use the lemma.

Lemma 3.2.

$$
\left\|U_{\mu}(t, r) y-U_{\lambda}(t, r) y\right\|_{X} \leqq C\|y\|_{Y}\left[\alpha+\int_{E} a(s) d s+\frac{\lambda+\mu}{\alpha \delta \beta_{0}}\right], \quad y \in Y,
$$

where $a(\cdot)$ is a Lebesgue integrable function on $[0, T]$ with $\|A(s)\|_{Y, X} \leqq a(s)$ a.e., $E=\left\{s: a(s) \geqq \delta^{-1}, 0 \leqq s \leqq T\right\}$ is a measurable set, β_{0} is a constant with $\beta_{0} \leqq \beta(t)$ a.e. and C is a constant independent of $0 \leqq r \leqq t \leqq T, y \in Y, 0<\alpha \leqq \alpha_{0}, 0<\lambda, \mu<1 / 2$ and $\delta, \beta_{0}>0$.

Proof. We begin with the relation obtained from (3.3), (3.4):

$$
\begin{align*}
\frac{\partial}{\partial s} & {\left[U_{\lambda}(t, s) K_{\alpha}(s) U_{\mu}(s, r) y\right] } \tag{3.13}\\
& =U_{\lambda}(t, s)\left[A_{\lambda}(s) K_{\alpha}(s)-K_{\alpha}(s) A_{\mu}(s)-\alpha K_{\alpha}(s) \frac{d S(s)}{d s} K_{\alpha}(s)\right] U_{\mu}(s, r) y
\end{align*}
$$

a.e. s, where

$$
\begin{equation*}
K_{\alpha}(s)=(I+\alpha S(s))^{-1} \tag{3.14}
\end{equation*}
$$

$y \in Y, 0<\alpha \leqq \alpha_{0}, 0<\lambda, \mu<1 / 2,0 \leqq r \leqq t \leqq T$. Since the right hand side of (3.13) is strongly integrable for s in X and $U_{\lambda}(t, \cdot) K_{\alpha}(\cdot) U_{\mu}(\cdot, r) y$ is strongly absolutely continuous in X, we have

$$
\begin{align*}
& U_{\mu}(t, r) y-U_{\lambda}(t, r) y \tag{3.15}\\
&= {\left[I-K_{\alpha}(t)\right] U_{\mu}(t, r) y-U_{\lambda}(t, r)\left[I-K_{\alpha}(r)\right] y } \\
& \quad+ \int_{r}^{t} U_{\lambda}(t, s)\left[A_{\lambda}(s) K_{\alpha}(s)-K_{\alpha}(s) A_{\mu}(s)-\alpha K_{\alpha}(s) \frac{d S(s)}{d s} K_{\alpha}(s)\right] \\
& \quad \cdot U_{\mu}(s, r) y d s .
\end{align*}
$$

We notice the decomposition

$$
\begin{aligned}
J & =\int_{r}^{t} U_{\lambda}(t, r)\left[A_{\lambda}(s) K_{\alpha}(s)-K_{\alpha}(s) A_{\mu}(s)\right] U_{\mu}(s, r) y d s \\
& =\left(\int_{E \cap(r, t)}+\int_{(r, t) \backslash E}\right) \cdots y d s, \quad y \in Y .
\end{aligned}
$$

Then each term of J is estimated as follows,

$$
\begin{equation*}
\left\|\int_{E \cap(r, t)} \cdots y d s\right\| \leqq \int_{E}\|\cdots y\| d s \leqq C\|y\|_{Y} \int_{E} a(s) d s \tag{3.16}
\end{equation*}
$$

(3.17) $\left\|\int_{(r, t) \backslash E} \cdots y d s\right\|_{X} \leqq C \int_{(r, t) \backslash E}^{*}\left\|A_{\lambda}(s) K_{\alpha}(s)-K_{\alpha}(s) A_{\mu}(s)\right\|_{Y, X}\|y\|_{Y} d s$.

To estimate (3.17) we observe, with argument s omitted,

$$
\begin{aligned}
A_{\lambda} K_{\alpha}-K_{\alpha} A_{\mu} & =\left(A_{\lambda}-A_{\mu}\right) K_{\alpha}+\left(A_{\mu} K_{\alpha}-K_{\alpha} A_{\mu}\right) \\
& =A\left(J_{\lambda}-J_{\mu}\right) K_{\alpha}+\mu^{-1}\left(K_{\alpha} J_{\mu}-J_{\mu} K_{\alpha}\right) \\
& =(\mu-\lambda) A_{\lambda} A_{\mu} K_{\alpha}+\mu^{-1} K_{\alpha}\left[J_{\mu}(I+\alpha S)-(I+\alpha S) J_{\mu}\right] K_{\alpha} \\
& =(\mu-\lambda) A_{\lambda} J_{\mu} A S^{-1} \cdot S K_{\alpha}+\alpha \mu^{-1} K_{\alpha}\left(J_{\mu} S-S J_{\mu}\right) K_{\alpha} \\
& =(\mu-\lambda) A_{\lambda} J_{\mu} S^{-1}(A+B) S K_{\alpha}+\alpha \cdot K_{\alpha} J_{\mu} B S J_{\mu} K_{\alpha}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\| A_{\lambda}(s) & K_{\alpha}(s)-K_{\alpha}(s) A_{\mu}(s) \|_{Y, X} \\
\leqq & \frac{\lambda+\mu}{\beta_{0}}\left\|A_{\lambda}(s) J_{\mu}(s)\right\|_{Y, X}\left\|S^{-1}(s)(A(s)+B(s))\right\|_{Y} \cdot \alpha^{-1}\left\|I-K_{\alpha}(s)\right\|_{Y} \\
& +\alpha\left\|K_{\alpha}(s) J_{\mu}(s) B(s) S(s) J_{\mu}(s) K_{\alpha}(s)\right\|_{Y, X} \\
\leqq & \operatorname{Const}\left[\frac{\lambda+\mu}{(1-\lambda)(1-\mu)} \cdot \frac{M^{2}}{\alpha \delta \beta_{0}} \cdot(a(s)+b(s))+\frac{M^{2} \alpha b(s)}{(1-\mu)^{2}}\right], \quad s \in(r, t) \backslash E,
\end{aligned}
$$

where we used the estimate $\lambda(s)=\lambda /(\beta(s)+M b(s)) \leqq \lambda / \beta_{0}$. Hence (3.17) is estimated as follows.

$$
\begin{equation*}
\left\|\int_{(r, t) \backslash E} \cdots y d s\right\|_{X} \leqq C\|y\|_{Y}\left(\alpha+\frac{\lambda+\mu}{\alpha \delta \beta_{0}}\right) \tag{3.18}
\end{equation*}
$$

The lemma is verified by (3.16) and (3.18).

Lemma 3.2 implies that $U_{\lambda}(t, r) y$ has a strong limit in X uniformly for t, r, if $y \in Y$, since $0<\alpha \leqq \alpha_{0}, \delta>0$ are arbitrary and the measure of E is not greater than $\delta \int_{0}^{T} a(s) d s$. Then by continuity $U_{\lambda}(t, r) y$ converges to some $U(t, r) y$ strongly in X uniformly in t, r for each $y \in X$, so that $U(t, r) x$ is strongly continuous in X.

Moreover U has the following properties as the limit of U_{λ}.

$$
\begin{aligned}
& U(t, t)=I, \quad U(t, s) U(s, r)=U(t, r), \quad 0 \leqq r \leqq s \leqq t \leqq T \\
& \|U(t, s)\|_{X} \leqq M \cdot \exp \left[\int_{s}^{t} \beta(\tau) d \tau\right]
\end{aligned}
$$

$U_{\lambda}(\cdot, \cdot) y, y \in Y$, is strongly absolutely continuous in X uniformly for λ and so is $U(\cdot, \cdot) y$.

To check the regularity of $U(t, s)$ we use the next lemma.
Lemma 3.3. $U(t, r)$ is uniformly bounded in $\boldsymbol{B}(Y)$ for t, r and it is (Y) strongly continuous for t, r. Moreover $U_{\lambda}(t, r)$ converges strongly to $U(t, r)$ as $\lambda \searrow 0$ in $\boldsymbol{B}(Y)$ uniformly for t, r.

Proof. We get the following from (3.7), (3.10) by the dominated convergence theorem.
$V_{\lambda}(t, r), W_{\lambda}(t, r)$ converges strongly to $V(t, r), W(t, r)$, respectively, as $\lambda \searrow 0$ in $\boldsymbol{B}(X)$ uniformly for t, r, and following is satisfied:

$$
\begin{aligned}
& V(t, r) x=S(t)^{-1} \cdot U(t, r) x+\int_{r}^{t} V(t, s) C(s) U(s, r) x d s, \quad x \in X \\
& W(t, r)=U(t, r)+U *(C \cdot U)(t, r)+U *(C \cdot U) *(C \cdot U)(t, r)+\cdots
\end{aligned}
$$

where

$$
\begin{aligned}
& V(t, r)=U(t, r) S(r)^{-1} \\
& C(s)=\frac{d S(s)}{d s} \cdot S(s)^{-1}-B(s)
\end{aligned}
$$

Then we can conclude as in Lemma 3.1 that

$$
U(t, r)=S(t)^{-1} \cdot W(t, r) S(r) \quad \text { in } \quad \boldsymbol{B}(Y)
$$

so $U(t, r)$ is uniformly bounded in $\boldsymbol{B}(Y)$ for t, r and it is (Y) strongly continuous for t, r. Thus $U_{\lambda}(t, r)$ converges strongly to $U(t, r)$ as $\lambda \searrow 0$ in $\boldsymbol{B}(Y)$ uniformly for t, r. Proof is completed.

Since U satisfies the following integral equations:

$$
\begin{aligned}
& U_{\lambda}(t, s)-I=-\int_{s}^{t} U_{\lambda}(t, \sigma) A_{\lambda}(\sigma) d \sigma \\
& U_{\lambda}(t, s)-I=-\int_{s}^{t} A_{\lambda}(\sigma) U_{\lambda}(\sigma, s) d \sigma
\end{aligned}
$$

we can prove by the dominated convergence theorem and Lemma 3.3:

$$
\begin{array}{ll}
U(t, s) y-y=-\int_{s}^{t} U(t, \sigma) A(\sigma) y d \sigma, & y \in Y, \\
U(t, s) y-y=-\int_{s}^{t} A(\sigma) U(\sigma, s) y d \sigma, & y \in Y .
\end{array}
$$

Thus U is an evolution operator for A and strongly absolutely continuous both in $\boldsymbol{B}(Y, X)$-norm and in $\boldsymbol{B}(X) . \quad U$ also satisfies the following:

$$
\begin{array}{ll}
\frac{\partial}{\partial t} U(t, s) y=-A(t) U(t, s) y & \text { a.e. } t, \quad y \in Y, \\
\frac{\partial}{\partial s} U(t, s) y=U(t, s) A(s) y & \text { a.e. } s, \quad y \in Y,
\end{array}
$$

which exist in the strong sense in X.
The uniqueness of the evolution operator is verified as follows. If U^{\prime} is another evolution operator for A,

$$
\begin{aligned}
\frac{\partial}{\partial s}\left[U(t, s) U^{\prime}(s, r) y\right] & =U(t, s)[A(s)-A(s)] U^{\prime}(s, r) y \\
& =0, \quad y \in Y, \quad \text { a.e. } s .
\end{aligned}
$$

Since $U(t, \cdot) \cdot U^{\prime}(\cdot, r) y$ is strongly absolutely continuous in $X, U^{\prime}(t, r) x=U(t, r) x$ for each $x \in X$ by continuity. This completes the proof of Theorem 2.1.

References

[1] T. Kato, Linear evolution equations of "hyperbolic" type, J. Fac. Sci. Univ. Tokyo Sect. IA, 17 (1970), 241-258.
[2] T. Kato, Linear evolution equations of "hyperbolic" type II, J. Math. Soc. Japan, 25 (1973), 648-666.
[3] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in Spectral Theory and Differential Equations, Lecture Notes in Math., 448, Springer-Verlag, Berlin-Heidelberg-New York, 1975, 25-70.
[4] K. Masuda, Evolution equations, Kinokuniya, Tokyo, 1975, in Japanese.
[5] J.R. Dorroh, A simplified proof of a theorem of Kato on linear evolution equations, J. Math. Soc. Japan, 27 (1975), 474-478.
[6] S. Ishii, An approach to linear hyperbolic evolution equations by the Yosida approximation method, Proc. Japan Acad. Ser. A, 54 (1978), 17-20.
[7] J. Kisyński, Sur les opérateurs de Green des problèmes de Cauchy abstraits, Studia Math., 23 (1963/4), 285-328.
[8] E. Heyn, Die Differentialgleichung $d T / d t=P(t) T$ für Operator-funktionen, Math. Nachr., 24 (1962), 281-330.
[9] K. Kobayasi, On a theorem for linear evolution equations of hyperbolic type, J. Math. Soc. Japan, 31 (1979), 647-654.

Susumu IshiI
1-3-14 Higashi-Sugano Ichikawa-shi, Chiba-ken 272
Japan

