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1. Introduction.

An analytic functional is a continuous linear functional on the space of all
holomorphic functions in some set in the complex $n$ dimensional spaoe $C^{n}$ . For
an open set $U$ in $C^{n}$ , we denote by $O(U)$ the space of all holomorphic functions
in $U$ equipped with the compact convergence topology. It is a Fr\’echet space.
When $K$ is a compact set in $C^{n},$ $O(K)$ is the space of all functions holomorphic
in some open neighborhood $U$ of $K$ equipped with the inductive limit topology
of $O(U)$ for all such $U$ . It is a DF space and its topological dual space $O^{\prime}(K)$

is a Fr\’echet space. When $n=1,$ $O^{\prime}(K)$ is determined by S. $e$ . Silva, G. K\"othe and
A. Grothendieck. It is known as the following isomorphism:

$O^{\prime}(K)\cong O(V-K)/O(V)$ ,

where $V$ is an open neighborhood of $K$. The duality is explicitly given by

$\langle f, g\rangle=\int_{\partial U}f(z)g(z)dz$

where $f\in \mathcal{O}(K),$ $g\in O(V-K)$ and $U(K\subset U\Subset V)$ is taken so that $f\in \mathcal{O}(\overline{U})$ and $\partial U$

is smooth. This duality formula is independent of the choice of the open set $U$

and the function $g$ in the class $[g]$ in $O(V-K)/O(V)$ . When $n>1$ , this isomor-
phism is extended by A. Martineau and R. Harvey (cf. H. Komatsu [6]) as the
form

$O^{\prime}(K)\cong H^{n-1}(V-K, O)$

under the conditions $H^{j}(K, \mathcal{O})=0(]\geqq 1)$ where $O$ is the sheaf of germs of holomor-
phic functions and $V$ is a Stein neighborhood of $K$. The proof of this duality
depends on the Serre duality theorem and is given by the functional analytic
method. The purpose of this paper is to give a new proof of this duality theorem
establishing the direct duality formula between these two spaces $O(K)$ and
$H^{n-1}(V-K, O)$ . We will interpret the cohomology space $H^{n-1}(V-K, O)$ as the
Dolbeault cohomology space and establish the duality through the formula:

$\langle f, g\rangle=\int_{\partial U}f(z)g(z)\Lambda dz_{1}\wedge dz_{2}\Lambda\ldots\wedge dz_{n}$ ,
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where $f\in o(\overline{U}),$
$g$ is a form of type $(0, n-1)$ infinitely differentiable in $V-K$

and satisfies the equation $\partial g=0,$ $K\subset U\Subset V$ and $\partial U$ is smooth. Our method of
proof is the analogy of the case $n=1$ , where the Cauchy integral kernel $1/(z-w)$

is essential. The corresponding integral kernel for $n>1$ is given by E. Ramirez
[11] and G. M. Henkin [4] as a special case of the Cauchy-Fantappi\’e formula.
We state here the outline of our proofs. Let $T$ be any analytic functional on $K$.
First we construct a $(0, n-1)$ form $f_{T}(x)$ in some neighborhood of the boundary
$\partial G(K\subset G\subset V)$ such that

$\langle T, h\rangle=\int_{\partial G}h(x)f_{T}(x)\wedge dx_{1}\wedge\cdots\wedge dx_{n}$

for all functions $h$ holomorphic on $\overline{G}$ . In this step, the Ramirez-Henkin integral
kernel is essential. Secondly we modify $f_{T}(x)$ to extend the domain of existence.
We use here the vanishing theorems $H^{p}(V-K, O)=0(p=1, \cdots , n-2)$ if $n\geqq 3$

and Hartogs’ theorem if $n=2$ . Lastly we show that any $(0, n-1)$ form $f$ in
$V-K$ which is orthogonal to all holomorphic functions $h$ on $K$ is $\overline{\partial}$ -exact.

The first five sections are preliminary, where we recall the known results
which will be essential in our paper. Some important theorems, in Sections 4
and 5, will be presented and proved in a simplified form. The precise statements
of the results of Sections 2 and 3 can be found in I. Lieb [9] and H. Grauert-
I. Lieb [3]. As for Section 4, we refer the reader to the articles, G. Scheja [12],
A. Friedman [2], M. Morimoto [10] and M. Kashiwara-T. Kawai-T. Kimura [5].

The original result in Section 5 is due to A. Dautov [1]. The author wishes to
express his thanks to Professor M. Morimoto who kindly read the original
manuscript, and also to the referee for many valuable comments.

2. The Bochner-Martinelli integral formula.

Following W. Koppelman [7] we use the determinant of differential forms.
Let $x=(x_{1}, x_{2}, \cdots , x_{n})$ and $y=(y_{1}, y_{2}, \cdots , y_{n})$ be two points in $C^{n}$ . Set $B_{x}(x, y)$

as follows:

(1) $B_{x}(x, y)=\left|\begin{array}{lll}\frac{\overline{x}_{1}-g_{1}}{|x-y|^{2}} & \partial_{x}(\frac{\overline{x}_{1}-ff_{1}}{|x-y|^{2}}) & \partial_{x}(\frac{\overline{x}_{1}-ff_{1}}{|x-y|^{2}})\\\frac{\overline{x}_{2i}-p_{2}}{|x-y|^{2}} & \partial_{x}(\frac{\overline{x}_{2}-J_{2}}{|x-y|^{2}}) & a_{x}(\frac{\overline{x}_{2}-ff_{2}}{|x-y|^{2}})\\\vdots & \vdots & \vdots\\\frac{\overline{x}_{n}-5_{n}}{|x-y|^{2}} & \partial_{x}(\frac{\overline{x}_{n}-\overline{y}_{n}}{|x-y|^{2}}) & \partial_{x}(\frac{\overline{x}_{n}-\overline{y}_{n}}{|x-y|^{2}})\end{array}\right|$

$=\sum_{\sigma\in S_{n}}$ sgn $\sigma\mapsto^{1}\overline{x}_{\sigma_{1}}-\overline{y}_{\sigma_{\partial_{x}(\frac{\overline{x}_{\sigma_{2}}-\overline{y}_{\sigma_{2}}}{|x-y|^{2}})\wedge}}x-y|^{2}\ldots\wedge\partial_{x}(\frac{\overline{x}_{\sigma_{\mathcal{R}}}-\overline{y}_{\sigma_{n}}}{|x-y|^{2}})$

where $S_{n}$ is the symmetric group of dimension $n$ . $B_{x}(x, y)$ is defined in $C^{n}\times C^{n}$
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except on the diagonal set $\Delta=\{(x, y)|x=y\}$ , and is a form of type $(0, n-1)$

with respect to $x$ . This is called the Bochner-Martinelli kernel. In I. Lieb [9],
a more general type of the Bochner-Martinelli kernel is given. By a simple
calculation we have

(2) $B_{x}(x, y)=(n-1)1\frac{1}{|x-y|^{2n}}\sum_{j=1}^{n}(-1)^{j+1}(\overline{x}_{j}-5^{i_{j}})\bigwedge_{k\neq j}d\overline{x}_{k}$ .

Let $G$ be a bounded set in $C^{n}$ with the smooth boundary $\partial G$ . The orienta-
tion in $C^{n}$ is taken so that

$x_{1}^{\prime},$ $x_{1}^{\prime\prime},$ $\cdots$ $x_{n}^{\prime},$ $x_{n}^{\prime\prime}$ or $y_{1}^{\prime},$ $y_{1}^{\prime\prime},$ $\cdots$ $y_{n}^{\prime},$ $y_{n}^{\prime\prime}$ ,

are the positively oriented coordinate system of $R^{2n}=C^{n}$ , where $x_{j}=x_{j}^{\prime}+\sqrt{-1}x_{j}^{\prime\prime}$

and $y_{j}=y_{j}^{\prime}+\sqrt{-1}y_{j}^{\prime\prime}$ . On $\partial G$ the natural orientation is induced. Then we know
the next theorems.

THEOREM 1 (I. Lieb [9, Satz 9] and W. Koppelman [7]). Let $f(z)$ be an in-
finitely differentiable function in some open neighborhood of G. Then for any $y$

in $G$ ,

(3) $f(y)=\frac{(-1)^{n(n-1)/2}}{(2\pi i)^{n}}\{\int_{\partial G}f(x)B_{x}(x, y)\bigwedge_{j=1}^{n}dx_{j}-\int_{G}\partial_{x}f(x)$ A $B_{x}(x, y)\bigwedge_{j=1}^{n}dx_{j}\}$ .

THEOREM 2 ([9, Satz 9] and [8]). Let $g(z)$ be an infinitely differentiable
form of type $(0, n)$ in some open neighborhood of G. Then for any $x$ in $G$ ,

(4) $g(x)=\frac{(-1)^{n(n- 1)/2}}{(2\pi\iota)^{n}}\partial_{x}\{\int_{G}g(y)B_{x}(x,$ $ydy_{j}$ .

The proofs of these theorems are given in [9] in a more general context.

3. The Ramirez-Henkin integral formula.

In this section, we suppose that $G\Subset C^{n}$ is a strongly pseudoconvex domain
with the smooth boundary $\partial G$ . Then E. Ramirez [11], G. M. Henkin [4] and
H. Grauert-I. Lieb [3] show that there is a function

(5) $g(x, y)=\sum_{j=1}^{n}(x_{j}-y_{j})g_{j}(x, y)$

such that
(i) $g$ is dePned and infinitely differentiable in some open neighborhood

$U\times V$ of $\partial G\times\overline{G}\ni(x, y)$ ,
(ii) if $x$ is fixed in $U-\overline{G}$ , then $g\neq 0$ in some neighborhood of $\overline{G}$ ,
(iii) if $x$ is fixed in $U-\overline{G}$ , then $g_{j}$ ($j=1,2,$ $\cdots$ , n) are holomorphic with re-

spect to $y$ on $\overline{G}$ .
$Using^{\rightarrow}fthe$ function $g(x, y)$ we define the Ramirez-Henkin kernel $\Omega_{x}(x, y)$ as
follows:
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(6) $\Omega_{z}(x, y)=\left|\begin{array}{lll}\frac{g_{1}}{g} & \partial_{x}(\frac{g_{1}}{g}) & \partial_{x}(\frac{g_{1}}{g})\\\frac{g_{2}}{g} & \partial_{x}(-\frac{g_{2}}{g}) & \partial_{x}(\frac{g_{2}}{g})\\\vdots & \vdots & \vdots\\\frac{g_{n}}{g} & \partial_{x}(\frac{g_{n}}{g}) & \partial_{x}(\underline{\underline{g}}_{n}g)\end{array}\right|$

$=\sum_{\sigma\in S_{n}}$ sgn $\sigma\frac{g_{\sigma_{1}}}{g}\overline{\partial}_{x}(\frac{g_{\sigma_{2}}}{g})\wedge\cdots\wedge\overline{\partial}_{x}(\frac{g_{\sigma}}{g}n)$

$=(n-1)!\frac{1}{g^{n}}\sum_{j=1}^{n}(-1)^{j+1}g_{j}\bigwedge_{k\neq j}\partial_{x}g_{k}$ .
$\Omega_{x}(x, y)$ is defined in $U\times V-\{g=0\}$ and is a form of type $(0, n-1)$ with respect
to $x$ . For a fixed $x$ in $U-\overline{G}$ , every coefficient of $\Omega_{x}(x, y)$ is holomorphic with
respect to $y\in\overline{G}$ . In I. Lieb [9], the next homotopy formula is given.

THEOREM 3 ([8], [9]). There exists an infinitely differentiable form $A(x, y)$

in $U\times V-\{g=0\}$ of type $(0, n-2)$ with respect to $x$ , which satisfies the homotopy
relation between $B_{x}(x, y)$ and $\Omega_{x}(x, y)$ ;

(7) $B_{x}(x, y)-\Omega_{x}(x, y)=\partial_{x}A(x, y)$ .
By this relation we have the following integral formula.
THEOREM 4 ([3], [4], [9] and [11]). Let $f(z)$ be a holomorphic function in

some open neighborhood of G. Then for any $y$ in $G$ ,

(8) $f(y)=\frac{(-1)^{n(n-1)/2}}{(2\pi\iota)^{n}}\int_{\partial G}f(x)\Omega_{x}(x, y)\wedge\bigwedge_{j=1}^{n}dx_{j}$ .

4. Vanishing theorems for certain cohomology groups.

Suppose that $K=\bigcap_{j=1}^{\infty}K_{j}$ is a compact set, where $K_{j}\subset K_{j-1}$ and $K_{j}$ is a bound-

ed domain of holomorphy in $C^{n}(n\geqq 3)$ . Then A. Friedman [2] shows that for
any open set $X$ in $C^{n}$ , containing $K$, the restriction map

(9) $H^{p}(X, O)\rightarrow H^{p}(X-K, O)$ $(1\leqq p\leqq n-2)$

is bijective. We remark that the above mapping is also bijective for $p=0$ by
Hartogs’ theorem. As a corollary to this result it derives that if $X$ is a pseudo-
convex domain then

(10) $H^{p}(X-K, \mathcal{O})=0$ $(1\leqq p\leqq n-2)$ .
Because of the generality of the open set $X$ in (9), Friedman’s proof is com-
plicated. So we give here the outline of an elementary proof of (10).
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By the excision theorem for the relative cohomology groups (cf. H. Komatsu
[6]), we have the next lemma.

LEMMA 1. Let $K$ be a compact set and $U,$ $V$ be pseudoconvex neighborhoods
of K. Then the following isomorphisms are valid.

$H^{p}(U-K, O)\cong H^{p}(V-K, O)$ $p\geqq 1$ .

Because of this lemma, it suffices to show (10) for a special $X$ , for which
the cohomology groups are easy to calculate.

PROPOSITION 1. Let $K=\{z\in C^{n}||z_{j}|\leqq 1\}$ and $X=\{z\in C^{n}||z_{j}|<1+\epsilon\}(\epsilon>0)$ .
Then (10) is true.

The proof of this proposition is due to G. Scheja [12]. $lt$ depends on the
Cauchy integral formula for one variable and is elementary. It can be found
also in M. Morimoto [10] in which the modified Cauchy integral kernels due to
A. Martineau are used. Thus we only refer to [12, Hilfssatz, p. 349], [2, Lemma,
p. 505] and [10, Lemma 2, p. 131] and omit the details.

Now we extend this proposition to the case where $K$ is a compact analytic
polyhedron in some pseudoconvex domain $X$ . That is; $K$ is given by

$K=\{z\in X||f_{j}(z)|\leqq 1, j=1,2, f_{2}(z), ’ N\}$ ,

where $f_{j}$ are holomorphic in $X$ . We take a positive constant $\epsilon$ so small that
$U=\{z\in X||f_{j}(z)|<1+\epsilon, j=1,2, \cdots , N\}$ is relatively compact in $X$ . Consider the
so-called Oka-mapping $F$ from $U$ into $C^{N}$ which is defined by

$F:U\ni z\leftrightarrow(f_{1}(z), f_{N}(z))\in C^{N}$

This mapping $F$ may be assumed to be one to one and closed if we take suffi-
ciently many $f_{j}(N\geqq n)$ . We denote by $O_{N}$ the sheaf of germs of holomorphic
functions in $C^{N}$ , by $F_{*}O$ the direct image of the sheaf $\mathcal{O}$ on $U$ by the map $F$,
by $0$ the open polydisc of the radius $ 1+\epsilon$ and by $\hat{K}$ the closed unit polydisc in
$C^{N}$ . The following two lemmas are given in M. Kashiwara-T. Kawai-T. Kimura
[5].

LEMMA 2 ([5, Lemma 1 in p. 56]). The next sequence is exact.

$ 0\leftarrow F_{*}O\leftarrow 0_{N}-0_{N}^{N- n}\leftarrow o_{N^{2}}^{()}N-n\leftarrow$ $\leftarrow \mathcal{O}_{N}^{()}NN-n-n-0$ .

The mappings in the above lemma are defined as follows. First we may
assume that $f_{j}(z)=z_{j}(1\leqq j\leqq n)$ in the mapping $F$. Secondly we change the co-
ordinates $(y_{1}, y_{2}, \cdots , y_{N})$ in $C^{N}$ to the coordinates $(w_{1}, w_{2}, \cdots , w_{N})$ such that
$w_{j}=y_{f}(1\leqq j\leqq n)$ and $w_{j}=y_{j}-f_{j}(y_{1}, \cdots , y_{n})(n+1\leqq j\leqq N)$ . Under the coordinates
$(w_{1}, \cdots , w_{N}),$ $F(U)\subset\{(w_{1}, \cdots , w_{N})\in C^{N}|w_{n+1}=\ldots=w_{N}=0\}$ . Now the mapping
$(\mathcal{O}_{N})_{w}\rightarrow(F_{*}O)_{w}$ for $w\in F(U)$ is defined by the restriction $\phi(w_{1}, \cdots , w_{N})\in(O_{N})_{w}$

$\succ\rightarrow\phi$

$(w_{1}, \cdots , w_{n}, 0, -- , 0)\in(F_{*}O)_{w}$ . In general $ o_{N^{k}}^{()}N-n\ni\phi$ can be expressed as
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$\{\phi_{i_{1}\ldots.,i_{k}}\}_{n+1\leqq i_{1}\ldots.,i_{k}\leqq N}$ where $\phi_{i_{1},\ldots,i_{k}}\in 0_{N}$ and $\phi_{i_{1},\ldots,i_{k}}$ are alternative with respect

to the indices $(i_{1}, \cdots , i_{k})$ . Then the mapping $\delta$ : $o_{N^{k}}^{()}N-n\rightarrow o_{N^{k-1}}^{()}N-n$ is defined by

$\{(\delta\phi)_{i_{1}\ldots.,i_{k-1}}\}=\{\sum_{j=n+1}^{N}\phi_{i_{1}}\ldots i_{k-1}jwj\}$ for $\phi=\{\phi_{i_{1},\cdots,t_{k}}\}$ in $ok^{N-n}k$).

LEMMA 3 ([5, Lemma 2 in p. 58]).

$H^{p}(0-R, F_{*}O)=0$ $(p=1,2, \cdots , n-2)$ .
Lemma 3 results from Proposition 1 and Lemma 2. Since the Oka-mapping

$F$ is purely $0$ codimensional with respect to the sheaf $F_{*}O$ ([5, p. 56]), we have
the isomorphism

$H^{p}(U-K, O)=H^{p}(O-Z, F_{*}\mathcal{O})$ .
By this isomorphism and Lemmas 1 and 3, we have the next proposition.

PROPOSITION 2. Let $K$ be a compact analytic polyhedron in a pseudoconvex
domain X. Then

$H^{p}(X-K, \mathcal{O})=0$ , $p=1,2,$ $\cdots$ , $n-2$ .

In the remaining part of this section, we will show that this proposition is
also valid for a holomorphically convex compact set $K$ in $X$ .

THEOREM 5. Let $K$ be a holomorphically convex compact set in a pseudo-
convex domain X. Then

$H^{p}(X-K, O)=0$ , $p=1,2,$ $\cdots$ , $n-2$ .
PROOF. We take a sequence of analytic polyhedrons $K_{j}$ in $X$ such that

$K\subset\cdots\Subset K_{j+1}\Subset K_{j}\Subset K_{j-1}\Subset\cdots\subset X$ ,

and $K=\lim K_{j}$ . Let $f(z)$ be a $\partial$-closed $(0, p)$ form inPnitely differentiable in
$X-K$. To simplify the notations, we consider the triple $K_{j}(]^{=1},2,3)$ such that

$K_{1}\supset\supset K_{2}\supset\supset K_{3}\supset\supset K$ .

By Proposition 2, there exist smooth solutions $g_{2}$ and $g_{3}$ of $f=\partial g$ in $X-K_{2}$ and
$X-K_{3}$ respectively. Then $\partial(g_{2}-g_{3})=0$ in $X-K_{2}$ . In the case $p=1,$ $g_{2}-g_{3}$ is
holomorphic in $X-K_{2}$ . Thus $g_{2}-g_{3}$ can be extended holomorphically in $X$ by
Hartogs’ theorem; $g_{2}-g_{3}=h(z)$ in $X-K_{2}$ , where $h(z)$ is holomorphic in $X$ . In
this case we set $\tilde{g}_{3}=g_{3}+h(z)$ which coincides with $g_{2}$ in $X-K_{2}$ and satisfies
$\partial\tilde{g}_{3}(z)=f(z)$ in $X-K_{3}$ . In the case $p\geqq 2,$ $g_{2}-g_{3}=\partial h_{2,3}(z)$ for some $(0, p-2)$ form
$h_{2,3}(z)$ in $X-K_{2}$ by Proposition 2. Now take a smooth function $s(z)$ which is
equal to 1 near $X-K_{1}$ and $0$ near $K_{2}$ . Then

$g_{2}-\partial\{(1-s(z))h_{2.3}\}=g_{3}+\partial(s(z)h_{23})$

in $X-K_{2}$ . The form in the left hand side of the above equality is smooth in
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$X-K_{2}$ and equal to $g_{2}$ in $X-K_{1}$ . On the other hand, the form in the right
hand side is smooth in $X-K_{3}$ , and both satisfy the equation $\overline{\partial}g=f$. Thus the
solution $g_{2}$ of $\partial g=f$ in $X-K_{2}$ can be prolonged to a solution of $\overline{\partial}g=f$ in $X-K_{3}$

without changing the values in $X-K_{1}$ . Therefore in any case $(1\leqq p\leqq n-2)$ , by
repeating this argument we can construct a solution $g$ of $\partial g=f$ in $X-K$. This
proves the theorem.

We call the “three step method“ the argument in the above proof, which
will be useful in the following section.

5. Infinitely differentiable forms orthogonal to holomorphic functions.

The problem of extending a smooth form defined in some neighborhood of
$ $ he boundary of a bounded domain into its interior has been studied by many
rnathematicians. The next theorem is originally due to S. A. Dautov [1] in a
lnore general situation. We give here a simplified proof under the restricted
assumptions.

THEOREM 6 ([1]). Let $G$ be a strictly pseudoconvex bounded domain in $C^{n}$

with the smooth boundary $\partial G$ and $f(z)$ be $a$ O-closed $(0, n-1)$ form infinitely differ-
entiable in some neighborhood of $\partial G$ . Then the following conditions on the form
$f(z)$ are equivalent,

(i) $\int_{\partial G}g(z)f(z)\Lambda dz_{1}\Lambda\ldots\wedge dz_{n}=0$ for all functions $g$ holomorphic near $\overline{G}$ ,

(ii) there exists a $\partial$-closed $(0, n-1)$ form $\tilde{f}(z)$ which is infinitely differentiable
in some neighborhood $V$ of $\overline{G}$ and coincides with $f(z)$ in $V-G$ .

PROOF. By Stokes’ theorem, it is evident that (ii) implies (i). Thus we
shall show that (i) implies (ii). Let $\Omega_{x}(x, y)$ be the Ramirez-Henkin integral
kernel for the domain $G$ . For some neighborhood $U$ of $\partial G,$ $\Omega_{x}(x, y)$ is holomor-
phic with respect to $y\in\overline{G}$ if $x$ is fixed in $U-\overline{G}$ . Suppose $f(z)$ be a smooth $\partial-$

closed $(0, n-1)$ form in $V-K$, where $K\Subset G\Subset V,$ $K$ is compact and $V-K\subset U$ .
$f(z)$ is assumed to satisfy the condition (i). We may assume that $V$ is a domain
of holomorphy. Take a function $s(z)$ infinitely differentiable in $C^{n}$ such that
$s(z)$ is equal to $0$ in some open neighborhood of $K$ and is equal to 1 in some open
neighborhood of $C^{n}-G$ . We remark that $\partial(sf)=0$ in a neighborhood of $V-G$

in $V$ . Set $h(z)$ as follows:

(11) $h(x)=\int_{V}\partial_{y}(s(y)f(y))\wedge B_{x}(x, y)\wedge dy_{1}\wedge\cdots\wedge dy_{n}$

for $x$ in $V$ . The integral is taken with respect to the variables $(y_{1}, y_{2}, \cdots , y_{n})$ .
Then by the generalized Bochner-Martinelli integral formula (Theorem 2), we have

$\partial(s(x)f(x))=c\partial h(x)$ $(x\in V)$ ,

where $c=(-1)^{n(n-1)/2}(2\pi i)^{-n}$ . Since $V$ is a domain of holomorphy, we can find
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a smooth $(0, n-2)$ form $t(x)$ in $V$ such that

(12) $s(x)f(x)=ch(x)+\partial t(x)$ .
Then we apply the homotopy formula (Theorem 3) to (11) and obtain

(13) $h(x)=\int_{G}\partial_{y}(s(y)f(y))\wedge\partial_{x}A(x, y)\Lambda dy_{1}\Lambda\ldots\wedge dy_{n}$

$+\int_{G}\partial_{y}(s(y)f(y))\wedge\Omega_{z}(x, y)\Lambda dy_{1}\wedge\cdots\Lambda dy_{n}$

for $x\in U-\overline{G}$ . The Prst integral term in the right hand side of (13) is well
defined for $x$ in some neighborhood of $U-G$ and the differentiation $\partial_{x}$ and the
integration are commutative, because $\partial_{y}(s(y)f(y))=0$ near $\partial G$ . The second in-
tegral term can be reduced to the following

(14) $\int_{\partial G}s(y)f(y)\wedge\Omega_{x}(x, y)\wedge dy_{1}\wedge\cdots\wedge dy_{n}$ ,

because there is no singularity in $\overline{G}$ with respect to $y$ and Stokes’ formula
is applicable. Then by the condition (i), (14) is equal to zero. Consequently
there exists a smooth $(0, n-2)$ form $a(x)$ in some neighborhood of $\partial G$ such that

$h(x)=\partial a(x)$

for $x$ in a neighborhood of $U-G$ . Now we can make a suitable extension $\overline{a}(x)$

of $a(x)$ such that $\tilde{a}(x)$ is a smooth $(0, n-2)$ form in the whole of $U\cup G$ and
coincides with $a(x)$ in $U-G$ . Set $f(x)$ for $x$ in $V\subset U\cup G$ as follows;

$f(x)=\partial\{c\overline{a}(x)+t(x)\}$ .
Then $f$ is infinitely differentiable and O-closed in $V$ . In $V-G$ ,

$f(x)=\partial\{ca(x)+t(x)\}$

$=ch(x)+\partial t(x)$

$=s(x)f(x)$ by (12)

$=f(x)$ .
Thus $\tilde{f}(x)$ is a desired extension of $f(x)$ . This completes the proof.

Let $V$ be a pseudoconvex domain not necessarily bounded in $C^{n}$ and $K$ be a
holomorphically convex compact set in $V$ . The next problem is to characterize
the $\partial$-closed $(0, n-1)$ form $f(z)$ in $V-K$ which is orthogonal to $O(K)$ . To solve
this problem, the “three step method” in the preceding section is useful.

THEOREM 7. We denote by $V$ a pseudoconvex domain in $C^{n}$ and by $K$ a
holomorphically convex comPacf set in V. Let $f(z)$ be a smooth $\partial$-closed $(0, n-1)$

form in $V-K$. Then the followings are equivalent:
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(i) $\int_{\partial K}g(z)f(z)\Lambda dz_{1}\Lambda\ldots\Lambda dz_{n}=0$ for all functions $g$ holomorphic near $K$,

(ii) there exists a $(0, n-2)$ form $h(z)$ infinitely differentiable in $V-K$ and
satisfies $f(z)=\partial h(z)$ .

We remark that the integration over $\partial K$ must be interpreted as the integra-
tion over $\partial U$ where $K\subset U\subset V,$ $g\in O(\overline{U})$ and $\partial U$ is smooth. The condition (i)

is independent of the choice of such $U$ . Therefore we adopt the notation
$\int_{\partial K}$ for the convenience.

PROOF. Since the integration of an exact form over a manifold without
boundary is always zero, (ii) implies (i). Therefore we have only to show that
(i) implies (ii). First we take a triple $G_{j}(j=1,2,3)$ of the bounded domains of
holomorphy with the smooth boundaries such that

$V\supset\supset G_{1}\supset\supset G_{2}\supset\supset G_{8}\supset\supset K$ .
By Theorem 6, we find $\partial$-closed $(0, n-1)$ forms $f_{j}(z)(j=1,2,3)$ which are in-
finitely differentiable in $V$ and coincide with $f(z)$ near $\partial G_{j}(j=1,2,3)$ respectively.
Set

$f_{1,2}(z)=\left\{\begin{array}{ll}f_{2}(z) & in G_{2}\\f(z) & in G_{1}-G_{2}\\f_{1}(z) & in V-G_{1},\end{array}\right.$

and

$f_{23}(z)=\left\{\begin{array}{ll}f_{s}(z) & in G_{3}\\f(z) & in G_{2}-G_{3}\\f_{2}(z) & in V-G_{2}.\end{array}\right.$

Then $f_{1,2}$ and $f_{2},$

’ are smooth and $\partial$-closed in $V$ . Since $V$ is pseudoconvex,
there exist $h_{1,2}$ and $h_{2,S}$ such that

$f_{1,2}(z)=\partial h_{12}$ , $f_{2,3}(z)=\partial h_{2.3}(z)$ .
Because $f_{1,2}(z)=f(z)=f_{2,3}(z)$ near $\partial G_{2}$ , we have

$\partial(h_{1,2}(z)-h_{2,3}(z))=0$ near $\partial G_{2}$ .

In the case $n=2,$ $h_{1,2}(z)-h_{2,3}(z)$ is holomorphic near $\partial G_{2}$ . Therefore it can be
continued holomorphically in $\overline{G}_{2}$ by Hartogs’ theorem; $h_{1,2}-h_{2,3}=\tilde{h}(z)$ , where
$\tilde{h}(z)$ is holomorphic in $\overline{G}_{2}$ . In this case we set $h_{1,2,3}(z)$ as

$h_{1,23}(z)=\left\{\begin{array}{ll}h_{12}(z) & in V-G_{2}\\h_{23}(z)+\tilde{h}(z) & in G_{2}.\end{array}\right.$

Then $h_{1,2,3}(z)$ satisfies the equation $f=\partial h_{1,2,S}$ in $G_{1}-G_{3}$ . In the case $n\geqq 3,$ $h_{1,2}(z)$
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$-h_{2,3}(z)$ is an exact form by the Friedman-Scheja theorem (Theorem 5); $h_{1.2}-$

$h_{2,3}=\partial\tilde{h}(z)$ for some $(0, n-2)$ form $\tilde{h}(z)$ near $\partial G_{2}$ . By multiplying a suitable
function with compact support, $\tilde{h}(z)$ may be assumed to be infinitely differentiable
in $V$ . In this case we set $h_{1.2,3}(z)$ as

$h_{1,g.3}(z)=\left\{\begin{array}{ll}h_{1.2}(z) & in V-G_{2}\\h_{2,3}(z)+\partial\tilde{h}(z) & in G_{2}.\end{array}\right.$

Then $h_{1.2.3}(z)$ satisfies the equation $f=\partial h_{1,2,3}$ in $G_{1}-G_{3}$ . Therefore in any case
$(n\geqq 2)$ , by repeating this argument (three step method), we can continue a solu-
tion $h(z)$ of $\partial h=f$ near some $\partial G(K\Subset G\Subset V)$ into the whole of $G-K$ without
changing the value of the previous steps. By the similar method, a solution
$h(z)$ of $\partial h=f$ in $G-K$ can be extended to the whole of $V-K$. This shows
that (i) implies (ii). This completes the proof.

6. Integral representation of an analytic functional.

Now we prove the duality theorem by the Ramirez-Henkin integral kernel.
THEOREM 8. Let $K$ be a compact set in $C^{n}$ which possesses a sequence of

pseudOcOnvex domains as a fundamental system of neighborhoods and $V$ be a pseudo-
convex domain such that $K\subset V$ . Then we have

$O^{\prime}(K)\cong H^{n-1}(V-K, O)$ .
The duality in this isomorphism is given as follows: if $f(z)$ is a $(0, n-1)$

form on $V-K$ and $g(z)$ is holomorphic on $\overline{U}(K\subset U\subset V)$ with $\partial U$ smooth, then

(15) $\langle f, g\rangle=\int_{\partial U}g(z)f(z)\wedge dz_{1}\wedge\cdots\Lambda dz_{n}$ .

It is evident that this formula is independent of the choice of $f$ in the class
$[f]\in H^{n-1}(V-K, O)$ and the open set $U$ .

The proof of this theorem is an adaptation from that of the cace $n=1$

(S. $e$ . Silva-G. K\"othe-A. Grothendieck) which is given for example in H. Komatsu [6].

PROOF. We denote by $Z^{(0.n-1)}(V-K)$ the linear topological space of all
$(0, n-1)$ forms $f(z)$ which are infinitely differentiable in $V-K$ and satisfy $\partial f=0$ .
It is evident that $f$ defines a continuous linear functional on $O(K)$ by the formula
(15). Thus we obtain the linear mapping $L$ which is easily seen to be continuous:

$L:Z^{(0.n-1)}(V-K)\rightarrow O^{\prime}(K)$ .

1. The surjectivity of $L$ . Let $G(K\subset G\Subset V)$ be a strictly pseudoconvex
domain with the smooth boundary $\partial G$ and $\Omega_{\overline{x}}(x, y)$ be the Ramirez-Henkin in-
tegral kernel for $G$ . Then for any $g\in O(\overline{G})$ ,
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$g(y)=\frac{(-1)^{n(n-1)/2}}{(2\pi i)^{n}}\int_{\partial G}g(x)\Omega_{x}(x, y)\wedge dx_{1}\Lambda\ldots\wedge dx_{n}$ $(y\in G)$ .

If we interpret the surface integral in the sense of Riemann, the integral con-
verges in $O(K)$ . Thus for any $T\in \mathcal{O}^{\prime}(K)$ ,

(16) $\langle T(y), g(y)\rangle=\frac{(-1)^{n(n-1)/2}}{(2\pi i)^{n}}\int_{\partial G}g(x)\langle T(y), \Omega_{z}(x, y)\rangle\wedge dx_{1}\Lambda\ldots\Lambda dx_{n}$ .

If we set $f_{T}(x)$ as

(17) $ f_{T}(x)=(-1)^{n(n-1)/2}(2\pi i)^{-n}\langle T(y), \Omega_{x}(x, y)\rangle$ ,

then $f_{T}(x)$ is defined and infinitely differentiable in some neighborhood $U$ of the
boundary $\partial G$ . Since $\partial_{x}\Omega_{x}(x, y)=0$ , we have $O_{x}f_{T}(x)=0$ in $U$ . We consider this
$f_{T}(x)$ as a $\partial$-closed $(0, n-1)$ form in the intersection $(G\cup U)\cap((V-G)\cup U)$ . By
the arguments analogous to the Cousin I problem, there exist $(0, n-1)$ forms
$f_{T}^{\prime}(x)$ and $f_{T}^{\prime\prime}(x)$ such that

(18) $f_{T}(x)=f_{T}^{\prime}(x)-f_{T}^{\prime\prime}(x)$ $x\in U$

where $f_{T}^{\prime}(x)$ and $f_{\acute{\acute{T}}}(x)$ are O-closed in $(V-G)\cup U$ and $G\cup U$ respectively. Stokes’
theorem implies that

$\int_{\partial G}g(x)f_{T}^{\prime\prime}(x)\wedge dx_{1}\Lambda\ldots\wedge dx_{n}=0$ .

Thus by (16), (17) and (18),

(19) $\langle T(y), g(y)\rangle=\int_{\partial G}g(x)f_{T}^{\prime}(x)\wedge dx_{1}\wedge\cdots\wedge dx_{n}$

for all $g\in O(\overline{G})$ . This means that $f_{T}^{\prime}(x)$ is an integral kernel which corresponds
to the functional $T$ in $\overline{G}$ . The next step is to extend this $f_{T}^{\prime}(x)$ to the form on
$V-K$ with the condition (19) for all $g\in O(K)$ . Take $G_{1}$ and $G_{2}$ so that

$V\supset\supset G_{1}\supset\supset G_{2}\supset\supset K$

and $f_{T}^{(1)}$ and $f_{T}^{(2)}$ are the corresponding integral kernels which are defined in some
neighborhoods of $V-G_{1}$ and $V-G_{2}$ respectively. Then for any $g\in O(\overline{G}_{1})$ ,

$\langle ff^{1)}, g\rangle=\langle f\}^{2)}, g\rangle(=\langle T, g\rangle)$ .
Thus by the theorem of S. A. Dautov (Theorem 6), there exists a $\partial$-closed $(0, n-1)$

form $h(x)$ on a neighborhood $U_{1}$ of $\overline{G}_{1}(U_{1}\subset V)$ such that

$f\}^{1)}-ff^{\rho)}=h(x)$ in $U_{1}-G_{1}$ .
Thus we define $\tilde{f}_{T}^{(2)}$ as

$f_{T}^{(2)}(x)=\left\{\begin{array}{ll}f\}^{1)}(x) & in V-G_{1}\\f_{\tau^{2)}}^{(}(x)+h(x) & in a neighborhood of G_{1}-G_{\underline{c}},\end{array}\right.$
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then

$\langle T, g\rangle=\int_{\partial G_{2}}g(z)f\}^{2)}(z)\Lambda dz_{1}\wedge\cdots\Lambda dz_{n}$

for all $g\in O(\overline{G}_{2})$ . This means that $f_{T}^{(1)}$ can be prolonged to $V-G_{2}$ without chang-
ing the values in $V-G_{1}$ . Repeating this step we find a smooth $\partial$-closed $(0, n-1)$

form $f_{T}(x)$ on $V-K$ such that (19) holds for all $g\in O(K)$ . Therefore the mapping
$L$ is surjective.

2. Determination of the kernel of the mapping $L$ . This problem has been
answered by Theorem 7 which asserts that the kernel of the map $L$ is equal to
the space of all $\partial$-exact $(0, n-1)$ forms in $V-K$.

Steps 1 and 2 result in the algebraic isomorphism:

$O^{\prime}(K)\cong H^{n-1}(V-K, O)$ .
Since both spaces $Z^{(0.n-1)}(V-K)$ and $O^{\prime}(K)$ are Fr\’echet spaces, this isomorphism
holds also topologically by the open mapping theorem. This completes the whole
proof of Theorem 8.

Here we remark that the space of all $\partial$-exact $(0, n-1)$ forms in $V-K$ is equal
to the space of all O-closed $(0, n-1)$ forms which can be “almost” prolongable
in $V$ as $\partial$-closed forms. This means that the space is equal to

{ $f(z)\in Z^{(0.n-1)}(V-K)|$ for any open set $G(K\subset G\subset V)$ , there exists an
$\tilde{f}(z)\in Z^{(0,n-1)}(V)$ such that $f(z)=f(z)$ in $V-G$}.

Thus Theorem 8 can be considered as a natural extension of the S. $e$ . Silva-
G. K\"othe-A. Grothendieck theorem for $n=1$ .
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