Hamiltonian circuits on simple 3-polytopes with up to 30 vertices

By Haruko Okamura

(Received Jan. 11, 1979)
(Revised July 1, 1981)

§ 1. Introduction.

Klee in [5] asked what is the minimun number, n, of vertices for a simple 3-polytope with no Hamiltonian circuit, that is, no closed path on the edges of the polytope which goes through each vertex exactly once. The smallest known non-Hamiltonian simple 3 -polytope has 38 vertices (see p. 359 in [5]), so $n \leqq 38$. Lederberg [6] proved $n \geqq 20$, Butler [2] and Goodey [4] proved $n \geqq 24$, Barnette and Wegner [1] proved $n \geqq 28$. In this paper we show $n \geqq 32$.

Theorem. Every simple 3-polytope of order 30 or less is Hamiltonian.
By Steinitz's theorem [5, p. 235] a graph is the graph of a simple 3-polytope if and only if it is planar, 3 -connected and 3 -valent. A set S of edges of a graph is called a cut if the removal of these edges separates G into two connected components and no proper subset of S has this property. If the cardinality of the cut is k it will be called a k-cut. The components separated by a k-cut are called k-pieces. A cut will be called non-trivial if each of its k pieces contains a circuit, trivial otherwise. A non-trivial k-cut will be called essential if each of its k-pieces contains more than k vertices, non-essential otherwise. A graph will be called cyclically k-connected if every l-cut with $l<k$ is trivial, it will be called cyclically exactly k-connected if it is cyclically k-connected but not cyclically $(k+1)$-connected. The order of a graph G will be denoted by $|G|$.

§ 2. Preliminaries.

In this section we prepare some lemmas. By [2] and [4] we have Lemma 1.
Lemma 1. In any simple 3 -polytope of order 22 or less each edge is used by some Hamiltonian circuit.

By [3] we have Lemma 2.
Lemma 2. Any minimal non-Hamiltonian simple 3-polytope of order 34 or less is cyclically exactly 4-connected and has no essential 4-cut.

In what follows, let G be a minimal non-Hamiltonian simple 3-polytope of order 30 or less. By [1] we have $|G|=28$ or 30 . By Lemma 2 we have Lemma 3.

Lemma 3. G can not contain adjacent quadrilaterals.
The number of k-gons of G and edges of a face f will be denoted by p_{k} and $e(f)$ respectively. Then the following equation holds [5, p. 254].

$$
\begin{equation*}
3 p_{3}+2 p_{4}+p_{5}=12+\sum_{k \geqq 7}(k-6) p_{k} \tag{1}
\end{equation*}
$$

§ 3. Proof of Theorem.

LEMMA 4x. G can not contain a part as illustrated in Figure 1x $(\mathrm{x}=\mathrm{a}, \mathrm{b}, \cdots, \mathrm{f}$. When $\mathrm{x}=\mathrm{e}$, let $|G|=28$).

a

c

e

b

Figure 1.
Proof. If G contains one of the parts as illustrated in Figure 1 , then we replace this part by a part as indicated by heavy lines, producing a new graph G^{\prime}. In Figure 1 we have $e\left(f_{i}\right) \geqq 5(i=1, \cdots, 9)$ by Lemma 3. If $e\left(g_{1}\right)$ or $e\left(g_{2}\right)=4$ then G contains a part as illustrated in Figure 1a, thus we may assume that $e\left(g_{1}\right), e\left(g_{2}\right) \geqq 5$. Similarly we may assume that $e\left(g_{3}\right) \geqq 5$ by Figure 1 f.

First we will show that G^{\prime} is 3 -connected. Note that if G has a non-trivial 4 -cut, then one of the 4 -pieces is a quadrilateral, since G has no essential 4-cut
by Lemma 2. In Figure 1a G has no non-trivial 4 -cut with $1,6,7$ or 8, since $e\left(f_{i}\right) \geqq 5(i=1,2,3,4)$; and G has no non-trivial 5 -cut or 6 -cut with three or four of $1,6,7,8$ respectively. Thus G^{\prime} is 3 -connected. Since $e\left(f_{7}\right) \geqq 5$, in Figure 1b, 1e $G-\{1,3\}$ is 3 -connected, and so G^{\prime} is 3 -connected. In Figure 1c the only non-trivial 4 -cut with 2,4 or 6 is $\{2,6,10,11\}$, since $e\left(g_{1}\right), e\left(g_{2}\right) \geqq 5$; and G has no cut with 2,4,6. Thus G^{\prime} is 3 -connected. In Figure 1f the non-trivial 4cuts with $1,2,3$ or 4 are $\{1,2,5,6\}$ and $\{3,4,7,8\}$, and G has no non-trivial 5cut or 6 -cut with three or four of $1,2,3,4$ respectively. Thus G^{\prime} is 3 -connected. In Figure $1 \mathrm{~d} G^{\prime}$ is similarly 3 -connected.

Now $\left|G^{\prime}\right| \leqq 22$ and by Lemma $1 G^{\prime}$ has a Hamiltonian circuit H^{\prime} using the edge marked by an asterisk. Then G is also Hamiltonian, since H^{\prime} extends to a Hamiltonian circuit H in G. Indeed in Figure 1a if $H^{\prime} \ni 4,9$ then $H=H^{\prime}$, if $H^{\prime} \nexists 4,9$ then $H=\left(H^{\prime}-\{3,5\}\right) \cup\{7,9,6,1,4,8\}$, if $H^{\prime} \ni 4$ and $H^{\prime} \ni 9$ then $H=$ $\left(H^{\prime}-\{3\}\right) \cup\{7,9,6\}$ and if $H \nRightarrow 4$ and $H \ni 9$ then $H=\left(H^{\prime}-\{5\}\right) \cup\{1,4,8\}$. In Figure 1b $H^{\prime} \ni 6$ or 7 , say 6. If $H^{\prime} \ni 11$ then $H \ni 10$ or 12 , say 10 , and $H=$ $\left(H^{\prime}-\{6,10\}\right) \cup\{7,8,2,5,9,4,13,12\}$. If $H^{\prime} \ni 11$ then $H^{\prime} \ni 10,12$ and $H=$ $\left(H^{\prime}-\{6\}\right) \cup\{7,8,3,4,1,5\}$. In Figure 2 c if $H^{\prime} \ni 3, H^{\prime} \ni 5$ then $H=\left(H^{\prime}-\right.$ $\{3\}) \cup\{4,5,6,9,2\}$, if $H^{\prime} \nexists 3,5$ then $H=\left(H^{\prime}-\{8\}\right) \cup\{1,2,3,4,5,6,7\}$, for other cases similar. In Figure 1d if $H^{\prime} \ni 7,8$ then $H=\left(H^{\prime}-\{5\}\right) \cup\{1,6,9\}$, if $H^{\prime} \ni 7$, $H^{\prime} \nexists 8$ then $H=\left(H^{\prime}-\{3,11\}\right) \cup\{4,8,12,2,6,10\}$, if $H^{\prime} \ni 7, H^{\prime} \ni 8$ then $H=\left(H^{\prime}-\right.$ $\{8\}) \cup\{4,3,2,6,10,11,12\}$, if $H^{\prime} \nexists 7,8$ then $H=\left(H^{\prime}-\{5\}\right) \cup\{1,2,3,4,8,12,11,10,9\}$. For Figure 1e, 1f the proofs are similar to Figure 1b, 1d respectively.

We will show that G contains one of the parts as illustrated in Figure 1 to obtain a contradiction. By Lemma 2 $p_{3}=0$ and $p_{4}>0$. By Lemma 3, 4 a every k-gon with $k \geqq 5$ of G is adjacent to at most [$k / 3$] (which is the greatest integer $\leqq k / 3$) quadrilaterals.

We assume that $|G|=28$. It is obvious that G contains a part as illustrated in Figure 1c or le when $\sum_{k \geq 7} p_{k} \leqq 3$, and when >3 if the following inequality (2) is valid.

$$
\begin{equation*}
4 p_{4}>\sum_{k \geq 7}[k / 3] p_{k} . \tag{2}
\end{equation*}
$$

By (1) and $\sum_{k \geq 4} p_{k}=16$, we have

$$
\begin{equation*}
p_{4}=p_{6}+\sum_{k \geq 7} p_{k}+\sum_{k \geq 7}(k-6) p_{k}-4 . \tag{3}
\end{equation*}
$$

When $\sum_{k \geq 7} p_{k} \geqq 4$, we have (2) from (3) as follows.

$$
4 p_{4} \geqq 4 \sum_{k \geq 7} p_{k}+4 \sum_{k \geq 7}(k-6) p_{k}-16 \geqq \sum_{k \geq 7} 4(k-6) p_{k}>\sum_{k \geqq 7}[k / 3] p_{k} .
$$

Thus we have $|G|=30$.
We can not use Lemma 4e. If $\sum_{k \geq 7} p_{k} \leqq 1$ or the following inequality (4) is
valid, then G contains a part as illustrated in Figure 1b or 1c.

$$
\begin{equation*}
2 p_{4}>\sum_{k \geq 7}[k / 3] p_{k} . \tag{4}
\end{equation*}
$$

The other cases are in Table 1. Here, since $\sum_{k \nless 4} p_{k}=17$, if $p_{4} \geqq 6$ then $p_{5}+p_{7}$ $\leqq 11$ and we have (4) from (1) as follows.

$$
2 p_{4}=12-p_{5}+\sum_{k \geq 7}(k-6) p_{k}>p_{7}+\sum_{k \geq 7}(k-6) p_{k} \geqq \sum_{k \geq 7}[k / 3] p_{k}
$$

Table 1.

	p_{4}	p_{5}	p_{6}	p_{7}	p_{8}	p_{9}
A	1	12	2	2	0	0
B	1	13	0	3	0	0
C	1	13	1	1	1	0
D	1	14	0	0	2	0
E	1	14	0	1	0	1
F	2	$*$	$*$		2	
G	2	11	1	3	0	0
H	2	12	0	2	1	0
I	3	9	2	3	0	0
J	3	10	0	4	0	0
K	3	10	1	2	1	0
L	3	11	0	1	2	0
M	3	11	0	2	0	1
N	3	12	0	0	0	2
O	4	8	1	4	0	0
P	4	9	0	3	1	0
Q	5	7	0	5	0	0

Let G be one type in Table 1. When $p_{4}=1, p_{7}+p_{8}+p_{9} \leqq 3$, and when $p_{4} \geqq 2$, (2) is valid, and so G has a quadrilateral adjacent to a pentagon. By Lemma 4b, 4c G contains a part as illustrated in Figure 2, where $e\left(f_{i}\right) \geqq 7(i=3,4)$.

Figure 2.
By Lemma 2, $f_{i} \neq f_{j}(5 \leqq i<j \leqq k)$. In G of Type (F), it is easy to see that G contains a part as illustrated in Figure 1a, 1b or 1c. When $\sum_{k \geq 6} p_{k} \leqq 4$, if $e\left(f_{2}\right)$ $=5\left(e\left(f_{2}\right) \geqq 7\right)$ then f_{5}, f_{6} or $f_{7}\left(f_{5}\right.$ or $\left.f_{6}\right)$ must be a pentagon, contrary to Lemma 4 d . In G of type (I), (O) or (Q), $e\left(f_{2}\right)=5, e\left(f_{3}\right)=7$ and f_{8} or f_{9} must be a quadrilateral, since $2 p_{4}=2 p_{7}+2 p_{8}+3 p_{9}$ and by Lemma $4 \mathrm{a}, 4 \mathrm{~b}, 4 \mathrm{c}$. If $e\left(f_{9}\right)=4$, then $e\left(f_{i}\right)=7$ ($i=8$ or 10); hence f_{5}, f_{6} or f_{7} must be a pentagon, contrary to Lemma 4 d . Suppose that $e\left(f_{8}\right)=4$. If $e\left(f_{i}\right) \neq 5(i=5,6,7)$ then $e\left(f_{j}\right)=5(j=9,10)$, contrary to Lemma 4 d . This completes the proof of Theorem.

References

[1] D. Barnette and G. Wegner, Hamiltonian circuits in simple 3-polytopes with up to 26 vertices, Israel J. Math., 19 (1974), 212-216.
[2] J.W. Butler, Hamiltonian circuits on simple 3-polytopes, J. Combinatorial Theory Ser. B, 15 (1973), 69-73.
[3] J.W. Butler, Non-Hamiltonian simple 3-polytopes, Recent Advances in Graph Theory, Academia Prague, 1975, 135-151.
[4] P.R. Goodey, Hamiltonian circuits on simple 3-polytopes, J. London Math. Soc., (2) 5 (1972), 504-510.
[5] B. Grünbaum, Convex Polytopes, Wiley, New York, 1967.
[6] J. Lederberg, Hamiltonian circuits of convex trivalent polyhedra (up to 18 vertices), Amer. Math. Monthly, 74 (1967), 522-527.

