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\S 1. Introduction.

Klee in [5] asked what is the minimun number, $n$ , of vertices for a simple
3-polytope with no Hamiltonian circuit, that is, no closed path on the edges of
the polytope which goes through each vertex exactly once. The smallest known
non-Hamiltonian simple 3-polytope has 38 vertices (see p. 359 in [5]), so $n\leqq 38$ .
Lederberg [6] proved $n\geqq 20$, Butler [2] and Goodey [4] proved $n\geqq 24$, Barnette
and Wegner [1] proved $n\geqq 28$ . In this paper we show $n\geqq 32$ .

THEOREM. Every simple3-p0lytope of order 30 or less is Hamiltonian.
By Steinitz’s theorem [5, p. 235] a graph is the graph of a simple 3-polytope

if and only if it is planar, 3-connected and 3-valent. A set $S$ of edges of a
graph is called a cut if the removal of these edges separates $G$ into two con-
nected components and no proper subset of $S$ has this property. If the cardi-
nality of the cut is $k$ it will be called a k-cut. The components separated by

a k-cut are called k-pieces. A cut will be called non-trivial if each of its k-
pieces contains a circuit, trivial otherwise. A non-trivial k-cut will be called
essential if each of its k-pieces contains more than $k$ vertices, non-essential
otherwise. A graph will be called cyclically k-connected if every l-cut with
$l<k$ is trivial, it will be called cyclically exactly k-connected if it is cyclically
k-connected but not cyclically $(k+1)$-connected. The order of a graph $G$ will
be denoted by $|G|$ .

\S 2. Preliminaries.

In this section we prepare some lemmas. By [2] and [4] we have Lemma 1.
LEMMA 1. In any simple 3-polytope of order 22 or less each edge is used by

some Hamiltonian circuit.
By [3] we have Lemma 2.
LEMMA 2. Any minimal non-Hamiltonian simple 3-polytope of order 34 or

less is cyclically exactly 4-connected and has no essential 4-cut.
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In what follows, let $G$ be a minimal non-Hamiltonian simple 3-polytope of
order 30 or less. By [1] we have $|G|=28$ or 30. By Lemma 2 we have Lemma 3.

LEMMA 3. $G$ can not cmtain adjacent quadrilaterals.
The number of k-gons of $G$ and edges of a face $f$ will be denoted by $p_{k}$

and $e(f)$ respectively. Then the following equation holds [5, p. 254].

3 $p_{3}+2p_{4}+p_{5}=12+\sum_{k\geqq 7}(k-6)p_{k}$ . (1)

\S 3. Proof of Theorem.

LEMMA $4x$ . $G$ can not contain a part as illustrated in Figure lx $(x=a,$ $b,$ $\cdots$ . $f$ .
When $x=e$ , let $|G|=28$).

a $b$

$c$ $d$

$e$ $f$

Figure 1.

PROOF. If $G$ contains one of the parts as illustrated in Figure 1, then we
replace this part by a part as indicated by heavy lines, producing a new graph
$G^{\prime}$ . In Figure 1 we have $e(f_{i})\geqq 5(i=1, \cdots , 9)$ by Lemma 3. If $e(g_{1})$ or $e(g_{2})=4$

then $G$ contains a part as illustrated in Figure la, thus we may assume that
$e(g_{1}),$ $e(g_{2})\geqq 5$ . Similarly we may assume that $e(g_{3})\geqq 5$ by Figure lf.

First we will show that $G^{\prime}$ is 3-connected. Note that if $G$ has a non-trivial
4-cut, then one of the 4-pieces is a quadrilateral, since $G$ has no essential 4-cut
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by Lemma 2. In Figure la $G$ has no non-trivial 4-cut with 1, 6, 7 or 8, since
$e(f_{i})\geqq 5(i=1,2,3,4)$ ; and $G$ has no non-trivial 5-cut or 6-cut with three or four
of 1, 6, 7, 8 respectively. Thus $G^{\prime}$ is 3-connected. Since $e(f_{7})\geqq 5$ , in Figure lb,
le $G-\{1,3\}$ is 3-connected, and so $G^{\prime}$ is 3-connected. In Figure lc the only
non-trivial 4-cut with 2, 4 or 6 is {2, 6, 10, 11}, since $e(g_{1}),$ $e(g_{2})\geqq 5$ ; and $G$ has
no cut with 2, 4, 6. Thus $G^{\prime}$ is 3-connected. In Figure lf the non-trivial 4-
cuts with 1, 2, 3 or 4 are {1, 2, 5, 6} and {3, 4, 7, 8}, and $G$ has no non-trivial 5-
cut or 6-cut with three or four of 1, 2, 3, 4 respectively. Thus $G^{\prime}$ is 3-connected.
In Figure ld $G^{\prime}$ is similarly 3-connected.

Now $|G^{\prime}|\leqq 22$ and by Lemma 1 $G^{\prime}$ has a Hamiltonian circuit $H^{\prime}$ using the
edge marked by an asterisk. Then $G$ is also Hamiltonian, since $H^{\prime}$ extends to
a Hamiltonian circuit $H$ in G. lndeed in Figure la if $H^{\prime}\ni 4,9$ then $H=H^{\prime}$ , if
$H^{\prime}\ni\ni 4,9$ then $H=(H^{\prime}-\{3,5\})\cup\{7,9,6,1,4,8\}$ , if $H^{\prime}\ni 4$ and $H^{\prime}\exists\ni 9$ then $H=$

$(H^{\prime}-\{3\})\cup\{7,9,6\}$ and if $H\exists\ni 4$ and $H\ni 9$ then $H=(H^{\prime}-\{5\})\cup\{1,4,8\}$ . In Figure
lb $H^{\prime}\ni 6$ or 7, say 6. If $H^{\prime}\ni 11$ then $H\ni 10$ or 12, say 10, and $H=$

$(H^{\prime}-\{6,10\})\cup\{7,8,2,5,9,4,13,12\}$ . If $H^{\prime}\exists\ni 11$ then $H^{\prime}\ni 10,12$ and $H=$

$(H^{\prime}-\{6\})\cup\{7,8,3,4,1,5\}$ . In Figure $2c$ if $H^{\prime}\ni 3,$ $H^{\prime}\exists\ni 5$ then $H=(H^{\prime}$–

$\{3\})\cup\{4,5,6,9,2\}$ , if $H^{\prime}\exists\ni 3,5$ then $H=(H^{\prime}-\{8\})\cup\{1,2,3,4,5,6,7\}$ , for other
cases similar. In Figure ld if $H^{\prime}\ni 7,8$ then $H=(H^{\prime}-\{5\})\cup\{1,6,9\}$ , if $H^{\prime}\ni 7$,
$H^{\prime}\exists\ni 8$ then $H=(H^{\prime}-\{3,11\})\cup\{4,8,12,2,6,10\}$ , if $H^{\prime}$ D7, $H^{\prime}\ni 8$ then $H=(H^{\prime}$–

$\{8\})\cup\{4,3,2,6,10,11,12\}$ , if $H^{\prime}\exists\ni 7,8$ then $H=(H^{\prime}-\{5\})\cup\{1,2,3,4,8,12,11,10,9\}$ .
For Figure le, lf the proofs are similar to Figure lb, ld respectively.

We will show that $G$ contains one of the parts as illustrated in Figure 1
to obtain a contradiction. By Lemma 2 $p_{3}=0$ and $p_{4}>0$ . By Lemma 3, $4a$ every
k-gon with $k\geqq 5$ of $G$ is adjacent to at most $[k/3]$ (which is the greatest integer
$\leqq k/3)$ quadrilaterals.

We assume that $|G|=28$ . It is obvious that $G$ contains a part as illustrated
in Figure lc or le when $\sum_{k\geqq 7}p_{k}\leqq 3$ , and when $>3$ if the following inequality (2)

is valid.
$4p_{4}>\sum_{k\geqq 7}[k/3]p_{k}$ . (2)

By (1) and $\sum_{k\geqq 4}p_{k}=16$ , we have

$p_{4}=p_{6}+\sum_{k\geqq 7}p_{k}+\sum_{k\geqq 7}(k-6)p_{k}-4$ . (3)

When $\sum_{k\geqq 7}p_{k}\geqq 4$ , we have (2) from (3) as follows.

$4p_{4}\geqq 4\sum_{k\geqq 7}p_{k}+4\sum_{k\geqq 7}(k-6)p_{k}-16\geqq\sum_{k\geqq 7}4(k-6)p_{k}>\sum_{k\geqq 7}[k/3]p_{k}$ .

Thus we have $|G|=30$ .
We can not use Lemma $4e$ . If $\sum_{k\geqq 7}p_{k}\leqq 1$ or the following inequality (4) is
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valid, then $G$ contains a part as illustrated in Figure lb or lc.

$2p_{4}>\sum_{k\geqq 7}[k/3]p_{k}$ . (4)

The other cases are in Table 1. Here, since $\sum_{k\geqq 4}p_{k}=17$ , if $p_{4}\geqq 6$ then $p_{\text{\’{o}}}+p_{7}$

$\leqq 11$ and we have (4) from (1) as follows.

2 $p_{4}=12-p_{5}+\sum_{k\geqq 7}(k-6)p_{k}>p_{7}+\sum_{k\geqq 7}(k-6)p_{k}\geqq\sum_{k\geqq 7}[k/3]p_{k}$ .
Table 1.

Let $G$ be one type in Table 1. When $p_{4}=1,$ $p_{7}+p_{8}+p_{9}\leqq 3$ , and when $p_{4}\geqq 2$,
(2) is valid, and so $G$ has a quadrilateral adjacent to a pentagon. By Lemma
$4b,$ $4cG$ contains a part as illustrated in Figure 2, where $e(f_{i})\geqq 7(i=3,4)$ .
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Figure 2.

By Lemma 2, $f_{i}\neq f_{j}(5\leqq i<j\leqq k)$ . In $G$ of Type (F), it is easy to see that $G$

contains a part as illustrated in Figure la, lb or lc. When $\sum_{k\geq 6}p_{k}\leqq 4$ , if $ e(f_{2}\rangle$

$=5(e(f_{2})\geqq 7)$ then $f_{s},$ $f_{6}$ or $f_{7}$ ( $f_{5}$ or $f_{6}$) must be a pentagon, contrary to Lemma
$4d$ . In $G$ of type (I), (0) or (Q), $e(f_{2})=5,$ $e(f_{3})=7$ and $f_{8}$ or $f_{9}$ must be a quad-
rilateral, since $2p_{4}=2p_{7}+2p_{8}+3p_{9}$ and by Lemma $4a,$ $4b,$ $4c$ . If $e(f_{9})=4$, then
$e(f_{i})=7$ ($i=8$ or 10); hence $f_{5},$ $f_{6}$ or $f_{7}$ must be a pentagon, contrary to Lemma
$4d$ . Suppose that $e(f_{8})=4$ . If $e(f_{i})\neq 5(i=5,6,7)$ then $e(f_{j})=5(j=9,10)$ , con-
trary to Lemma $4d$ . This completes the proof of Theorem.
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