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§1. Introduction.

Let p be an odd prime and BP*(—; Z,) be the mod p Brown-Peterson co-
homology theory with the coefficient BP*/p=_Z ,[v;, vy, ---]. Note that BP*(—; Z )
has a commutative associative multiplication [3]. In this paper we shall study
BP(G; Z,) for a simple simply-connected compact Lie group G. 1If H¥G; Z) is
p-torsion free, there is a BP*-algebra isomorphism BP*(G ; Z ,)= BP*QH*(G ; Z p).
Hence we shall consider only cases when H*(G; Z) has p-torsions, i.e., excep-
tional Lie groups F,, E;, E; and E,.

THEOREM 1.1. There are BP*-algebra isomorphisms

(@) BP*(F,; Zy)=(BP*/(3)QA(w1s)BP*/(3, v)Q(Z:[xs1/(xs")—{1}))

®A(x7, X11, xls);

(b) BP*(Es; Zo)=BP*(Fy; Z)QA(xe, x14),

() BP*E;; Zy)=BP*(F,; Z)QA(x19, Xo1, X35),

(d) BP*(Es; Zo)=(BP*/5)QA(ws:)DBP*/(5, v1)Zs[x121/(x1:%)— {1}))

®A(x11, X1sy Xo3, Xo1, Xss, Xagy Xar)
where wiy x3=0, wsi-x1,=0, and the dimension of x; or w; is i.
THEOREM 1.2. There is a BP*-module isomorphism
() BPX(Es; Zy)=(BP*/(3){1, Wis, Wra} DBP*/A)Zs{wss, Was, X20, Xao™}
®Zs {1, x5, x4% 1/(01ws=v,Ws5, V1Xg=0V2X 20, V1%20=0))
®/1(x7, K19y Xo7y X35y K39, X41) -

Moreover x5°=0, Wis° X50=Ws5* X5, Wis* Wss=V:1Wrs, Wss* Was=0, Wys*x20=0 and
Wss* X20=0. .

In this paper we use the cohomology theory P(n)*(—) with the coefficient
P(ny*=BP*/(p, vy, -, vs-1) and the cohomology theory K(n)*(—) with the co-
efficient K(n)*=2Z7 ,[v,, vo,"']. We recall the facts that K(n)*(G) is a Hopf
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algebra, since K(n)X(G) is K(n)*-free, and the Conner-Floyd type theorem;
K(n)*(G)zK(n)*P@) P(n)*(G). To compute BPXG; Z,) from H*(G; Z,), the
(n)* .,

following tower of these cohomology theories is important.

BP¥(— ; Z;)=P(L)*(—) — P =)= P(oo)y(—)=H*(—; Z)
N
P(1)*(—)

It seems that P(n)*(—) theories are useful to know the BP*-module structure
of BP*X; Z,) when the cohomology operations of H*(X; Z,) are known.

§2. Preliminary results.

Let P(n)*(—) be the cobordism theory with the coefficient P(n)*=
BP*/(p, -+, va-1). Note that P(1)*(—)=BP*(—; Z,) and P(co)*(—)=H*(—; Z,).
(For details see [6], [8]) Let K(n)*(—) be the Morava K-theory with the co-
efficient K(n)*=2Z2,[va, v,"*]. Note that K(1)*(—) is the p—1 component of the
mod p K-theory K*(—; Z,), and we have the Conner-Floyd type theorem;
K(ﬂ)*(—)EK(n)*ng‘P(n)*(—) &l [

We first recall that simple simply-connected compact Lie groups (G, p) hav-
ing odd prime torsions are given by (, see [Z], [51)

p:3; G:F4y EG’ E'h E8’
(2.1)
p:5, G:E3.

The cohomology rings are known by Araki, Borel and others ([2], [5));
(@) HMFy; Z)=Z{xs1/(x)QA(x5, %7, X11, X15)
(b) HXEg; Z)=Z3[x:]/(xs)QA(x5, X7, X9, X11, X15, X12)
() H¥E,;; Z)=Z[xs]/(x)QA(xs, %1, X11, X15 X19, X217, X35)
() H*Es; Z)=Zs[xs, x20]/(x5°, x20°)YQA(Xs, X1, X15, X19) X7, X35, K39, Xa7) s
In cases (a)-(c), (e) we have the relations
P'xs;=x,; Ox,=xs while in case (e) alone
PXys=—X19 O0X19=%X20, Px3=0, PPxs=1x,.
(d) H¥Es; Z)=Zs[x15]/(x12° )R A(x3, X11, X15, X235, X1, X35, X9y Xar)

and Q’lxg':xn, 5X11:x12.
Here, recall that Q,=Bockstein operation and Q,=®?"Q,_,—Q,..P?".
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Next we consider the Atiyah-Hirzebruch spectral sequence
E¥*=H*G; Z,) QK (n)* = K(n)X(G).

Recall that d,pn-,=v,QQ, ([Lemma 2.1 in [9]) and d,=0 for r+#2s(p"—1)+1,
and moreover we note

Ex*=Kn)*QH(E,."*, va™*d,).

Since K(n)*(X) is a free K(n)*-module for all X,
K(n)*(X/\Y)zK(n)*(X)K((EE)).K(n)*(Y). Hence as G is a compact Lie group, each
E. is a Hopf algebra.

To compute P(n)*(X) from K(n)*(X), the following lemma is useful.

LEMMA 2.1. Let X be a finite complex. Let x;€H¥X; Z,) be permanent
cycles in the Atiyah-Hirzebruch spectral sequences of both P(n)*-theory and
K(n)*-theory. Then in EX* of P(n)*-theory, the P(n)*-module generated by
{x:} is P(n)*-free.

PROOF. Assume that there is a relation

R:axl—jzzajijO, a#O, ajEP(n)*, in Ecﬂ;*-
=4

Let a=(Av,*™ - v,**4¢) with 250 where («,, -+, a;) is the largest sequence by
the right lexicographical order.
The associated filtration F, is defined such as

Fn=Ker (P(n)*(X) —> P(n)*(X™)) and E™*=F,/Fn.

We take the Quillen-Novikov operation ([6], [8]) in P(n)*(X). That R=0 in
E¥%¥* means ReF ., and the naturality of the operation implies #,(R)E F\ 4,141
Let T:(pnan+1) Ty pnak>- Since rﬁxiEF'IIHI for !ﬁl>0’

7’r<R):7’7(a)x1+07’7(x1) mod (st11+1, Koy Xgy ***)
=Avp Stk mod (Fiz,i+1, X2, X35y =) .

Hence v,%x,=0 mod (xs, x3, --) in EX*.

The natural map 7: P(1)>K(n) induces a map i.,: EE™—>FEE®™ of E.-terms.
From the assumption of this theorem 7.(v,%x.)#0 mod (x,, x;, ---) in EX®™,
This is a contradiction. g.e.d.

§3. Cases (a)-(d).

In this section we consider only cases (a)-(d) and throughout this section
(G, p) are assumed as (a)-(d) in (2.1).
LEMMA 3.1. There is a K(2)*-module isomorphism
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K@MG)=KQ*QHXG; Z,).

ProOF. Consider the Atiyah-Hirzebruch spectral sequence
EY*=HXG; Z,) QK 2y = K(2)%G).

Let d, be its differential and v, *dsscp2-1+1=¢s. We need only prove all ¢,=0.
Let B(E,) be the biprimitive form of E, (for details see [2], [4]). Since
all p-th powers of elements of positive dimensional in E, is zero, as algebras,
B(E,) is isomorphic to E, (Theorem 2.1, Theorem 2.7 in [4]).
We consider the biprimitive spectral sequence of E, (Theorem 3.4 in [4)),
where the first term is B(E,) and the E.-term is B(H(E,, ¢:). In B(E)=E,,
there are no generators x;, x; such that

[ x| —|x;] =dim ¢,=16s+1 (or 48s-+1 for (d)).

Note that the dimension of the differential d, in the biprimitive spectral sequence

is dim ¢,. Hence d,(x;) is decomposed and hence the spectral sequence collapses

by Theorem 3.9 in [4]. This shows B(E,)=B(H(E,, ¢;)) and E.=H(E,, ¢;) as

algebras. Therefore we have ¢,=0 and E,=FE,,,. g.e.d.
LEMMA 3.2. There is a P(2)*-algebra isomorphism

PG =P2*QHXG; Z,) .
Proor. Consider the spectral sequence
EY*=H¥G; Z,)QP2)*== P2)XG).

First we prove that each element a=FE,,** is a permanent cycle, by the
induction on s. Assume that for all s>t, uF,,>* are permanent cycles. Let
yeE,"" Then d,y€E,”* s>t and hence d,y=0, that is, y is a permanent
cycle.

From Lemma 31, y is also permanent in the spectral sequence of K(2)*-
theory. From [Lemma 2.1, the P(2)*-module generated by y in EL* is P(2)*-free.
This implies all elements in E.>* are permanent cycles, because if d,b=c#0
in E,** then ¢=0 in E4* and EL* is not P(2)*-free. Therefore we complete
the induction and this spectral sequence collapses. This shows the P(2)*-module
isomorphism in this lemma.

For the P(2)*-algebra isomorphism in this lemma, we only need to prove
x=0. Since P(2)*(G) is P(2)*-free by the P(2)*-module isomorphism, we have

PRGN G)=P2MG)QpwP(2)*(G) .

Hence P(2)*(G) is a Hopf algebra. Let ¢ be the coproduct map and

d(xg)= xs&@1-+ 1®x8+U2(2x82®xs+ﬂxs®xsz)+ a.
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Here a is a sum of tensor products, as factors, contain odd dimensional generators.
From (2.1) (a)-(c), |x;|=4m—1, i+8 and the number of odd dimensional genera-
tors is less than 8. Since |a|=4m’, we can write

A=2CrXs, " X4y where ¢;=P2)*{x;, x4, 1} lxijlzodd.
This implies
a*=3cicsXiy v xigxj, 0 %5,=0,  since x;*=0.
Now consider
P(x) =28 R1+1Qx6* + 0. (AP x°Qx5° + 1P x° R x%)+-a® .

Here a®*=0 and by the P(1)*-module isomorphism, x,® also contains odd dimen-
sional generators and (x:%)?=0. Hence xg® is primitive.

Let write x®=3c;xs, -~ x5, Let J be the largest sequence by the left
lexicographic order so that |c,| is largest in 1.

P(x6")=1Q0xs" +x5" P14 %, x5, Q% 5,4 -+ .

The primitivity implies that all ¢;=0Q and so x*=0.
When the case (d) we can also prove x;,°=0 by the similar reason. There-
fore we have the lemma. g.e.d.
LEMMA 3.3 (Hodgkin [5]). Let A be the Q.-subalgebra

in cases (2)-(c) A=A(x)QZ [ x51/(x5%),

in (d) A=A(x)QZ [ x12]/(x1°),

and let B be the subalgebra generated by all x; not listed in A. Then there is
a K(1)*-module isomorphism

KDOXG)=K1)*QH(A, Q)QB

and in cases (a)-(c) H(A, Q)= A({xsx5%), in (d) H(A, Q)= A({xsx1:"}).
ProoF. Consider the spectral sequence

EY*=HXG; Z)QK(1)* = K(1)*(G).

Then d;p-1=v,QQ;, and H(A, Q,) is easily calculated as listed. Thus H(AK B, Q,)
=H(A, Q)QXB is an exterior algebra of odd dimensional. Consider the biprimi-
tive spectral sequence as in the proof of [Lemma 3.1. Since all dimensions of
differentials are odd, the spectral sequence collapses, and we have the lemma.
g.e.d.
Now we shall consider the spectral sequence

EY*=HXG; Zp)QP(1)* = P(D*(G).



298 N. YaciTa

LEMMA 34. Let E¥* be the above spectral sequence. Then for cases (a)-(c)

Ex*=Ef=(P()*QH(A, Q)DPL*/w)QZs{xs, x7)RB.  (3.4)

ProoF. Since for *>—2(p*—1) P(1)*=k(1)*, we have d,,-;=Q;Qv;. There-
fore Efp* is isomorphic to the right hand side of (3.4).

We use the argument similar to that in the proof of Lemma 32. By induc-
tion, we assume that for all s>t, ucE,,"* are permanent cycles. By the as-
sumption x €FE,,"° are permanent cycles.

Let dw=2la;x:+ 2b;y; |xi|=|y;|=t where a,e€P(1)* b;esP@2)* x;=
H(A, Q)QRB and y;eZ;{xs xs’tQ@B. From [Lemma 3.3 and Lemma 2.1, x; is
P(l)*-free and a; must be zero. Buti.(y;)is P(2)*-free where i,: EFf®*—EP®*
is the induced map from the natural map 7: P(1)—P(2). Hence b; must be also
Zero.

Therefore all u=FE},* are permanent cycles. q.e.d.

THEOREM 1.1. For cases (a)-(c), there are P(1l)*-algebra isomorphisms

PUMG)=(PU*QA(w1)DP 2 Zs[ys1/(ys")— {1} )R B .

Proor. To prove the P(1)*-module isomorphism, from Lemma 34, we only
need to prove the sequence of the associated filtration of P(1)*(G)

0 — Fr+1,>(< Fr.* E;,* 0

are split for all ». That each element in E** except for P(2)*{xs, x:2}XB, is
P(1)*-free follows that we only need to show there is yg in P(1)*(G) which
represents xg and v;ys=0.

Consider the Sullivan exact sequence

P()XG) > P(1)XG)

Uy
PR)(G)

Let dx;=7ys. Then i0x;=Q;x;=xs mod (vs, vs, -=-), and by the exact sequence,
1,9s=0. Therefore we have the P(l)*-module isomorphism in this theorem.

Note that #(y:*)=0 in P(2)*(G), and so yg=wv,a in P(1)*(G) and v,y:=0.
From the P(1)*-module isomorphism in this theorem, there is no element 60
P()*(G) so that beimage v; and v;6=0. Thus we have yg*=0.

Since d0(x4(ys"))=vs"=0 in P(1)*(G), there is w;, such that /(wi)=xs(ys?)
in P(2)*(G). By the same reason as the case vs°=0, that (w;ovs)=1(ys*)xs=0
implies w,4ys=0 in P(1)*(G). These show the P(l)*-algebra isomorphisms.

g.e.d.

For G as (d) we can prove the main theorem by exchanging x; for xi..
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§4. Case (e).

In this section we consider the case (G, p)=(FEs, 3). By the same argument
as in §3, we can prove the following lemmas.
LEMMA 4.1. There is a K(3)*-module isomorphism

K@M E)=K@*QH*(Es; Zy) .
LEMMA 4.2. There is a P(3)*-algebra isomorphism

PRYME)=PQB)*QH*(Es; Zs).
LEMMA 4.3. There is a K@2)*-module isomorphism

K@2¥(E=KQFRA({xsx20°)QZ L x51/(xs" )R A(x1)QB

where B=A(x;, X15, X21, X5, X35, Xar)-
ProoF. Consider the spectral sequence

HX(Eq; Z )QK (2)* == K(2)*(Es) .

Here we note that dip2-1+1=0:&QQs, and Qyx;=—x, and Q.z=0 for other ring
generators ze H*(E,; Zs). Then we have

E2p2§K(2)*®A( {x3x20%}, %15)QBRZs[x5]1/(x4%) .

By using the same argument as the proof of Lemma 3.3, we can prove
Erpr-1p42=FEe. qg.e.d.

By the arguments similar to that in the proof of [Theorem 1.1, we can
prove the following proposition.

PROPOSITION 4.4. There is a P(2)*-algebra isomorphism

P2Y¥(E)=(P2)* A(W)DP(2)*/(vs) {y20, y202} YRQA(x16)QBRZ [ x5]1/(x5°) .

We recall the boundary operation Qf in P(2)*(—) theory ([8]), which has the
property such that

Q=04
where 7: P(2)—»KZ, is the natural map.

LEMMA 4.5. Let x€KQ2)XE;). Then Qix=0 in K(2)*(E,).

PrOOF. Let x; be the element in K(2)*(E;) which corresponds to the P(2)*-
algebra generator x;in P(2)*(Es). By the derivativity of Qf we need only prove
Q1x;=0.

Assume Qx>0 for some 7. Since 1Qx;=Qytx;=0 in H¥E,; Z;) for ix15
and #(Qx 15— ¥20)=0, we can write in K (2)*(E,)

Qfxézvzsy—ksgsvzs'z, s>0,
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where y, z are K(2)*-module generators xj, --- x},. Choose xj, s so that s is the
least positive integer with y=0, and then denote x}, s by w, ¢.
Let the coproduct ¢ be

P(xD)=2 20, s X0 Qxp+ 2 vs"x; @3, e s€EZ,.
$
Since ¢ is the induced map from

Ppae: P2)N(Es) —> P2Y(EsNEs),

all s in the right terms of the above equation are positive. Denote 344, sx>®x’
by ¢(x;). Let d=v,"'Q, and

E=A(x3x2")QZs[x5]/(xs)RQA(x15)QB .

Then E is a differential Hopf algebra by ¢ and the differential d.
Consider the homology group H(E, d). Note that

dimension d=2(p*—1}+2(p—1)+1=16t+5.
There is no generators such that
x;]—1x;]=16t+5.
Hence by the same arguments as in the proof of Lemma 3.1, we have
H(E, d)y=E, and so d=0.

Thus dw=0 and this is a contradiction. q.e.d.
LEMMA 4.6 (Hodgkin [5]). There is a K(1)*-module isomorphism K(1)*(Es)
= KA*QA({x5x4%, {x15x20% )QB.
PRrOOF. Since Qi x;=—x; and Q;x,5= X, the lemma is proved by the same
arguments as g.e.d.
Now we consider the spectral sequence

E,=P1)*QH(Es; Zs)= P(I)*(E,).
LEMMA 4.7. In the above spectral sequence
E,p2e=[P(L)* {1:Qx5x5%, X3Xs>X15X20%, X15X20%}

DP2Y* {xsx52%x20%, X15%20° (X5, X5%)}

DP 2y {(xsx00— XX 15)( X320, X20X5)}

BP(2)*{xs, xs%, X20, XsXs0}

DPEB)* {x20%, XsX20%, Xs*X20", X5 X20} JQB .
PRroOOF. From in the spectral sequence Eg(. of K(1)*theory,
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the differentials d;p-1=v,&QQ; and d,=0 for r=2p—1. Therefore the spectral
sequence E e of k(n)*-theory (, k(n)*=Z,[v,] and for details see [6], [9],)
have such property, i.e., d;p-1=0@,; and d,=0 for r=2p—1.

Since k(1)*=P(1)* for *>—2(p?—1), we have the isomorphism

Espe 1 =[P(L*QH(A, Q)PP (2)*Q) Image (4, Q)]IQB
=[P(1)*QA(x5x52, x15%20%)
PP (2)* {x5x5% (X0, X202y X15X20°(Xs, X}
BP2)* {(xsx20— x5%15)R(1, X0, X5, XsX20)}
DPR*Q(Zs[ x5, x201/(x5°, 220°)— {1})]JDB .
Now compare the spectral sequences of P(1)*-theory and P(2)*-theory. Let
i5*: Egpa FO" —> E,ype [T

be the induced map from the natural map. Since E,po[f®" "= E,F®"" i§° is
injective. Hence d;p2-1*'=v,QQ, mod (v;) in E,pe_ ;7" " since dype-1=1,Q0Q; in
E2p2_1P(2)"..

The operation d;p:-;=d,=v,QQ, is calculated as follows.

(1) dAxsxs®)=0yx50xs" and v;- x50x>=0 in E5p2-;. Hence we have 03v;- xz0x4°
€H(E,, d,), and P(3)*{xs0xs’} CH(E,, d,).

(2) dr(xsxzo_xsxm)zvzxzozy dr(x3x20_xsxlﬁ)xs:v2x202x8°
Here (x3x20— xsx15) and x,%, xs0°xs are also P(2)*-free, we have

P@3)*{x20%, x20"x5) CH(E,, Q,).
(3) dT(XSXQo_x8x15>X20:0, and hence
P2)*{(x3x20— XX 15)(¥ 50, X20Xg)} CH(E,, d,).
(4) dTX3x82X20:U2'xZ02.X3, hence we have P(?))* {X202,7C32} (_—.H(ET, drr).

From (1)-(4) we can easily calculate the 2p%term as in the lemma. g.e.d.
LEMMA 4.8. In the spectral sequence in Lemma 4.7, E;p=FE..
PROOF. Assume that there is x such that d,x=0 for some »=2p% Then
we can take a P(l)*-module generator we E;pt""* such that

(1) for all s>t, usE;p:"* are permanent cycles,
(2) dyw=0 in E;p.5%
(3) for 2p°=<t—r<s, uckE,,** all differentials d,_,u=0.

From and (3), we decompose

Eb*=E, " *= P(D*ORPE*ADDPE* DD P(2)*AV)
where
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(I) Zg{l, vixsxs® x3x:°X15% 2%, X15%201 B,

(I)  Zg{xs, xs%, x3%00%s% (X3X20— XX 15)( X0, X20X5)} QB
()  Zs{x20% xsx20% Xs*X0%, XX} @B,

(AV)  Zs{x20, x5%20, X15%30°(Xs, x3)} QB .

Let dw=2a:;x;+2b;y;+>2crzr+2enun where ay, b, ¢, ensP(1)* and x; (1),
y;edD), z,edll), u,sdV).

First suppose a;x0=P(1)*. From x; is K(1)*-free. This con-
tradicts to Lemma 2l1. Hence a;=0.

Secondly suppose b;x0=P(2)*. From Proposition 4.4, i(y;) is P(2)*-free in
P(2)*(Eg). Contradiction follows and b,;=0.

Thirdly, we also see ¢,=0, because z, is P(3)*free in P(2)*(E;) from Prop-
osition 4.4.

Lastly, suppose d,w=en,ur>x0. We note {(u,) is P(3)*-free in P2)*G).
Before we consider the differential dw, we need some facts about elements in
(ID),

By the assumption (1), we note all elements x &€ E, " ¥, s=t—2p*+1, are
permanent cycles. Let we(ll) or [IV)and |w|=t—2p>—1. From Sullivan exact
sequence, we can take we P(1)*(E,) such that

viw=0 in P(LXE,),

because if w=ux,,W, we take w=0x., and if w=1x3x,,20, we take 0(x3x5,0)
=w.

Let ue(V) and |u|=¢t. From Lemma 47, v,u=0 in E,** But from Prop-
osition 4.4, i(v,u)=0 in P(2)*(E,) and v,u =image v;. Hence we can write

veu= 2 vi*(y+vi¥ye) )
Sk

where |u|> |y, [yel>|veu|=t—2p>+2.

Since v,(v.u)=0, y, yr €0). But v,y=0 for ye(ll) or and hence we
can take y, y.<(I).

Let ye(l), |y|=t—2p%+1. If v;y=0 in P(1)*(X), then y=imaged and i(y)
eimage @, in P(2)*(Es), and this is not valid. Hence v,y0 in P(1)*(Es). That
v;y=0 in E,/** means v,y is contained in the associated filtration F*, s>|y]|.
Hence we can write

VY= 0Yat2bsws

with [y > 1], lwg|>1y], yedl), wedll) or [IV) and moreover, a<idealv,,
since i(v,y)=0 in P(2)*(E,) and i(y,) is P(2)*-free.
Next we apply v,y the same argument, i.e.,
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11y = 300/ )(E daFatBhpg)+Tbswg
=2 axyat+2b3w}

where |y,|>|y|+1, y,e(dl) and wiedll) or Continuing this argument,
we can ascend dimensions of each generators y,. Consequently, we can elimi-
nate y,. Therefore

vy=2bjws, wiedl.
Since v;w3=0, v,>y=0 and hence % in (i) must be 1, i.e,

VaU=11Y .
By the assumption (2), X enu,=0 in E,;;. This means
JenUn=22cCaha  in P(1)XEs),

where |h.| > unl|, ca€P)*%
Taking the adequate cohomology operation 7,, as in the proof of Lemma 2.1,

vlu=>cLh’, in P()X(E,), where |u|=|un| <|hk].

That v;u=v,y implies
v’ Tty =3 cohy . (ii)

Therefore (¢, h)=0 in P2)*(E;). Since v,u=0, hl,e&(I). If h’,<(l), then
i(h%) is P(2)*-free and we have v,€c,. If h,[III) or then since (%) is
P(3)*-free and we have v,=ec,. But if h,=(Ill), then since v,h,=0 in E.** we
can write

vhe=231csha,  |hal>]he| in P2)X(Es).

Hence we can eliminate v,h), for hl,=(lll). When h’,e(V), then there is a
P(1)*-module generator y, such that v;y,=v,h,. Here we note |y%|>|yl,
since |h%|>|ul.
Therefore the equation (ii) is
' y— 2 (Ca/va)ya— 2N (Ca/vi)ha)=0.

nleav rlean
That is, v:(v."'y—2ciy0)=0, |y41>]y’l. Then
0%i(v, 'y —X chyh)simage Q, in P2)*(Ey).

But this shows also Image Q.(K(2)*(Ey))=0 and this contradicts Lemma 415.
Hence the last supposition is not valid.

Therefore the first assumption is not valid and we can complete the lemma.
g.e.d.

Proof of the P(1)*-module isomorphism of [Theorem 1.2 (e). First, by the
dimensional reason we have
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ViXg=AVsX 3, Ax0.

Here we note the following facts;

P(I*(xg)=P(1)*/(v,®) in P(1)*(E,) because v,*xg=v,0x50=0,

P(L*(xs)=P1)*/(v,"),

P(1)*(x20)= P(2)*,

P(1)*(x5*)= P(3)* because vsXs=01X5x20=0,

P(1)*(xgx20®) = P(1)*(x52x20") = P(3)*,

P(D*(xstx50)= P(3)* because vyxs2x0=v,x5°=0, since (x:*)=0 in
P(2)*(Es) and so x;°<=Image v,.

By the arguments as in the proof of there is a generator
g’ such that
v2x15x202=v1g’ .

By the dimensional reason, g’ must be
g = XsXo0— XsX15)X20, pFO0EZ,.
By the same arguments, we have
szlsxzozxs:)uvl(xaxzo_xsxw)xzoxs,
'szwxzozxszzﬂv1x3x202x32 .

Therefore by we have the P(1)*-module isomorphism in
1.2. g.e.d.

Proof of the multiplications in First we note that if y=0 and
ye&lmage v;, then by the P(l)*-isomorphism of v.yx0 and v,y=0.

(1) x2%=0. Since (x:%)=0 in P2)*(E;), xs°<=Imagev, Acting v, we
have vy(x202)=v1%5%5,2=0.

(2) WesXao=WesXg. (WasXo0—WssXg)=(XgX15X20— X3X00") X200 X15X20°Xs =0 and
VaWysXo0=V1W 3 Xg=VsWs55Xs.

3) wiswss=v,w.. By the spectral sequence, we have

(U1® {x3x8%} N X 15X20") =01 X3X" X 15X 20" +C

where #(C)=0 in P(2)*(FE;) so C=lmagev,. Hence we can take new generator
such that (v;& {xsx4} X 15X20%)=V1Wr4.

4) wsswss=0, (Wsswa3)=0 and v,WssW=0,W 43w =0.

(0) Wisx20 =0, WeXo0=0. (W1sx20) =0, {(wrxs) =0 and veWisX20=V1W15%s,
VsWrsX20=V1Wr4Xg Where (wi5x5)=0, 1(wq4x5)=0.

(6) wssx20=0. {(Wssx20)=0 and v,Ws5X20="01%43%20=0.
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Therefore we can complete the proof of [Theorem 1.2 qg.e.d.
REMARK 4.9. (1) i(w15w43)———0. But U1w157ﬂ43:Ugws5w15:1)2v1u)74#0.
(2) The author does not know whether wisw, s=v,wq, Wswaa=0, w,2=0,

x2=0 or not.

REMARK 4.10. The correspondence of elements in the Sullivan exact sequence

is as follows;

(1]
£2]
£3]
[4]

(5]
(6]

[7]
[8]
[9]

i 0

(1) wis=v1X3xg% —> VaX15X5° —> VpXp0Xg" =01 X5°=0.

_ 2. . _ .
(2) Wys— {X3xZ02}’—) XgXoo , vz—torSIOH and U2W43—U2Z(X3X20—‘x8x15x20)—vle43.

0

(3) x5y —> x52x50%; ve-torsion.
4) xsWwas=2x15{xsX20% —> — XX 15x00°+11C; vo-torsion free.

7
(B)  wss={X15%20" —> X15%20%; Vp-torsion and vewss=v,Wys.

7
(6) U)43= {X3x202_‘x8x15x20} _—> 1/_U-43"“x3xlsto; vg-tOI‘Sion fI‘ee.
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