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1. Introduction.

Let $a$ and $q$ be relatively prime positive integers and let $\pi(x, q, a)$ stand
for the number of primes $p\leqq x$ congruent to $a$ mod $q$ . The prime number
theorem of Siegel and Walfisz (see Prachar’s book [31]) states that

$\pi(x;q, a)=\frac{Lix}{\varphi(q)}+O(x\exp(-A(\log x)^{1/2}))$

uniformly for $q\leqq(\log x)^{B}$ where $B$ is any positive constant and $A=A(B)>0$ .
This theorem has the defect that it holds only for relatively small values of $q$ .
The Extended Riemann Hypothesis yields (see Titchmarsh [34])

$\pi(x;q, a)=\frac{Lix}{\varphi(q)}+O$ ( $x^{1/2}$ log x)

uniformly for $q\leqq x^{1/2}(\log x)^{-3}$ , but even this is not always sufficient. H. L.
Montgomery conjectures that

$\pi(x;q, a)=\frac{Lix}{\varphi(q)}+o((\frac{x}{q})^{1/2+\epsilon})$

uniformly for all $q<x^{1- 8}$ (actually Montgomery formulated the conjecture for
$\Psi(x;q, a)$ , see [24], the above version follows easily by partial summation).

Here and in what follows $\epsilon$ stands for any positive constant to be regarded as
being small and not necessarily the same at each occurrence; the constants
implied in the symbols $0$ and $\ll$ depend at most on $\epsilon$ .

In 1930 E. C. Titchmarsh [34] used Brun’s sieve to prove that if $q<x^{1-\text{\’{e}}}$

then

$\pi(x;q, a)\ll\frac{x}{\varphi(q)\log x}$ .

This bound represents the true order of magnitude of $\pi(x;q, a)$ in the whole
range $q<x^{1-\text{\’{e}}}$ . Although Titchmarsh’ result is much less precise than the
hypothetical asymptotic formula of Montgomery it has been recognized to be
equally fruitful in various problems. Titchmarsh himself applied his result for
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evaluating the sum
$\sum_{p\leqq x}d(p-1)$ .

For this particular purpose a numerical value of the constant implied in $\ll$ is
immaterial while in other circumstances its exact value would be of great
importance.

A careful application of Selberg’s sieve has led van Lint and Richert [22] to

$\pi(x;q, a)<\frac{2x}{\varphi(q)\log x/q}(1+o(\frac{1}{\log x/q}))$

uniformly for $q<x$ . We remark that the same bound can be extracted from
the combinatorial sieve of Rosser through the results of [16].

Other proofs have been given by Bombieri and Davenport in [2] and by
Montgomery and Vaughan in [25] via different large sieve inequalities. Mont-
gomery and Vaughan obtained very neat bound without error term $0((\log x/q)^{-1})$

at all ! A reduction in the value of the factor 2 would have important con-
sequences for the location of Siegel’s zero (see [35] [33] and [29]), but this
seems not to be attainable by sieve methods alone.

Most applications require estimates for $\pi(x;q, a)$ on average over $q$ . In
1972 C. Hooley [12] started studying such estimates introducing several beauti-
ful ideas to the subject. He was the first who succeeded in treating the
remainder terms in sieve estimates non-trivially. Although the details of Hooley’s
ideas will be given in the proofs of our theorems, it may be helpful to make a
few introductory remarks now.

Given $q<x$ we consider the sequence

$\mathcal{A}^{(q)}=\{l\leqq x;l\equiv a(mod q)\}$

and for $(d, q)=1$ we denote

$r(\mathcal{A}^{(q)}, d)=|\{l\in \mathcal{A}^{(q)} ; l\equiv 0(mod d)\}|-\frac{x}{qd}$ .

A direct application of either Selberg’s $\Lambda^{2}$-method or Rosser’s combinatorial
sieve leads to

$\pi(x;q, a)<\frac{(2+\epsilon)x}{\varphi(q)\log D}+R(\mathcal{A}^{(q)}, D)$

where $\epsilon>0,$ $x>x_{0}(\epsilon),$ $2<D<x$ and

$R(\mathcal{A}^{(2)}, D)=$
$\sum_{d<D,(d.q)=1}\rho_{d}r(\mathcal{A}^{(q)}, d)$

with some coefficients $\rho_{d}=\rho(d, D)$ bounded by 3 $\nu(d)$ in absolute value. The
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remainder term $R(\mathcal{A}^{(q)}, D)$ is required to be $\ll x^{1-\epsilon}/\varphi(q)$ . The larger $D$ we can
admit the better our result will be. Traditionally, one uses a trivial estimate
$|r(\mathcal{A}^{(Q)}, d)|\leqq 1$ which allows us to take $D=x^{1-2\epsilon}/q$ and consequently giving

(1.1) $\pi(x;q, a)<\frac{(2+\epsilon)x}{\varphi(q)\log x/q}$ .

This is rather crude method of treating $R(\mathcal{A}^{(q)}, D)$ because on summing the
error terms $r(\mathcal{A}^{(q)}, d)$ over absolute values one gives up a possibility of cancel-
lations when summing over weights $\rho_{d}$ instead. At first look it seems to be
unrealistic to get a great cancellation because the weights $\rho_{d}$ involve M\"obius

function $\mu(d)$ about which we know very little. In Hooley’s methods the can-
cellation of the terms $\rho_{d}r(\mathcal{A}^{(q)}, d)$ is due to the extra averaging over $q$ rather
than to a particular shape of the sieve weights $\rho_{d}$ To be clear, Hooley con-
sidered (implicitely) bilinear forms of the type

$?_{a.q)=1}\sum_{<q\leqq 2Q}(d.q)=1\sum_{a<D}\alpha_{q}\rho_{d}r(\mathcal{A}^{(q)}, d)$
.

He developed various methods to dealing with such sums. In his first paper
[12] Hooley expressed each remainder term $R(\mathcal{A}^{(q)}, D)$ by exponential sums,
used Cauchy’s inequality to change the coefficients $\alpha_{q}$ into more suitable $\alpha_{q}=1$ ,
and a reciprocity relation

$\frac{p}{q}+\frac{\Phi}{p}\equiv\frac{1}{pq}$ $(mod 1)$

where $\overline{p}p\equiv 1(mod q),\overline{q}q\equiv 1(mod p)$ for $(p, q)=1$ , to arrive finally at a number
of incomplete Kloosterman-Ramanujan sums being estimated through the use
of the celebrated result of Weil. In the second paper on the subject [13] Hooley
improved his first results by means of the large sieve inequality. And in the
third paper [14] he applied a simple variant of the Linnik dispersion method
getting in a surprisingly elementary manner still stronger estimates for almost
all $q$ in vicinity of $x$ . Summerizing the above three papers of Hooley one may
reformutate his results as follows.

THEOREM 1 (Hooley). Let $\epsilon,$ $\epsilon_{1}$ and $A$ be arbitrary positive numbers and
$x>x_{0}(\epsilon, \epsilon_{1}, A)$ . We then have

(1.2) $\pi(x;q, a)<\frac{(4+\epsilon)x}{\varphi(q)\log x}$

save for at most $Q(\log Q)^{-A}$ exceptjOnal values of $q$ in $(Q, 2Q$] with $x^{1/2}<Q\leqq x^{3/4}$

and

(1.3) $\pi(x;q, a)<\frac{(4+\epsilon)x}{\varphi(q)\log q}$
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save for at most $Q(\log Q)^{-A}$ exceptional values of $q$ in $(Q, 2Q$] with $x^{\epsilon/4}<Q\leqq x^{1-\epsilon_{1}}$ .
In 1974 Y. Motohashi demonstrated remarkable refinements of Selberg’s

sieve to improve (1.1) for all single $q$ in $(x^{\epsilon}, x^{1/2-\epsilon})$ . Let me quote here a few
of his estimates (see [27] and [28]).

THEOREM 2 (Motohashi). Let $\epsilon>0$ and $x>x_{0}(\epsilon)$ . Then

(1.4) $\pi(x;q, a)<\frac{(2+\epsilon)x}{\varphi(q)\log D(x,q)}$

where

(1.5) $D(x, q)=xq^{-3/8}$ if $q<x^{1/3-\text{\’{e}}}$

(1.6) $D(x, q)=xq^{-1/2}$ if $q\leqq x^{2/6}$

(1.7) $D(x, q)=x^{2}q^{-3}$ if $x^{2/5}<q\leqq x^{1/2}$ .
Motohashi’s works were very pioneering for the sieve theory because this

was the first instance when a particular property of sieve weights had been
made use of in a such effective manner. The relevant property is displayed in
the following binary form for the remainder term of Selberg’s sieve

$\Lambda(\mathcal{A}, D)=\sum_{d_{1}<\prime D}\sum_{d_{2}<\sqrt B}\lambda_{d_{1}}\lambda_{d_{2}}r(\mathcal{A}^{(q)}, [d_{1}, d_{2}])$ .

In estimating the above remainder term Motohashi used the analytic tech-
nique familiar from the theory of L-functions. The bilinear form $\Lambda(\mathcal{A}, D)$ is
utilized in an application of the mean-square theorem for Dirichlet’s polynomials
(see Lemma 4) and the fundamental structure of the sequence $\mathcal{A}^{(q)}$ is utilized
in an application of various estimates for L-functions, just to mention the
Burgess 3/16-theorem and the fourth moment theorem for $L(s, \chi)$ on the half-
line (see Lemma 2). On the Extended Lindel\"of Hypothesis, namely

$L(\frac{1}{2}+it,$ $x)\ll(|f|+1)q^{\epsilon}$

Motohashi was also able to show that (1.4) holds with

(1.8) $D(x, q)=x$ if $q<x^{1/3-\epsilon}$ .

Later some of these results were improved slightly by D. Goldfeld [8] and D.
Wolke [36].

Very recently, having received an inspiration from Motohashi’s works, we
found a bilinear form for the remainder term of Rosser’s sieve which in more
than one respect has an advantage over tbat of Selberg’s sieve. In the situation
considered here Rosser’s sieve gives (see [18])

PROPOSITION. Let $\epsilon>0,$ $A=\exp(8\epsilon^{-3}),$ $x>x_{0}(\epsilon),$ $M\geqq 1,$ $N\geqq 1$ and $D=MN<x$ .
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We then have

(1.9) $\pi(x ; q, a)<\frac{(2+\epsilon c)x}{\varphi(q)\log D}+\sum_{a\leq A}R_{a}(\mathcal{A}^{(q)}, M, N)$

where $c$ is an absolute constant and

(1.10) $R_{\alpha}(\mathcal{A}^{(q)}, M, N)=$
$\sum_{m<Mn<N}$

$a_{m}b_{n}r(\mathcal{A}^{(q)}, mn)$

$(mn,q)=1$

with some coefficients $a_{m},$ $b_{n}$ dependjng at most on $\epsilon,$ $\alpha,$ $M,$ $N$ and bounded by 1
in absolute value. In addition, (1.9) holds with remainder terms of the type(1.10)
having the variables of the summation $m$ and $n$ coPrime and squarefree.

A direct injection of the analytic arguments into the above version of
Rosser’s sieve yields Motohashi’s bounds for $\pi(x;q, a)$ but in wider ranges;
namely (1.5) for $q<^{8/19-\epsilon}$ , and (1.6) for $q^{1/2-\text{\’{e}}}$ . Somewhat stronger estimates will
be obtained by more elaborated analytic technique in Section 2. No analytic
method works in the range $q>x^{1/2}$ for much the some reason as the large sieve
is not applicable for Bombieri-Vinogradov’s type theorems. In this respect
Hooley’s arguments reveal to have a great advantage. His ideas related to the
Fourier analysis, incomplete Kloosterman-Ramanujan sums and the dispersion
method all together are adopted to treat the bilinear forms $R_{\alpha}(\mathcal{A}^{(q)}, M, N)$ for
single $q<x^{1-\epsilon}$ as well as for almost all $q<x^{1-g}$ in Sections 3 and 4 respectively.
In Section 5 we briefly sketch two applications. The first problem deals with
the greatest prime factor of shifted primes and the second problem concerns
of the least almost prime $P_{2}$ in arithmetic progressions.

Some results on the Brun-Titchmarsh theorem for short intervals are stated
without proofs in the last Section 6.

ACKNOWLEDGEMENT. The author expresses his gratitude to Professor
Christopher Hooley for several stimulating discussions and fruitful suggestions.

2. A character sums approach.

In this section we shall appeal to estimates for character sums of various
kinds.

DEFINITION. Let $\theta$ be a non-negative constant with the property that for
any $\epsilon>0$ there exists $\delta=\delta(\epsilon)>0$ such that

(2.1) $\sum_{l\leqq L}\chi(l)\ll Lq^{-\delta}$

for all non-principal characters $\chi(mod q)$ and all $L\geqq q^{\theta+\epsilon}$ .
LEMMA 1 (Burgess). For any $q$ we have $\theta=3/8$ and for cube-free $q$ we

even have $\theta=1/4$ .
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Actually Burgess proved more precise results, see [3] and [4]. For our
purpose any positive $\delta$ in (2.1) will be sufficient. However, it follows from the
Extended Lindel\"of Hypothesis that the true bound for (2.1) should be $c(\epsilon)L^{1/2}q^{\epsilon}$

for all $L\geqq 1$ . In particular this implies the commonly known
HYPOTHESIS. For any $q$ we have $\theta=0$ .
Even this seems to be very deep and difficult to prove in general. For

special $q$ having fixed prime factors the hypothesis can be proved by Postnikov-
Gallagher method (see [1], [6], [17] and [5]).

LEMMA 2. For $T\geqq 2$ we have

$\sum_{\chi(mod q)}\int_{-T}^{T}|L(\frac{1}{2}+it,$ $x)|^{4}dt\ll qT(\log qT)^{4}$ .

This lemma is a simple consequence of the fourth moment estimate for

$L(\frac{1}{2}+it,$ $x)$ with primitive characters, see [23]. Hence one can easily derive.

LEMMA 3. For partial sums of $L(\frac{1}{2}+it,$ $x)$ we have

$\sum_{x\neq x_{0}}|\sum_{l\leqq L}\chi(l)l^{-1/2-it}|^{4}\ll q(|t|+1)$ log6 $qL(|t|+1)$ .

We shall also need results about frequency of large values of general
Dirichlet’s polynomials.

LEMMA 4 (the mean-square theorem). For any complex numbers $a_{n}$ we have

$\sum_{\chi(mod q)}|\sum_{N<n\leqq 2N}a_{n}\chi(n)|^{2}\ll(N+q)\sum_{N<n\leqq 2N}|a_{n}|^{2}$ .

This lemma is almost trivial (for a proof see [23]). The next lemma is
much deeper.

LEMMA 5 (the large values theorem of Huxley). For any complex numbers
$a_{n}$ and for a positive $V$ we have

$\#\{\chi(mod q);|\sum_{N<n\leqq 2N}a_{n}x(n)|>V\}\ll GNV^{-2}+q^{1+\epsilon}G^{3}NV^{-6}$

where $G=\sum|a_{n}|^{2}$ .
Two important arguments are involved in the proof of Lemma 5, namely

the Hal\’asz-Montgomery inequality and the Huxley reflexion method. For a
simple and elegant proof see Jutila [19].

On the basis of (2.1), Lemmas 3, 4 and 5 we shall demonstrate the proof of
THEOREM 3. For any $\epsilon>0,$ $x>x_{0}(\epsilon)$ and $q\leqq x^{9/20-\epsilon}$ we have

(2.2) $\pi(x;q, a)\leqq\frac{(2+\epsilon)x}{\varphi(q)\log D}$

with $D=D(x, q)=\min(xq^{-\theta}, x^{2}q^{-12/5})$ .
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In virtue to Burgess’ results one gets (2.2) unconditionally with $D=xq^{-3/8}$

for any $q$ and with $D=xq^{-1/4}$ for cube-free $q$ . Moreover, assuming the hypo-
thesis $\theta=0$ one may take

(2.3) $D=\left\{\begin{array}{ll}x & if q\leqq x^{5/12}\\x^{2}q^{-12/5} & if q>x^{5/12}.\end{array}\right.$

By the linear sieve results $(1.9)-(1.10)$ the proof of Theorems 3 reduces to
showing that

(2.4) $\sum_{M<m\leqq 2M}\sum_{N<n\leqq 2N}a_{m}b_{n}r(\mathcal{A}^{(q)}, mn)\ll x^{1-\delta}/\varphi(q)$

for $M,$ $N\leqq D^{1/2}x^{-\epsilon}$ where $\epsilon$ is any positive constant, $\delta=\delta(\epsilon)>0$ and the coeffi-
cients $a_{m},$ $b_{n}$ are bounded by 1 in absolute value. For simplicity of analytic
arguments it is convenient to work with Riesz’ means

$A_{k}(x, d)=\frac{1}{k!}$
$\sum_{l\leqq x}$

$(\log\frac{x}{l})^{k}$

$\iota_{-=}0(mod d)\iota\equiv a(mod q)$

and

$r_{k}(x, d)=A_{k}(x, d)-\frac{x}{qd}$ .

We have $A_{k}(x, d)=\int_{1}^{x}A_{k- 1}(y, d)\frac{dy}{y}$ hence $A_{k}(x, d)$ is nondecreasing function

of $x$ and consequently for any $\lambda>0$ we can write

$\frac{1}{\lambda}\int_{e^{-\lambda}x}^{x}A_{k- 1}(y, d)\frac{dy}{y}\leqq A_{k- 1}(x, d)\leqq\frac{1}{\lambda}\int_{x}^{e^{\lambda}x}A_{k- 1}(y, d)\frac{dy}{y}$ .
The integrals are equal to

$A_{k}(x, d)-A_{k}(e^{-\lambda}x, d)$ and $A_{k}(e^{\lambda}x, d)-A_{k}(x, d)$ .

Therefore, extracting the main term $x/qd$ we obtain

$r_{k- 1}(x, d)\leqq(\frac{e^{\lambda}-1}{\lambda}-1)\frac{x}{qd}+\frac{1}{\lambda}[r_{k}(e^{\lambda}x, d)-r_{k}(x, d)]$

(2.5)

$r_{k- 1}(x, d)\geqq(\frac{1-e^{-\lambda}}{\lambda}-1)\frac{x}{qd}+\frac{1}{\lambda}[r_{k}(x, d)-r_{k}(e^{-\lambda}x, d)]$

for $k=1,2,$ $\cdots$ Letting

$R_{k}(x;M, N)=\sum_{(mn.q)=1}\sum_{nM<m\leqq 2MN<\leqq 2N}a_{m}b_{n}r_{k}(x;mn)$

we deduce from (2.5) the following implication:
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if $R_{k}(x;M, N)\ll x^{1-\delta}/\varphi(q)$ then $R_{k- 1}(x;M, N)\ll x^{1-\delta/2}/\varphi(q)$ .
Therefore the proof of (2.3) reduces to showing that

$R_{4}(x;M, N)\ll x^{1-\delta}/\varphi(q)$

subject to $M,$ $N<D^{1/2}x^{-\epsilon}$ with any $\epsilon>0$ and some $\delta=\delta(\epsilon)>0$ . By the orthogonal-
ity of characters we have for $(d, q)=1$

$r_{4}(x, d)=\frac{1}{24}\frac{1}{\varphi(q)}\sum_{\chi(mod q)}7(a)\chi(d)\sum_{b\leqq x/d}\chi(b)(\log\frac{x}{bd})^{4}-\frac{x}{qd}$

$=\frac{1}{24}\frac{1}{\varphi(q)}\sum_{x\neq}7(a)\chi(d)\sum_{b\chi(m,\Psi_{0}^{q)}\leqq x/d}\chi(b)(\log\frac{x}{bd})^{4}+o(\frac{x^{\epsilon}}{q})$ .

Hence, letting $L=x/MN$,

$B(s, \chi)=\sum_{l\leqq L}\chi(l)l^{-s}$

$M(s;x)=\sum_{M<m\leqq 2M}a_{m}x(m)m^{-s}$

$N(s;x)=\sum_{N<n\leqq 2N}b_{n}\chi(n)n^{-s}$

we obtain

$R_{4}(x;M, N)=\frac{1}{2\pi i}\int_{(1/2)}\frac{x^{s}}{s^{5}}\frac{1}{\varphi(q)}\sum_{x\neq\chi_{0}}\overline{\chi}(a)B(s, \chi)M(s, \chi)N(s, \chi)ds+o(\frac{x^{\epsilon}}{q}MN)$ .

Now, it is sufficient to show that

$\sum_{x\neq x_{0}}|B(s, \chi)M(s, \chi)N(s, \chi)|\ll|s|^{3}x^{1/2-\delta}$ .

We have trivial estimates

$|B(s, \chi)|\leqq 2L^{1/2},$ $|M(s, \chi)|\leqq M^{1/2},$ $|N(s, \chi)|\leqq N^{1/2}$

thus the characters $\chi\neq\chi_{0}$ for which one of the above three bounds is less than
$(\varphi(q)x^{\delta})^{-1}$ can be neglected. The set of remaining characters $\chi\neq\chi_{0}$ can be
classiPed into $\ll(\log x)^{3}$ subsets $S(U, V, W)$ of characters satisfying simultaneous
conditions

$U<|B(x, \chi)|\leqq 2U$ , $V<|M(s, \chi)|\leqq 2V$ and $W<|N(s, \chi)|\leqq 2W$

where $U=2^{1-u}L^{1/2},$ $V=2^{-v}M^{1/2},$ $W=2^{-w}N^{1/2},$ $u,$ $v,$ $w=1,2,$ $\cdots$ , [2 log $x$ ]. It is,
therefore, sufficient to show that for every $U,$ $V,$ $W$ in question

(2.6) U $VW|S(U, V, W)|\ll|s|^{3}x^{1/2- 2\delta}$ .
Here $|S(U, V, W)|$ stands for the cardinality of $S(U, V, W)$ . A sufficient infor-
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mation about $|S(U, V, W)|$ can be derived from Lemmas 3, 4 and 5. By the
mean-square theorem we deduce that

$|S(U, V, W)|\ll MV^{-2}+qV^{-2}$

$|S(U, V, W)|\ll NW^{-2}+qW^{-2}$

and by Lemma 3 we deduce that

$|S(U, V, W)|\ll qU^{-4}|s|(\log qL|s|)^{6}$ .
By Huxley’s large values theorem we deduce that

$|S(U, V, W)|\ll MV^{-2}+q^{1+\epsilon}MV^{-6}$

$|S(U, V, W)|\ll NW^{-2}+q^{1+\text{\’{e}}}NW^{-6}$

$|S(U, V, W)|\ll(L^{2}U^{-4}+q^{1+\epsilon}L^{2}U^{-12})(\log L)^{6}$ .
In addition to the above we need an upper bound for $U$ . To this end we utilize
(2.1). By partial summation we deduce that, unless $S(U, V, W)$ is emply,

(2.7) $U\ll|s|L^{1/2}x^{-s\delta}$ , $\delta=\delta(\epsilon)>0$

subject to $L\geqq q^{\theta+\epsilon}$ . This restriction is satisfied because $L=x/MN,$ $M\leqq D^{1/2}x^{-\epsilon}$ ,
$N\leqq D^{1/2}x^{-\epsilon}$ and $D$ is chosen in Theorem 3 just for this statement to hold.

Now we are ready to prove (2.6). We apply Heath-Brown’s arguments
which had been used in [11] to estimate the number of primes in short intervals.
Burgess’ estimates for $\sum_{l\leqq L}\chi(l)$ play here the same r\^ole as van der Corput esti-

mates for partial sums of the Riemann zeta-function does in [11]. Our result
(2.2) is an analogue of Lemma 2 from [11]. For simplicity we denote

$F=\min(\frac{M+q}{V^{2}},$ $\frac{N+q}{W^{2}}\frac{q}{U^{4}}\frac{M}{V^{2}}+\frac{qM}{V^{6}},$ $\frac{N}{W^{2}}+\frac{qN}{W^{6}},$ $\frac{L^{2}}{U^{4}}+\frac{qL^{2}}{U^{12}})$

with the aim of showing that

U $VWF\ll|s|x^{1/2- 3\delta}$ .
We consider four cases

Case 1. $F\leqq 2V^{-2}M,$ $2W^{-2}N$. In this case, by (2.12) we get

$UVWF\leqq 2UVW\min(V^{-2}M, W^{2}N)\leqq 2U(MN)^{1/2}\ll|s|x^{1/2- 3\delta}$ .

Case 2. $F>2V^{-2}M,$ $2W^{-2}N$. In this case we have

$F\leqq 2$ min $\{qV^{-2}, qW^{-2}, qMV^{-6}, qNW^{-6}, qU^{-4}, L^{2}U^{-4}\}$

$+2$ min $\{qV^{-2}, qW^{-2}, qMV^{-6}, qNW^{-6}, qU^{-4}, qL^{2}U^{-12}\}$
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$\leqq 2(qV^{-2})^{5/16}(qW^{-2})^{5/16}(qMV^{-6})^{1/16}(qNW^{-6})^{1/16}(\min(qU^{-4}, L^{2}U^{-4}))^{1/4}$

$+2$ min $\{(qV^{-2})^{5/16}(qW^{-2})^{5/16}(qMV^{-6})^{1/16}(qNW^{-6})^{1/16}(qU^{-4})^{1/4}$ ,

$(qV^{-2})^{7/16}(qW^{-2})^{7/16}(qMV^{-6})^{1/48}(qNW^{-6})^{1/48}(qL^{2}U^{-12})^{1/12}\}$

$=2(UVW)^{-1}q(MN)^{1/16}\{\min(1, q^{-1/4}L^{1/2})+\min(1, L^{1/6}(MN)^{-1/24})\}$

$\ll(UVW)^{-1}(x^{1/16}q^{31/32}+x^{1/20}q)\ll(UVW)^{-1}x^{1/2-\text{\’{e}}}$ .

Case 3. $F>2V^{-2}M,$ $F\leqq 2W^{-2}N$. In this case we have

$F\leqq 2$ min $\{qV^{-2}, NW^{-2}, qMV^{-6}, qU^{-4}, L^{2}U^{-4}\}$

$+2$ min $\{qV^{-2}, NW^{-2}, qMV^{-6}, qU^{-4}, qL^{2}U^{-12}\}$

$\leqq 2(qV^{-2})^{1/8}(NW^{-2})^{1/2}(qMV^{-6})^{1/8}(\min(qU^{-4}, L^{2}U^{-4}))^{1/4}$

$+2$ min $\{(qV^{-2})^{1/8}(NW^{-2})^{1/2}(qMV^{-6})^{1/8}(qU^{-4})^{1/4}$ ,

$(qV^{-2})^{3/8}(NW^{-2})^{1/2}(qMV^{-6})^{1/24}(qL^{2}U^{-12})^{1/12}\}$

$=2(UVW)^{-1}(qN)^{1/2}M^{1/8}\{\min(1, q^{-1/4}L^{1/2})+\min(1, L^{1/6}M^{-1/12})\}$

$\ll(UVW)^{-1}(x^{1/8}q^{7/16}N^{s/8}+x^{1/12}q^{1/2}N^{5/12})\ll(UVW)^{-1}x^{1/2-\epsilon/2}$ .

Case 4. $F>2W^{-2}N,$ $F\leqq 2V^{-2}M$. We may reduce this case to the previous
one by interchanging $M$ with $N$ and $V$ with $W$ .

The proof of Theorem 3 is complete.

3. A Kloosterman sums approach.

In this section we present another treatment of $R_{\alpha}(\mathcal{A}^{(q)}, M, N)$ which
depends on several ideas of Hooley. We first consider

$D(x ; M, N)=\sum_{M<m\leqq 2M}|\sum_{N<n\leqq 2N}b_{n}r(\mathcal{A}^{(q)}, mn)|^{2}$

$(m.q)=1$ $(n,q)=1$

with the aim of proving the following basic theorem.
THEOREM 4. For any complex numbers $b_{n}$ we have

(3.1) $D(x;M, N)\ll \mathcal{D}\sum_{N<n\leqq 2N}|b_{n}|^{2}$

where

$\mathcal{D}=(\frac{x}{qN}+\frac{x}{q^{3/2}}+q^{1/2}N+\frac{x}{q^{3/4}M^{1/2}}+\frac{x^{3/2}}{q^{6/4}MN^{1/2}}+\frac{x^{3/2}}{q^{2}M^{1/2}N^{1/2}}+\frac{x^{2}}{q^{7/4}M^{3/2}N})x^{\epsilon}$

On using the Cauchy-Schwarz inequality one can easily derive from Theo-
rem 4 the following result.
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THEOREM 5. Let $\epsilon>0,$ $x^{2/5}<q\leqq x^{2/3- 6\epsilon},$ $M=x^{1- 3\text{\’{e}}}/q,$ $N=x^{1/2- 4\epsilon}/q^{3/4},$ $|a_{m}|\leqq 1$ ,
$|b_{n}|\leqq 1$ . We then have

(3.2) $\sum_{m\geq M}\sum_{n\geq N}a_{m}b_{n}r(\mathcal{A}^{(q)}, mn)\ll x^{1-\text{\’{e}}}/\varphi(q)$ .
$(mn.q)=1$

This theorem admits us to take in (1.9) $D=x^{3/2- 7\epsilon}/q^{7/4}$ thus getting
THEOREM 6. For every $\epsilon>0$ and $x>x_{0}(\epsilon)$ we have

(3.3) $\pi(x;q, a)\leqq\frac{(8+\epsilon)x}{\varphi(q)\log(x^{6}q^{-7})}$

provided $(a, q)=1$ and $x^{2/5}<q\leqq x^{2/3}$ .
Proceeding to the proof of Theorem 4 we first observe that it suffices to

consider $b_{n}$ real. We then write

(3.4) $D(x;M, N)=\sum_{M<m\leqq 2M}(\sum_{(n.q)=1}b_{n}$$\sum_{r\leqq x,r\equiv a(q)}1-\frac{x}{qm}\sum_{N<n\leqq 2N}\frac{b_{n}}{n})^{2}r\equiv 0(mn)$

$=W(x ; M, N)-2\frac{x}{q}V(x ; M, N)+(\frac{x}{q})^{2}U(M, N)$ ,

say. Each term will be evaluated separately.
i) Evalution of $V(x;M, N)$ .
By the definition

$V(x$ ; $M,$ $N)=(\sum_{N<n_{1}\leqq 2N}\frac{b_{n}}{n}11)\sum_{N<n_{2}\leqq 2N}b_{n_{2}}\sum_{M<m\leqq 2M}\frac{1}{m}$
$\sum_{r\leqq x}$ 1.

$(n_{1}. q)=1$ $(n_{2}.q)=1$ $(m.q)=1$ $r\equiv a(q)$

$r\equiv 0(mn_{2})$

We reinterpret the congruences $r\equiv a(mod q)$ , $r\equiv 0(mod mn_{2})$ by writing
$r=mn_{2}l$ where $l\equiv a\overline{mn_{2}}(mod q)$ and $l\leqq x/mn_{2}$ . Therefore

$r\equiv 0(mn_{2})r\equiv a(q)\sum_{r\leqq x}1=l_{=}a^{\frac{\sum_{x’ m}}{mn_{2}}}(q)l\leqq n_{2}1=[\frac{x}{mn_{2}q}-a\frac{\overline{mn_{2}}}{q}]-[a\frac{\overline{mn_{2}}}{q}]$

$=\frac{x}{mn_{2}q}+\Psi(\frac{x}{mn_{2}q}-a\frac{\overline{mn_{2}}}{q})-\Psi(-a\frac{\overline{mn_{2}}}{q})$

where $\Psi(\xi)=[\xi]-\xi+\frac{1}{2}$ . The main term $x/mn_{2}q$ contributes to $V(x;M, N)$

exactly

(3.5) $V_{1}(x ; M, N)=\frac{x}{q}U(M, N)$ .

To estimate the contribution of the terms $\Psi$($\frac{\chi}{mn_{2}q}$ - $a\frac{\overline{mn_{2}}}{q}$) where $x=x$ or $0$

we appeal to the following.
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LEMMA 6. For any non-negative numbers $a_{n}$ and real $x_{n}$ we have

$|\sum_{n}$ a $n\Psi(x_{n})|\ll\frac{1}{H}\sum_{n}$ a $n+\sum_{h=1}^{H}\frac{1}{h}|\sum_{n}$ a $nl(hx_{n})|$

the constant implied in the symbol $\ll$ being absolute.
This is an analogue of the Erd\"os-Turan theorem. The proof is in [20].

By lemma 6 we get

$(m.q)=1\sum_{M<m\leqq 2M}\frac{1}{m}\Psi(\frac{\chi}{mn_{2}q}-a\frac{\overline{mn_{2}}}{q})\ll\frac{1}{H}+\sum_{h=1}^{H}\frac{1}{h}|S_{h}(\chi, q, M, n_{2})|$

where

$S_{h}(\chi q, M, n_{2})=\sum_{M<m\leqq 2M}\frac{1}{m}e(\frac{h\chi}{mn_{2}q}$ -a $h\frac{\overline{mn_{2}}}{q})$ .

To estimate $S_{n}(\chi, q, M, n_{2})$ we need the following Lemma which may be deduced
from Lemma 3 of [12].

LEMMA 7 (Hooley). If $\nu_{2}>\nu_{1}$ then

$\nu_{1}<\nu\leqq\nu_{2}\sum_{(v.q)=1}e(b\frac{\overline{\nu}}{q})\ll(b, q)^{1/2}q^{1/2+\epsilon}+(b, q)\frac{\nu_{0}--\nu_{\wedge}}{q}$ .

Moreover, for any real number $y$ we have

$\sum_{\nu_{1}<\nu\leqq\nu_{2}}e(y\nu+b\frac{\overline{\nu}}{q})\ll(b, q)^{1/2}q^{1/2+\epsilon}(1+\frac{\nu_{2}-\nu_{1}}{q})$ .
$(\nu.q)=1$

By partial summation we obtain

$S_{h}(\chi q, M, n_{2})\ll M^{-1}(1+\frac{hx}{qMN})\{(h, q)^{1/2}q^{1/2}+(h, q)\frac{M}{q}\}q^{\epsilon}$

and hence

$\frac{1}{H}+\sum_{h=1}^{H}\frac{1}{h}|S_{h}(\chi, q, M, n_{2})|\ll\frac{1}{H}+\frac{1}{M}(1+\frac{Hx}{qMN})(q^{1/2}+\frac{M}{q})q^{\epsilon}$ log $2H$

because

$\sum_{h\leqq H}\frac{(h,q)}{h}\ll d(q)$ log $2H$ .

On taking $H$ in an optimal manner we deduce from the above result that the

total contribution of terms $\Psi(\frac{\chi}{mn_{2}q}-a\frac{\overline{mn_{2}}}{q})$ to $V(xjM, N)$ is

(3.6) $V_{2}(x;M, N)\ll x^{\epsilon}(q^{1/2}M^{-1}+q^{-1}+x^{1/2}q^{-1/4}M^{-1}N^{-1/2}+x^{1/2}q^{-1}M^{- 1/2}N^{-1/2})\Sigma|b_{n}|^{2}$ .
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ii) Preliminary to the evaluation of $W(x;M, N)$ .
By the dePnition

$W(x$ ; $M,$
$N)=\sum_{N<n_{1}.n_{2}\leqq 2N}b_{n_{1}}b_{n_{2}}\sum_{M<m\leq 2M}$ $\sum_{r_{1},r_{2}\leqq x}$ 1.

$(n_{1}n_{2}.q)=1$ $(m.q)=1$ $r_{1}\equiv r_{2}\equiv a(q)$

$r_{1}\equiv 0(mn_{1})$

$r_{2}\equiv 0(mn_{2})$

We reinterpret the congruences $r_{1}\equiv r_{2}\equiv a(mod q)$ , $r_{1}\equiv 0(mod mn_{1})$ and $r_{2}\equiv 0$

$(mod mn_{2})$ by writing

$r_{1}=mn_{1}l_{1}$ , $r_{2}=mn_{2}l_{2}$

$r_{1}l_{1}\equiv n_{2}l_{2}(mod q)$ , $(l_{1}l_{2}, q)=1$

$m\equiv a\overline{n_{1}l_{1}}(mod q)$ .

Letting $M_{1}=M_{1}(l_{1}, l_{2})=\min(2M,$ $\frac{x}{n_{1}l_{1}’}\frac{x}{n_{2}l_{2}})$ on changing the order of summation
we get

$W(x;M, N)=\sum_{N<n_{1}.n_{2}\leqq 2N}$ $\sum_{\iota_{1}.\iota_{2}}b_{n_{1}}b_{n_{2}}\sum_{M<m\leqq M_{1}}1$ .
$nl,nl_{2}\leqq x’ Mn^{1}l^{1}\equiv n_{2}^{2}l_{2}(q)(n_{1}l_{1}n_{2}l_{2},q)=1$

$m\equiv a\overline{n_{1}l_{1}}(q)$

We express

$m\equiv a^{\frac{\sum_{m\leqq M}}{n_{1}l_{1}}1}M<(q)1=\frac{M_{1}-M}{q}+\Psi(\frac{M_{1}-a\overline{n_{1}l_{1}}}{q})-\Psi(\frac{M-a\overline{n_{1}l_{1}}}{q})$

and accordingly we denote by $W_{1}(x;M, N)$ and $W_{2}(x;M, N)$ the total contribu-
tions to $W(x;M, N)$ of terms $(M_{1}-M)/q$ and $\Psi(M_{1}-a\overline{n_{1}l_{1}})/q)-\Psi((M-a\overline{n_{1}l_{1}})/q)$

respectively. Unlikely to the situation before there is a difficulty in evaluating
of $W_{1}(x;M, N)$ .

iii) Evaluation of $W_{1}(x;M, N)$ .
To avoid a heavy partial summation it is convenient to approximate

1
$(M_{1}-M)/q$ by – $\sum$ 1 with the error term $O(q^{-1})$ thus getting

$qM<m\leqq M_{1}$

$W_{1}(x$ ; $M,$ $N)=\frac{1}{q}\sum_{M<m\leqq 2M}$
$\sum_{N<n_{1}.n_{2}\leqq 2N}$

$b_{n_{1}}b_{n_{2}}+O((1+\frac{X}{qM})\frac{x\log x}{qMN}\sum|b_{n}|2)$ .
$n_{1}l_{1}$ . $n_{2}l_{2}\leqq x/m$

$n_{1}l_{1}\equiv n_{2}l_{2}(q)$

$(n_{1}l_{1}n_{2}l_{2}, q)=1$

The ranges of variable $l_{1},$ $l_{2}$ are too short to carry out the summation simply.
To this end we use characters $\chi(mod q)$ giving

$\sum_{n_{1},n_{2}.l_{1}.l_{2}}b_{n_{1}}b_{n_{2}}=\frac{1}{\varphi(q)}\sum_{\chi(mod q)}|$

$\sum_{ln\leqq x’ m,N<n\leqq 2N}\chi(ln)b_{n}|^{2}$
.

The contribution of the principal character $x=x_{0}$ is equal to
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$\frac{1}{\varphi(q)}(_{N<n\leqq 2N}\sum_{(n,q)=1}b_{n}(\frac{\varphi(q)}{q}\frac{x}{mn}+O(d(q))))^{2}$

$=\frac{\varphi(q)x^{2}}{q^{2}m^{2}}(\sum_{(n.q)=1}\frac{b_{n}}{n})^{2}+o(\frac{d^{2}(q)}{q}(\frac{x}{m}+N)\sum|b_{n}|^{2})$

and the contribution of the non-principal characters is estimated by

$\frac{1}{\varphi(q)}\sum_{x\neq x_{0}}|\sum_{N<n\leqq 2N}\chi(ln)b_{n}|^{2}\ll(q+Nq^{1/2})\frac{x^{1+\epsilon}}{qmN}\sum|b_{n}|^{2}$ .

The latter easily follows from the fourth moment estimate for $L(s, \chi)$ (see

Lemma 2) and the mean-square theorem for Dirichlet’s polynomials (see Lemma 4).

Gathering together the above estimates we arrive at

\langle 3.7) $W_{1}(x;M, N)=(\frac{x}{q})^{2}U(M, N)$

$+o(x^{\epsilon}(\frac{x}{qN}+\frac{x}{q^{3/2}}+\frac{MN}{q^{2}}+\frac{x^{2}}{q^{2}M^{2}N})\Sigma|b_{n}|^{2})$ .

iv) Estimation of $W_{2}(x;M, N)$ .
By Lemma 7 and the definition of $W_{2}(x;M, N)$ we get

$W_{2}(x;M, N)\ll\frac{1}{H}\sum_{N<n_{1\prime}n_{2}\leqq 2N}$

$n_{1}l_{1}.n_{2}l_{2}\leqq x’ M$

$n_{1}l_{1}\equiv n_{2}l_{2}(q)$

$(n_{1}l_{1}n_{2}l_{2},q)=1$

$+\sum_{h=1}^{H}\frac{1}{h}\sum_{N<n.n_{2}\leqq 2N}|b_{n_{1}}b_{n_{2}}|(|T_{h}(M_{1}, n_{1}, n_{2})|+|T_{h}(M, n_{1}, n_{2})|$

where for $g=g(l_{1}, l_{2})=M_{1}$ or $M$ we denoted

$T_{h}(g, n_{1}, n_{2})=\sum_{\iota_{1}\leqq x’(n_{1}M)}\sum_{\iota_{2}\leqq x/(n_{2}M)}e(h\frac{g(l_{1},l_{2})-a\overline{n_{1}l_{1}}}{q})$ .
$n\}_{l_{1}l_{2}.q)=1}^{l_{1}\cong n_{2}l_{2}(q)}$

To avoid a heavy partial summation in the case of $g=M_{1}(l_{1}, l_{2})$ we first write

$ e(\frac{h}{q}M_{1})=e(\frac{h}{q}M)+2\pi i\frac{h}{q}\int_{M}^{M_{1}}e(\frac{h}{q}\xi)d\xi$

getting

$T_{h}(M_{1}, n_{1}, n_{2})=T_{h}(M, n_{1}, n_{2})+2\pi i\frac{h}{q}\int_{M}^{2M}e(\frac{h}{q}\xi)U_{h}(\frac{x}{n_{1}\xi},$ $\frac{x}{n_{2}\xi}$ , $n_{1},$ $ n_{2})d\xi$

with



Brun-Titchmarsh theorem 109

$U_{h}(L_{1}, L_{2}, n_{1}, n_{2})=\sum_{(l_{1}^{1}l_{2\prime}^{1}q)=1}$

$\sum_{2^{\xi L}l\leqq L_{1}l2,n^{1}l\equiv n_{2}l_{2}(q)}e(-ah\frac{n_{1}l_{1}}{q})$ .

By Lemma 7 we deduce

$U_{h}(L_{1}, L_{2}, n_{1}, n_{2})=\frac{1}{q}\sum_{u(mod q)}(l_{1}.q)=1\sum_{l_{1}\leqq L_{1}}e(\frac{-un_{1}l_{1}-ah\overline{n_{1}l_{1}}}{q})\sum_{l_{2}\leqq L_{2}}e(\frac{un_{2}l_{2}}{q})$

$\ll\frac{1}{q}\sum_{u(mod q)}(h, q)^{1’ 2}q^{1/2+\epsilon}(1+\frac{L_{1}}{q})\min(L_{2}\frac{1}{\Vert un_{2}/q\Vert})$

$\ll(h, q)^{1/2}q^{1/2+\epsilon}(1+\overline{q}\frac{x}{M}\overline{N})^{2}$ .

This yields

$|T_{n}(g, n_{1}, n_{2})|\ll(1+\frac{h}{q}M)(1+\frac{x}{qMN})^{2}(h, q)^{1/2}q^{1/2+\epsilon}$

and hence

$W_{2}(x;M, N)\ll\frac{1}{H}(1+\frac{x}{qM})\frac{x\log x}{MN}\Sigma|b_{n}|^{2}$

$+(1+\frac{HM}{q})(1+\frac{x}{qMN})^{2}q^{1/2+\epsilon}N(\log 2H)\Sigma|b_{n}|^{2}$ .

On taking $H$ in an optimal manner we conclude that

(3.8) $W_{2}(x;M, N)\ll x^{\epsilon}[(1+\frac{x}{qMN})^{2}q^{1/2}N+(1+\frac{x}{qM})^{1’ 2}(1+\frac{x}{qMN})\frac{x^{1/2}}{q^{1/4}}]\sum|b_{n}|^{2}$ .

v) Completion of the proof.
If we introduce the results (3.5), (3.6), (3.7) and (3.8) into (3.4) we find out

that the main terms disappear throughout and we are left with the error terms
only giving (3.1) with

(3.9) $\mathcal{D}\ll(\frac{x}{q^{1/2}M}+\frac{x^{32}}{q^{5/4}MN^{1/2}}+\frac{x^{3/2}}{q^{2}M^{1/2}N^{1/2}}+\frac{x}{qN}+\frac{x}{q^{3/2}}+\frac{MN}{q^{2}}+q^{1/2}N$

$+\frac{x^{1/2}}{q^{1’ 4}}+\frac{x}{q^{3f4}M^{1/2}}+\frac{x^{2}}{q^{7/4}M^{3/2}N})x^{\epsilon}$

We also have trivial bounds $\mathcal{D}\ll MN$ and for $MN>x$ we even have

$\mathcal{D}\ll(\frac{x}{q})^{2}(MN)^{-1}$ . Combining these three estimates we see that some of terms

in (3.9) are redundant as stated in Theorem 4.
The limitation for modulus $q$ in Theorem 4 comes out from various places,

the most responsible being the estimates in Lemma 7 for the incomplete
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Kloosterman-Ramanujan sums. These estimates become worse than trivial one
if the summation is over an interval $(\nu_{1}, \nu_{2})$ shorter than $q^{1/2}$ . Such situation
just occurs in our applications when $q\geqq x^{2/3}$ . In 1972 Hooley [12] in connection
with the Brun-Titchmarsh theorem stated a hypothesis that the true bound for
the incomplete Kloosterman-Ramanujan sum

$K(\nu_{2}, \nu_{1} ; q, b)=\sum_{\nu_{1}<\nu\leqq\nu_{2}}e(b\frac{\overline{\nu}}{q})$

$(\nu.q)=1$

should be $c(\epsilon)(b, q)^{1/2}(\nu_{2}-\nu_{1})^{1/2}q^{\epsilon}$ provided $q^{1/4}\leqq\nu_{2}-\nu_{1}<q$ . Later [15] he extended
the hypothesis into

HYPOTHESIS $R^{*}$ (Hooley). The estimate

$K(\nu_{1}, \nu_{2} ; q, b)\ll(b, q)^{1/2}(\nu_{2}-\nu_{1})^{1/2}q^{\epsilon}$

holds if $1\leqq\nu_{2}-\nu_{1}\leqq q$ .
A simple examination of our arguments shows
THEOREM 7. On Hypothesis $R^{*}$ we have

(3.10) $\sum_{m\leqq N}\sum_{n\leqq N}a_{m}b_{n}r(\mathcal{A}^{(q)}, mn)\ll\frac{x^{1-\epsilon}}{\varphi(q)}$

subjects to $x^{4/9}<q\leqq x^{2/3- 6\text{\’{e}}},$ $M=x^{1- 3\epsilon}/q,$ $N=x^{2/3-4\epsilon}/q$ and $|a_{m}|,$ $|b_{n}|\leqq 1$ . Hence,
by Proposition we deduce

THEOREM 8. On Hypothesis $R^{*}$ we have

(3.11) $\pi(x;q, a)\leqq\frac{6+\epsilon}{\log(}\frac{)x}{x^{5}q^{-6})}\overline{\varphi(q})($

for all $(a, q)=1,$ $x^{4/9}<q<x^{2/3}$ provided $x>x_{0}(\epsilon)$ .
It turns out that having the Hooley Hypothesis $R^{*}$ the dispersion method

is not always the best tool for the problem under the consideration. We state,
without proof, what can be obtained by the Fourier series method.

THEOREM 9. On Hypothesis $R^{*}$ we have

(3.12) $\pi(x;q, a)\leqq\frac{(5/3}{\varphi(q)}\frac{+\epsilon)x}{ogx/q}1$

for all $(a, q)=1,$ $x^{4/9}<q\leqq x^{1-\epsilon}$ provided $x>x_{0}(\epsilon)$ .
Notice that (3.12) is sharper than (3.11) for $q>x^{7/12}$ .

4. Statistical results.

We shall be concerned with bounds for $\pi(x;q, a)$ for almost all $q$ in inter-
vals of the type $(Q, 2Q$]. The extra variable $q$ offers us another arrangement
of the dispersion which turns out to yield sharper results in certain ranges of
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$Q$ . Our aim is to prove
THEOREM 10. Let $a$ be a fixed non-zero integer and let $\epsilon,$ $\epsilon_{1}$ and $A$ be any

positive constants. Then, pr0vided $x>x_{0}(\epsilon, \epsilon_{1}, A)$ , we have, for $(a, q)=1$ and
$Q<q\leqq 2Q$ , that

(4.1) $\pi(x;q, a)\leqq\frac{(12+\epsilon)x}{\varphi(q)\log(x^{5}q^{-3})}$ if $x^{1/2}<Q\leqq x^{2/3}$

and

(4.2) $\pi(x;q, a)\leqq\frac{(4+\epsilon)x}{\varphi(q)\log x}$ if $x^{2/3}<Q\leqq x^{1-\text{\’{e}}}1$

save for at most $Q(\log Q)^{-A}$ exceptional values of $q$ .
THEOREM 11. Let the notation and the assumptjOns of Theorem 10 be adopted.

Then on Hypothesis $R^{*}$ we have

(4.3) $\pi(x;q, a)\leqq\frac{(5+\epsilon)x}{\varphi(q)\log(x^{2}q^{-1})}$ if $x^{1/2}<Q\leqq x^{1-\epsilon_{1}}$

save for at most $Q(\log Q)^{-A}$ exceptjOnal values of $q$ in $(Q, 2Q$].

The proofs will be reduced to estimating the dispersion

$T(x;Q, M, N)=$
$\sum_{<,P_{a.q)=1}q\leqq 2Q}M<m\leqq 2M\sum_{(m.q)=1}|\sum_{(n.mq)=1}b_{n}r(\mathcal{A}^{(q)}N<n\leqq 2Nmn)|^{2}$

where $|b_{n}|\leqq 1$ and $b_{n}=0$ for non-squarefree $n$ . Suppose we have

(4.4) $T(x;Q, M, N)\ll x^{2-\epsilon}/QM$

for any $M\leqq M_{0},$ $N\leqq N_{0}$ . This yields

$R_{a}(\mathcal{A}^{(q)}, M_{0}, N_{0})\ll x^{1-\epsilon/4}/q$

save for at most $Q(\log Q)^{-A}$ exceptional values of $q,$ $(a, q)=1$ , in $(Q, 2Q$].

Hence by (1.9) we conclude that

$\pi(x;q, a)\leqq\frac{(2+\epsilon)x}{\varphi(q)\log M_{0}N_{0}}$

for the same $q’ s$ , provided $X>x_{0}(\epsilon, \epsilon_{1}, A)$ . We shall show that (4.4) holds for
any $M$ and $N$ subject to either

(4.5) $M<x^{1-\epsilon}Q^{-1},$ $N<Q^{1/2}x^{-1/6}$ if $x^{1/3}<Q\leqq x^{1- 2\epsilon}$

or

(4.6) $M<x^{1- 2\epsilon}Q^{-1},$ $N<Qx^{-1/2}$ if $x^{1/2}<Q\leqq x^{1- 2\epsilon}$ .

By the above discussion the first result will complete the proof of (4.1) and
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the latter that of (4.2). Assuming Hypothesis $R^{*}$ we shall briefly prove that
(4.4) holds for any $M$ and $N$ subject to

(4.7) $M<x^{1-4\epsilon}Q^{-1},$ $N<Q^{3/5}x^{-1/5},$ $x^{1/3}<Q\leqq x^{1- 4\epsilon}$ .

This will complete the proof of (4.3).

To make the exposition clear we shall deal with $a=\pm 1$ only, the general
ease being similar but a minor complication occurs when $a$ is not prime to the
variable $n$ in $T(x;Q, M, N)$ .

i) An elementary treatment of $T(x;Q, M, N)$ .
We start with proving that the restrictions (4.5) are sufficient for (4.4) to

hold. Our arguments will be entirely elementary. We write

(4.8)
$T(x ; Q, M, N)=_{p_{a,q)=1}^{\sum_{<q\leqq 2Q}}}(m.q)\Rightarrow 1\sum_{M<m\leqq 2M}(\sum_{(n.mq)=1}b_{n}$ $\sum_{r\leqq x,r\equiv 0(q)}1-\frac{x}{qm}\sum_{N<n\leqq 2N}\frac{b_{n}}{n})^{2}r\equiv 0(mn)$

$=C(x;Q, M, N)-2xB(x;Q, M, N)+x^{2}A(Q, M, N)$

where

$A(Q, M, N)=\sum_{(a,q)=1}\frac{1}{q^{2}}\sum_{MQ<q\leqq 2Q<m\leqq 2M}\frac{1}{m^{2}}(\sum_{(n,mq)=1}\frac{b_{n}}{n})^{2}$

and $B(x;Q, M, N),$ $C(x;Q, M, N)$ are defined analogously. We shall refer to
$A(Q, M, N)$ as a main term. Since $A(Q, M, N)$ will occur in formulas for
$B(x;Q, M, N)$ and $C(x;Q, M, N)$ we do not need to evaluate $A(Q, M, N)$ at all.

By the definition we have

$B(x ; Q, M, N)=\sum_{q}\frac{1}{q}\sum_{m}\frac{1}{m}(\sum_{n_{2}}\frac{b_{n_{2}}}{n_{2}})(\sum_{n_{1}}b_{n_{1}}r\equiv a(q)\sum_{r\leqq x}1)$ .
$r\equiv 0(mn_{1})$

We reinterpret the congruence $r\equiv a(mod q)$ by writing $r=a+lq$ . We then have

$l<\frac{x-a}{Q},$ $(l, mn_{1})=1,$ $Q<q\leqq\min(2Q,$ $\frac{x-a}{l})$ and $q\equiv-a\overline{l}(mod mn_{1})$ . On chang-

ing the order of summation we get

(4.9) $B(x;Q, M, N)=\sum_{m}\frac{1}{m}\sum_{n_{1},n_{2}}b_{n_{1}}\frac{b_{n_{2}}}{n_{2}}\sum_{l}\sum_{Q<q\leqq\min(2Q(x-a)/l)},\frac{1}{q}$ .
$q\equiv-a\overline{l}(mn_{1})$

$(q.n_{2}/(n_{1}.n_{2}))=1$

We shall relax the congruence conditions in the inner sum over $q$ by means of
the following elementary lemma.

LEMMA 8. For $(a, b)=1$ we have

$l\equiv a(mod b)\sum_{l\leqq\xi}1=\frac{\varphi(c)(b,c)}{\varphi((b,c))bc}\xi+O(d(c))$ .
$(l.c)=1$

On applying Lemma 8 twice by partial summation we deduce that
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(4.10) $q\equiv-a\overline{l}(mn_{1})\sum_{Q<q\leq\min(2Q.(x-a)/l)}\frac{1}{q}=\frac{1}{\varphi(mn_{1})}\sum_{n(q.mn_{12})=i}\frac{1}{q}+O(d(n_{2})q^{-1})Q<q\leq\min(2Q(x-a)/l)$

$(q.n_{2}/(n_{1}.n_{2}))=1$

Now insert this into (4.9) and change the order of summation again getting

$B(x, Q, M, N)=\sum_{q}\frac{1}{q}\sum_{m}\frac{1}{m}\sum_{n_{1}.n_{2}}b_{n_{1}}\frac{b_{n_{2}}}{n_{2}}\frac{1}{\varphi(mn_{1})}\sum_{l\leqq(x-a)/q_{1}}1+O$ ( $xQ^{-2}N$ log $N$).

By lemma 8 one gets

$l\leq(x-a)/\sum_{(l,mn_{1})=}1=\frac{\varphi(mn_{1})}{mn_{1}}\frac{x}{q}+O(d(mn_{1}))q$

thus

(4.11) $B(x;Q, M, N)=xA(Q, M, N)+O$ ($\log^{2}MN+xQ^{-2}N$ log $N$).

We deal with $C(x;Q, M, N)$ in a similar way. By the definition we have

$C(x ; Q, M, N)=\sum_{q}\sum_{m}\sum_{n_{1}.n_{2}}b_{n_{1}}b_{n_{2}}$$\sum_{r_{1}.r_{2}\xi x,r_{1}\cong r_{2}\equiv a(q)}1$

.
$r_{1}\cong 0(mn_{1})$

$r_{2^{\Xi}}0(mn_{2})$

We reinterpret the congruences $r_{1}\equiv r_{2}\equiv a(mod q)$ by writing

$r_{1}=a+l_{1}q$ , $r_{2}=a+l_{2}q$ .
We then have

$l_{1},$ $l_{2}\leqq\frac{x-a}{Q},$ $l_{1}\equiv l_{2}mod(m(n_{1}, n_{2})),$ $(l_{1}, mn_{1})=1,$ $(l_{2}, mn_{2})=1$ .

Let $Q_{1}=Q_{1}(l_{1}, l_{2})=\min(2Q,$ $\frac{x-a}{l_{1}},$ $\frac{x-a}{l_{2}})$ and $\alpha$ be the common solution of

$\alpha\equiv-a\overline{l}_{1}(mod mn_{1})$ , $\alpha\equiv-ai_{2}(mod mn_{2})$ .
On changing the order of summation we get

(4.12)
$C(x;Q, M, N)=\sum_{m}\sum_{n_{1}.n_{2}}b_{n_{1}}b_{n_{2}}\sum_{\iota_{1}.\iota_{2}}\sum_{q\equiv a_{(m[n_{1}.n_{2}])}^{Q<q\leqq Q_{1}}}1$

.
By Lemma 8 we deduce that

(4.13) $Q<q\leq Q_{1}\sum_{q\equiv\alpha(m[n_{1}.n_{2}])}1=\frac{(n_{1},n_{2})}{\varphi(mn_{1}n_{2})}\sum_{(q.mn_{1}n_{2})=1}1+O(d(mn_{1}n_{2}))Q<q\leq Q_{1}$

Now insert this into (4.11) and change the order of summation again getting

$C(x ; Q, M, N)=\sum_{q}\sum_{m}\sum_{n_{1}.n_{2}}b_{n_{1}}b_{n_{2}}\frac{(n_{1},n_{2})}{\varphi(mn_{1}n_{2})}\sum_{l_{1}.l_{2}\leqq(x-a)’ q}1$

$(l_{1},mn_{1})=1$

$(l_{2}.mn_{2})=1$

$+O((xQ^{-1}MN^{2}+x^{2}Q^{-2}N^{2})\log^{8}MN)$ .
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By Lemma 8 one gets

$\iota^{1}\equiv l.l(l_{2\prime}^{1}(:^{f_{2^{(m(n_{1}.n_{2}))}}^{\leqq(x-a)’ q}}mn_{2})=1\sum_{mn_{1})=1}1=\frac{\varphi(mn_{1}n_{2})}{(n_{1},n_{2})n_{1}n_{2}m^{2}q^{2}}x+o(\frac{x}{Q}d(n_{1}n_{2}))$

thus

(4.14) $C(x;Q, M, N)=x^{2}A(Q, M, N)+O$ ($(x+xQ^{-1}MN^{2}+x^{2}Q^{-2}N^{2})$ log8$MN$).

If we introduce (4.11) and (4.14) into (4.8) we find out that the main terms
disappear throughout and we are left with the error terms only giving

$T(x;Q, M, N)\ll(x+xQ^{-1}MN^{2}+x^{2}Q^{-2}N^{2})\log^{8}MN$ .
Hence we deduce that (4.4) holds for any $M$ and $N$ subject to (4.6).

ii) Kloosterman’s sums approach.
The only essential distinction in proving that (4.5) is sufficient for (4.4)

pertains to sums (4.10) and (4.13) which will be evaluated in greater precision
by means of Lemmas 6 and 7. We deal with $C(x;Q, M, N)$ only, the case of
$B(x;Q, M, N)$ being analogous and simpler.

We start with (4.12). For the inner sum over $q$ we first write

$q\equiv\alpha(m[n_{1},n_{2}])\sum_{Q<q\leqq Q_{1}}1=\frac{Q_{1}-Q}{m[n_{1},n_{2}]}+\Psi(\frac{Q_{1}-\alpha}{m[n_{1},n_{2}]})-\Psi(\frac{Q-\alpha}{m[n_{1},n_{2}]})$ .

The main term $(Q_{1}-Q)/m[n_{1}, n_{2}]$ can be written as before

$\frac{Q_{1}-Q}{m[n_{1},n_{2}]}=\frac{(n_{1},n_{2})}{\varphi(mn_{1}n_{2})}$
$\sum_{Q<q\leqq Q_{1},(q.mn_{1}n_{2})=1}1+O(\frac{(n_{1},n_{2})}{\varphi(mn_{1}n_{2})}d(mn_{1}n_{2}))$

by Lemma 8. Therefore we gained the factor $(n_{1}, n_{2})/\varphi(mn_{1}n_{1})$ in the error
term compared with that of (4.13). As a result we arrive at (4.14) with error
term

(4.15) $O$ ($(x+xQ^{-1}+x^{2}Q^{-2}M^{-1})$ log8$MN$ ) $+\Psi(x;Q, M, N)$

where $\Psi(x;Q, M, N)$ stands for the total contribution of terms $\Psi((Q_{1}-\alpha)/$

$m[n_{1}n_{2}])$ and $\Psi((Q-\alpha)/m[n_{1}n_{2}])$ . The first part of (4.15) is admissible.
It remains to estimate $\Psi(x;Q, M, N)$ . In the former treatment we esti-

mated each term $\Psi((Q_{1}-\alpha/m[n_{1}n_{2}])$ and $\Psi((Q-\alpha)/m[n_{1}n_{2}])$ trivially by 1 in
absolute value.

Now, by means of Lemmas 6 and 7, we shall get a great cancellation by
summing these terms over $l_{1}$ and $l_{2}$ in question. By the definition we have

$\Psi(x ; Q, M, N)=\sum_{m}\sum_{n_{1},n_{2}}b_{n_{1}}b_{n_{2}}\sum_{l_{1}.l_{2}}\{\Psi(\frac{Q_{1}-\alpha}{m[n_{1},n_{2}]})-\Psi(-m[\frac{Q-\alpha}{n_{1},n_{2}]})\}$
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and hence by an application of Lemma 6 we get

(4.16) $\Psi(x;Q, M, N)\ll H^{-1}N^{2}(x/Q)^{2}$ log $x$

$+\sum_{h=1}^{H}\frac{1}{h}\sum_{m}\sum_{n_{1},n_{2}}\{|\sum_{\iota_{1}.\iota_{2}}e(h\frac{Q_{1}-\alpha}{m[n_{1},n_{2}]})|+|\sum_{l_{1}.l_{2}}e(h\overline{m}[\frac{Q-\alpha}{n_{1},n_{2}]})|\}\cdot$

To avoid a messy partial summation in respect to two variables $l_{1},$ $l_{2}$ in the
sum involving $Q_{1}=Q_{1}(l_{1}, l_{2})$ we arrange each term as follows

$ e(h\frac{Q_{1}-\alpha}{m[n_{1},n_{2}]})=e(h\frac{Q-\alpha}{m[n_{1},n_{2}]})+\frac{2\pi ih}{m[n_{1},n_{2}]}\int_{Q}^{Q_{1}}e(h\frac{\xi-\alpha}{m[n_{1},n_{2}}])d\xi$ .

Hence, on changing the order of integration over $\xi$ with the summation over
$l_{1},$ $l_{2}$ we obtain

(4.17) $\sum_{l_{1}.l_{2}\leqq(x-a)/Q}e(h\frac{Q_{1}-\alpha}{m[n_{1},n_{2}]})=\sum_{\iota_{1}.\iota_{2}\leqq(x-a)/Q}e(h\frac{Q-\alpha}{m[n_{1},n_{2}}$

]
$)$

$+-m[\frac{2\pi ih}{n_{1},n_{2}]}\int_{Q}^{2Q}\sum_{l_{1},l_{2}\leqq(x-a)’\xi}e(h\frac{\xi-a}{m[n_{1},n_{2}]})d\xi$ .

In this way we arrived at the problem of estimating sums

$L_{h}(y, m, n_{1}, n_{2})=\sum_{\iota_{1},\iota_{2}\leqq y}$
$e(\frac{-h\alpha}{m[n_{1},n_{2}]})$

$l_{1}\cong l_{2}(m(n_{1}.n_{2}))$

$(l_{1}.mn_{1})=1$

$(l_{2}.mn_{2})=1$

where $\frac{x-}{2}Q\underline{a}<y\leqq\frac{x-a}{Q}$ and $\alpha=\alpha(l_{1}, l_{2})$ is the simultaneous solution of the

congruences
$\alpha\equiv-a\overline{l}_{1}(mod mn_{1})$ , $\alpha\equiv-a\overline{l}_{2}(mod mn_{2})$ .

Letting $n_{2}^{*}=n_{2}/(n_{1}, n_{2})$ we see that

$\frac{-\alpha}{m[n_{1},n_{2}}]\equiv a-\overline{\frac{1n}{mn}l_{2}^{*}1}+a\frac{\overline{l_{2}mn_{1}}}{n_{2}^{*}}$ $(mod 1)$

which by using additive characters mod $m(n_{1}, n_{2})$ yields

$L_{h}(y, m, n_{1}, n_{2})=\frac{1}{m(n_{1},n}2)\sum_{u(mod m(n_{1}.n_{2}))}$

.
$(\sum_{l_{1}\leqq y}e(\frac{ul_{1}}{m(n_{1},n_{2})}+ah\frac{\overline{l_{1}n_{2}^{*}}}{mn_{1}}))(\sum_{l_{2}\leq y}e(--\frac{-ul_{2}}{(n_{1},n_{2})}+ah\overline{\frac{l_{2}mn_{1}}{n_{2}^{*}}})(l_{1},mn_{1})=1(l_{2\prime}n_{2}^{*})=1m$

A straightforward application of lemma 7 leads to



116 H. IWANIEC

(4.18) $(l_{1}.mn_{1})=1\sum_{\iota_{1}\leqq y}e(\frac{ul_{1}}{m[n_{1},n_{2}]}+ah\frac{\overline{l_{1}n_{2}^{*}}}{mn_{1}})\ll(1+\frac{x}{QMN})(h, mn_{1})^{1/2}(MN)^{1/2+\xi}$ .

One may do much the same with $\sum_{l_{2}}$ but since the length of summation is

rather long relatively to the modulus $n_{2}^{*}$ the bound so obtained could be very
weak. We shall gain a lot by receiving a cancellation not only from
$e(ah\overline{l_{2}mn_{1}}/n_{2}^{*})$ but also from the exponentials $e(-ul_{2}/m(n_{1}, n_{2}))$ . To cross both
aspects of the summation we write

$l_{2}=\nu+n_{2}^{*}s$ with $(\nu, n_{2}^{*})=1$ , $0<\nu\leqq n_{2}^{*}$ , OSs $<[\frac{y}{n_{2}^{*}}]$

we then obtain

$(l_{2\prime}n_{2}^{*})=1\sum_{\iota_{2^{\xi}y}}e(\frac{ul_{2}}{m(n_{1},n_{2})}+ah\frac{\overline{l_{2}mn_{1}}}{n_{2}^{*}})=\sum_{0\leq s\triangleleft y’ n_{2}^{*}\ddagger}e(-\frac{un_{2}^{*}}{m(n_{1},n_{2})}s)$

$0<\nu\leq n_{2}^{*}\sum_{(\nu,n_{2}^{*})=1}e(\frac{-u\nu}{m(n_{1},n_{2})}+ah\frac{\overline{\nu mn_{1}}}{n_{2}^{*}})+\sum_{(l_{2},n_{2}^{*})=1}e(\frac{-ul_{2}}{m(n_{1},n_{2})}+ah\frac{\overline{l_{2}mn_{1}}}{n_{2}^{*}})n_{2}^{*}[y/n_{2}^{*}]<l_{2}\leqq y$

$\leqq(h, n_{2}^{*})^{1/2}(n_{2}^{*})^{1/2+\text{\’{e}}}\{1+\min(\frac{y}{n_{2}^{*}},$ $\frac{1}{\Vert un_{2}^{*}/m(n_{1}n_{2})\Vert})\}$

by Lemma 7. On summing over $u(mod m(n_{1}, n_{2}))$ we get

(4.19) $L_{h}(y, m, n_{1}, n_{2})\ll(1+\frac{x}{QMN})^{2}(h, mn_{1}n_{2})^{1/2}M^{1/2}Nx^{\epsilon}$ .

Hence, by (4.17) we infer from (4.16) that

$\Psi(x;Q, M, N)$

$\ll H^{-1}N^{2}(\frac{x}{Q})^{2}x^{\epsilon}+\sum_{h=1}^{H}\frac{d(h)}{h}MN^{2}(1+\frac{hQ}{MN^{2}})(1+\frac{x}{QMN})^{2}M^{1/2}Nx^{2\epsilon}$

$\ll(H^{-1}N^{2}x^{2}Q^{-2}+(1+\frac{HQ}{MN^{2}})(1+\frac{x}{QMN})^{2}M^{3/2}N^{3})x^{3\epsilon}$

for any positive $H$. On taking $H=MN^{2}Q^{-1}x^{4\epsilon}$ we finally obtain

(4.20) $\Psi(x;Q, M, N)\ll(QM)^{-1}x^{2-\epsilon}+(1+\frac{x}{QMN})^{2}M^{3/2}N^{3}x^{7\epsilon}$ .

This together with (4.15) yields (4.14) with the error term

(4.21) $O(x^{1+\epsilon}+x^{2+\epsilon}Q^{-2}M^{-1}+x^{2-\epsilon}Q^{-1}M^{-1}+x^{7*}M^{3/2}N^{3}+x^{2+7\text{\’{e}}}Q^{-2}M^{-1/2}N)$ .

We can evaluate $xB(x;Q, M, N)$ with the same precision in much similar
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manner. The arguments are slightly simpler because the summation over $l_{2}$ is
absent. Since the main terms $x^{2}A(Q, M, N),$ $xA(Q, M, N)$ in the formulas for
$C(x;Q, M, N)$ and $B(x;Q, M, N)$ respectively will disappear after introducing
them into (4.8) the quantity (4.21) represents an upper bound for the dispersion
$T(x;Q, M, N)$ . From this we immediately deduce that (4.4) holds for any $M$

and $N$ subject to (4.5). The proof of Theorem 10 is complete.
iii) Proof of Theorem 11.
There is nothing essentially new in the proof of (4.3) in comparison to that

of (4.1). Assuming Hypothesis $R^{*}$ one gets bound

$(l.mn_{1})=1\sum_{l_{1}\leq y}e(\frac{ul_{1}}{m(n_{1},n_{2})}+ah\frac{\overline{l_{1}n_{2}^{*}}}{mn_{1}})\ll\frac{x}{QMN}(h, mn_{1})^{1/2}(MN)^{1/2+\epsilon}$

$+(h, mn_{1})^{1/2}(\frac{x}{Q})^{1/2}(MN)^{\epsilon}$

in place of (4.18). This leads to

$L_{h}(y, m, n_{1}, n_{2})\ll(1+\frac{x}{QMN})^{3/2}(h, mn_{1}n_{2})^{1/2}(xN/Q)^{1/2}x^{\epsilon}$

in place of (4.19) and finally we have

$T(x;Q, M, N)\ll x^{1+\epsilon}+x^{2+\epsilon}Q^{-2}M^{-1}+x^{2-\epsilon}Q^{-1}M^{-1}$

$+(MN^{6/2}x^{1/2}Q^{1/2}+x^{2}Q^{-2}M^{-1/2}N)x^{7\epsilon}$

in place of (4.21). From this we deduce that (4.4) holds for any $M$ and $N$

subject to (4.7). The proof of Theorem 11 is complete.

5. Two applications.

i) The greatest prime factor of $p+a$ .
There are several applications of statistical estimates for $\pi(x;q, a)$ to the

theory of numbers. As an example we consider the problem of the greatest
prime factor of $p+a$ which had been previously investigated by Goldfeld [7],

Motohashi [26] and Hooley [12], [13]. We shall prove the following result.
THEOREM 12. If

$\theta<\theta_{0}=\frac{5}{3}-(2^{-4}3^{-5}5^{-3}17^{5})^{1/7}e^{-1/8}=$ . $ 6381089\cdots$

then infinity often the greatest pnme factor of $p+a$ exceeds $p^{\theta}$ .
The value of $\theta_{0}$ given above should be compared with the value

$\theta_{0}=1-\frac{1}{2}e^{-1/4}=.611059\cdots$
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that was obtained by Motohashi [26] and with the values

$\theta_{0}=2-\frac{3}{2}e^{-1/12}=$ . $ 6197\cdots$

and $\theta_{0}=5/8=$ . 625 that were obtained by Hooley in [12] and [13] respectively.
PROOF. By Bombieri-Vinogradov’s theorem one easily deduces that

$x^{1/2}\sum_{<q\leqq P(x)}\pi(x;q, -a)$ log $q\sim\frac{1}{2}x$

as $ x\rightarrow\infty$ where $q$ indicates a prime number and $P(x)$ is the greatest prime
factor of $\prod_{-a<p\leqq x}(p+a)$ (see [7]).

We consider for $1/2<\theta\leqq 2/3$ the sum

$T(x, \theta)=_{x^{1/2}}\sum_{<q\leqq x^{\theta}}\pi(x;q, -a)$ log $q$

and use Theorems 6 and 9 to find an upper bound for it. For all $q$ in $(x^{1/2}, x^{8/15})$

we apply (3.3) and for almost all $q$ in $(x^{8/15}, x^{\theta})$ we apply (4.1). For the ex-
ceptional values of $q$ in the latter interval we use trivial bounds

$\pi(x, q, -a)\leqq\frac{x}{q}$ .

These exceptional modulus $q$ contribute to $T(x, \theta)$ very little because in each
interval of the type $[Q, 2Q]$ there are $O(Q(\log Q)^{-2})$ of them. We therefore
obtain

$T(x, \theta)\leqq_{x^{1/2}}\sum\frac{8x\log}{\varphi(q)\log(x}+_{x^{8/15}}\sum_{<<q\leq x^{8/15^{6}}q\leqq x^{\theta}}\frac{12x10}{\varphi(q)\log(}\frac{q}{5- 3,q)}+o(x)q\overline{q^{-7})}xg$

$=\tau(\theta)x+o(x)$ ,
as $ x\rightarrow\infty$ with

$\tau(\theta)=\int_{1/2}-du+\int_{5^{-}-3_{\mathcal{U}}^{-}}^{\theta 12}8/15du$

by prime number theorem. A computation shows that $\tau(\theta)<1/2$ for $\theta<\theta_{0}$

which completes the proof.
ii) The least $P_{2}$ in arithmetic progressions.
Theorem 5 can be easily injected into weighted sieve theory to give sub-

stantial improvements for the least almost prime in arithmetic progressions. We
demonstrate the power of (3.2) by proving

THEOREM 13. Let $(a, q)=1,$ $q\geqq 2$ . Then the least $P_{2}\equiv a(mod q)$ is $\ll q^{1.845}$ .
The best estimate known till now was $P_{2}\ll q^{1.965}$ which is due to R. Heath-

Brown [10] (first result with $P_{2}\ll q^{2}$).
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PROOF. Let $d=\{n; n\leqq x, n\equiv a(mod q)\}$ , $(a, q)=1$ , $x^{1/2}<q\leqq x^{3/5}$ , $P=$

$\{p;p\nmid q\}$ . Put $M=x^{1- 3\epsilon}q^{-1},$ $N=x^{1/2- 4\epsilon}q^{-3/4}$ and $D=MN$. We consider the
simplest weighted sum with Richert’s weights of logarithmic type

$W(\mathcal{A}, z, M)=(n.P(z))=1\sum_{n\in J}\{1-\frac{1}{\lambda}$ $\sum_{P^{1n},z\leqq p<M}(1-\frac{\log p}{\log M})\}$

with $z=D^{1/4},$ $\lambda=3-\frac{\log x}{\log M}$ . For $(n, P(z))=1$ we have

$W(n):=1-\frac{1}{\lambda}$
$\sum_{p1n,z\leqq p<M}(1-\frac{\log p}{\log M})\leqq 1-\frac{1}{\lambda}(\nu(n)-\frac{\log x}{\log M})$

where $\nu(n)$ stands for the number of distinct prime factors of $n$ . Hence, if
$W(n)>0$ then $\nu(n)\leqq 2$ . Therefore

$|\{n\in \mathcal{A};n=P_{2}\}|\geqq W(\mathcal{A}, z, M)+o(\frac{\epsilon x}{\varphi(q)\log x})$ ,

the error term being taken to care non-squarefree numbers. To estimate
$W(\mathcal{A}, z, M)$ from below we first write it, in the usual sieve notation,

$W(\mathcal{A}, z, M)=S(\mathcal{A}, P, z)-\frac{1}{\lambda}\sum_{z\leq p<Mpkq},(1-\frac{\log p}{\log M})S(\mathcal{A}_{p}, P, z)$

and then appeal to [18] for linear sieve results with bilinear forms for the
remainder term. In case of $S(\mathcal{A}, P, z)$ it simply gives

$S(\mathcal{A}, P, z)\geqq\frac{x}{\varphi(q)\log D}$ { $2$ log $3+O(\epsilon)$ }.

The remaining sum over $P\in[z, M$ ) can be split up into $\ll\log x$ sums of the
type

$P\leqq p<P_{1}\sum_{p\lambda q}(1-\frac{\log p}{\log M})S(\mathcal{A}_{p}, P, z)\leqq(1-\frac{\log P}{\log M})\sum_{plq}S(\mathcal{A}_{p}, P, z)$ .

For each $S(\mathcal{A}_{p}, P, z)$ above, by Theorem 1 of [18] we have

$S(\mathcal{A}_{p}, P, z)\leqq\frac{\{(2+O(\epsilon)}{\varphi(q)p\log}\frac{x}{/p}+\sum_{l<\exp(8\epsilon^{-3}}D)\}m\leqq M/P\sum_{(mn,q)}\sum_{=1}n\leqq N$ a $m(l)b_{n}(l)r(\mathcal{A}, pmn)$

where $|a_{m}(l)|,$ $|b_{n}(l)|\leqq 1$ . Summing over $P\in[P, P_{1}$ ), $p\nmid q$ with an interpreta-
tion $pm$ as one variable of the summation and $n$ as the other, by Theorem 5,
the total remainder term arising is $\ll x^{1-}’/\varphi(q)$ . Hence we conclude that

$z\leqq p<M\sum_{p\downarrow q}(1-\frac{\log p}{\log M})S(\mathcal{A}_{p}, P, z)\leqq\frac{\{2+O(\epsilon)\}x}{\varphi(q)\log M}\sum_{z\leqq p<M}\frac{1}{p}\frac{\log M/p}{\log D/p}$ .
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Letting $x=q^{\theta},$ $\delta=(6\theta-7)/4(\theta-1)$ by partial summation and by prime number
theorem an easy computation shows

$\frac{\log D}{\log M}\sum_{z\cong p<M}\frac{1}{p}\frac{\log M/p}{\log D/p}=\log\frac{3}{\delta-1}-\delta$ log $\frac{3\delta}{4(\delta-1)}+O(\epsilon)$ .
Finally,

$W(\mathcal{A}, z, M)\geqq\frac{2x}{\varphi(q)\log D}\{\log 3-\frac{\theta-1}{2\theta-3}(\log\frac{3}{\delta-1}-\delta\log\frac{3\delta}{4(\delta-1)})+O(\epsilon)\}$ .

For $\theta=1.845$ the number in the brackets $\{$ $\}$ is $>10^{-4}$ . This completes the
proof of Theorem 13.

REMARKS. There are several possibilities for further improvements. First
of all one may try to use more efficient weights as for example these of M.
Laborde [21] or even better these of G. Greaves [9]. Unfortunately the im-
provement for $\theta=1.845$ is very small and not proportional to efforts required
in applying them. Another possibility rests on extending the range of the
summation over $p$ in the weighted sum $W(\mathcal{A}, z, M)$ beyond $M=x^{1-\epsilon}/q$ , that is
to say, to a range where Theorem 5 is not applicable directly (notice that $M$

is nearly as large as the number $|\mathcal{A}|$ of elements in $\mathcal{A}$). For example, on
applying two dimensional sieve of Selberg one may show that

$M\leqq p<y\sum_{pIq}(1-\frac{\log p}{\log y})S(\mathcal{A}_{p}, P, z)\leqq\frac{\{1+O(\epsilon)\}x}{\varphi(q)\log y}(\frac{\log y/M}{\log N})^{2}$

for any $M\leqq y<D,$ $N\leqq z<D^{1/4}$ . The proof is quite long and an improvement
which it yields for $\theta$ is again little.

6. Brun-Titchmarsh theorems for short intervals.

Here we shall state, without proofs, several results about $\pi(x+x^{\theta})-\pi(x)$

with $0<\theta<1,$ $x\geqq 3$ . Most of them had been deduced jointly with R. C. Vaughan
in December 1977 during the meeting at the Institut Mittag LeMer in Djursholm.

When estimating the remainder terms in sieve bounds for $\pi(x+x^{\theta})-\pi(x)$

one arrives at exponential sums of the type

$\sum_{N<n\leqq N_{1}}e(\frac{x}{n})$

with $N<N_{1}\leqq 2N,$ $N=x^{\alpha},$ $0<\alpha<1$ . By van der Corput’s method or using general
theory of exponent pairs (for the definition and the theory the reader is referred
to [30]) one is able to prove non-trivial estimates

(6.1) $\sum_{N<n\leqq N_{1}}e(\frac{x}{n})\ll Nx^{-\delta}$
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with some $\delta=\delta(\alpha)>0$ for all $0<\alpha<1$ . Hence it follows
THEOREM 14. For any $0<\theta<1$ there exists $\eta=\eta(\theta)>\theta$ such that

$\pi(x+x^{\theta})-\pi(x)<\frac{(2+\epsilon)x^{\theta}}{\eta(\theta)\log x}$ , $x>x_{0}(\epsilon, \theta)$ .

A precise value for $\eta(\theta)$ depends on the exponent pair being used for (6.1).
Letting $(\kappa, \lambda)$ be an exponent pair we have

$\sum_{N<n\leqq N_{1}}e(\frac{x}{n})\ll(xN^{-2})^{\kappa}N^{\lambda}$ if $N<x^{1/2}$ .

This gives

$\eta(\theta)=(1+\frac{1-\lambda+2\kappa}{3-\lambda-\frac{1}{2}\kappa})\theta-\frac{\kappa}{3-\lambda-\frac{1}{2}\kappa}$
.

On taking $(\kappa, \lambda)=(1/2,1/2)$ we find that

$\eta(\theta)=\frac{5}{3}\theta-\frac{2}{9}$

which is $>\theta$ ( $\eta(\theta)=\theta$ is trivial) for $\theta>1/3$ .
To the analogy with Hooley’s Hypothesis $R^{*}$ is the following
CONJECTURE (exponent pairs conjecture). For any $\epsilon>0,$ $(\epsilon, 1/2+\epsilon)$ is an

exponent pair.

On this conjecture we find that $\eta(\theta)=\frac{6}{5}\theta$ .
Finally, we remark that for very small $\theta$ Vinogradov’s method yields sharper

bounds than van der Corput’s exponent pairs do. For $\theta>1/2$ it is better to use
the theory of the Riemann zeta-function giving $\eta(\theta)=(1+\theta)/2$ .
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