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Introduction.

The present paper is devoted to the study of a free boundary problem for
a nonlinear parabolic equation in one-space dimension. Free boundary problems
arise naturally in a number of physical phenomena with change of state (such
as melting of ice and recrystallization of metals) and have been studied by
many authors (e.g., [1, 2, 4-10, 14-19] and their references).

In this paper we are concerned with the following one phase Stefan prob-
lem: For a number [,=0, functions u, on [0, /], f on [0, T]x[0, c©) and g
on [0, T] we find a boundary curve x={(t) (=0 on [0, TJ]) and a function u=
u(t, x) on [0, TIX[0, o) satisfying

(E) ue— (| fw) 1 P72 f(w) o) e =Ff for [(H)>0, 0<x<I(t)
subject to

(CD) [(0)=l, and if [,>0, then u(0, x)=u,(x) for O0<x<l,,

2 { | Bw)(t, 0-H)1P72B(w) (¢, O+)=g(t)  for 0<t<T,

Bt i(#)=0  for 0<t<T
and
di) )
(C3) TZ—IB(H)I(Z‘, (H—=)22p(w)., I(t)—)  for 0<t<T,

where 2<p<oo, B: R—R is a given function and B(u).(t, x+) (resp. f(u)(t, x—))
stands for the right (resp. left) hand partial derivative of B(u)(#, x) at x with
respect to x.

This kind of problems for a certain class of nonlinear parabolic equations
was treated earlier by Douglas and Kyner in which they showed the
existence and uniqueness of solution by using a strong maximum principle for
parabolic equations with variable coefficients, but their method is not applicable
to our case. Our approach to problem {(E), (C1)-(C3)}, which is different from
that of Douglas and Kyner in some points of view, is based upon recent results
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on the existence, uniqueness and stability of solutions to nonlinear evolution
equations involving subdifferential operators of time-dependent convex functions
on Hilbert spaces (cf. [12].

Notations. For a (real) Banach space V we denote by |-|» the norm in V,
by V* its dual and by (-, -) the duality pairing between V* and V' ; especially,
if V is a Hilbert space and is identified with its dual space, then we mean by
(+, *)y the inner product in V.

By an operator A from a Banach space V into another Banach space W we
mean that to each v in V, A assigns a subset Av of W, namely A is a multi-
valued mapping from V into W; in particular, if Av consists of at most one
element of W for every v in V, then A is called singlevalued. For an operator
A: V—-W the set D(A)={veV; Av+0} is called the domain.

Let ¢ be a lower semi-continuous convex function on a Hilbert space H with
values in (—oo, o] such that ¢z=co on H. Then the set D(¢)={z€ H; ¢(z) <o}
is called the effective domain and the subdifferential d¢ is an operator from H
into itself defined as follows: z*€d¢(z) if and only if ze€ D(¢), z¥c H and

(z*, 2 —2)g=¢(z")—¢(2), Vz'eH.

For fundamental properties of 9¢ we refer for example to a book of Brézis [3]

1. Formulation as a quasi-variational problem.

Let 2=<p<oo and 0<T <co be numbers which are fixed, and set for sim-
plicity
H=L*0, ), X=W"?(0, ).

Let 8: R—R be a function with 5(0)=0 and assume that 8 is strictly increas-
ing bi-Lipschitz continuous on R, i.e,,

cslr=ri*S(B—BrNr—r)=Ir—ril*/cs

for any r, , in R with a positive constant cg.
Given a non-negative continuous function /:[0, T]—R and a continuous
function g: [0, T]—R, we define for each ¢ in [0, 7]

K(t)={ze X; z(x)=0, Vx=[({)}
and

igmlzx]pdx-—l—g(t)Z(O) lf ZEKl(t)’
a.1) fe(R)=1 P

e} otherwise.

Clearly ¢!, is a lower semi-continuous convex function on H with D(¢} )=
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K,(t). We now consider the nonlinear evolution equation
1.2) u'(t)4-0¢t, (Bu@®)=£(t) for 0<t<T,

where the unknown u is an H-valued function on [0, T, »/(t)=(d/dt)u(t) and
B is the singlevalued operator from H=D(B) into itself defined by

[Bz](x)=B(z(x)) for ze H and x<[0, o).

DEFINITION 1.1. Let /, g be as above, u, be in H and f in L*0, T; H).
Then we mean by VP(, g, u,, f) the Cauchy problem for (1.2) to find a func-
tion u in C(0, T]; H) such that

(A1) ueW*20, T; H) and u(0)=u,;

(A2) the function t—¢} ;(Bu(t)) is bounded on [0, T];

(A3) w'(t)+0¢% (Bu(t)=f(@) for a.e. t in [0, T1.
Such a function u is called a (strong) solution to VP(l, g, u,, f).

REMARK 1.1. A solution u to VP(, g, u,, f) is able to be characterized by
the following system :

ueWt*0, T; H) with w(0)=u,,

(1.3) Bw)e L=, T; X),
Bu)t, -)e K,(t) (hence B(u)t, i(t))=0)  for all t<[0, T,
(1.4) ut, )= B, HP2Bw), N=f(, +)
in the distributional sense on (0, [(#)) for a.e. t<],,
(1.5) | Bw)a(t, 0+)1272B(w),(t, 0+)=g(t)  for a.e. t€],,

where [,={t<[0, T]; {({)>0}. In fact, suppose that u is a solution to
VP(l, g, u,, f). Then follows immediately from (Al) and (A2). As is
easily seen, (A3) can be written in the following equivalent form:

wn W O—f®, Dt 15l D17 6wlt, Dza()dx+gBz0)=0,
Vze K,(t), for a.e. t€[0, T].

We see from (1.7) that holds and hence (|Bw)(t, )|?72B(u){, *))z=
u,(t, )—f(t, )€ L¥0, () for a.e.t<l,. Thisimplies that | B(w).(, x)|?~2B(u).(t, x)
is an absolutely continuous function of x on (0, /(?)) and B(u).(t, 0+) exists for
a.e. tel, as well as B(u),(t, [(#)—), so that by integration by parts we obtain
from (1.7). Similarly we can show the converse.

Now we are going to give a quasi-variational formulation associated with
our free boundary problem {(E), (C1)-(C3)}.

DEFINITION 1.2. Let /,=0 be a number, u, be in H, g in C([0, T]) and f
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in L*0, T; H). Then we mean by QVP(,, g, u,, f) to find a couple {/, u}
such that

(Bl) [eW**0, T) and [=0 on [0, T];
(B2) wu is a solution to VP(, g, ue, f);

(B3) l(t):lo—S:g(r)dr—}-Siouo(x)dx+g Si(ﬂf(r, x)dxdr—gju(t, Xdx

t

0
for all ¢ in [0, T7.

Our results on QVP(l,, g, uo, f) are stated as follows:

THEOREM 1.1, Let [,=0, u,= H be non-negative, g=C([0, T]) be non-positive
and fe L*Q0, T ; H) be non-negative. Then we have:

(@) If {I, u} is a solution to QVP(,, g, ue, [), then u is non-negative and [
is non-decreasing in t.

(b) Further suppose that u,=X, uo(x)=0 for all x=l, and geW**0, T).
Then QVP(l,, g, uo, f) has at least one solution.

REMARK 1.2. Let /,, g, uo and f be as in and let {/, u} be a
solution to QV P(l,, g, uo, f). Then, as was seen in Remark 1.1, [ and u satisfy

(1.3), [1.4) and [1.5) Moreover, the following [1.5) and hold :

(1.5) | BG)=(t, 0) P2 B(w):(t, O+)=g(t)  for a.e. t[0, T],
(1.6) %%Q:——]ﬁ(u)z(t, ()P 2Bu)x(t, I(t)—)  for a.e. t<[0, T].

Indeed, from (B3) with we derive that for a.e. t€l, (={t<[0, T]; (H)>0})
%(:l:— g(t>+S:(’)f(t, x)dx—gjul(t, X)dx
14¢2]
=—g0— (1 Bwatt, 0177 Bw)t, x)edx

=—BwWa(t, IO)P?Bw).@, I(B)—) .

Also, if t=(0, T]—1,, then u(t, x)=0 for all x=0 and (B3) implies g(¢)=0.
Therefore

| Bw) (@, 0+)[?72B(w).(t, 0+)=0=g(t)  for all t(0, T1—1I,
and

D0 01 80, KO- 17* 800, 1O-)  for a.e. €00, TI-1,.

Thus [I5) and are shown, and we see that QVP(l,, g, u,, f) is a quasi-
variational problem associated with {(E), (C1)-(C3)}.
In order to demonstrate the above existence theorem we introduce a map-

ping P from a certain compact convex subset S of C([0, T7) into itself defined
as follows:
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(1.8) [Pl](t):ZO—S:g(r)dr+S:0u0(x)dx+S S”" f(r, X)dxdr

t
0J0
~S:ul(t, x)dx  for each /€S and te[0, T,

where u' is a solution to VP(/, g, u,, f). We shall show that there is an ele-
ment [ of S satisfying P/=/ (i.e., a fixed point / of P in S) and that the couple
{t, u'} is a solution to QVP(l,, g, s, f)-

The problem of uniqueness for a solution to QV P(l,, g, u,, f) remains open,
but in the special case that p=2 and f=0 we shall show

THEOREM 1.2. If p=2, then QVP(lo, g, uo, f) has at most one solution for

lo=0, g=C([0, T]) non-positive, u,X non-negative with u,=0 on [l,, o) and
f=0.

2. Problem VP(, g, uo, f).

We begin with the following comparison theorem.

THEOREM 2.1. Let | be a non-negative function in C(0, T1), g, Z be in
C([0, TD) with g<g on [0, T], o, @, in H and f, f in L*0, T ; H). Let u and
@ be solutions to VP(l, g, ue, f) and VP, §, @, f), respectively. Then we have :

|@O—2@)* | 30,1 = 1@ =2 6) 30,0+ | | FO=F 0D 1300157

for any 0=s=t=<T and any positive number L=\|l|cqo r», where (-)* stands for
the positive part of (+).

We omit the proof of this theorem, since it can be proved by a way similar
to that of Bénilan and Damlamian [5] We obtain the following corollaries
immediately from [Theorem 2.1l

COROLLARY 1. Let I, g, uo and f be as in Theorem 2.1. Then VP(l, g, ue, f)
has at most one solution.

COROLLARY 2. Let [, g, uo and f be as in Theorem 2.1 and further suppose
that g is non-positive and u,, f are non-ﬁegative. Then a solution to VP, g, uo, f)
is mon-negative.

As to the family {¢} ,; 0=¢t=<T} of convex functions given by we see
the following lemma :

LEMMA 2.1. Let [=C([0, T]) be non-negative and non-decreasing in t and let
g€ C([0, T1. Then there is a positive constant C,, , such that

2.1) P, 8(2)— 9L (D) =C1 ¢ | gO)—g() | (181 5(2) [ -+1)

for any 0=s=t=T and ze K\(s);
in fact we can take
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2.2) Cor=(IglocomtD7UDIHL,  p'=—"
ProOF. First we have for any z= K,(s) and any >0
1¢s) 1 5[2x|P or-r
EOIE EATF= | 4 O
0P I(s)

pr

=09}, £(2)—0g(s)z(0)+

SO
orP' T
(131 g9 20 S04t (a1 + 2 KT

Since @  (2)—@ (2)=(g@t)—g(s))z(0) for t=s, we obtain with by tak-
ing 0=(|glcqorp+1)7% Q.E.D.

This lemma allows us to apply a result of Kenmochi [12; Theorem 1.17] to
VP(, g, u, f) and we get the following existence theorem.

THEOREM 2.2. Let [ be as in Lemma 2.1, g be in W*20, T), u, in K;(0)
and f in L¥0, T'; H). Then VP(, g, ue, f) has at least one solution.

Now, given numbers /, and L such that 0=/,< L, we consider a family

[(0)=lo, (T)SL and
(2.3) .L’:{ZEC([O, TD; }

[ is non-decreasing in ¢

The following stability result for solutions to VP(l, g, u., f) with /. plays
an important role in solving QVP{l,, g, uo, f).

THEOREM 2.3. Let [,=0, geW20, T), uocX with uy=0 on [/, o) and
feL¥0, T; H). Then there exists a constant K>0 such that

W't g=K, ¥te[0, T],

lgl(Bu't)|=K, Vte[0, T1,

dut

dt K

IIA

L2¢0,T; H)

for every le L, where u' is a unique solution to VP(l, g, o, f)-
This stability theorem is a direct consequence of a priori estimates for
approximate solutions to VP(/, g, u,, f) given in Kenmochi [12; section 2].

3. Operator P and proof of Theorem 1.1.

Throughout this section, assume that [,=0, u,€ X is non-negative with u,
=0 on [/, o), geW*?0, T) is non-positive and f= L%*0, T ; H) is non-negative
and let £ be the family as given by with L satisfying
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3.0 L3+ [ uiwdr = g)dr++/ LT fl 10,2

We now consider the operator P on £ which is defined by Concerning
this operator P we have

LEMMA 3.1. P(L)CLn\W30, T).

ProorF. Let /.. Then PleW*20, T), since a unique solution u' to
VP, g, u,, f) belongs to W*20, T; H). By noting the facts in Remark 1.1,
we have

d P . 14¢2) d z(z)l
L l](t)-——g(tH—So 74, %) x——go ke, ©)dx

=—g0~ (1 5@htt, )72 Bwht, 2)adx
=1 Bhalt, 1O-)] 7 putatt, 1))

for a.e. tel, (={t<[0, T]; I(t)>0}). Also u'is non-negative by [Corollary 2 to
as well as B(u'). Hence

Buh(t, It)—)=0  for a.e. tel,,

from which it follows that (d/d¢t)[P/](t)=0 for a.e. t=I,. For a.e. t[0, T1—1,
we have

d
—7 [PO=—g(=0,

because u'(t, x)=0 for all x=0if t<[0, T]—1,. Therefore P/ is non-decreasing.
Besides [PII(T)ZL by Thus Ple L. Q.E.D.
LEMMA 3.2. P is continuous on L with respect to the topology of C([0,TJ).
PROOF. Suppose that [,=.L and [,—! in C({0, T]), and denote by u, and
u the solutions to VP(l,, g, us, /) and VP(, g, u,, f), respectively. Then, on
account of there is a constant K such that

Iun(t>lH§K7 Vn ) VtEEO; T]:
(3.2) | @i, s(Bu(t)| =K, Vn, Vte[0, T],
lunlrzo. =K, Vn.

We note here that for each n the following holds:

63 @O, Bus®—w)udt=00w)—0(Buy),

Ywe L?0, T; X) with wt)e K, () for a.e. t<[0, T],
where
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T
0

1 = T
@(w):;S S \w.a, x)l”dxdt—i—so 2w, 0)dt .

By {u,} is relatively compact in C([0, TJ; H). We want to show that
u,—u in C([0, T]; H). For this purpose, let {u,,} be any subsequence of {u,}
such that u,,—a (hence Bu,,—Bi#) in C([0, T]; H). Then we have

Bun,(t) —> Bu(t) weakly in X for each t<[0, T],
Bu,, —> Bi weakly in L0, T; X),
Un, —> 0’ weakly in L*0, T ; H)

and by the way
¢€g(3ﬁ(t>>§Ky Vie [0) T] ’

aeW+¥0, T; H), a(0)=u,,
(3.4) lif,ﬂiﬂf O(Buy,)=9(B#).
Now denote by Z the set
{ve L?0, T; X); vit)e K,{) for a.e. t<[0, T]}.

Let v be any function in Z and ¢ be any positive number. Putting v».(¢, x)=
v(t, x+¢), we see that v.()e K, ,(¢) for a.e. t in [0, T] and for all n sufficiently
large. Hence, taking n=n, with w=v, and letting k—oo in we obtain by

[[@@—r®, Ba)—v.t)udt=00)—0Ba).
Furthermore, since v.—v in L?(0, T; X) and @w.)—®d(v) as ¢ | 0,

S:(ﬁ’(t)—f(z‘), Bat)—v(t))gdt=O(v)—D(Bi).
This inequality holds for every » in Z, which is equivalent to

fO—a'(t)=dgs (Bu)) for a.e. t<[0, T]

(cf. Kenmochi [11; Proposition 1.11). Thus # is a solution to VP(/, g, u,, f).
By the uniqueness of solution we have #i=u. Therefore it must be true that
u,—u in C([0, T]; H), so that

Pl,—> Pl in C([0, TD). Q.E.D.

PrROOF OF THEOREM 1.1. The assertion (a) follows easily from [1.6) of
Remark 1.2 and Corollary 2 to [Theorem 2.1. To show (b), consider the follow-
ing subset S of [:
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=) =lt—sllgleco
S=yler; +At—s| Ll flreco.ms v+ 1t—s|K ¢,
for all s, t<[0, T
where K is the same constant as in Obviously S is a convex
compact subset of £ in C([0, T]) and P(L£)CS. Taking Lemmas B.1 and
into account, we see that P is continuous on S with respect to the topology of
C[0, T)) and P(S)cS. Hence, by a well-known fixed point theorem there is

/€S such that P/=[ and it is easy to see that the couple {/, '}, u' being a
unique solution to VP(l, g, u,, f), is a solution to QVP(l,, g, ue f). Q.E.D.

4. A uniqueness theorem in a special case.

Throughout this section we assume that p=2, [,=0, g=C([0, T]) is non-
positive and u, X (=W*"%0, o0)) is non-negative with u,=0 on [/, <0).

Let {/, u} be an arbitrary solution to QV P (l,, g, uo, 0). Then we know the
following facts (cf. Remark 1.2 and [Theorem 1.1):

(1) [ is non-decreasing with [(0)=/, and u is non-negative;
(2)  ut, )—pu)za(t, -)=0 a.e. on [0, {(t)] for a.e. t<[0, T];
(3) u0, x)=uyx) for 0=x=1{,, ult, x)=0 for x=I(t)

and B(u).(¢, 0+)=g() for a.e. t€[0, T];

4) %f—):—ﬁ(u)x(t, I(t)—) for a.e. t<[0, T].

We define
ut, x):S:ﬁ(uxr, vdr  for x=0, 0=(=T
and note that

wlt, V=W DZ0,  valt, )= @, D)7
Now, let » be any function in X. Then we have by (1)-(4)
S:vx(t, )p.dx
={ 1" B, ypedar

:S:[_S:(T)‘B(u)m<r’ Ondx—Bw):(r, 0+)n(0)+ B(w) (7, l(r)—)n(l(r))]dr
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= _S:Szmu:(h ')7]dxdr—<S:gdr)77(0) —S:%(;)— p(U(r)dr

=—{ ut, ndx + uindx—({ gar)y@ [ “ydx,

lo

from which we get the following lemma.

LEMMA 4.1. Let {I, u} be a solution to QVP(l,, g, uo, 0) and v be as above.
Also let p be the inverse of B. Then

I(t; v, ﬁ)ES:P(Ut)(t, )2, x)—v(x))dx+gjvx(t, 1)Wazet, x)—n(x))dx
—{Tuowtt, »—gendx+({.g0dr)wd, 0=y

+{ e, —nendx=0

for all t<[0, T] and all neY={neX; 5 is non-negative and n(x)=0 for all
sufficiently large x}.
PrROOF. We set for simplicity

I =\ o0, pdx+{ vatt, ypadi—{ uondz

+([f gdr)qy(O)—l—SZvdx for peY.

As was seen above, J(¢; )=0 for all »€Y and J(¢; v.(¢, -))=0. Therefore
It; v, P=J; v, -N—=J; =0. ) Q.E.D.

PrOOF OF THEOREM 1.2. Let {/, u} and {/, #} be two solutions to
QVP(l,, g, uo, 0). Then from with the same notation as above it
follows that

0—>__:I(tr v, ﬁt(t: '))+I<t: Z_}) 'Ut(t, ))
=|"{owt, 1)—p@)t, DHwelt, D—0lt, dx

+ [ 0ult, =028, Dty D—021lt, 2

S lvatt, =t 1Y

Y

for a.e. t<[0, T]. This gives

lva(t, )—02(t, ) a=1v20, -)—020, -)|x=0
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for all te[0, T], so v,=0,, i.e., u=u as well as (= Q.E.D.
REMARK 4.1. The technic adopted above is found in Duvaut [7].

5. Some remarks.

A. Let [,>0, uyp, g and f be as in (b) of and {/, u} be a
solution to QVP(ly, g, us, f). Then, by definition, / belongs to W**0, T) and u
is a unique solution to VP(l, g, u,, f). It is not difficult to verify that the family
{¢}..; 0=t=T} satisfies the following:

for each s, t€[0, T] and z€ K,(s) there is z,= K,(t) such that
3 J |2z g =C{ gO)— g()] = 1B —Is) |} (| 5,62 |21,
*

l |68 o (20— 8 5 ()] ZC{ g —g()| + 1O~} 61, 5@ | +1) ,

where C is a positive constant independent of s, ¢ and z.

In fact, if we take for z given in K;(s)

z;(x)=2(-l[%)—x) ,  0=x<oo,

then we obtain inequalities of the above forms with a positive constant C. Under
(¥) we can show (cf. Kenmochi [13]) that the function t—¢} ,(Bu(t)) is absolutely

continuous on [0, 77]. This implies that t—|B(u)(t, )| x is continuous on [0, T],
so that B(u)=C(0, T]; X).

B. Let [,>0, g, u,, f be as in (b) of and let 4 be a function
in L*0, T). Then, by QVP(,, g, uo f, h) we mean the problem to find a
couple {/, u} satisfying (Bl), (B2) of Definition 1.2 and (B3)’ below instead of
(B3):

¢ ¢ Ly
(B3’ l(t):lo—Sog(r)dr—i—goh(r)dr-l—go 1o(x)d x

I ANACD) oo
+S S e, x)dxdr—gou(t, Odx, Vte[o, T1.

0Jo

This integral equation (B3)’ is corresponding to the following type of Stefan
condition

d—(é(tt) =—1Bw).@, IO—)P2pw)(t, IO—=)+h®, for 0<t<T.

In this case we should notice that the unknown boundary curve x=I[() is not

necessarily non-decreasing in {. However the same approach is possible to
QVP(ZO’ g: uOy f} h)'
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C. Finally we consider the problem to find a couple {/, u} satisfying

5.1 U— PU)zz=1 for {(t)>0, 0<x</(t)

subject to

(5.2) [(0)={, and if [,>0, then u(0, x)=u,(x) for 0<x<l,,
Blu)(t, 0)=g,() for 0<t< T,

(56.3) {
Bw)@, I(t)=0 for 0<t<T

and

(5.4) %%)«:——‘B(u)x(t, I(tH—) for 0<t<T,

where /,=0 is given as well as u,=0 in W%, o) with u,=0 on [/, o), /=0
in L¥0, T; H) and g,=0 in W»*Q0, T). By means of the family {ggﬁ,go; 0=1<T}
of convex functions given by

1 (= : i
PRI E- EXUR P Y
1.8 2)=

0o otherwise

with Iz'l,go(t):{zeW“(O, 00); z(0)=g,{), z=0 on [I(t), o)}, we can similarly
give a quasi-variational formulation associated with system {(5.1)-(5.4)}, in
which (5.4) is transformed into the integral equation

1= —}-ZS:go(r)dr —l—ZS:Oxuo(x)dx —ZS:xu(t, ©)dx

t(Ler
+2§0S0 xf(r, x)dxdr, Ve[, T].
Also in this case we can show the existence and uniqueness (in case f=0) of a
solution to this quasi-variational problem by modifying the arguments developed
in sections 2, 3 and 4.
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