A remark on non-enlargable Lie algebras

By Hideki OMORI

(Received April 21, 1980)

Let N be a connected, non-compact, separable, C^{∞} manifold of finite dimension, and let $\Gamma(T_N)$ be the Lie algebra of all C^{∞} vector fields on N. In this short note, we shall remark the following:

THEOREM. There is no "infinite dimensional Lie group" with the Lie algebra $\Gamma(T_N)$.

The above result shows that Lie's third theorem does not hold in a sense in case of infinite dimensional Lie algebras, but of course it depends how we define the concept of infinite dimensional Lie groups. (See also § 3 below.) Thus to give a precise statement of the above theorem we have to fix at first the meaning of "infinite dimensional Lie groups". However, since the result that we want to obtain is a negative one, we shall fix here the definition as wide as possible.

§1. Definition of infinite dimensional Lie groups.

Let G be an abstract group. As usual, G^R denotes the group of all mappings of R into G, where the group operations are defined pointwisely. By G_e^R we denote the subgroup consisting of all $X \in G^R$ such that X(0) = e, the identity. For each $g \in G$, $X \in G_e^R$ we denote by A(g)X an element of G_e^R defined by $(A(g)X)(t) = gX(t)g^{-1}$. A is an action of G on G_e^R , which will be called the *adjoint action*.

A structure of an infinite dimensional Lie group on G is a triple $\{S, \mathfrak{g}, \pi\}$ of an adjoint invariant subgroup S of $G_{e}^{\mathbb{R}}$ such that if $g(t) \in S$ then $g(t+s)g(s)^{-1}$ $\in S$ for any s, an infinite dimensional topological Lie algebra \mathfrak{g} and a homomorphism π of S onto the underlying additive group of \mathfrak{g} satisfying the following: (a) For every $g \in G$, there is an automorphism $\operatorname{Ad}(g)$ of \mathfrak{g} such that $\pi(A(g)X) = \operatorname{Ad}(g)\pi(X)$.

(b) For every $X \in S$ and $v \in \mathfrak{g}$, the mapping $t \mapsto \operatorname{Ad} (X(t))v$ is of class C^{∞} such that $d/dt|_{t=0}$ $\operatorname{Ad} (X(t))v = [u, v]$, where $u = \pi(X)$ and [,] is the Lie bracket product defined on \mathfrak{g} . (See [2], [3] for the definition of differentiability.)

(c) There is a mapping exp: $\mathfrak{g} \rightarrow G$ such that for every $u \in \mathfrak{g}$, $X(t) = \exp t u$ is an element of S, $\{\exp tu : t \in \mathbf{R}\}$ is a one parameter subgroup of G and $\pi(X)$

=u.

An element of S will be called a *smooth curve* in G, and g will be called the *Lie algebra of G*. A group with a structure stated above will be called an *infinite dimensional Lie group*.

§2. Proof of Theorem.

Assume for a while that there is an infinite dimensional Lie group G having the Lie algebra $\Gamma(T_N)$. As N is non-compact, there is $u \in \Gamma(T_N)$ which is not a complete vector field on N. Nevertheless by assumption (c), exp tu is a *smooth* one parameter subgroup of G, and hence Ad (exp tu): $\Gamma(T_N) \rightarrow \Gamma(T_N)$ is a one parameter automorphism group.

Let \mathfrak{g}_x be the isotropy subalgebra of $\boldsymbol{\Gamma}(T_N)$ at $x \in N$. Then, by Theorem 3 of [1], \mathfrak{g}_x is characterized by a maximal finite codimensional subalgebra of $\boldsymbol{\Gamma}(T_N)$, and by Theorem 2 of [1] there is a one parameter family ϕ_t of C^{∞} diffeomorphisms of N onto itself such that

(1)
$$\operatorname{Ad}(\exp tu)v = \operatorname{Ad}(\phi_t)v,$$

where Ad $(\phi_t)v$ is defined by $(Ad(\phi_t)v)(x) = d\phi_t v(\phi_t^{-1}(x))$. Recall that ϕ_t is defined by

(2)
$$\operatorname{Ad}(\exp tu)\mathfrak{g}_x = \mathfrak{g}_{\phi_t(x)}$$

By (2) we get that ϕ_t is a one parameter subgroup of C^{∞} diffeomorphisms of N onto itself.

By the assumed property (b), we see easily

(3)
$$\frac{d}{dt} \operatorname{Ad} (\exp tu) v = [u, \operatorname{Ad} (\exp tu) v].$$

Using (1) and the assumption (b), we see that $\operatorname{Ad}(\phi_t)v$ is C^{∞} in t such that

(4)
$$\frac{d}{dt} \operatorname{Ad}(\phi_t) v = [u, \operatorname{Ad}(\phi_t) v]$$

for every $v \in \mathbf{\Gamma}(T_N)$. Remark that the above equality makes sense on every open subset of N.

For a relatively compact open subset U of N, we denote by ϕ_t a local one parameter group on U generated by u. We assume ϕ_t is defined for t such that $|t| < \varepsilon$, $\varepsilon > 0$. For every $v \in \Gamma(T_N)$, Ad $(\phi_t)v$ is well-defined as a local vector field on U, and it is easy to see that

(5)
$$\frac{d}{dt} \operatorname{Ad}(\phi_t^{-1})v = -[u, \operatorname{Ad}(\phi_t^{-1})v], \quad |t| < \varepsilon$$

708

on U. Remark also that $\operatorname{Ad}(\phi_t^{-1})u = u$ on U. Now, on U

$$\frac{d}{dt} \operatorname{Ad}(\phi_t^{-1}) \operatorname{Ad}(\phi_t)v = -[u, \operatorname{Ad}(\phi_t^{-1}) \operatorname{Ad}(\phi_t)v] + \operatorname{Ad}(\phi_t^{-1})[u, \operatorname{Ad}(\phi_t)v].$$

Since Ad $(\phi_t^{-1})[u, w] = [Ad(\phi_t^{-1})u, Ad(\phi_t^{-1})w]$ on U, we see that the above quantity is 0 on U for every $v \in \Gamma(T_N)$. Hence considering at each point on U, we get Ad $(\phi_t)v = Ad(\phi_t)v$ on U. Since v is arbitrary we get $\phi_t = \phi_t$ on U, hence $\phi_t(x)$ is an integral curve of u for every $x \in U$. Note that U can be chosen arbitrary. Thus, one can conclude that $\phi_t(x)$ is an integral curve of ufor every $x \in N$ and for all t. This contradicts the incompleteness of u.

§3. Several remarks.

There is another definition of infinite dimensional Lie groups. By using the notion of differentiability defined in [2], [3], one can define a concept of C^{∞} manifolds modeled on a topological vector space. Thus, G is an infinite dimensional Lie group modeled on a topological vector space E, if G is a C^{∞} manifold and a topological group such that the group operations are C^{∞} . If E is a Banach space (resp. Hilbert space, Fréchet space), then G is called a Banach-Lie group (resp. Hilbert-Lie group, Fréchet-Lie group). In all such Lie groups, one can define naturally the notion of smooth curves and the Lie algebra of G using the tangent space at the identity.

It is well-known that every Banach-Lie group satisfies (a)-(c) in the previous section. Moreover, every strong ILB-Lie group defined in [5] also satisfies the same properties. It is not hard to see that every Fréchet-Lie group satisfies conditions (a) and (b), but it is not known yet whether there exists an exponential mapping exp.

Recall also the result of Van Est and Korthagen [6]. They have proved that there exists a Banach-Lie algebra which is not a Lie algebra of any Banach-Lie group, although their example is made by a pathological manner. Our Lie algebra $\Gamma(T_N)$ is a very concrete one, but we can not make $\Gamma(T_N)$ a Banach-Lie algebra (cf. Theorem III in [4]). It can only be a Fréchet-Lie algebra under a standard topology. Therefore, if $\Gamma(T_N)$ could be a Lie algebra of a Fréchet-Lie group, then it would follow the existence of Fréchet-Lie groups without exponential mappings. Even if this is true, the author hesitates to call such a group an infinite dimensional Lie group.

H. Omori

References

- [1] I. Amemiya, Lie algebra of vector fields and complex structure, J. Math. Soc. Japan, 27 (1975), 545-549.
- [2] J. Leslie, On a differential structure for the group of diffeomorphisms, Topology, 6 (1967), 263-271.
- [3] J. Leslie, Two classes of classical subgroups of Diff(M), J. Differential Geometry, 5 (1971), 427-435.
- [4] H. Omori and P. de la Harpe, About interactions between Banach-Lie groups and finite dimensional manifolds, J. Math. Kyoto Univ., 12 (1972), 543-570.
- [5] H. Omori, Infinite dimensional Lie transformation groups, Lecture Notes in Math. Springer, 427, 1974.
- [6] W. Van Est and T. Korthagen, Non-enlargible Lie algebras, Indag. Math., 26 (1964) 15-31.

Hideki Omori

Department of Mathematics College of Liberal Arts and Science Okayama University Tsushima, Okayama 700 Japan