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A remark on non-enlargable Lie algebras
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Let $N$ be a connected, non-compact, separable, $C^{\infty}$ manifold of finite dimen-
sion, and let $\Gamma(T_{N})$ be the Lie algebra of all $C^{\infty}$ vector fields on $N$. In this
short note, we shall remark the following:

THEOREM. There is no “infinite dimensional Lie group” with the Lie algebra
$\Gamma(T_{N})$ .

The above result shows that Lie’s third theorem does not hold in a sense
in case of infinite dimensional Lie algebras, but of course it depends how we
define the concept of infinite dimensional Lie groups. (See also \S 3 below.) Thus
to give a precise statement of the above theorem we have to fix at first the
meaning of ”infinite dimensional Lie groups”. However, since the result that
we want to obtain is a negative one, we shall fix here the definition as wide as
possible.

\S 1. Definition of infinite dimensional Lie groups.

Let $G$ be an abstract group. As usual, $G^{R}$ denotes the group of all map-
pings of $R$ into $G$ , where the group operations are defined pointwisely. By $G_{e}^{R}$

we denote the subgroup consisting of all $X\in G^{R}$ such that $X(O)=e$ , the identity.
For each $g\in G,$ $X\in G_{e}^{R}$ we denote by $A(g)X$ an element of $G_{e}^{R}$ defined by
$(A(g)X)(t)=gX(t)g^{-1}$ . $A$ is an action of $G$ on $G_{e}^{R}$ , which will be $ca!led$ the
adjoint action.

A structure of an infinite dimensional Lie group on $G$ is a triple $\{S, \mathfrak{g}, \pi\}$

of an adjoint invariant subgroup $S$ of $G_{e}^{R}$ such that if $g(t)\in S$ then $g(t+s)g(s)^{-1}$

$\in S$ for any $s$ , an infinite dimensional topological Lie algebra $\mathfrak{g}$ and a homomor-
phism $\pi$ of $S$ onto the underlying additive group of $\mathfrak{g}$ satisfying the following:
(a) For every $g\in G$ , there is an automorphism Ad $(g)$ of $\mathfrak{g}$ such that
$\pi(A(g)X)=Ad(g)\pi(X)$ .
(b) For every $X\in S$ and $v\in \mathfrak{g}$ , the mapping $ t-\rightarrow Ad(X(t))\nu$ is of class $C^{\infty}$ such
that $d/dt|_{t=0}$ Ad $(X(t))v=[u, v]$ , where $u=\pi(X)$ and $[, ]$ is the Lie bracket
product defined on $\mathfrak{g}$ . (See [2], [3] for the definition of differentiability.)
(c) There is a mapping $exp$ : $\mathfrak{g}\rightarrow G$ such that for every $u\in \mathfrak{g},$ $ X(t)=\exp$ tu
is an element of $S,$ {$\exp$ tu; $t\in R$ } is a one parameter subgroup of $G$ and $\pi(X)$
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$=u$ .
An element of $S$ will be called a smooth curve in $G$ , and $\mathfrak{g}$ will be called

the Lie algebra of $G$ . A group with a structure stated above will be called an
infinite dimensional Lie group.

\S 2. Proof of Theorem.

Assume for a while that there is an infinite dimensional Lie group $G$ having
the Lie algebra $\Gamma(T_{N})$ . As $N$ is non-compact, there is $u\in\Gamma(T_{N})$ which is not
a complete vector field on $N$. Nevertheless by assumption (c), exp $tu$ is a smooth
one parameter subgroup of $G$ , and hence Ad ($\exp$ tu): $\Gamma(T_{N})\rightarrow\Gamma(T_{N})$ is a one
parameter automorphism group.

Let $\mathfrak{g}_{x}$ be the isotropy subalgebra of $\Gamma(T_{N})$ at $x\in N$. Then, by Theorem 3
of [1], $\mathfrak{g}_{x}$ is characterized by a maximal finite codimensional subalgebra of
$\Gamma(T_{N})$ , and by Theorem 2 of [1] there is a one parameter family $\phi_{t}$ of $C^{\infty}$ dif-
feomorphisms of $N$ onto itself such that

(1) Ad $(\exp tu)v=Ad(\phi_{t})v$ ,

where Ad $(\phi_{t})v$ is defined by (Ad $(\phi_{t})v$) $(x)=d\phi_{t}v(\phi_{t}^{-1}(x))$ . Recall that $\phi_{t}$ is de-
fined by

(2) Ad $(\exp tu)g_{x}=\mathfrak{g}_{\phi_{t}(x)}$ .
By (2) we get that $\phi_{t}$ is a one parameter subgroup of $C^{\infty}$ diffeomorphisms of $N$

onto itself.
By the assumed property (b), we see easily

(3) $\frac{d}{dt}$ Ad $(\exp tu)v=$ [ $u$ , Ad $(\exp tu)v$].

Using (1) and the assumption (b), we see that Ad $(\phi_{t})v$ is $C^{\infty}$ in $t$ such that

(4) $\frac{d}{dt}$ Ad $(\phi_{t})v=$ [ $u$ , Ad $(\phi_{t})v$]

for every $v\in\Gamma(T_{N})$ . Remark that the above equality makes sense on every
open subset of $N$.

For a relatively compact open subset $U$ of $N$, we denote by $\psi_{t}$ a local one
parameter group on $U$ generated by $u$ . We assume $\psi_{t}$ is dePned for $t$ such
that $|t|<\epsilon,$ $\epsilon>0$ . For every $v\in\Gamma(T_{N})$ , Ad $(\psi_{t})v$ is well-dePned as a local vector
field on $U$ , and it is easy to see that

(5) $\frac{d}{dt}$ Ad $(\psi_{t}^{-1})v=-$ [ $u$ , Ad $(\psi_{t}^{-1})v$], $|t|<\epsilon$ ,
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on $U$ . Remark also that Ad $(\psi_{t}^{-1})u=u$ on $U$ .
Now, on $U$

$--Add(\psi_{t}^{-1})$ Ad $(\phi_{t})v=-$ [ $u$ , Ad $(\psi_{t}^{-1})$ Ad $(\phi_{t})v$] $+Ad(\psi_{t}^{-1})$[ $u$ , Ad $(\phi_{t})v$].
$dt$

Since Ad $(\psi_{t}^{-1})[u, w]=$ [$Ad(\psi_{t}^{-1})u$ , Ad $(\psi_{t}^{-1})w$] on $U$ , we see that the above
quantity is $0$ on $U$ for every $v\in\Gamma(T_{N})$ . Hence considering at each point on $U$ ,

we get Ad $(\phi_{t})v=Ad(\psi_{t})v$ on $U$ . Since $v$ is arbitrary we get $\phi_{t}=\psi_{t}$ on $U$ ,

hence $\phi_{t}(x)$ is an integral curve of $u$ for every $x\in U$ . Note that $U$ can be
chosen arbitrary. Thus, one can conclude that $\phi_{t}(x)$ is an integral curve of $u$

for every $x\in N$ and for all $t$ . This contradicts the incompleteness of $u$ .

\S 3. Several remarks.

There is another definition of infinite dimensional Lie groups. By using the
notion of differentiability defined in [2], [3], one can define a concept of $C^{\infty}$

manifolds modeled on a topological vector space. Thus, $G$ is an inPnite dimen-
sional Lie group modeled on a topological vector space $E$ , if $G$ is a $C^{\infty}$ manifold
and a topological group such that the group operations are $C^{\infty}$ . If $E$ is a Banach
space (resp. Hilbert space, Fr\’echet space), then $G$ is called a Banach-Lie group
(resp. Hilbert-Lie group, Fr\’echet-Lie group). In all such Lie groups, one can
define naturally the notion of smooth curves and the Lie algebra of $G$ using the
tangent space at the identity.

It is well-known that every Banach-Lie group satisfies $(a)-(c)$ in the pre-
vious section. Moreover, every strong ILB-Lie group defined in [5] also satisfies
the same properties. It is not hard to see that every Fr\’echet-Lie group satisfies
conditions (a) and (b), but it is not known yet whether there exists an expo-
nential mapping $exp$ .

Recall also the result of Van Est and Korthagen [6]. They have proved that
there exists a Banach-Lie algebra which is not a Lie algebra of any Banach-Lie
group, although their example is made by a pathological manner. Our Lie
algebra $\Gamma(T_{N})$ is a very concrete one, but we can not make $\Gamma(T_{N})$ a Banach-
Lie algebra (cf. Theorem III in [4]). It can only be a Fr\’echet-Lie algebra under
a standard topology. Therefore, if $\Gamma(T_{N})$ could be a Lie algebra of a Fr\’echet-
Lie group, then it would follow the existence of Fr\’echet-Lie groups without
exponential mappings. Even if this is true, the author hesitates to call such a
group an infinite dimensional Lie group.
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