Complexes and L-structures

By Keiô NAGAMI and Kôichi TSUDA

(Received Feb. 4, 1980)

§ 0. Introduction.

The purpose of this paper is to study the simplicial complex K with Whitehead topology from the point of view of L-structures. It will be shown that the capacity of K to admit L-structures decreases as the dimension of K increases. As a consequence we know that there is a gap between the class of M_1 -spaces and the class of weak L-spaces. Throughout the paper K is a simplicial complex with Whitehead topology and simplexes of K are so-called open ones. K^n denotes the n-section of K. As for terminology refer to the first author [3], [4] and [5].

§ 1. K with dim $K \leq 2$.

1.1. THEOREM. If dim $K \leq 1$, then K is an L-space.

PROOF. When dim $K \leq 0$, K is discrete and metrizable. Consider the case when dim K=1. Let H be an arbitrary closed set of K. Let $\{s_{\alpha}: \alpha \in A\}$ be the set of 1-simplexes of K. Let U be an open set of K with

$$K^{0}-H\subset U\subset \bar{U}\subset K-H$$
.

For each $\alpha \in A$, let \mathcal{U}_{α} be an approaching anti-cover of $(H \cap \overline{s}_{\alpha}) \cup \partial s_{\alpha}$ in \overline{s}_{α} . Set

$$\mathcal{U} = (\bigcup \{\mathcal{U}_{\alpha} : \alpha \in A\}) \cup \{U\}.$$

Then \mathcal{U} is as can easily be seen an approaching anti-cover of H in K. That completes the proof.

1.2. THEOREM. Let K be the 2-section of an infinite full complex. Then K is not an L-space.

PROOF. Let s be a 1-simplex of K and $\{s_i : i=1, 2, \cdots\}$ a sequence of distinct 2-simplexes of K having s as their common face. Let p be an edge point of s and $\{p_i\}$ a sequence of points of s with $\lim p_i = p$. Let \mathcal{U} be an arbitrary anti-cover of $\{p\}$. Choose $U_i \in \mathcal{U}$ with $p_i \in U_i$. Since $U_i \cap s_i \neq \emptyset$ for any i, we can pick a point $q_i \in U_i \cap s_i$ for each i. Set

$$Z = \{q_i : i=1, 2, \dots\}.$$

Then Z is a closed set in K with $Z \cap \{p\} = \emptyset$. The inequalities

$$p \in \text{Cl}\{p_i\} \subset \text{Cl} \cup U_i \subset \text{Cl} \cup U(Z)$$

show that U cannot be approaching to p. That completes the proof.

Since each Lašnev space is an L-space by the first author [3, Theorem 1.6], K in the above cannot be a Lašnev space. This fact answers Nagata [6, Problem 3] negatively.

§ 2. K with dim $K < \infty$.

Before stating the next theorem, let us illustrate the lifting-up process. Let $\{s_{\alpha}: \alpha \in A_n\}$ be the set of *n*-simplexes of K. Let p_{α} be an arbitrary but fixed point of s_{α} . If $n \ge 1$ and $\alpha \in A_n$, consider \bar{s}_{α} as an *n*-ball of radius 1 with the center p_{α} whose surface is $\partial s_{\alpha} = \bar{s}_{\alpha} - s_{\alpha}$. Let $s_{\alpha}(\varepsilon)$ be the open ball with the center p_{α} of radius ε , $0 < \varepsilon < 1$. Set

$$S_n(\varepsilon) = \bigcup \{ s_\alpha(\varepsilon) : \alpha \in A_n \}.$$

If G is a subset of ∂s_{α} , then $[G, p_{\alpha}]$ denotes the sum of all segments $\overline{p_{\alpha}q}$, $q \in G$. Set

$$G(\alpha, \epsilon) = [G, p_{\alpha}] - \overline{s_{\alpha}(\epsilon)},$$

$$G[\alpha, \varepsilon] = [G, p_{\alpha}] - s_{\alpha}(\varepsilon)$$
.

When G is a subset of K^{n-1} , set

$$G(n, \varepsilon) = \bigcup \{ (G \cap \partial s_{\alpha})(\alpha, \varepsilon) : \alpha \in A_n \},$$

$$G\lceil n, \varepsilon \rceil = \bigcup \{ (G \cap \partial s_{\alpha}) \lceil \alpha, \varepsilon \rceil : \alpha \in A_n \}.$$

When G is open or closed in K^{n-1} , G is lifted up to $G(n, \varepsilon)$ or $G[n, \varepsilon]$ which is open or closed in K^n respectively. Set

$$[G, p_{\alpha}) = [G, p_{\alpha}] - \{p_{\alpha}\},$$

$$G \lceil n \rceil = \bigcup \{ \lceil G \cap \partial s_{\alpha}, p_{\alpha} \rceil : \alpha \in A_n \},$$

$$G(n) = \bigcup \{ [G \cap \partial s_{\alpha}, p_{\alpha}) : \alpha \in A_n \}.$$

When G is open or closed in K^{n-1} , G(n) or G[n] is open or closed in K^n respectively.

2.1. THEOREM. If K is finite-dimensional, K is a free L-space.

PROOF. Set dim K=m. When $m \le 1$, K is an L-space by Theorem 1.1 and is of course a free L-space. Consider the case when $m \ge 2$. For each $n \le m$ and each $\alpha \in A_n$ let \mathcal{F}_{α} be a countable network of s_{α} consisting of compact sets. Set

$$\mathcal{F}_n = \bigcup \{\mathcal{F}_\alpha : \alpha \in A_n\},$$

 $\mathcal{F} = \bigcup \{\mathcal{F}_n : n = 0, 1, \dots, m\}.$

For each $F \in \mathcal{F}_{\alpha}$, $\alpha \in A_n$, let $U_i(F)$, $i=1, 2, \cdots$, be open neighborhoods of F in \bar{s}_{α} such that

$$U_i(F) \supset \operatorname{Cl} U_{i+1}(F)$$
, $i=1, 2, \dots$,
 $\operatorname{Cl} U_i(F) \cap \partial s_{\alpha} = \emptyset$.

Let $\{a_i\}$ be a sequence with

$$1/4 < a_1 < a_2 < \cdots$$
, $\lim a_i = 1/3$.

When n < m,

$$\{U_i(F)(n+1, a_i): i=1, 2, \cdots\}$$

forms a system of neighborhoods of F[n+1, 1/3] in K^{n+1} . When n+1 < m, $U_i(F)(n+1, a_i)$ is lifted up to $U_i(F)(n+1, a_i)(n+2, a_i)$ and F[n+1, 1/3] is lifted up to F[n+1, 1/3][n+2, 1/3]. Continuing in this manner F is lifted up to

$$\hat{F} = F \lceil n+1, 1/3 \rceil \lceil n+2, 1/3 \rceil \cdots \lceil m, 1/3 \rceil$$

and $U_i(F)$ is lifted up to

$$U_i(\hat{F}) = U_i(F)(n+1, a_i)(n+2, a_i) \cdots (m, a_i)$$
.

When n=m, set merely $\hat{F}=F$. Each $U_i(\hat{F})$ is an open set of K such that

$$\operatorname{Cl} U_{i+1}(\widehat{F}) \subset U_i(\widehat{F}), \quad i=1, 2, \dots,$$

$$\hat{F} = \bigcap_{i=1}^{\infty} U_i(\hat{F})$$
.

Set

$$CV_{\hat{F}} = \{K - Cl\ U_2(\hat{F})\} \cup \{U_i(\hat{F}) - Cl\ U_{i+2}(\hat{F}): i=1, 2, \cdots\}.$$

Then $CV_{\widehat{F}}$ is an anti-cover of \widehat{F} with respect to which $U_i(\widehat{F})$ is canonical for $i=1, 2, \cdots$. Set

$$\hat{\mathcal{F}}_n = \{ \hat{F} : F \in \mathcal{F}_n \}.$$

$$\hat{\mathcal{G}} = \{\hat{F} : F \in \mathcal{G}\}.$$

Since each \mathcal{F}_n is σ -discrete in K, $\hat{\mathcal{F}}_n$ is also σ -discrete in K and hence $\hat{\mathcal{F}}$ is σ -discrete in K.

Let $\{b_i\}$ be a sequence with

$$b_1 = 1/3 < b_2 = 1/2 < b_3 < \dots$$
, $\lim b_i = 1$

and $\{c_i\}$ a sequence with

$$c_1 = 1/2 > c_2 = 1/3 > \cdots$$
, $\lim c_i = 0$.

Set

$$S_j = \{S_j(c_i) - \text{Cl } S_j(c_{i+2}) : i=1, 2, \dots\}, \quad j=1, \dots, m.$$

Set

$$W_{\alpha} = \{s_{\alpha}(b_{2})\} \cup \{s_{\alpha}(b_{i+2}) - \text{Cl } s_{\alpha}(b_{i}) : i = 1, 2, \dots\}, \ \alpha \in A_{n+1},$$

 $W_{n+1} = \bigcup \{W_{\alpha} : \alpha \in A_{n+1}\}.$

If $n+2 \leq m$, set

$$\mathcal{W}_{\alpha}(n+2, 1/3) = \{W(n+2, 1/3) : W \in \mathcal{W}_{\alpha}\}, \ \alpha \in A_{n+1},$$

 $\mathcal{W}_{\alpha}(n+2) = \{W(n+2) : W \in \mathcal{W}_{\alpha}\}, \ \alpha \in A_{n+1}.$

These types of abbreviations are used throughout in the following. If $n+2 \le m$, set

$$\begin{split} &\mathcal{I}_{\alpha}\{n+2\} = \mathcal{W}_{\alpha}(n+2) \wedge \mathcal{S}_{n+2}\,, \quad \alpha \in A_{n+1}\,, \\ &\mathcal{U}_{\alpha}\{n+2\} = \mathcal{W}_{\alpha}(n+2,\,1/3)\,, \quad \alpha \in A_{n+1}\,, \\ &\mathcal{W}_{\alpha}\{n+2\} = \mathcal{U}_{\alpha}\{n+2\} \cup \mathcal{I}_{\alpha}\{n+2\}\,, \quad \alpha \in A_{n+1}\,, \\ &\mathcal{I}_{n+1}\{n+2\} = \cup \left\{\mathcal{I}_{\alpha}\{n+2\} : \, \alpha \in A_{n+1}\right\}\,, \\ &\mathcal{U}_{n+1}\{n+2\} = \cup \left\{\mathcal{U}_{\alpha}\{n+2\} : \, \alpha \in A_{n+1}\right\}\,, \\ &\mathcal{W}_{n+1}\{n+2\} = \cup \left\{\mathcal{W}_{\alpha}\{n+2\} : \, \alpha \in A_{n+1}\right\}\,. \end{split}$$

If moreover $n+3 \le m$, set further

$$\mathcal{I}_{\alpha}\{n+3\} = \mathcal{W}_{\alpha}\{n+2\}(n+3) \wedge \mathcal{S}_{n+3}, \quad \alpha \in A_{n+1},$$

$$\mathcal{U}_{\alpha}\{n+3\} = \mathcal{W}_{\alpha}\{n+2\}(n+3, 1/3), \quad \alpha \in A_{n+1},$$

$$\mathcal{W}_{\alpha}\{n+3\} = \mathcal{U}_{\alpha}\{n+3\} \cup \mathcal{I}_{\alpha}\{n+3\}, \quad \alpha \in A_{n+1},$$

$$\mathcal{I}_{n+1}\{n+3\} = \cup \{\mathcal{I}_{\alpha}\{n+3\} : \alpha \in A_{n+1}\},$$

$$\mathcal{U}_{n+1}\{n+3\} = \cup \{\mathcal{U}_{\alpha}\{n+3\} : \alpha \in A_{n+1}\},$$

$$\mathcal{W}_{n+1}\{n+3\} = \cup \{\mathcal{W}_{\alpha}\{n+3\} : \alpha \in A_{n+1}\}.$$

Continuing in this manner we get at last

$$\begin{split} &\mathcal{I}_{\alpha}\{m\} = \mathcal{W}_{\alpha}\{m-1\}(m) \wedge \mathcal{S}_{m} \;, \quad \alpha \in A_{n+1} \;, \\ &\mathcal{U}_{\alpha}\{m\} = \mathcal{W}_{\alpha}\{m-1\}(m,\,1/3) \;, \quad \alpha \in A_{n+1} \;, \\ &\mathcal{D}_{\alpha} = \mathcal{W}_{\alpha}\{m\} = \mathcal{U}_{\alpha}\{m\} \cup \mathcal{I}_{\alpha}\{m\} \;, \quad \alpha \in A_{n+1} \;, \\ &\mathcal{I}_{n+1}\{m\} = \bigcup \left\{\mathcal{I}_{\alpha}\{m\} \;:\; \alpha \in A_{n+1}\right\} \;, \end{split}$$

$$\mathcal{U}_{n+1}\{m\} = \bigcup \{\mathcal{U}_{\alpha}\{m\} : \alpha \in A_{n+1}\},$$

 $\mathcal{D}_{n} = \mathcal{W}_{n+1}\{m\} = \bigcup \{\mathcal{W}_{\alpha}\{m\} : \alpha \in A_{n+1}\}.$

Then \mathcal{D}_n is an open collection of K.

Let α and β be distinct elements of A_{n+1} . Since $\mathcal{W}_{\alpha}^{\#}=s_{\alpha}$, then $\mathcal{W}_{\alpha}^{\#}\cap\mathcal{W}_{\beta}^{\#}=s_{\alpha}\cap s_{\beta}=\emptyset$. Since $\mathcal{W}_{\alpha}\{n+2\}^{\#}=\mathcal{W}_{\alpha}(n+2)^{\#}=s_{\alpha}(n+2)$ and $s_{\alpha}(n+2)\cap s_{\beta}(n+2)=\emptyset$, then $\mathcal{W}_{\alpha}\{n+2\}^{\#}\cap\mathcal{W}_{\beta}\{n+2\}^{\#}=\emptyset$. At last $\mathcal{D}_{\alpha}^{\#}\cap\mathcal{D}_{\beta}^{\#}=\emptyset$. Set

$$\widetilde{K^n} = K^n [n+2][n+3] \cdots [m], \quad n \leq m-2,$$

$$\widetilde{K^{m-1}} = K^{m-1}.$$

Since

$$K^{n+2} = S_{n+1}(n+2) \cup K^{n}[n+2],$$

 $\cup \{ \mathcal{W}_{\alpha} \{n+2\} ^{\#} : \alpha \in A_{n+1} \} = S_{n+1}(n+2),$

then $\mathcal{W}_{n+1}\{n+2\} = \bigcup \{\mathcal{W}_{\alpha}\{n+2\} : \alpha \in A_{n+1}\}$ is an anti-cover of $K^n[n+2]$ in K^{n+2} . This fact implies in turn that $\mathcal{W}_{n+1}\{n+3\}$ is an anti-cover of $K^n[n+2][n+3]$. At last we know that \mathcal{D}_n is an anti-cover of \widetilde{K}^n .

Set

$$\mathcal{L} = \widehat{\mathcal{I}} \cup (\bigcup_{n=0}^{m-1} \widetilde{K^n}).$$

Then \mathcal{L} is a σ -discrete closed cover of K. To prove that \mathcal{L} with the anticovers $\mathcal{O}_{\widehat{F}}(\widehat{F} \in \widehat{\mathcal{F}})$ and \mathcal{D}_n $(n=0, 1, \cdots, m-1)$ forms a free L-structure of K, let x be an arbitrary point of K and E an arbitrary open neighborhood of x in K. Let n be the number with $x \in K^n - K^{n-1}$. Let $\gamma \in A_n$ be the index with $x \in s_{\gamma}$ and F an element of \mathcal{F}_{γ} with $x \in F \subset E$. Let k be a number with

$$F \subset U_k(F) \subset \operatorname{Cl} U_k(F) \subset E$$
.

When n=m, $\hat{F}=F$, $U_k(\hat{F})=U_k(F)$ and $U_k(\hat{F})$ is canonical. Consider the case when n < m. Set

$$B_i = \{ \alpha \in A_i : s_\alpha > s_r \}, \quad i = n+1, \dots, m.$$

Then there exists a function ε_{n+1} : $B_{n+1} \rightarrow (1/2, 1)$ such that

$$(\operatorname{Cl} U_k(F)) \lceil n+1, \varepsilon_{n+1}(\alpha_{n+1}) \rceil \subset E, \alpha_{n+1} \in B_{n+1}$$
.

When n+1 < m, there exists one more function $\varepsilon_{n+2} : B_{n+2} \to (1/2, 1)$ such that

$$(\operatorname{Cl} U_k(F))[n+1, \, \varepsilon_{n+1}(\alpha_{n+1})][n+2, \, \varepsilon_{n+2}(\alpha_{n+2})] \subset E$$

$$\alpha_{n+1} \in B_{n+1}, \ \alpha_{n+2} \in B_{n+2}$$
.

Continuing this manner we obtain a sequence of functions:

$$\varepsilon_i: B_i \rightarrow (1/2, 1), \quad i=n+1, \dots, m,$$

satisfying the condition:

$$(\operatorname{Cl} U_k(F))[n+1, \, \varepsilon_{n+1}(\alpha_{n+1})] \cdots [m, \, \varepsilon_m(\alpha_m)] \subset E,$$

$$\alpha_i \in B_i \, (i=n+1, \, \cdots, \, m).$$

Set

$$C_{j} = \bigcup \{ U_{k}(F)(n+1, \varepsilon_{n+1}(\alpha_{n+1})) \cdots (j, \varepsilon_{j}(\alpha_{j})) : \alpha_{i} \in B_{i} \ (i=n+1, \cdots, j) \},$$

$$j=n+1, \cdots, m.$$

Then $C_m \subset E$.

For each j with $n+1 \le j \le m$ and for each $\alpha \in B_j$ let $t(\alpha)$ be a number with

$$\varepsilon_j(\alpha) < b_{t(\alpha)} < 1$$
.

Set

$$P_{j} = \bigcup \{ \text{Cl } s_{\alpha}(b_{t(\alpha)}) : \alpha \in B_{j} \}, \quad j = n+1, \dots, m,$$

$$\hat{P}_{j} = P_{j} [j+1, 1/4] \dots [m, 1/4], \quad j = n+1, \dots, m,$$

$$P_{jh} = \bigcup \{ \text{Cl } s_{\alpha}(b_{t(\alpha)+h}) : \alpha \in B_{j} \}, \quad j = n+1, \dots, m, h = 1, 2, \dots,$$

$$Q_{jh} = \bigcup \{ s_{\alpha}(b_{t(\alpha)+h}) : \alpha \in B_{j} \}, \quad j = n+1, \dots, m, h = 1, 2, \dots.$$

Then $K-\hat{P}_j$ is a canonical neighborhood of \widetilde{K}^{j-1} with respect to \mathcal{D}_{j-1} for $j=n+1,\cdots,m$. We merely prove that $K-\hat{P}_{n+1}$ is a canonical neighborhood of \widetilde{K}^n with respect to \mathcal{D}_n , since the rest is simple analogy. Set

$$\varphi(D) = \min\{i: D \cap K^{i} \neq \emptyset\}, \quad D \in \mathcal{D}_{n},$$

$$\mathcal{D}_{ni} = \{D \in \mathcal{D}_{n}: \varphi(D) \leq i, D \cap \hat{P}_{n+1} \neq \emptyset\}, \quad n+1 \leq i \leq m.$$

$$\mathcal{D}_{n, n+1}^{*} = Q_{n+1, 1}(n+2, 1/3) \cdots (m, 1/3),$$

$$\mathcal{D}_{n, n+2}^{*} = Q_{n+1, 1}(n+2, c_{3})(n+3, 1/3) \cdots (m, 1/3),$$

$$\mathcal{D}_{nm}^{\#} = Q_{n+1,1}(n+2, c_3) \cdots (m, c_3).$$

Since

Then

$$\{D \in \mathcal{D}_n : D \cap \hat{P}_{n+1} \neq \emptyset\} = \mathcal{D}_{nm},$$

$$Cl(Q_{n+1,1}(n+2, c_3) \cdots (m, c_3)) = P_{n+1,1}[n+2, c_3] \cdots [m, c_3],$$

then

$$Cl \mathcal{D}_n(K - \hat{P}_{n+1}) = P_{n+1, 1}[n+2, c_3] \cdots [m, c_3].$$

Analogously we obtain, for an arbitrary positive integer r, the following equality:

Cl
$$\mathcal{D}_n^r(K - \hat{P}_{n+1}) = P_{n+1, r}[n+2, c_{r+2}] \cdots [m, c_{r+2}].$$

Since

$$P_{n+1,r}[n+2, c_{r+2}] \cdots [m, c_{r+2}] \cap \widetilde{K^n} = \emptyset$$

then $K-\hat{P}_{n+1}$ is a canonical neighborhood of $\widetilde{K^n}$ with respect to \mathcal{D}^n . Last let us prove the inequality:

$$U_k(\hat{F}) \cap (\bigcap_{j=n+1}^m (K - \hat{P}_j)) \subset E$$
.

Since $\varepsilon_{n+1}(\alpha) > a_k > 1/4$ ($\alpha \in B_{n+1}$), then

$$U_{k}(\hat{F}) - \hat{P}_{n+1} = U_{k}(F)(n+1, a_{k}) \cdots (m, a_{k}) - P_{n+1}[n+2, 1/4] \cdots [m, 1/4]$$

$$= (U_{k}(F)(n+1, a_{k}) - P_{n+1})(n+2, a_{k}) \cdots (m, a_{k})$$

$$\subset C_{n+1}(n+2, a_{k}) \cdots (m, a_{k}).$$

Hence

$$U_{k}(\hat{F}) - \hat{P}_{n+1} \cup \hat{P}_{n+2} = (U_{k}(\hat{F}) - \hat{P}_{n+1}) - \hat{P}_{n+2}$$

$$\subset C_{n+1}(n+2, a_{k}) \cdots (m, a_{k}) - P_{n+2}[n+3, 1/4] \cdots [m, 1/4]$$

$$= (C_{n+1}(n+2, a_{k}) - P_{n+2})(n+3, a_{k}) \cdots (m, a_{k})$$

$$\subset C_{n+2}(n+3, a_{k}) \cdots (m, a_{k}).$$

Continuing in this manner we get at last

$$U_k(\hat{F}) - \sum_{j=n+1}^m \hat{P}_j \subset C_m \subset E$$
.

Evidently

$$x \in \widehat{F} \cap \left(\bigcap_{j=n}^{m-1} \widetilde{K^j} \right)$$
.

Thus K is a free L-space and the proof is completed.

2.2. COROLLARY. If X is a CW-complex with dim $X < \infty$, then X is a free L-space.

PROOF. Let D be an n-cell of X and $f: \bar{s} \rightarrow D$ a characteristic map of an n-simplex \bar{s} to D (cf. Whitehead [8], p. 221). For a subset G of ∂D we can define for instance $G(n, \varepsilon)$ by:

$$G(n, \varepsilon) = f(f^{-1}(G)(n, \varepsilon)).$$

Thus lifting-up process can be applied for X and we can verify that X is a free L-space by analogous manner to the above theorem. That completes the proof.

§ 3. K with dim $K=\infty$.

3.1. Theorem. If K is a full complex spanned by a countably infinite number of vertexes, then K is not a free L-space.

PROOF. Assume that K admits a weak L-structure $(\mathcal{F}, \mathcal{U}_F (F \in \mathcal{F}))$. Let p be an arbitrary vertex of K. Let $\{F_1, F_2, \cdots\}$ be the set of elements of \mathcal{F} which contain p. Set

$$\mathcal{F}_n = \{F_1, \dots, F_n\}.$$

Let $\{s_{\alpha} : \alpha \in A\}$ be the set of all simplexes of K with $p \in \overline{s}_{\alpha}$. Let π be the property for subsets of K as follows:

A subset T of K is said to have the property π if $T \cap \bar{s}_{\alpha}$ is a neighborhood of p for each $\alpha \in A$.

Let \mathcal{H}_n be one of the maximal subcollections of \mathcal{F}_n such that \mathcal{H}_n^* does not have π . Set

$$H_n = \mathcal{H}_n^{\sharp}$$
, $\mathcal{G}_n = \mathcal{F}_n - \mathcal{H}_n$, $V_n = \bigcap \{H_n \cup F \colon F \in \mathcal{G}_n\}$, $V_{n\alpha} = Interior \ of \ V_n \cap \bar{s}_{\alpha} \ in \ \bar{s}_{\alpha}$, $\alpha \in A$.

Since $H_n \cup F$ has π for each $F \in \mathcal{Q}_n$, V_n has π too. Hence $V_{n\alpha}$ is an open neighborhood of p in \bar{s}_{α} for each $\alpha \in A$. Let β be an index of A such that $H_n \cap \bar{s}_{\beta}$ is not a neighborhood of p in \bar{s}_{β} . Let $\{p_i\}$ be a sequence of distinct points of $\bar{s}_{\beta} - H_n$ with $\lim p_i = p$. For each i and each $F \in H_n$ there exists an element $U(i, F) \in \mathcal{U}_F$ with $p_i \in U(i, F)$. Set

$$U(i) = \bigcap \{U(i, F) : F \in \mathcal{H}_n\}.$$

Then U(i) is an open neighborhood of p_i . Let $\{\alpha_1, \alpha_2, \dots\}$ be a sequence of indexes of A such that

$$s_{\beta} < s_{\alpha_i}$$
, $i=1, 2, \cdots$, $n < \dim s_{\alpha_1} < \dim s_{\alpha_2} < \cdots$.

Let k(i) be a number such that

$$p_j \in V_{n\alpha_i}$$
, $j \ge k(i)$, $k(1) < k(2) < \cdots$.

Since $V_{n\alpha_i} \cap U(k(i))$ is an open neighborhood of $p_{k(i)}$ in \bar{s}_{α_i} , then $s_{\alpha_i} \cap V_{n\alpha_i} \cap U(k(i)) \neq \emptyset$. Let $Z_n = \{q_i\}$ be a sequence of points such that

$$q_i \in s_{\alpha_i} \cap V_{n\alpha_i} \cap U(k(i))$$
, $i=1, 2, \cdots$.

Then $K-Z_n$ is an open neighborhood of p.

For each $F \in \mathcal{F}_n$ let W(F) be a semi-canonical neighborhood of F. Set

$$W = \bigcap \{W(F) : F \in \mathcal{G}_n\}$$
.

We shall show that W cannot be contained in $K-Z_n$. Since $\{p_{k(i)}, q_i\} \subset U(k(i))$ and U(k(i)) refines \mathcal{U}_F for each $F \in \mathcal{H}_n$, then $|Z_n - W(F)| < \infty$ for each $F \in \mathcal{H}_n$ by the same reason as in the proof of Theorem 1.2. Thus there exists a number m with

$$q_m \in \cap \{W(F): F \in \mathcal{H}_n\}.$$

Since $q_m \in V_{n\alpha_m} \subset V_n$ and

$$q_m \in U(k(m)) = \bigcap \{U(k(m), F) : F \in \mathcal{H}_n\} \subset \bigcap \{K - F : F \in \mathcal{H}_n\}$$
$$= K - \bigcup \{F : F \in \mathcal{H}_n\} = K - H_n,$$

then

$$q_m \in V_n - H_n = \bigcap \{H_n \cup F \colon F \in \mathcal{G}_n\} - H_n$$
$$= \bigcap \{F \colon F \in \mathcal{G}_n\}.$$

Thus

$$q_m \in \bigcap \{W(F): F \in \mathcal{G}_n\}$$

and hence

$$q_m \in \bigcap \{W(F): F \in \mathcal{H}_n \cup \mathcal{G}_n = \mathcal{F}_n\} = W$$
.

W meets therefore with Z_n .

Set

$$Z = \bigcup \{Z_n : n = 1, 2, \dots\}.$$

Then Z is as can easily be seen closed in K and K-Z is an open neighborhood of p. Let \mathscr{F}' be an arbitrary finite subcollection of \mathscr{F} and W(F) be a semicanonical neighborhood of F for each $F \in \mathscr{F}'$. Let t be a number with $\mathscr{F}' \subset \mathscr{F}_t$. Then as is shown above $\bigcap \{W(F): F \in \mathscr{F}'\}$ meets Z_t and $(\mathscr{F}, \mathscr{V}_F(F \in \mathscr{F}))$ cannot be a weak L-structure of K. That completes the proof.

Each K is an M_1 -space by Ceder [1, Corollary 8.6]. Thus we know by this theorem that there is a gap between the class of M_1 -spaces and the class of weak L-spaces.

3.2. COROLLARY. There exists a countable M_1 -space which is not a weak L-space but is metrizable except a singleton.

PROOF. Let T be a countable subset of K in the above theorem such that $T \cap s$ is dense in s for each simplex s of K. Weaken the Whitehead topology of $T - \{p\}$ to a usual metric topology, while leave the neighborhood system of p unchanged. That T with this topology is the desired is verified by analogous argument to the above. That completes the proof.

This corollary should be compared to Gruenhage [2, Theorems 2 and 3]: An M_3 -space which is countable or metrizable except a singleton is an M_1 -space.

Let X_i , $i=1, 2, \cdots$, be metric spaces, BX_i the box product of them and p a point of BX_i . Let \mathcal{Z}_p be the set of points in BX_i all but a finite number of whose coordinates are equal to those of p. San-ou [7, Corollary 3.3] proved that \mathcal{Z}_p is an M_1 -space. It is to be noted that, by a similar argument to Theorem 3.1, \mathcal{Z}_p is not necessarily a weak L-space.

References

- [1] J.G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105-126.
- [2] G. Gruenhage, Stratifiable spaces are M_2 , Topology Proceedings, 1 (1976), 221-226.
- [3] K. Nagami, The equality of dimensions, Fund. Math., 106 (1980), 239-246.
- [4] K. Nagami, Dimension of free L-spaces, Fund. Math., 108 (1980), 211-224.
- [5] K. Nagami, Weak L-structures and dimension, Fund. Math., 112 (1981), 73-82.
- [6] J. Nagata, On Hyman's M-space, Lecture Notes in Math. No. 375, 198-208, Springer-Verlag, 1974.
- [7] S. San-ou, A note on *E*-product, J. Math. Soc. Japan, 29 (1977), 281-285.
- [8] J.H.C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc., 55 (1949), 213-245.

Keiô NAGAMI Department of Mathematics Ehime University Bunkyo-cho, Matsuyama 790 Japan Kôichi TSUDA Department of Mathematics Ehime University Bunkyo-cho, Matsuyama 790 Japan