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§0. Introduction.

The purpose of this paper is to study the simplicial complex K with
Whitehead topology from the point of view of L-structures. It will be shown
that the capacity of K to admit L-structures decreases as the dimension of K
increases. As a consequence we know that there is a gap between the class
of M,-spaces and the class of weak L-spaces. Throughout the paper K is a
simplicial complex with Whitehead topology and simplexes of K are so-called
open ones. K" denotes the n-section of K. As for terminology refer to the

first author [3], and [5].

§1. K with dim K=2.

1.1. THEOREM. If dim K=1, then K is an L-space.

Proor. When dim K=0, K is discrete and metrizable. Consider the case
when dim K=1. Let H be an arbitrary closed set of K. Let {s,:as A} be the
set of 1-simplexes of K. Let U be an open set of K with

K'—HcUcUcK—H.
For each a= A, let U, be an approaching anti-cover of (HN3§,)\U0s, in 5, Set
U=(J{U,: as A})\J{U}.

Then U is as can easily be seen an approaching anti-cover of H in K. That
completes the proof.

1.2. THEOREM. Let K be the 2-section of an infinite full complex. Then K
is not an L-space.

ProoF. Let s be a l-simplex of K and {s;: /=1, 2, ---} a sequence of
distinct 2-simplexes of K having s as their common face. Let p be an edge
point of s and {p:} a sequence of points of s with lim p,=p. Let U be an
arbitrary anti-cover of {p}. Choose U,eU with p;eU,;. Since U;N\s;#0 for
any 7, we can pick a point g;€U;Ns; for each 7. Set

Z=1g;: i=1,2, 1.
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Then Z is a closed set in K with ZN{p}=0. The inequalities
peCl{p;} cCluU,cClU(Z)

show that ¢/ cannot be approaching to p. That completes the proof.
Since each Lagnev space is an L-space by the first author [3, Theorem 1.6],

K in the above cannot be a Lasnev space. This fact answers Nagata [6, Prob-
lem 3] negatively.

§2. K with dim K<oo,

Before stating the next theorem, let us illustrate the lifting-up process. Let
{sa: a= A,} be the set of n-simplexes of K. Let p, be an arbitrary but fixed
point of s,. If n=1 and a= A,, consider 5, as an n-ball of radius 1 with the
center p, whose surface is 0s,=35,—S.. Let s,(¢) be the open ball with the
center p, of radius ¢, 0<e<l. Set

Sa(e)=\U{sqs(e): ac= A,}.

If G is a subset of s, then [G, p.] denotes the sum of all segments pag,
geG. Set

Gle, &)=[G, pal—sale),
Gla, e]J=LG, pal—sale).
When G is a subset of K™}, set
G(n, e)=U{(GN0s)a, &): a€ A},
G[n, e]=U{(GNIs.)la, e]: ac Az}.

When G is open or closed in K*, G is lifted up to G(n, ¢) or G[n, €] which
is open or closed in K™ respectively. Set

[G; pa):[G; pa]_{pa})
G[n]:U{[Gmasa; paj: C(EAn},
G(n)=U{LGN0sa, pa): aE As}.

When G is open or closed in K™!, G(n) or G[n] is open or closed in K*
respectively.

2.1. TBEOREM. If K is finite-dimensional, K is a free L-space.

Proor. Set dim K=m. When m=1, K is an L-space by Theorem 1.1 and
is of course a free L-space. Consider the case when m=2. For each n=m
and each a= A, let ¥, be a countable network of s, consisting of compact
sets. Set
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gn:U{ga: aEAﬂ-})
F=I{F,: n=0,1, ---, m}.

For each FeZ,, ac A,, let U,(F), i=1, 2, ---, be open neighborhoods of F in
§. such that

UZ(F>:)C1 UH-I(F) y Z:]—: 2, T
ClU(F)M0ds,=0.

Let {a:} be a sequence with

1/4<a:<a,< -+, lim a;=1/3.
When n<m,

{U;(F)(n"}—l, ai): 2:1’ 2: }

forms a system of neighborhoods of F[n-1,1/3] in K™*. When n+1<m,
UF)n+1, a;) is lifted up to Uy (F)(n+1, a))(n+2, a;) and F[n+1, 1/3] is
lifted up to F[n+1, 1/3J[n+2, 1/3]. Continuing in this manner F is lifted up
to

F=F[n+1, 1/3][n+2, 1/3] -+ [m, 1/3]
and U,(F) is lifted up to
UB)=Uy(F)n+1, a)(n+2, a;) - (m, as).
When n=m, set merely F=F. Each U;(F) is an open set of K such that
ClU(F)CU(F), i=L,2, -,

-

P= U,
Set
V= {K—ClLU(F)} U {UAF)—Cl Upo(F): i=1, 2, -},

Then V3 is an anti-cover of F' with respect to which U;(F) is canonical for
i=1,2, -~-. Set

E’}\'-Tz:{ﬁ“ FEgn},
G={F: Feg}.

Since each &, is o-discrete in K, 4, is also ¢-discrete in K and hence & is
o-discrete in K.

Let {b;} be a sequence with
by=1/3<b,=1/2<bs< +++, lim b;=1

and {¢;} a sequence with
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c,=1/2>¢,=1/3> -+, lim ¢;=0.
Set
S;={S;(c))—ClSj(cis2): 1=1, 2, ---}, j=1, -, m.
Set
W a={8a(b2)} \J {$a(biso) —Cl sa(bs) : =1, 2, -}, a€E Anyy,

Wa1=I{Wa: a€Apii}-

If n+2=<m, set
Waoln+2, 1/)={Wn+2, 1/3): WeW,}, ac€ A1,
W (n+2)={Wn+2): WeW,}, ac A,

These types of abbreviations are used throughout in the following. If n4+2=<m,

set
Sroz {Tl +2} :Cwa(n +2)/\8n+2 ’ aeAn+1 »

Vo {in+2} =Waln+2, 1/3), a€Anii,
Waln+2} =Ua{n+2}UTo{n+2}, acAp.t,
Tne1{n+2} =U{To{n+2} 1 a€Anii},
U {n+2} =U{U{n+2} : a=Alrii},
Wasr{in+2} =U{Wa{n+2} 1 a€Ansi}.
If moreover n+3=m, set further

Ta{n+3 =Wa{n+2}(n+3IN\Snss, aEAnsi,
Ua{n+3 =Wa{n+2}(n+3, 1/3), acAn,
Wa{n+3} =Va{n+3}UTo{n+3}, a€Anii,
Tt {n+3=U{Ta{n+3} : a€ Ansil,
Unsr {n+3 =U{U {n+3} : @€ Ansi},
Wiri{n+3t =U{W.{n+3} : a€Ansi}.

Continuing in this manner we get at last
Ta{im} =Woim—1BMANSm, aEAns,
Ua{m} =Wa{m—1}(m, 1/3), a€An:i,
Da=Walm) =U, M} VT {m}, a=Anii,

Tnerim} =V {Ta {m} A€ Ant,
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Uarr{m} =U{U, {m} 1 a€ Ansi},
Da=Wni1 {m}:U {q’Va {m} P A€ Ansil.

Then @, is an open collection of K.

Let a and § be distinct elements of A,,;. Since Wi=s,, then WiNWi=
SaMNsp=0. Since W{n-+2}* =W, (n+2)¥=s.(n+2) and s.(n+2)N\sg(n+2)=0,
then W, {n+2}¥NWs{n+2}#¥=0. At last DENDE=0. Set

%:K”[n+2][n+3] - [m], n=m-2,

k\’lln—l:Km—l .
Since )
K*2=S, . .(n+2)UK"[n+2],

V) {CWa {n+2} . ae An+1} :Sn+ l(n +2) s

then Wy {n+2} =U{W,{n+2} : a= An4y} is an anti-cover of K"[n+2] in K™*2
This fact implies in turn that 9, {n-+3} is an anti-cover of K*[n+2][n+3]. At
last we know that 9, is an anti-cover of K™,

Set

r=au("U I’(\ﬁ)

n=0

Then £ is a o-discrete closed cover of K. To prove that .£ with the anti-
covers W3 (Fe$) and 9, (n=0, 1, ---, m—1) forms a free L-structure of K,
let x be an arbitrary point of K and E an arbitrary open neighborhood of x in
K. Let n be the number with xeK*—K"!, Let yeA, be the index with
x€s, and F an element of &, with x&FCE. Let 2 be a number with

FCU(F)CClU(F)CE.

When n=m, F=F, U,(F)=U,(F) and U,(F) is canonical.
Consider the case when n<m. Set

Bi={acA;: sa> 54}, i=n-+1, -, m.
Then there exists a function ¢,.;: Ba.::1—(1/2, 1) such that
(CLU(FNIn+1, enti(@ns)]CE, ane1€ Brys.
When n-+1<m, there exists one more function e,;,: Bri,—(1/2, 1) such that
CLUFNIn+1, enrrl@ns)]n+2, ensolan) ICE,
Un 1€ Basi, @ns2€ Brss .

Continuing this manner we obtain a sequence of functions:
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i Bi—(1/2, 1), i=n-+1, «-, m,
satisfying the condition :
CLUFNIn+1, ensi(ans)] - [m, enlan)]CE,

a;€B; (=n-+1, -, m).
Set

Ci=U{U(F)n+1, ensil@nss)) - (J, efay)): € By G=n+1, -+, j)},

Jj=n-+1, -, m.

Then C,CE.
For each j with n+1=<j=<m and for each a< B, let {(a) be a number with

efa)<biary<l.
Set
P]:U{Cl Salbicay) : @< Bj}: j=n-+1, -+, m,

Py=P[j+1,1/41 - [m, 1/41,  j=n+1, -, m,
P]h:U{CI sa(bt(a)+h): aEBj}’ ]:n+1; e, M, h:]-; 2,' Tty
th,:U{sa(bt(a)+h): aEBj}) ]:n+1) e, M, h:]-; 2; Tt

A . . ~ .
Then K—P; is a canonical neighborhood of K’~' with respect to 9;_, for
j=n+1, ---, m. We merely prove that K—P,,, is a canonical neighborhood of
K™ with respect to 9,, since the rest is simple analogy. Set

o(D)=min{i: DNK*+0}, Ded,,
Dui={DED,: ¢(D)<i, DN\Pryy#0}, n+l<i=m.

Then
-@n,n+1#:Qn+1,1(n+2: 1/3) - (m, 1/3),
Qn.n+2*:Qn+1, (n+2, ¢;)(n+3, 1/3) - (m, 1/3),
-@nm#:Qn+1,1<n+2; Cy) o (m, ¢3).
Since
{Degn. D/\Pnﬂiﬂ} :g)nm )
CHQn+1,1(n+2, ¢5) - (m, ¢s))=Prs1, [n+2, ¢s] [m, ci],
then

Cl @n(K_Pn+1):Pn+1,1[n+2, cs] - Im, ¢s].
Analogously we obtain, for an arbitrary positive integer 7, the following equality :

Cl @Z(K_an):PnH,r[n’f‘Z, C'r+2] - [m, Cris].
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Since
~~
Priy,Ln+2, crea] e Im, cree]NK™*=0,
~
then K—P,., is a canonical neighborhood of K™ with respect to Q™.
Last let us prove the inequality :

Uk(F‘)f\(jﬁH(K—P,-))cE .

Since ep{@)>a,>1/4 (as B,4,), then
UnBY— Py =U(F)n+1, ap) - (m, a)—Prpei[n+2, 1/47 - [m, 1/4]
=U(F)n+1, ap)—Pri)(n+2, a;) -+ (m, ay)

CCrii(n+2, ap) -+ (m, az).

Hence
Uk<F)"pn+1Upn+2=(Uk(F)"Pn+1)“Pn+2

CCn+1(Tl+2; ak) (m) ak)_Pn+2En+3) 1/4:] ot I:m! 1/4]
:(Cn+l(n+2: ak)_Pn+2><n+3: ak) (nly ak)
CCr+on+3, az) -+ (m, az).

Continuing in this manner we get at last
m N
Uk(F)’_ . Z IPjCCmCE .
j=n+
Evidently
- m=-1 ">
xelFN{ N K’) .
j=n

Thus K is a free L-space and the proof is completed.’

2.2. COROLLARY. If X is a CW-complex with dim X<co, then X is a free
L-space.

PrOOF. Let D be an n-cell of X and f: §—D a characteristic map of an
n-simplex § to D (cf. Whitehead [8], p.221). For a subset G of 9D we can
define for instance G(n, ¢) by:

G(n, &)=f(fHG)n, ¢)).

Thus lifting-up process can be applied for X and we can verify that X is a
free L-space by analogous manner to the above theorem. That completes the
proof.
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§3. K with dim K=co.

3.1. THEOREM. If K is a full complex spanned by a countably infinite num-
ber of vertexes, then K is not a free L-space.

PROOF. Assume that K admits a weak L-structure (F, Uy (FEF)). Let p
be an arbitrary vertex of K. Let {F,, F,, ---} be the set of elements of &
which contain p. Set

Fn={Fy, -+, Fa}.

Let {s,: a= A} be the set of all simplexes of K with pe5,. Let = be the
property for subsets of K as follows:

A subset T of K is said to have the property = if T3, is a neighborhood
of p for each a= A.

Let 4, be one of the maximal subcollections of &, such that %% does not
have =. Set

Hn:ﬂg; Gn=Fn—Hn,
Vn:f\{HnUF Fegn}r
Vaa=Interior of V,N\3q in 5., a<SA.

Since H,\JF has n for each Feg,, V, has n too. Hence V,, is an open
neighborhood of p in 5, for each ac A. Let 8 be an index of A such that
H,N3; is not a neighborhood of p in 55. Let {p;} be a sequence of distinct
points of 5;—H, with lim p,=p. For each 7/ and each FeH, there exists an
element U(z, F)e Uy with p,€U(, F). Set

UG)=n{UG, F): FE4,}.

Then U(z) is an open neighborhood of p;. Let {a;, as, ---} be a sequence of
indexes of A such that .

$p<Say, 1=1,2, -,

n<dim s,, <dim §q,< -+ .
Let k2(z) be a number such that

pi€Vaa;,  JZkQ),

R(<R(2)< -

Since V,o,NU(k@)) is an open neighborhood of piq» in 5., then s,,N\Vye,N
Uk()#0. Let Z,={q;} be a sequence of points such that

qlesalmvnalm[](k(l)> ’ Z‘—'——l, 27 T

Then K—Z, is an open neighborhood of p.
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For each FeZ, let W(F) be a semi-canonical neighborhood of F. Set
W=n\{W(F): FeF,}.
We shall show that W cannot be contained in K—Z,. Since {piuy, g} CUL®E))
and U(k(7)) refines Uy for each Fe 4, then |Z,—W(F)| <o for each Fe4,

by the same reason as in the proof of Theorem 1.2. Thus there exists a

number m with
guneN{W(F): Fedl,}.

Since gn€ Vaa,CVy and
gn€URM)=N{U(k(m), F): FEIH}CN{K—F: FEIl,}
=K—U{F: FeJ,}=K—H,,

then
gn€V—H,=N{H,JUF: Feg,} —H,
=N{F: FEg,}.
Thus
gunEN{W(F): Feg,}
and hence

GnEN{W(F): FEH,JGu=F} =W .

W meets therefore with Z,.
Set
Z=Jl{Z,: n=1, 2, ---}.

Then Z is as can easily be seen closed in K and K—Z is an open neighborhood
of p. Let 9’ be an arbitrary finite subcollection of & and W(F) be a semi-
canonical neighborhood of F for each FE’. Let t be a number with F'C%,.
Then as is shown above N{W(F): FE9’} meets Z,; and (&F, Uy (FEZF)) cannot
be a weak L-structure of K. That completes the proof.

Each K is an M,-space by Ceder [1, Corollary 8.6]. Thus we know by
this theorem that there is a gap between the class of M;-spaces and the class
of weak L-spaces.

3.2. COROLLARY. There exists a countable Mi-space which is not a weak
L-space but is metrizable except a singleton.

ProOF. Let T be a countable subset of K in the above theorem such that
TNs is dense in s for each simplex s of K. Weaken the Whitehead topology
of T—{p} to a usual metric topology, while leave the neighborhood system of
p unchanged. That T with this topology is the desired is verified by analogous
argument to the above. That completes the proof.

This corollary should be compared to Gruenhage [2, Theorems 2 and 3]:
An M,-space which is countable or metrizable except a singleton is an M;-space.
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Let X;, i=1, 2, ---, be metric spaces, BX; the box product of them and p a
point of BX;. Let &, be the set of points in BX; all but a finite number of
whose coordinates are equal to those of p. San-ou [7, Corollary 3.3] proved
that &£, is an M,-space. It is to be noted that, by a similar argument to
Theorem 3.1, £, is not necessarily a weak L-space.
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