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\S 1. Introduction.

In this paper, we consider the following wave equation in 3-dimensional
space $R^{3}$ :

$u_{tt}-\Delta u+V(x, t)u=0$ , $t>0$ , $x\in R^{3}$ .
If the potential $V(x, t)=V(x)$ is time-independent and of compact support, then
it is well-known that the local energy of solutions to the equation above decays
exponentially as $ t\rightarrow\infty$ for initial data with compact support. ([5], [10] etc.)

The aim of the present paper is to prove a similar result in case of time-
dependent potentials whose supports in $x$ remain in a bounded region uniformly
in $t$ .

The problem to be investigated here is closely related to an exterior
boundary-value problem with a moving obstacle. Roughly speaking, for zero
Dirichlet boundary-value problems, the exponential decay of local energy has
been verified by use of the energy method under the assumptions that the
moving obstacle is star-shaped for each fixed $t$ and that the lateral boundary
is time-like. ([2], [3] etc.) Our method employed here is also based on the
energy method and especially the principle of limiting absorption plays an
important role. This idea is due to Strauss [7] where this principle was
applied to exterior problems with stationary (not necessarily star-shaped)

obstacles.
For another works on the decay of local energy for wave equations with

time-dependent coefficients, see also [1] and [8] etc. In [8], the author con-
sidered the wave equation with potential $V(x, t)$ whose support in $x$ expands
with time $t$ at a speed less than the sound speed. However, the assumptions
imposed on $V(x, t)$ there were more restrictive and complicated than those in
the present paper.

1.1. ASSUMPTIONS AND RESULTS. We shall formulate the results obtained
here more precisely with several assumptions. We consider the equation

(1.1) $u_{tt}-\Delta u+V(x, t)u=0$ , $t>0$ , $x\in R^{3}$ ,
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(1.2) $u(x, O)=f(x)$ , $u_{t}(x, O)=g(x)$ ,

where it is assumed that the initial data $f(x)$ and $g(x)$ have compact support
and are of finite energy $(f\in H^{1}(R^{3}), g\in L^{2}(R^{3}),$ $H^{1}(R^{3})$ being the Sobolev space
of order one). We make the following assumptions on $V(x, t)$ :

(A. 1) $V(x, t)$ is a non-negative and bounded function of class $C^{1}$ with bounded
derivatives;

(A. 2) There exists a constant $M$ such that the support of $V(x, t)$ in $x$ is
contained in $\{x:|x|\leqq M\}$ ;

(A. 3) $V_{t}(x, t)(=\partial_{t}V(x, t))=O(t^{-\alpha})$ as $ t\rightarrow\infty$ for some $\alpha,$
$0<\alpha\leqq 1$ , uniformly in $x$ .

Throughout the whole discussion, we use the constants $M$ and $\alpha$ with the
meanings ascribed above.

We further define the local energy of solutions to equation (1.1) in $B_{K}=$

$\{x:|x|<K\},$ $ 0<K\leqq\infty$ , at time $T$ as follows:

(1.3) $E(u, K, T)=\frac{1}{2}\int_{B_{K}}\{|u_{t}(T)|^{2}+|\nabla u(T)|^{2}+V(x, T)|u(T)|^{2}\}dx$ .

In particular, when $K=\infty,$ $E(u, \infty, T)$ denotes the total energy.
With the above assumptions and notations, the main result can be stated in

the following form:
THEOREM 1.1. Assume that $V(x, t)$ satisfies (A. $1$ ) $\sim(A. 3)$ . Let $u=u(x, t)$ be

the solution to equation (1.1) with initial data (1.2) satisfying the assumptions
above. Then, for any $K,$ $ K<\infty$ , there exist constants $C_{K}$ and $\theta,$ $\theta>0$ , such that

$E(u, K, T)\leqq C_{K}\exp(-\theta T)E(u, \infty, 0)$

for any $T$ , where the constants $C_{K}$ and $\theta$ depend on the bound of suppOrts of
initial data.

The above result can be slightly generalized to a potential $V(x, t)$ of the
following form.

(A. 4) $V(x, t)$ takes the form $V(x, t)=U(x-P(t), t)$ with $U(x, t)$ satisfying (A. 1)
$\sim(A. 3)$ , where $p(t)=(p_{1}(t), p_{2}(r),$ $p_{3}(r))$ satisfies $\partial_{t}p_{j}(t)=O(t^{-\beta})$ and
$(\partial_{t})^{2}p_{j}(t)=O(t^{-1-\beta}),$ $1\leqq j\leqq 3$ , as $ t\rightarrow\infty$ for some $\beta,$ $\beta>0$ .

For a potential of the above form, we obtain the following result.
THEOREM 1.2. Assume that $V(x, t)$ satisfies (A. 4). Let $u=u(x, t)$ be the

solution to equation (1.1) with initial data (1.2) satisfying the same assumptions
as in Theorem 1.1. Let $B_{K}(T)$ be the ball with radius $K,$ $ K<\infty$ , and center at
$p(T)$ . Let $E(u, B_{K}(T),$ $T$ ) denote the local energy of the solution $u$ in $B_{K}(T)$

at time T. Then,
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$E(u, B_{K}(T),$ $T$ ) $\leqq C_{K}\exp(-\theta T)E(u, \infty, 0)$ .
Theorem 1.2 is verified basically in the same way as in the proof of Theo-

rem 1.1, so we omit the detailed proof. We make a change of the variables
$y=x-p(s)$ in proving the principle of limiting absorption (Proposition 2.1) and
the other part of proof is done by a way similar to that in [9].

1.2. NOTATIONS. We list up basic notations used in this paper. For a
domain $G$ , we denote by $H^{m}(G)(H^{0}(G)=L^{2}(G))$ the usual Sobolev space of
order $m$ over $G,$ $m$ being not necessarily an integer. When $G$ is the ball with
radius $K$ and center at the origin, we denote it by $B_{K}$ and the norm in $H^{m}(B_{K})$

by $\Vert$ $\Vert_{m,K}$ . In particular, when $ K=\infty$ , we drop the subscript $K$ to denote the
norm $\Vert$ $\Vert_{m,K}$ ; $\Vert$ $\Vert_{m}=\Vert$ $\Vert_{m.\infty}$ .

We use frequently the subscripts $j,$ $1\leqq j\leqq 3$ , and $t$ to denote $x_{j}$-derivatives
and t-derivatives of functions, respectively; $u_{j}=(\partial/\partial x_{j})u,$ $u_{t}=(\partial/\partial t)u$ . We further
use the symbol $C$ to denote various (unessential) positive constants. When we
specify the dependence of such a constant on a parameter, say $k$ , we denote
it by $C_{k}$ or $C(k)$ .

1.3. FUNDAMENTAL IDENTITY. We conclude this section by stating the
fundamental identity due to Morawetz (Appendix 3, [4]).

LEMMA 1.1. Let $u=u(x, t)$ and $V=V(x, t)$ be real-valued $C^{2}$-function and
$C^{1}$-function, respectjvely. Then,

(1.4) $(u_{tt}-\Delta u+Vu)\{(r^{2}+t^{2})u_{t}+2t(x\cdot\nabla u)+2tu\}$

$=X_{t}(t, u)+\nabla\cdot Y(u)+Z(u)$ , $r=|x|$ ,

where

$X(t, u)=\frac{1}{2}(r^{2}+t^{2})(|\nabla u|^{2}+u_{t}^{2}+Vu^{2})+2tu_{t}(u+(x\cdot\nabla u))$

$+r^{-2}(r^{2}+t^{2})(\frac{1}{2}u^{2}+(x\cdot\nabla u)u)$ ,

$Y^{j}(u)=x_{j}\{t(|\nabla u|^{2}+Vu^{2}-u_{t}^{2})-\frac{1}{2}r^{-2}((r^{2}+t^{2})u^{2})_{t}\}$

$-u_{j}\{(r^{2}+t^{2})u_{t}+2t(x\cdot\nabla u)+2tu\}$ , $Y=(Y^{j})_{j=1,3}$ ,

$Z(u)=-\{2tV+t(x\cdot\nabla V)+\frac{1}{2}(r^{2}+t^{2})V_{t}\}u^{2}$ ,

$x=(x_{1}, x_{2}, x_{3})$ being a position vector. Furthermore, $X(t, u)\geqq 0$ and satisfies the
estimate

(1.5) $X(t, u)\geqq\frac{1}{8}t^{2}\{|\nabla u|^{2}+u_{t}^{2}+Vu^{2}+\nabla\cdot(r^{-2}xu^{2})\}$
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for $r<\frac{1}{2}t$ .

\S 2. The principle of limiting absorption.

Throughout this section, we always assume that the potential $V(x, t)$ satisfies
(A. $1$ ) $\sim(A. 3)$ . We write $V(x;s)=V(x, s)$ for fixed $s,$ $s>1$ , and consider the
following equation:

(2.1) $-\Delta W+V(x;s)7V-(\lambda+i\kappa)^{2}W=G$ , $\lambda\in R^{1}$ , $0<\kappa<1$ .
Here we assume that $G=G(x)$ is an $L^{2}$-function and that

(2.2) supp $G\subset B_{R}$

for some $R,$ $R>M$. Obviously, equation (2.1) has a unique $L^{2}$-solution for $\kappa>0$ .
PROPOSITION 2.1. Let $W=W(x;\zeta, s),$ $\zeta=\lambda+i\kappa$, be the $L^{2}$-solution to equation

(2.1) with $G(x)$ satisfying (2.2). Then, for any $K,$ $ K<\infty$ , there exis $ts$ a constant
$C_{K}$ independent of $\lambda,$

$\kappa$ and $s$ such that

(2.3) $\Vert W\Vert_{0,K}\leqq C_{K}(1+|\lambda|)^{-1}\Vert G\Vert_{0}$ .
Estimate (2.3) is well-known as a key estimate in the proof of the principle

of limiting absorption, but for the sake of completeness, we shall prove this
result. The proof is divided into two steps. The Prst step is to verify (2.3) for
the high frequencies ( $|\lambda|>\Lambda,$ $\Lambda$ being large enough) and the second one is to
verify it for the low frequencies $(|\lambda|\leqq\Lambda)$ .

LEMMA 2.1. There exists a constant $\Lambda$ independent of $s$ such that for $\lambda$ ,
$|\lambda|>\Lambda$

$\Vert W\Vert_{0,K}\leqq C_{K}|\lambda|^{-1}\Vert G\Vert_{0}$

with $C_{K}$ independent of $\lambda,$
$\kappa$ and $s$ .

PROOF. We use the summation convention in the proof of this lemma and note
that integrations with no domains attached are taken over the whole space. Let
$h(x)=(1+|x|^{2})^{-(1+\delta)/2},$ $\delta>0$ , and let $\chi(x)=(x^{(1)}(x), x^{(2)}(x),$ $x^{(3)}(x))$ be a real-valued
smooth vector field such that the matrix with components $\{\chi_{j}^{(k)}+\chi_{k}^{(j)}\}_{j.k=1.3}$

is positive definite and that $x^{(j)}(x)=(1-|x|^{-\delta})x_{j}/|x|$ for $|x|$ large enough.
To prove this lemma, we use two identities which are obtained by multiplying

(2.1) by $h(x)\overline{W}$ and by $x^{(j)}\overline{W}_{j}+\frac{1}{2}\chi_{j}^{(j)}\overline{W}$. First, we multiply both sides of (2.1)

by $h(x)\overline{W}$, integrate the resulting identity over the whole space and take the
real part. Then, we have, integrating by parts and using the boundedness of
$V$ , that

(2.4) $|\lambda|^{2}\int h(x)|W|^{2}dx\leqq C_{1}\int h(x)|\nabla W|^{2}dx+C_{2}\int|G|^{2}dx$
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for $|\lambda|$ large enough, where the constants $C_{j},$ $j=1,2$ , are independent of $\lambda,$
$\kappa$

and $s$ . Secondly, we multiply both sides of (2.1) by $x^{(j)}\overline{W}_{j}+\frac{1}{2}\chi_{j}^{(j)}\overline{W}$, integrate

over the whole space and take the real part. Integrating by parts yields

$\int\{{\rm Re} x_{k}^{(j)}W_{k}\overline{W}_{j}-\frac{1}{2}x^{(j)}V_{j}(x;s)|W|^{2}-\frac{1}{4}\chi_{f}^{(}\not\leq l|W|^{2}\}dx$

$={\rm Re}(G,$ $x^{(j)}W_{j}+\frac{1}{2}x_{j}^{(j)}W)-2\lambda\kappa{\rm Im}(W, \chi^{(j)}W_{j})$ ,

where $(, )$ denotes the scalar product in $L^{2}(R^{3})$ . By the definition of $\chi(x)$ , a
short calculation shows that ${\rm Re} x_{k}^{(j)}W_{k}\overline{W}_{j}\geqq Ch(x)|\nabla W|^{2}$ . Furthermore, by the
boundedness of $\chi(x)$ and of its derivatives and by the fact that $x_{jkk}^{(j)}=O(|x|^{-(3+\delta)})$,

we have

(2.5) $\int h(x)|\nabla W|^{2}dx\leqq C_{1}\int(|G|^{2}+h(x)|W|^{2})d_{X}+C_{2}|\lambda|\kappa\Vert W\Vert_{0}\Vert\nabla W\Vert_{0}$ .

On the other hand, as is easily shown, $2|\lambda|\kappa\Vert W\Vert_{0}^{2}\leqq|(G, W)|$ and $\Vert\nabla W\Vert_{0}^{2}\leqq$

$|\lambda|^{2}\Vert W\Vert_{0}^{2}+|(G, W)|$ . Therefore, $|\lambda|\kappa\Vert W\Vert_{0}\Vert\nabla W\Vert_{0}\leqq C\{|\lambda||(G, W)|+\Vert G\Vert_{0}^{2}\}$ for $|\lambda|$

large enough. Hence, it follows from (2.5) that

(2.6) $\int h(x)|\nabla W|^{2}dx\leqq(\eta\lambda^{2}+C)\int h(x)|W|^{2}dx+C(\eta)\Vert G\Vert_{0}^{2}$

for any $\eta$ small enough. Thus, combining (2.6) with (2.4), we see that there
exists a constant $\Lambda$ independent of $s$ for which the desired estimate holds.

LEMMA 2.2. Let $\Lambda$ be as in Lemma 2.1. Then, there exists a constant $C_{K}$

independent of $\lambda,$
$\kappa$ and $s$ such that for $|\lambda|\leqq\Lambda$

$\Vert W\Vert_{0.K}\leqq C_{K}\Vert G\Vert_{0}$ .
PROOF. The proof is done by contradiction. A similar proof can be found

in Wilcox [11]. Assume that there exist three sequences $\{s_{n}\},$ $\{\zeta_{n}\},$ $\zeta_{n}=\lambda_{n}+i\kappa_{n}$ ,
and $\{G_{n}\},$ $suppG_{n}\subset B_{R}$, such that $G_{n}$ converges to $0$ in the $L^{2}$-norm as $ n\rightarrow\infty$

and that $\Vert W_{n}(\zeta_{n}, s_{n})\Vert_{0,K}=1$ , where $W_{n}(\zeta_{n}, s_{n})$ is the solution to equation (2.1)

with $G=G_{n}$ . We may assume that $ s_{n}\rightarrow\infty$ and $\zeta_{n}\rightarrow\lambda_{0}$ for some $\lambda_{0},$ $|\lambda_{0}|\leqq\Lambda$ , as
$ n\rightarrow\infty$ and that $K>R$ for $R$ in (2.2). (The case in which the sequence $\{s_{n}\}$ is
convergent to some finite value is dealt with similarly.)

We write

(2.7) $-\Delta W_{n}+V(x;s_{n})W_{n}-(\lambda_{n}+i\kappa_{n})^{2}W_{n}=G_{n}$ .

Let $M<R<R_{2}<R_{1}<K$ and let $\rho(x),$ $\rho\geqq 0$ , be a smooth function such that $\rho(x)$

$=1$ in $|x|\leqq R_{1}$ and $\rho(x)=0$ in $|x|>K$ We multiply both sides of (2.7) by
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$\rho(x)\overline{W}_{n}$ and integrate the resulting identity over the whole space. Then, inte-
grating by parts yields

(2.8) $\int\rho(x)|\nabla W_{n}|^{2}dx\leqq C$

for $C$ independent of $n$ . Furthermore, the elliptic estimate applied to the domain
$D=\{x;R\leqq|x|\leqq R_{1}\}$ shows that $\{W_{n}\}$ forms a bounded set in $H^{2}(D)$ . Hence,

the trace $W_{n}|_{\Sigma}$ of $W_{n}$ to $\Sigma=\{x;|x|=R_{2}\}$ is well-defined, and $\{W_{n}|_{\Sigma}\}$ and
$\{(\partial/\partial\nu)W_{n}\},$ $(\partial/\partial\nu)W_{n}$ being the exterior normal derivative on $\Sigma$ , are also bounded
sets in $H^{3f2}(\Sigma)$ and in $H^{1/2}(\Sigma)$ , respectively. Let $\Gamma_{n}=\Gamma_{n}(x, y)=(4\pi)^{-1}|x-y|^{-1}$

$\exp(i\zeta_{n}|x-y|)$ be the Green function for the operator $-\Delta-\zeta_{n}^{2}$ . We apply the
Green formula to $W_{n}$ and $\Gamma_{n}$ in the region $\{x;|x|\geqq R_{2}\}$ . Then, we have

(2.9) $W_{n}(x)=\int_{\Sigma}\{(\Gamma_{n}(x, y)(\partial/\partial\nu)W_{n}(y)-W_{n}(y)(\partial/\partial\nu)\Gamma_{n}(x, y)\}dS_{y}$

for $|x|>R_{2}$ . This relation combined with (2.8) shows that for any bounded
domain $\Omega$ , $\{W_{n}\}$ forms a bounded set in $H^{1}(\Omega)$ and hence $\{W_{n}\}$ becomes a
precompact set in $L^{2}(B_{K})$ . Moreover, we note that $\{V(x;s_{n})\}$ also forms a
precompact set in $L^{2}(R^{3})$ , which follows from (A. 1) and (A. 2) at once. Thus,

we see that there exist subsequences of $\{s_{n}\}$ and $\{\zeta_{n}\}$ (denoted by the same
symbols) such that $W_{n}=W_{n}(\zeta_{n}, s_{n})$ converges to some $W_{0}$ , $\Vert W\Vert_{0.K}=1$ , strongly
in $L^{2}(\Omega)$ for any bounded domain $\Omega$ and that $V(x;s_{n})$ also converges to some
non-negative bounded function $V_{0}(x)$ with compact support in the $L^{2}$-norm. We
also see from expression (2.9) that $W_{0}$ satisfies the out-going radiation condition
at inPnity. Hence, $W_{0}$ is an out-going solution of the equation

$-\Delta W_{0}+V_{0}(x)W_{0}-\lambda_{0}^{2}W_{0}=0$ .
On the other hand, the Rellich uniqueness theorem shows that such a solution
must be zero, which contradicts $W_{0}\neq 0$ . Here we should note that the unique-
ness theorem for $\lambda_{0}=0$ follows from the non-negativity of $V_{0}(x)$ . Thus, the
proof is completed.

Proposition 2.1 is readily verified by combining Lemmas 2.1 and 2.2.

\S 3. A priori estimate.

Throughout this section, we again assume that the potential $V(x, t)$ satisfies
(A. $1$ ) $\sim(A. 3)$ and derive an a Priori estimate (Theorem 3.1) which plays an
important role in proving Theorem 1.1. The derivation of such an estimate is
based on the principle of limiting absorption.

We fix $s,$ $s\geqq 1$ , and write $V(x, r;s)=V(x, t+s),$ $t\geqq 0$ , and $V(x;s)=V(x, s)$

$(=V(x, 0;s))$ . We consider the equation
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(3.1) $u_{tt}-\Delta u+V(x, t;s)u=0$ ,

(3.2) $u(x, 0;s)=f(x;s)$ , $u_{t}(x, 0;s)=g(x;s)$ .

Here we assume that the initial data are of finite energy and have compact
support which is contained in $B_{R},$ $R>M$. Furthermore, without loss of general-
ity, we may assume that the initial data are real-valued and hence the solution
$u$ is also real-valued.

As an auxiliary equation, we also consider the equation

(3.3) $v_{tt}-\Delta v+V(x;s)v=0$

with the same initial data as in (3.2). (3.3) is a wave equation with time-
independent potential and, as is well-known, the local energy decays exponentially.

We use the notation $E(u, K, T;s)$ to denote the local energy of solutions
to (3.1) in $B_{K}$ at time $T$ ;

(3.4) $E(u, K, T;s)=\frac{1}{2}\int_{B_{K}}\{|u_{t}(T)|^{2}+|\nabla u(T)|^{2}+V(x, T;s)|u(T)|^{2}\}dx$ .

LEMMA 3.1. Let $v=v(x, t;s)$ be the solution to equation (3.3) with initial
data (3.2) satisfying the assumptions stated above. Then, there exists a constant
$C$ independent of $s$ and $T$ such that

$\int_{0}^{T}\Vert v\Vert_{0.M}^{2}dt\leqq CE(v, \infty, 0;s)$ .

PROOF. Let $\phi(t),$ $\phi\geqq 0$ , be a smooth function such that $\phi(t)=0$ for $-\infty<t<1$

and $\phi(t)=1$ for $t\geqq 2$ . We set $\tilde{v}=\phi v$ for the solution $v$ . Then, $\tilde{v}$ satisfies the
equation

$V_{tt}-\Delta\partial+V(x;s)i)=h$

with zero initial data, where $h=h(x, t;s)=2\phi_{t}v_{t}+\phi_{tt}v$ . By assumption, the
initial data are supported in $B_{R}$ . Hence, by a domain of dependence argument,
it follows that the support of $h$ in $x$ is contained in $B_{R+2}$ .

We now define the functions $W=W(x;\lambda+i\kappa, s)$ and $H=H(x;\lambda+i\kappa, s)$ ,
$0<\kappa<1$ , as follows:

$W=\int_{-\infty}^{\infty}e^{i(\lambda+i\kappa)}{}^{t}v(x, t;s)dt$ ,

$H=\int_{-\infty}^{\infty}e^{i(\lambda+\ell\kappa)}{}^{t}h(x, t;s)dt$ .

Then, the support of $H$ is also contained in $B_{R+2}$ and $W$ satisfies the equation

(3.5) $-\Delta W+V(x;s)W-(\lambda+i\kappa)^{2}W=H$ .
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Since the total energy is conserved for equation (3.3), the Poincar\’e inequality
shows that $\Vert H\Vert_{0}^{2}\leqq CE(v, \infty, 0;s)$ with $C$ independent of $\lambda,$

$\kappa$ and $s$ .
We now apply Proposition 2.1 to equation (3.5) and obtain, using the Parseval

relation, that

$\int_{-\infty}^{\infty}e^{-2\kappa t}\Vert\tilde{v}\Vert_{0.M}^{2}dt=(2\pi)^{-1}\int_{-\infty}^{\infty}\Vert W(x;\lambda+i\kappa, s)\Vert_{0.M}^{2}d\lambda\leqq CE(v, \infty, 0;s)$

for $C$ independent of $s$ . Hence, the integral of $\Vert v\Vert_{0.M}^{2}$ over the interval $(2, T)$

is majorized by CE $(v, \infty, 0;s)$ . On the other hand, by the Poincare inequality
and by the conservation law of total energy, we have that the integral of
$\Vert v\Vert_{0.M}^{2}$ over $(0,2)$ is also majorized by CE $(v, \infty, 0;s)$ with another $C$ independ-
ent of $s$ . Thus, the proof is completed.

Next, we set $w=w(x, t;s)=u(x, t;s)-v(x, t;s)$ , where $u$ and $v$ are solu-
tions to equations (3.1) and (3.3), respectively. Then, $w$ satisPes the equation

$w_{tt}-\Delta w+V(x;s)w=F$ ,
(3.6)

$w(x, 0;s)=w_{t}(x, 0;s)=0$ ,

where $F=F(x, t;s)=(V(x;s)-V(x, t;s))u$ . Let $0<\gamma<\frac{2}{3}\alpha,$
$\alpha$ being as in (A. 3).

We fix $T$ so that $1<T<s^{\gamma}$ and define $F=F(x, t;s)$ as $F=F$ for $ 0\leqq r\leqq\tau$ and
$F=0$ for $t>T$ . We denote by $\tilde{w}=\tilde{w}(x, t;s)$ the solution to equation (3.6) with
$F$ replaced by $\tilde{F}$ . Then,

(3.7) $\tilde{w}=w$ for $0\leqq t\leqq T$ .
Furthermore, for $t<0$ , we extend $\tilde{w}$ and $F$ as $\tilde{w}=0$ and $\tilde{F}=0$ , respectively, and
define $P=P(x;\lambda+i\kappa, s)$ and $Q=Q(x, \lambda+i\kappa, s),$ $0<\kappa<1$ , as follows:

$P=\int_{-\infty}^{\infty}e^{i(\lambda+i\kappa)}{}^{t}\tilde{w}(x, t;s)dt$ ,

$Q=\int_{-\infty}^{\infty}e^{i(\lambda+i\kappa)t}F(x, t;s)dt$ .

Then, $P$ satisfies the equation

(3.8) $-\Delta P+V(x;s)P-(\lambda+i\kappa)^{2}P=Q$ .

LEMMA 3.2. Let $ 0<\gamma<\frac{2}{3}\alpha$ and let $1<T<s^{\gamma}$ . Let $Q$ be as above. Then, $Q$

is suPported in $B_{M}$ , and

$\Vert Q\Vert_{0}^{2}\leqq Cs^{-\nu}\int_{0}^{T}\Vert u\Vert_{0,M}^{2}dt$ , $\nu=2\alpha-3\gamma>0$ .
for $C$ indePendent of $\lambda,$ $\kappa$ and $s$ .
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PROOF. The first assertion follows from (A. 2) at once. The second one
follows from (A. 3) by use of the Schwarz inequality.

LEMMA 3.3. Let $\gamma,$
$T$ and $\nu$ be as in Lemma 3.2. Let $w=w(x, t;s)$ be the

solution to equation (3.6). Then, there exists a constant $C$ independent of $s$ and
$T$ such that

$\int_{0}^{T}\Vert w\Vert_{0,M}^{2}dt\leqq Cs^{-\nu}\int_{0}^{T}\Vert u\Vert_{0.M}^{2}dt$ .

PROOF. We apply Proposition 2.1 to equation (3.8). Then, the Parseval
relation combined with (3.7) and Lemma 3.2 yields the desired estimate.

As an immediate consequence of Lemmas 3.1 and 3.3, we obtain the follow-
ing result.

LEMMA 3.4. Let $\gamma$ be as in Lemma 3.2. Let $u=u(x, t;s)$ be the solution to
equation (3.1) with initial data (3.2). If $s$ is taken large enough, $s\geqq s_{1}$ , then
there exists a constant $C$ independent of $s,$ $s\geqq s_{1}$ , and $T,$ $1<T<s^{\gamma}$ , such that

$\int_{0}^{T}\Vert u\Vert_{0,M}^{2}dt\leqq CE(u, \infty, 0;s)$ .

Now, we can state the main estimate in this section.
THEOREM 3.1. Assume that the potential $V(x, t)$ satisfies (A. $1$ ) $\sim(A. 3)$ . Let

$ 0<\gamma<\frac{2}{3}\alpha$ . Let $u=u(x, t;s)$ be the solution to equation (3.1) with initial data

(3.2) whose suPports are contained in $B_{R},$ $R>M$. If $s$ is taken large enough,
$s\geqq s_{0}$ , then, for $1<T<s^{\gamma}$ ,

$E(u,$ $\frac{1}{2}T,$ $T;s)\leqq CT^{-1}E(u, \infty, 0;s)$ ,

where $C$ is independent of $s,$ $s\geqq s_{0}$ , and $T$ .
PROOF. We may assume that the solution $u$ is a real-valued $C^{2}$-function.

Indeed, all solutions of finite energy can be obtained as a limit of such solutions
in the energy norm. For the proof, we use identity (1.4) with $V=V(x, t;s)$ .
We integrate (1.4) over $R^{3}\times(0, T)$ and obtain

(3.9) $\int X(T, u)dx=\int X(0, u)dx-\int_{0}^{T}\int Z(u)dxdt$ .

For the first term on the right side, we use the Poincar\’e inequality to obtain

that $\int X(0, u)dx\leqq CE(u, \infty, 0;s)$ . If $s$ is taken large enough, it then follows

from (A. 3) and Lemma 3.4 that the second term is majorized by $CTE(u, \infty, 0;s)$

for $1<T<s^{\gamma}$ with $C$ independent of $s$ .
On the other hand, for the left side, we use (1.5) to obtain
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$\int X(T, u)dx\geqq\frac{1}{8}T^{2}E(u,$ $\frac{1}{2}T,$ $T;s)$ ,

which completes the proof.

\S 4. Proof of Theorem 1.1.

In this section, we shall prove Theorem 1.1 by use of the method due to
Morawetz [6].

We fix $T$ so large that $T>s_{0},$ $s_{0}$ being as in Theorem 3.1, and define the
sequence $\{S_{k}\}_{k=0}^{\infty}$ by $S_{k}=kT$ . How large $T$ must be chosen is determined by
(4.3) below. We may assume that the initial data in (1.2) are supported in $B_{M}$

by taking $M$ large enough, if necessary.
LEMMA 4.1. Let $u=u(x, t)$ be the solution to equation (1.1) with initial data

(1.2) which are suppOrted in $B_{M}$ . Then, $u$ may be written as $u=R_{0}+F_{0}$ , where
$F_{0}=F_{0}(x, t)$ is the free space solution, $\coprod F_{0}=0$ , wiih the same initial data as $u$

and $F_{0}=0$ in $|x|<t-M$, while $R_{0}=R_{0}(x, t)$ is a solution to (1.1) for $t>2M$ and
has suppOrt in $B_{3M}$ at $t=2M$. Furthermore, according to the notation (1.3), $we$

have

(4.1) $E(R_{0}, \infty, t)\leqq C(t)E(u, \infty, 0)$ .

PROOF. It is clear from Huygens’ principle that $F_{0}=0$ in $|x|<t-M$ and
hence $F_{0}=0$ in $|x|<M$ for $t>2M$, which implies that $F_{0}$ is a solution of equa-
tion (1.1) for $t>2M$. Therefore, $R_{0}$ is also a solution for $t>2M$. Furthermore,
by a domain of dependence argument, we know that $R_{0}$ has support of at most
$|x|\leqq 3M$ at $t=2M$. Finally we shall prove (4.1). We write $ E(R_{0}, \infty, t)\leqq$

$2(E(u, \infty, t)+E(F_{0}, \infty, t))$ . By the inequality

$\int|x|^{-2}|F_{0}(x, t)|^{2}dx\leqq 4\int|\nabla F_{0}(x, t)|^{2}dx$

and by the equation $\coprod F_{0}=0$ , we have $(d/dt)E(F_{0}, \infty, t)\leqq CE(F_{0}, \infty, t)$ and
hence $E(F_{0}, \infty, t)\leqq C(t)E(u, \infty, 0)$ . Similarly, we obtain the same estimate for
$E(u, \infty, t)$ . This proves (4.1) and the proof is complete.

LEMMA 4.2. Let $\{S_{k}\}_{k=0}^{\infty}$ be the sequence defined above. Let $R_{0}$ and $F_{0}$ be as
above. Then, we can construct $\{R_{k}\}_{k=1}^{\infty}$ and $\{F_{k}\}_{k=1}^{\infty}$ with the following properties:

(a) $R_{k- 1}=R_{k}+F_{k}$ for $t>S_{k}$ ;
(b) $F_{k}=F_{k}(x, t)$ is the free sPace solution with the same initial data as $R_{k-1}$ at

$t=S_{k}$ and $F_{k}=0$ in $|x|<t-S_{k}-M$ ;
(c) $R_{k}=R_{k}(x, t)$ is a solution of equation (1.1) for $t>S_{K}+2M$ and has suPpon

in $B_{3M}$ at $t=S_{K}+2M$ ;
(d) If we use the notation (3.4), the total energy of $R_{k}$ at time $S_{k}+2M$,
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$E(R_{k}, \infty, 0;S_{k}+2M)$ , is estimated as

$E(R_{k}, \infty, 0;S_{k}+2M)$

$\leqq 2\{E(R_{k- 1},3M, T;S_{k- 1}+2M)+E(R_{k-1},5M, T-2M;S_{k- 1}+2M)\}$ ;

(e) $E(R_{k}, \infty, 0;S_{k}+2M)\leqq C(k, T)E(R_{k- 1}, \infty, 0;S_{k- 1}+2M)$ for some $C(k, T)$

depending on $k$ and $T$ .
PROOF. We prove this lemma by induction on $k$ . First we consider the

case $k=1$ . Let $F_{1}$ be the free space solution with the same initial data as $R_{0}$

at $t=S_{1}(=T)$ . We continue $F_{1}$ as $R_{0}$ for $t<S_{1}$ . Then, $\coprod F_{1}=0$ in the domain
exterior to $\{(x, t):|x|\leqq M, 0<t<S_{1}\}$ . We apply Huygens’ principle to $F_{1}$ in
this domain. Let $(x, t)$ be a point with $|x|<t-S_{1}-M$. Then, the backward
cone with vertex $(x, t),$ $\{(y, s):|y-x|=t-s\}$ , does not intersect $\{(x, t):|x|\leqq M$,
$0<t<S_{1}\}$ and intersect the plane $t=2M$ outside the sphere $|x|=T-M$. On the
other hand, if $T$ is taken so large that $T>4M$, then $R_{0}=0$ there, since $R_{0}$ has
support in $B_{3K}$ by Lemma 4.1. Thus, from Huygens’ principle, we may con-
clude that $F_{1}=0$ in $|x|<t-S_{1}-M$. Therefore, $F_{1}=0$ in $|x|<M$ for $t>S_{1}+2M$.
This implies that $R_{1}$ is a solution of equation (1.1) for $t>S_{1}+2M$, since $R_{0}$ is a
solution for $t>2M$. We also see by a domain of dependence argument that $R_{1}$

has support of at most $|x|\leqq 3M$ at $t=S_{1}+2M$. Thus, we can construct $R_{1}$ and
$F_{1}$ with the required properties $(a)\sim(c)$ . We shall prove (d) and (e) for these
$R_{1}$ and $F_{1}$ . Property (e) follows from (d) by using the same argument as (4.1)

was proved. For the proof of (d), we write

$E(R_{1}, \infty, 0;S_{1}+2M)=E(R_{1},3M, 0;S_{1}+2M)$

$\leqq 2\{E(R_{0},3M, T;2M)+E(F_{1},3M, 0;S_{1}+2M)\}$ .

Here we introduce the new notation $E_{0}(u, K, t;s)$ to denote

$E_{0}(u, K, t;s)=\frac{1}{2}\int_{B_{K}}\{|u_{t}(x, t;s)|^{2}+|\nabla u(x, r;s)|^{2}\}dx$ .

Since $F_{1}=0$ in $|x|<M$ at $t=S_{1}+2M$, it follows that

$E(F_{1},3M, 0;S_{1}+2M)=E_{0}(F_{1},3M, 0;S_{1}+2M)$ .
Hence, by the usual energy method applied to the free space equation, we see
that

$E(F_{1},3M, 0;S_{1}+2M)\leqq E_{0}(R_{0},5M, 0;S_{1})\leqq E(R_{0},5M, T-2M;2M)$ .
This proves (d) for $k=1$ . For the construction of $R_{k}$ and $F_{k}$ with general $k$ ,
we follow the same method as above. Thus, we can construct $R_{k}$ and $F_{k}$ with
the required properties $(a)\sim(e)$ inductively.
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Now, we shall determine how large $T$ must be taken. Let $\gamma$ be as before
and let $k(T)$ be an integer such that for any $k,$ $k>k(T),$ $T<S_{k- 1}^{\gamma}(=(k-1)^{\gamma}T^{\gamma})$ .
We want to apply Theorem 3.1 to the terms on the right side of (d) in Lemma
4.2. To do this, we have to check that all the assumptions in Theorem 3.1 are
satisfied. First, by (c) in Lemma 4.2, $R_{k- 1}$ has support in $B_{3M}$ and hence the
condition on initial data in Theorem 3.1 is satisfied. Furthermore, by the dePni-
tion of $k(T),$ $T-2M<T<(S_{k- 1}+2M)^{\gamma}$ for $k>k(T)$ . Thus, if $T$ is taken so
large that $T>\max(12M, s_{0}),$ $s_{0}$ being as in Theorem 3.1, then $S_{k}>s_{0}$ and

$5M<\frac{1}{2}(T-2M)$ . Hence, Theorem 3.1 shows that for $k>k(T)$

(4.2) $E(R_{k}, \infty, 0;S_{k}+2M)\leqq C_{M}T^{-1}E(R_{k-1}, \infty, 0;S_{k-1}+2M)$

with $C_{M}$ independent of $k,$ $k>k(T)$ . We now fix $T$ as follows:

(4.3) $T>\max(12M, s_{0}, C_{M})$

so that

(4.3) $\theta=-\log C_{M}T^{-1}>0$ .
Furthermore, we set $k_{0}=k(T)$ for $Tfixe^{\prime}d$ above.

Now, we shall prove Theorem 1.1 with the aid of Lemma 4.2.
PROOF OF THEOREM 1.1. According to Lemma 4.2, we may write

$u=\sum_{j=0}^{n}F_{j}+R_{n}$ for $t>S_{n}$ ,

where $F_{j}=0$ in $|x|<t-S_{j}-M,$ $j=0,1,$ $\cdots$ , $n$ , while $R_{n}$ is a solution of equation
(1.1) for $t>S_{n}+2M$. We may assume that $K<M$. Let $S_{n+2}>i>S_{n}+2M$. Then,
$u=R_{n}=R_{n-1}$ in $B_{K}$ at time $t$ and hence we may write

$E(u, K, t)=E(R_{n- 1}, K, t-S_{n-1}-2M;S_{n-1}+2M)$ .

We may assume that $n,$ $n>k_{0}$ , is taken so large that

$T<t-S_{n- 1}-2M<3T<(S_{n- 1}+2M)^{\gamma}$ .
Hence, by Theorem 3.1,

(4.4) $E(u, K, t)\leqq C_{K}E(R_{n-1}, \infty, 0;S_{n-1}+2M)$ .

We apply (4.2) to the right side of (4.4) k-times repeatedly until $n-k-1=k_{0}$

and obtain
$E(u, K, t)\leqq C_{K}\exp(-\theta k)E(R_{k_{0}}, \infty, 0;S_{k_{0}}+2M)$ ,

where $\theta$ is defined by (4.3). Furthermore, we see from Lemma 4.1 and (e) in
Lemma 4.2 that $E(R_{k_{0}}, \infty, 0;S_{k_{0}}+2M)\leqq C(k_{0})E(u, \infty, 0)$ . Thus, if $S_{n+2}>t>S_{n}$



The aecay of local energy

$+2M$ and if $n-k-1\geqq k_{0}$ , then

$E(u, K, t)\leqq C_{K}\exp(-\theta k)E(u, \infty, 0)$

for $C_{K}$ independent of $k$ . For given $t$ (large enough), we take a maximal
integer $k$ so as to satisfy the two conditions above. Then, as is easily seen,
$k\geqq C(T)t$ . This completes the proof.

As an immediate consequence of Theorem 1.1, we obtain the following
result.

THEOREM 4.1. Under the same assumptions as in Theorem 1.1, the total
energy $E(u, \infty, t)$ is bounded in $r$ ;

$E(u, \infty, t)\leqq CE(u, \infty, 0)$ ,

where $C$ depends on the bound of suPport of initial data.

\S 5. Concluding remark.

Theorem 1.1 can be generalized to a wider class of potentials by use of a
Lorentz transformation. We consider the potential $V(x, t)$ which takes the form

(5.1) $V(x, t)=U(x-(a/b)t, t)$

with $U(x, t)$ satisfying (A. $1$ ) $\sim(A. 3)$ , where $a=(a_{1}, a_{2}, a_{3})$ is a constant vector
such that

(5.2) $|a|<b$ , $|a|^{2}=(a_{1}^{2}+a_{2}^{2}+a_{3}^{2})$ .
We define the moving ball $B_{K}(t)$ as $B_{K}(t)=\{x;|x-(a/b)t|<K\},$ $ K<\infty$ , and
denote by $E(u, B_{K}(t),$ $t$ ) the local energy in $B_{K}(t)$ at time $t$ , which is given by
(1.3) with $V=U(x-(a/b)t, t)$ . Then, we have the following result.

THEOREM 5.1. Assunze that the potential $V(x, t)$ takes the form (5.1) with
(5.2). Let $u=u(x, t)$ be a solution to (1.1) with $Vof$ the form (5.1). Furthermore,
assume that the initial data (1.2) are of compact suppOrt and of finite energy.
Then, $E(u, B_{K}(t),$ $t$ ) decays exponentially as $ t\rightarrow\infty$ .

For the proof, we use a Lorentz transformation. Let $l$ be the time-like
line parameterized as $x=(a/b)t$ . We make a Lorentz transformation $L:(x, t)$

$\rightarrow(y, \tau)$ which preserves the sense of time and which maps $l$ into the $\tau$-axis in
the $(y, \tau)$ coordinates. Let $v(y, \tau)$ be the representation of $u(x, t)$ in terms of
the $(y, \tau)$ coordinates. Similarly, we denote by $W(y, \tau)$ the representation of
the potential $V(x, t)$ . Then, $v$ satisPes the equation (1.1) with $V=W(y, \tau)$ .
Furthermore, we see from (5.1) that $W(y, \tau)$ satisfies (A. $1$ ) $\sim(A. 3)$ in the $(y, \tau)$

coordinates. Hence, the local energy of $v$ decays exponentially as $\tau\rightarrow\infty$ . Using
this fact, we can verify Theorem 5.1 in a way similar to that in Cooper and
Strauss [3], so we omit the detailed proof of this theorem.
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Finally, we note that Theorem 1.2 is also extended to a wider class of
potentials by use of a Lorentz transformation.
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