On expansive homeomorphisms on manifolds

By Masaharu KOUNO

(Received Aug. 3, 1978) (Revised Nov. 27, 1979)

1. Introduction.

X will be a metric space with a metric d. A homeomorphism f of X onto itself is expansive if there exists a positive number C (called expansive constant) such that for each pair (x, y) of distinct points of X, there is an integer n for which $d(f^n(x), f^n(y)) > C$.

There is a question what manifolds admit such homeomorphisms. Several examples of existence and non-existence of expansive homeomorphisms are known. An open interval, a 1-sphere and a closed 2-disk do not admit expansive homeomorphisms (Bryant [1], Jakobsen and Utz [2]). An open 2*n*-ball $(n \ge 1)$ and an *r*-dimensional torus $(r \ge 2)$ admit expansive homeomorphisms (Reddy [3]). In this paper, we prove the followings.

THEOREM 1. Let M be a closed n-manifold $(n \ge 1)$, and J be an open interval. Then there exists an expansive homeomorphism of $M \times J$.

THEOREM 2. If M is a closed n-manifold $(n \ge 1)$, there exist an expansive homeomorphism of $Int(M^*{point})$. Where P^*Q is the join of P and Q, and Int M is the interior of M.

COROLLARY. There exists an expansive homeomorphism of an open n-ball $(n \ge 2)$.

The auther thanks Prof. K. Kobayashi for his helpful advices.

2. Proof of Theorem 1.

Let M be a closed *n*-manifold with a metric d. J=(0, 2) and R^n be an open interval with a standard metric d_1 and an *n*-dimensional Euclidean space with a standard metric d_n , respectively. And put $U(x, \varepsilon) = \{y \in M \mid d(y, x) < \varepsilon\}$, $U_n(z, \delta) = \{y \in R^n \mid d_n(y, z) < \delta\}$. We define the metric ρ of $M \times J$ to be $d \times d_1$ (where $d \times d_1((x, t), (y, s)) = d(x, y) + d_1(t, s)$ and $x, y \in M$ and $t, s \in J$), and I_k $(k \ge 0)$ to be $I_k = \left[\frac{1}{k+1}, \frac{1}{k}\right]$ $(k \in N)$ and $I_0 = [1, 2)$. Put $A_k = M \times I_k$.

First, we define several homeomorphisms of A_1 . We will use these homeomorphisms for constructing an expansive homeomorphism of $M \times J$. For any element x of M, there is a neighborhood W_x which is homeomorphic to \mathbb{R}^n . α_x is the homeomorphism from W_x to \mathbb{R}^n . There is a positive number ε_x such that $cl(U(x, 3\varepsilon_x)) \subset W_x$. Where cl(Y) is the closure of Y. For this ε_x , there exist positive numbers ζ and $\hat{\xi}$ such that $U_n(\alpha_x(x), \zeta) \subset \alpha_x(U(x, \varepsilon_x))$ and $U_n(\alpha_x(x), \hat{\xi})$ $\supset \alpha_x(U(x, 3\varepsilon_x))$. We denote $V_x = \alpha_x^{-1}(U_n(\alpha_x(x), \zeta))$ and $U_x = \alpha_x^{-1}(U_n(\alpha_x(x), \hat{\xi}))$. Since $\{V_x\}$ is an open covering of M, we can choose a finite covering $\{V_{x_1}, V_{x_2}, \dots, V_{x_m}\}$. We put $V_j = V_{x_j}, U_j = U_{x_j}, W_j = W_{x_j}$ and $\alpha_j = \alpha_{x_j}$.

Now, for any non-negative integer k, we define a finite open covering of M as follows. For any element x of M, there is some V_i such that $x \in V_i$. There are positive numbers s, t (s < t) such that $\alpha_i(x) \in U_n(\alpha_i(x), s) \subseteq U_n(\alpha_i(x), t) \subset \alpha_i \left(V_i \cap U\left(x, \frac{1}{k+1}\right) \right)$. Put $O_x = \alpha_i^{-1}(U_n(\alpha_i(x), s))$ and $\tilde{O}_x = \alpha_i^{-1}(U_n(\alpha_i(x), t))$. Since $\{O_x\}$ is an open covering, we can choose a finite covering $\{O_{k,j}\}$ $1 \leq j \leq \sigma(k)$ for some integer $\sigma(k)$. Put $\tilde{O}_{k,j} = \tilde{O}_x$ if $O_{k,j} = O_x$.

For each $O_{k,j}$, there is V_i that $\tilde{O}_{k,j} \subset V_i$. We fix one of them, namely V_p . Then we can define a homeomorphism, $\tilde{f}_{k,j}$, of M satisfying the following conditions,

- 1) $\tilde{f}_{k,j}|_{O_k,j}$ =identity,
- 2) $\tilde{f}_{k,j}(\tilde{O}_{k,j}) = U_p$,
- 3) $\tilde{f}_{k,j}|_{M-W_n}$ =identity,
- 4) $\tilde{f}_{k,j}$ is isotopic to identity.

Now, we define a homeomorphism, $f_{k,j}$, of $A_1(M \times I_1)$ that $f_{k,j}(x, t) = (\tilde{f}_{k,j}(x), t)$ $(x \in M, t \in I_1)$. For simplicity, we change the double suffix to single suffix. Put $f_i = f_{k,j}$ where $i = \sum_{q=0}^{k-1} \sigma(q) + j$. For each f_i , we define several homeomorphisms of $A_1, f_i^-, f_i^0, f_i^+, f_i^{++}$, as follows.

- a) $f_{\overline{i}}|_{M \times \{1\}} =$ identity, $f_{\overline{i}}|_{M \times \{1/2\}} = f_{i}|_{M \times \{1/2\}}$ and $f_{\overline{i}}$ is isotopic to identity.
- b) $f_i^0 = f_i \circ (f_i^-)^{-1}$.
- c) $f_i^+ \circ f_i^0 \circ f_i^-|_{M \times \{1/2\}} =$ identity, $f_i^+ \circ f_i^0 \circ f_i^-|_{M \times \{1\}} = f_i|_{M \times \{1\}}$ and f_i^+ is isotopic to identity.
- d) $f_i^{++} = (f_i^{-})^{-1} \circ (f_i^{0})^{-1} \circ (f_i^{+})^{-1}$.

Next we define homeomorphisms Z_j^i $(j \in \mathbb{N} \cup \{0\}, 1 \leq i \leq m)$. Put $D_1 = \{x \in \mathbb{R}^n | d_n(x, 0) \leq 1\}$ and $D_2 = \{x \in \mathbb{R}^n | d_n(x, 0) \leq 3\}$. For each integer j, we define a function $h_j(t)$ from $\left[\frac{1}{2}, 1\right]$ to R as follows, when $\frac{1}{2} + \frac{L-1}{8(j+1)} \leq t \leq \frac{1}{2} + \frac{L}{8(j+1)}$ (where L is a integer and $1 \leq L \leq 4(j+1)$)

$$h_{j}(t) = \begin{cases} 8(j+1)\Big(t - \Big(\frac{1}{2} + \frac{L-1}{8(j+1)}\Big)\Big) & \text{if } L \equiv 1 \pmod{4} \\ -8(j+1)\Big(t - \Big(\frac{1}{2} + \frac{L}{8(j+1)}\Big)\Big) & \text{if } L \equiv 2 \pmod{4} \\ -8(j+1)\Big(t - \Big(\frac{1}{2} + \frac{L-1}{8(j+1)}\Big)\Big) & \text{if } L \equiv 3 \pmod{4} \\ 8(j+1)\Big(t - \Big(\frac{1}{2} + \frac{L}{8(j+1)}\Big)\Big) & \text{if } L \equiv 0 \pmod{4}. \end{cases}$$

Let $Z_j: D_3 \times I_1 \rightarrow D_3$ be a function satisfying the following conditions. For $(x, t) = (x_1, x_2, \dots, x_n, t) \in D_1 \times I_1$, $Z_j(x, t) = (x_1 + h_j(t), x_2, \dots, x_n)$ and $Z_j|_{\partial(D_3 \times I_1)} = i$ dentity and Z_j is homotopic to the projection from $D_3 \times I_1$ to D_3 . For each i $(1 \le i \le m)$, there is a homeomorphism β_i from U_i to I and $\beta_i(V_i) = I$ and D_i . Where we can choose β_i satisfying that there exists a positive number δ_i for each $x, y \in U_i$ for which $\delta_i d_n(\beta_i(x), \beta_i(y)) \le d(x, y)$. We define a homeomorphisms Z_j^i of A_1 $(1 \le i \le m, j \in N \cup \{0\})$ as follows,

$$Z_{j}^{i}(x, t) = \begin{cases} (\beta_{i}^{-1}Z_{j}(\beta_{i}(x), t), t) & \text{if } x \in U_{i} \\ (x, t) & \text{if } x \in U_{i}. \end{cases}$$

Let g_k be a homeomorphisms from A_1 to A_k (where k is positive integer) such that $g_k(x, t) = \left(x, \frac{2t}{k(k+1)} + \frac{k-1}{k(k+1)}\right)$. Then, we define a homeomorphism f of $M \times J$ by the following.

$$\begin{aligned} f|_{A_0} \colon A_0 &\longrightarrow A_0 & \cup A_1 \colon (x, t) \longrightarrow \left(x, \frac{3}{2}(t-2)+2\right) \\ f|_{A_{jN+1}} &= g_{jN+2} \circ f_j^- \circ (g_{jN+1})^{-1} \\ f|_{A_{jN+2}} &= g_{jN+3} \circ f_j^0 \circ (g_{jN+2})^{-1} \\ f|_{A_{jN+3}} &= g_{jN+4} \circ f_j^+ \circ (g_{jN+3})^{-1} \\ f|_{A_{jN+4}} &= g_{jN+5} \circ f_j^{++} \circ (g_{jN+4})^{-1} \\ f|_{A_{jN+5}} &= g_{jN+6} \circ (Z_j^1) \circ (g_{jN+5})^{-1} \\ f|_{A_{jN+6}} &= g_{jN+7} \circ (Z_j^1)^{-1} \circ (g_{jN+6})^{-1} \\ & \vdots \\ f|_{A_{jN+N-1}} &= g_{jN+N} \circ Z_j^m \circ (g_{jN+N-1})^{-1} \\ f|_{A_{jN+N}} &= g_{jN+N+1} \circ (Z_j^m)^{-1} \circ (g_{jN+N})^{-1} \end{aligned}$$

where N=4+2m and j is non-negative integer. Since $f|_{A_k}$ agrees $f|_{A_{k+1}}$ on $A_k \cap A_{k+1}$, f can be well defined on $M \times J$.

M. Kouno

Now, we will show that this homeomorphism f is expansive. First, we define an expansive constant C. It is easy to check that there exists a positive constant C_0 such that for each t, s of I_1 and x of $\operatorname{Int} D_1$, there is an integer j for which $d_n(Z_j(x, t), Z_j(x, s)) > C_0$. We put $C = \frac{1}{2} \min \{\varepsilon_{x_1}, \varepsilon_{x_2}, \cdots, \varepsilon_{x_m}, \frac{1}{12}, \min (\delta_1, \cdots, \delta_m) \times C_0\}$.

We will show that each pair (x, t) and (y, s) of $M \times J$ (where $(x, t) \neq (y, s)$), there exists an integer L for which $\rho(f^{L}(x, t), f^{L}(y, s)) > C$. To do this, we need the following assertion.

ASSERTION.

(1) For each pair (x, y) of distinct points of M, there is some $O_{k,j}$ such that $x \in O_{k,i}$ and $y \notin \tilde{O}_{k,j}$.

(2) $f^{j_N+2}(x, t)=g_{j_N+3}f_j(x, t)$ for $(x, t)\in A_1$.

- (3) $f^{jN+2i}(x, t) = g_{jN+2i+1}(x, t)$ for $(x, t) \in A_1$ $(2 \le i \le m+2)$.
- (4) $f^{jN+2(i+1)+1}(x, t) = g_{jN+2(i+1)+2}Z_j^i(x, t)$ for $(x, t) \in A_1$ $(1 \le i \le m)$.
- (5) $\tilde{p}(V_p \times I_1, U_p^c \times I_1) > C$, where $\tilde{\rho}(Y, Z) = \min\{\rho(y, z) \mid y \in Y, z \in Z\}$ and A^c is the complement of A in M $(1 \le p \le m)$.
- (6) For any integers L and L', $\rho(g_L(x, t), g_{L'}(y, s)) \ge d(x, y)$ (where $(x, t), (y, s) \in A_1$).

(2)-(6) are clear. We will show only (1). For $O_{k,j}$, there is $z \in M$ that $\tilde{O}_{k,j} \subset U\left(z,\frac{1}{k}\right)$ by definition. If both x and y contained in $\tilde{O}_{k,j}$, $d(x, y) \leq d(x, z) + d(z, y) < \frac{1}{k} + \frac{1}{k} = \frac{2}{k}$. Since $\{O_{k,j}\}$ is an open covering of M, there is $O_{k,j}$ that $x \in O_{k,j}$ for any k. Specially, we choose k that greater than $\frac{2}{d(x, y)}$. Then, if $\tilde{O}_{k,j}$ which contains x contains y, $d(x, y) < \frac{2}{k} < d(x, y)$. This is a contradiction. (1) is established.

For any element $(x, t) \in M \times J$, there is some integer q that $f^{q}(x, t) \in A_{1}$. We may assume $(x, t) \in A_{1}$. And if (y, s) is contained in A_{0} , there is a positive integer r that $f^{r}(y, s) \in A_{1}$. Then $f^{r}(x, t) \in A_{r+1}$. Thus, we may assume $(y, s) \in A_{k}$ $(k \ge 1)$.

Case 1; $(y, s) \in A_k$ $(k \ge 3)$

$$\rho((x, t), (y, s)) \ge \tilde{\rho}(A_1, A_k) = \frac{1}{6} > \frac{1}{12} \ge C.$$

Case 2; $(y, s) \in A_1$

First, we prove the case $x \neq y$. By assertion (1), there is some $O_{k,j}$ such that $x \in O_{k,j}$ and $y \notin \tilde{O}_{k,j}$. We put $K = \sum_{q=0}^{k-1} \sigma(q) + j$. By assertion (2),

536

Expansive homeomorphisms

$$f^{NK+2}(x, t) = g_{NK+3}f_K(x, t)$$
$$f^{NK+2}(y, s) = g_{NK+3}f_K(y, s).$$

Then, $f_K(x, t)$ is contained in $O_{k,j} \times I_1 \subset V_p \times I_1$ and $f_K(y, s)$ is not contained in $U_p \times I_1$ (for some p). Thus,

$$\rho(f^{KN+2}(x, t), f^{KN+2}(y, s))$$

= $\rho(g_{NK+3}f_K(x, t), g_{NK+3}f_K(y, s))$
 $\geq \tilde{\rho}(g_{NK+3}(V_p \times I_1), g_{NK+3}(U_p^c \times I_1))$
= $\tilde{\rho}(V_p \times I_1, U_p^c \times I_1) > C.$

Now, we may assume x=y, then $t \neq s$. There exists V_p which contains x. Then, there is some integer j for which $d_n(Z_j(\alpha_p(x), t), Z_j(\alpha_p(x), s)) > C_0$. By assertion (4),

$$\rho(f^{jN+2(p+1)+1}(x, t), f^{jN+2(p+1)+1}(x, s))$$

= $\rho(g_{jN+2(p+1)+2}Z_j^p(x, t), g_{jN+2(p+1)+2}Z_j^p(x, s))$
 $\geq \rho(Z_j^p(x, t), Z_j^p(x, s)) > \delta_p \times C_0 \geq C.$

Case 3; $(y, s) \in A_2$

Put $(y', s')=f^{-1}(y, s)\in A_1$. There is V_p which contains y'. Let y_j be an element of M that $(y_j, s')=Z_j^p(y', s')$. Since there are integers j and j' that $d(y_j, y_{j'})>2C$, there exists an integer j that $d(y_j, x)>C$. Then, $f^{jN+2(p+1)}(x, t) = g_{jN+2(p+1)+1}(x, t)$ and $f^{jN+2(p+1)}(y, s)=f^{jN+2(p+1)+1}(y', s')=g_{jN+2(p+1)+2}Z_j^p(y', s') = g_{jN+2(p+1)+2}(y_j, s')$. Thus,

$$\rho(f^{jN+2(p+1)}(x, t), f^{jN+2(p+1)}(y, s))$$

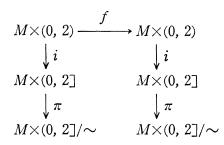
= $\rho(g_{jN+2(p+1)+1}(x, t), g_{jN+2(p+1)+2}(y_j, s'))$
 $\geq d(x, y_j) > C.$

This completes the proof.

3. Proof of Theorem 2 and the corollary.

We can see that $Int(M^{*}\{p\})$ is $M \times (0, 2]/\sim$, where $(x, t) \sim (y, s)$ means t=s=2 or (x, t)=(y, s). We consider the following diagram.

M. Kouno



where *i* is the injection and π is the natural projection. We define a homeomorphism *g* of $M \times (0, 2]/\sim$ as follows,

$$\begin{cases} g(\pi(x, 2)) = \pi(x, 2) \\ g(\pi(x, t)) = \pi i f i^{-1}(x, t) & \text{if } t \neq 2. \end{cases}$$

It is easy to check that g is expansive. Theorem 2 has proved.

To prove the corollary, we put $M=S^n$ (an *n*-sphere) in Theorem 2. Then, Int $(M^*\{p\})$ is the open (n+1)-ball, this show that the corollary is established.

References

- B.F. Bryant, Unstable self-homeomorphisms of compact space, Amer. Math. Monthly, 69 (1962), 386-391.
- [2] J.F. Jakobsen and W.R. Utz, The nonexistence of expansive homeomorphisms on a closed 2-cell, Pacific J. Math., 10 (1960), 1319-1321.
- [3] W. Reddy, The existence of expansive homeomorphism on manifolds, Duke Math. J., 32 (1965), 627-632.

Masaharu Kouno

Department of Mathematics Faculty of Science Hokkaido University Sapporo 060 Japan

538