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1. Introduction.
$X$ will be a metric space with a metric $d$ . A homeomorphism $f$ of $X$ onto

itself is expansive if there exists a positive number $C$ (called expansive con-
stant) such that for each pair $(x, y)$ of distinct points of $X$, there is an integer
$n$ for which $d(f^{n}(x), f^{n}(y))>C$.

There is a question what manifolds admit such homeomorphisms. Several
examples of existence and non-existence of expansive homeomorphisms are known.
An open interval, a 1-sphere and a closed 2-disk do not admit expansive homeo-
morphisms (Bryant [1], Jakobsen and Utz [2]). An open $2n$ -ball $(n\geqq 1)$ and an
r-dimensional torus $(r\geqq 2)$ admit expansive homeomorphisms (Reddy [3]). In
this paper, we prove the followings.

THEOREM 1. Let $M$ be a closed n-manifold $(n\geqq 1)$ , and $J$ be an open interval.
Then there exists an expansive homeomorPhism of $M\times J$.

THEOREM 2. If $M$ is a closed n-manifold $(n\geqq 1)$ , there exist an expansive
homeomorphism of Int ( $M^{*}$ {point}). Where $P^{*}Q$ is the join of $P$ and $Q$ , and
Int $M$ is the interior of $M$.

COROLLARY. There exists an expansive homeomorphism of an open n-ball
$(n\geqq 2)$ .

The auther thanks Prof. K. Kobayashi for his helpful advices.

2. Proof of Theorem 1.

Let $M$ be a closed n-manifold with a metric $d$ . $J=(O, 2)$ and $R^{n}$ be an open
interval with a standard metric $d_{1}$ and an n-dimensional Euclidean space with
a standard metric $d_{n}$ , respectively. And put $U(x, \epsilon)=\{y\in M|d(y, x)<\epsilon\}$ ,
$U_{n}(z, \delta)=\{y\in R^{n}|d_{n}(y, z)<\delta\}$ . We define the metric $\rho$ of $M\times J$ to be $d\times d_{1}$

(where $d\times d_{1}((x,$ $t),$ $(y,$ $s))=d(x,$ $y)+d_{1}(t,$ $s)$ and $x,$ $y\in M$ and $t,$ $s\in J$ ), and $I_{k}$

$(k\geqq 0)$ to be $I_{k}=[\frac{1}{k+1}$ , $\frac{1}{k}](k\in N)$ and $I_{0}=[1,2$). Put $A_{k}=M\times I_{k}$ .
First, we define several homeomorphisms of $A_{1}$ . We will use these homeo-

morphisms for constructing an expansive homeomorphism of $M\times J$ . For any
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element $x$ of $M$, there is a neighborhood $W_{x}$ which is homeomorphic to $R^{n}$ . $\alpha_{x}$

is the homeomorphism from $W_{x}$ to $R^{n}$ . There is a positive number $\epsilon_{x}$ such
that $cl(U(x, 3\epsilon_{x}))\subset W_{x}$ . Where $cl(Y)$ is the closure of $Y$. For this $\epsilon_{x}$ , there
exist positive numbers $\zeta$ and $\xi$ such that $U_{n}(\alpha_{x}(x), \zeta)\subset\alpha_{x}(U(x, \epsilon_{x}))$ and $U_{n}(\alpha_{x}(x), \xi)$

$\supset\alpha_{x}(U(x, 3\epsilon_{x}))$ . We denote $V_{x}=\alpha_{x}^{-1}(U_{n}(\alpha_{x}(x), \zeta)$ and $U_{x}=\alpha_{x}^{-1}(U_{n}(\alpha_{x}(x), \xi))$ .
Since $\{V_{x}\}$ is an open covering of $M$, we can choose a finite covering $\{V_{x_{1}},$ $V_{x_{2}}$ ,
... , $V_{x_{m}}$ }. We put $V_{j}=V_{x_{j}},$ $U_{j}=U_{x_{j}},$ $W_{j}=W_{x_{j}}$ and $\alpha_{j}=\alpha_{x_{j}}$ .

Now, for any non-negative integer $k$ , we define a finite open covering of $M$

as follows. For any element $x$ of $M$, there is some $V_{i}$ such that $x\in V_{i}$ . There
are positive numbers $s,$ $t(s<t)$ such that $\alpha_{i}(x)\in U_{n}(\alpha_{i}(x), s)\subsetneqq U_{n}(\alpha_{i}(x), t)\subset$

$\alpha_{i}(V_{i}\cap U(x,$ $\frac{1}{k+1}))$ . Put $0_{x}=\alpha_{i}^{-1}(U_{n}(\alpha_{i}(x), s))$ and $\tilde{O}_{x}=\alpha_{i}^{-1}(U_{n}(\alpha_{i}(x)\wedge, t))$ . Since

$\{O_{x}\}$ is an open covering, we can choose a finite covering $\{O_{k,j}\}1\leqq j\leqq\sigma(k)$ for
some integer $\sigma(k)$ . Put $\tilde{O}_{k.j}=\tilde{O}_{x}$ if $O_{k.j}=O_{x}$ .

For each $O_{k,j}$, there is $V_{i}$ that $\tilde{O}_{k.j}\subset V_{i}$ . We fix one of them, namely $V_{p}$ .
Then we can define a homeomorphism, $\tilde{f}_{k.j}$ , of $M$ satisfying the following con-
ditions,

1) $f_{k.j}|_{0_{k\cdot j}}=identity$ ,

2) $\tilde{f}_{k.j}(\tilde{O}_{k.j})=U_{p}$ ,

3) $\tilde{f}_{k.j}|_{M- W_{p}}=identity$ ,

4) $f_{k.j}$ is isotopic to identity.

Now, we define a homeomorphism, $f_{k.j}$ , of $A_{1}(M\times I_{1})$ that $f_{k,j}(x, t)=(\tilde{f}_{k.j}(x), t)$

$(x\in M, t\in I_{1})$ . For simplicity, we change the double suffix to single suffix. Put

$f_{i}=f_{k.j}$ where $i=\sum_{q=0}^{k-1}\sigma(q)+j$ . For each $f_{i}$ , we define several homeomorphisms

of $A_{1},$ $f_{i}^{-},$ $f_{i}^{0},$ $f_{i}^{+},$ $f_{i}^{++}$ , as follows.

a) $f_{i}^{-}|_{M\times\{11}=identity,$ $f_{i}^{-}|_{M\times\{1/2\}}=f_{i}|_{Mx\{1/2\}}$ and $f_{i}^{-}$ is isotopic to identity.

b) $f_{i}^{0}=f_{i}\circ(f_{i}^{-})^{-1}$ .
c) $f_{i}^{+}\circ f_{t}^{0}\circ f_{i}^{-}|_{M\times\{1/2\}}=identity,$ $f_{i}^{+}\circ f_{i}^{0}\circ f_{i}^{-}|_{M\times\{1\}}=f_{l}|_{M\times\dagger 1\}}$ and

$f_{i}^{+}$ is isotopic to identity.

d) $f_{i}^{++}=(f_{i}^{-})^{-1}\circ(f_{i}^{0})^{-1}\circ(f_{i}^{+})^{-1}$ .
Next we define homeomorphisms $Z_{j}^{i}$ $(j\in N\cup\{0\}, 1\leqq i\leqq m)$ . Put $D_{1}=$

$\{x\in R^{n}|d_{n}(x, 0)\leqq 1\}$ and $D_{2}=\{x\in R^{n}|d_{n}(x, 0)\leqq 3\}$ . For each integer $j$ , we define

a function $h_{j}(t)$ from $[\frac{1}{2},1]$ to $R$ as follows, when $\frac{1}{2}+\frac{L-1}{8(j+1)}\leqq t\leqq\frac{1}{2}+\frac{L}{8(j+1)}$

(where $L$ is a integer and $1\leqq L\leqq 4(j+1)$ )
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$h_{j}(t)=\left\{\begin{array}{ll}8(j+1)(t-(\frac{1}{2}+\frac{L-1}{8(j+1)})) & if L\equiv 1(mod.4)\\-8(j+1)(t-(\frac{1}{2}+\frac{L}{8(j+1)})) & if L\equiv 2(mod.4)\\-8(j+1)(t-(\frac{1}{2}+\frac{L-1}{8(j+1)})) & if L\equiv 3(mod.4)\\8(j+1)(t-(\frac{1}{2}+\frac{L}{8(j+1)})) & if L\equiv 0(mod.4).\end{array}\right.$

Let $Z_{j}$ : $D_{3}\times I_{1}\rightarrow D_{3}$ be a function satisfying the following conditions. For $(x, t)$

$=(x_{1}, x_{2}, \cdots , x_{n}, t)\in D_{1}\times I_{1}$ , $Z_{j}(x, t)=(x_{1}+h_{j}(t), x_{2}, \cdots , x_{n})$ and $Z_{j}|_{\partial(D_{3}xI_{1})}=$

identity and $Z_{j}$ is homotopic to the projection from $D_{3}\times I_{1}$ to $D_{3}$ . For each $i$

$(1\leqq i\leqq m)$ , there is a homeomorphism $\beta_{i}$ from $U_{i}$ to $IntD_{3}$ and $\beta_{i}(V_{i})=IntD_{1}$ .
Where we can choose $\beta_{i}$ satisfying that there exists a positive number $\delta_{i}$ for
each $x,$ $y\in U_{i}$ for which $\delta_{i}d_{n}(\beta_{i}(x), \beta_{i}(y))\leqq d(x, y)$ . We define a homeomor-
phisms $Z_{j}^{i}$ of $A_{1}(1\leqq i\leqq m, j\in N\cup\{0\})$ as follows,

$Z_{j}^{i}(x, t)=\left\{\begin{array}{ll}(\beta_{i}^{-1}Z_{j}(\beta_{i}(x), t), t) & if x\in U_{i}\\(x, t) & if x\not\in U_{i}.\end{array}\right.$

Let $g_{k}$ be a homeomorphisms from $A_{1}$ to $A_{k}$ (where $k$ is positive integer)

such that $g_{k}(x, t)=(x,$ $\frac{2t}{k(k+1)}+\frac{k-1}{k(k+1)})$ . Then, we define a homeomorphism

$f$ of $M\times J$ by the following.

$f|_{A_{0}}$ : $A_{0}\rightarrow A{}_{0}CA_{1}$ : $(x, t)\rightarrow(x,$ $\frac{3}{2}(t-2)+2)$

$f|_{A_{jN+1}}=g_{jN+2}\circ f_{j}^{-}\circ(g_{jN+1})^{-1}$

$f|_{A_{jN+2}}=g_{jN+3}\circ f_{j}^{0}\circ(g_{jN+2})^{-1}$

$f|_{A_{jN+3}}=g_{jN+4}\circ f_{f}^{+}\circ(g_{jN+3})^{-1}$

$f|_{A_{jN+4}}=g_{jN+5}\circ f_{j}^{++}\circ(g_{jN+4})^{-1}$

$f|_{A_{jN+5}}=g_{jN+6}\circ(Z_{j}^{1})\circ(g_{jN+5})^{-1}$

$f|_{A_{jN+6}}=g_{jN+7}\circ(Z_{j}^{1})^{-1}\circ(g_{jN+6})^{-1}$

::
$f|_{A_{jN+N-1}}=g_{jN+N}\circ Z_{j}^{m}\circ(g_{jN+N-1})^{-1}$

$f|_{A_{jN+N}}=g_{jN+N+1}\circ(Z_{f}^{m})^{-1}\circ(g_{fN+N})^{-1}$

where $N=4+2m$ and $j$ is non-negative integer. Since $f|_{A_{k}}$ agrees $ f|_{A_{k+}}\wedge$ on
$A_{k}\cap A_{k+1},$ $f$ can be well defined on $M\times J$.
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Now, we will show that this homeomorphism $f$ is expansive. First, we
define an expansive constant $C$. It is easy to check that there exists a positive
constant $C_{0}$ such that for each $t,$ $s$ of $I_{1}$ and $x$ of $IntD_{1}$ , there is an integer $j$

for which $d_{n}(Z_{j}(x, t),$ $Z_{j}(x, s))>C_{0}$ . We put $C=\frac{1}{2}$ min { $\epsilon_{x_{1}},$ $\epsilon_{x_{2}},$

$\cdots$ , $\epsilon_{x_{m}},$

$\frac{1}{12}$

min $(\delta_{1}, \cdots , \delta_{m})\times C_{0}$}.
We will show that each pair $(x, t)$ and $(y, s)$ of $M\times J$ (where $(x,$ $t)\neq(y,$ $s)$),

there exists an integer $L$ for which $\rho(f^{L}(x, t),$ $f^{L}(y, s))>C$. To do this, we
need the following assertion.

ASSERTION.

(1) For each pair $(x, y)$ of distinct points of $M$, there is some
$O_{k.j}$ such that $x\in O_{k}$ , : and $y\not\in\tilde{O}_{k.j}$ .

(2) $f^{jN+2}(x, t)=g_{jN+3}f_{j}(x, t)$ for $(x, t)\in A_{1}$ .
(3) $f^{jN+2i}(x, t)=g_{jN+2i+1}(x, t)$ for $(x, t)\in A_{1}(2\leqq i\leqq m+2)$ .
(4) $f^{jN+2(i+1)+1}(x, t)=g_{jN+2(i+1)+2}Z_{j}^{i}(x, t)$ for $(x, t)\in A_{1}(1\leqq i\leqq m)$ .
(5) $\tilde{p}(V_{p}\times I_{1}, U_{p}^{c}\times I_{1})>C$, where $\tilde{\rho}(Y, Z)=\min\{\rho(y, z)|y\in Y, z\in Z\}$

and $A^{c}$ is the complement of $A$ in $M(1\leqq p\leqq m)$ .
(6) For any integers $L$ and $L^{\prime},$ $\rho(g_{L}(x, t),$ $g_{L^{\prime}}(y, s))\geqq d(x, y)$

(where $(x,$ $t),$ $(y,$ $s)\in A_{1}$).

(2) $-(6)$ are clear. We will show only (1). For $O_{k,j}$, there is $z\in M$ that

$\tilde{O}_{k,j}\subset U(z,$ $\frac{1}{k})$ by definition. If both $x$ and $y$ contained in $\tilde{O}_{k,j},$ $d(x, y)\leqq d(x, z)$

$+d(z, y)<\frac{1}{k}+\frac{1}{k}=\frac{2}{k}$ . Since $\{O_{k.j}\}$ is an open covering of $M$, there is $0_{k,j}$

that $x\in O_{k.j}$ for any $k$ . Specially, we choose $k$ that greater than $\frac{2}{d(x,y)}$ . Then,

if $\tilde{O}_{k,j}$ which contains $x$ contains $y,$ $d(x, y)<\frac{2}{k}<d(x, y)$ . This is a contradic-
tion. (1) is established.

For any element $(x, t)\in M\times J$, there is some integer $q$ that $f^{q}(x, t)\in A_{1}$ .
We may assume $(x, t)\in A_{1}$ . And if $(y, s)$ is contained in $A_{0}$ , there is a positive
integer $r$ that $f^{r}(y, s)\in A_{1}$ . Then $f^{r}(x, t)\in A_{r+1}$ . Thus, we may assume $(y, s)$

$\in A_{k}(k\geqq 1)$ .
Case 1; $(y, s)\in A_{k}(k\geqq 3)$

$\rho((x, t),$ $(y, s))\geqq\tilde{\rho}(A_{1}, A_{k})=\frac{1}{6}>\frac{1}{12}\geqq C$ .
Case 2; $(y, s)\in A_{1}$

First, we prove the case $x\neq y$ . By assertion (1), there is some $O_{k.j}$ such that

$x\in O_{k.j}$ and $y\not\in\tilde{O}_{k.j}$ . We put $K=\sum_{q=0}^{k-1}\sigma(q)+j$ . By assertion (2),
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$f^{NK+2}(x, t)=g_{NK+3}f_{K}(x, t)$

$f^{NK+2}(y, s)=g_{NK+3}f_{K}(y, s)$ .
Then, $f_{K}(x, t)$ is contained in $O_{k.j}\times I_{1}\subset V_{p}\times I_{1}$ and $f_{K}(y, s)$ is not contained in
$U_{p}\times I_{1}$ (for some $p$). Thus,

$\rho(f^{KN+2}(x, t),$ $f^{KN+2}(y, s))$

$=\rho(g_{NK+3}f_{K}(x, t),$ $g_{NK+3}f_{K}(y, s))$

$\geqq\tilde{\rho}(g_{NK+3}(V_{p}\times I_{1}), g_{NK+3}(U_{p}^{c}\times I_{1}))$

$=\tilde{\rho}(V_{p}\times I_{1}, U_{p}^{c}\times I_{1})>C$ .
Now, we may assume $x=y$ , then $t\neq s$ . There exists $V_{p}$ which contains $x$ .

Then, there is some integer $j$ for which $d_{n}(Z_{j}(\alpha_{p}(x), t),$ $Z_{j}(\alpha_{p}(x), s))>C_{0}$ . By
assertion (4),

$\rho(f^{jN+2(p+1)+1}(x, t),$ $f^{jN+2(p+1)+1}(x, s))$

$=\rho(g_{jN+2(p+1)+2}Z_{j}^{p}(x, t),$ $g_{jN+2(p+1)+2}Z_{J}^{p}(x, s))$

$\geqq\rho(Z_{J}^{p}(x, t),$ $Z_{j}^{p}(x, s))>\delta_{p}\times C_{0}\geqq C$ .
Case 3; $(y, s)\in A_{2}$

Put $(y^{1^{\prime}}, s^{\prime})=f^{-1}(y, s)\in A_{1}$ . There is $V_{p}$ which contains $y^{\prime}$ . Let $y_{j}$ be an ele-
ment of $M$ that $(y_{j}, s^{\prime})=Z_{j}^{p}(y^{\prime}, s^{\prime})$ . Since there are integers $j$ and $j^{\prime}$ that
$d(y_{j}, y_{J^{\prime}})>2C$, there exists an integer $j$ that $d(y_{j}, x)>C$ . Then, $f^{jN+2(p+1)}(x, t)$

$=g_{jN+2(p+1)+1}(x, t)$ and $f^{jN+2(p+1)}(y, s)=f^{jN+2(p+1)+1}(y^{\prime}, s^{\prime})=g_{jN+2(p+1)+2}Z_{J}^{p}(y^{\prime}, s^{\prime})$

$=g_{jN+2(p+1)+2}(y_{j}, s^{\prime})$ . Thus,

$\rho(f^{jN+2(p+1)}(x, t),$ $f^{jN+2(p+1)}(y, s))$

$=\rho(g_{jN+2(p+1)+1}(x, t),$ $g_{jN+2(p+1)+2}(y_{j}, s^{\prime}))$

$\geqq d(x, y_{j})>C$ .
This completes the proof.

3. Proof of Theorem 2 and the corollary.

We can see that Int $(M^{*}\{p\})$ is $M\times(O, 2$] $/\sim$ , where $(x, t)\sim(J^{\prime}, s)$ means
$t=s=2$ or $(x, t)=(y, s)$ . We consider the following diagram.
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$M\times(0,2)\rightarrow^{f}M\times(0,2)$

$\downarrow i$ $\downarrow i$

$M\times(O, 2]$ $M\chi(O, 2$]

$\downarrow\pi$ $\downarrow\pi$

$ M\times(O, 2]/\sim$ $M\times(O, 2$] $/\sim$

where $i$ is the injection and $\pi$ is the natural projection. We define a homeo-
morphism $g$ of $M\times(O, 2$] $/\sim$ as follows,

$\left\{\begin{array}{ll}g(\pi(x, 2))=\pi(x, 2) & \\g(\pi(x, t))=\pi ifi^{-1}(x, t) & if t\neq 2.\end{array}\right.$

It is easy to check that $g$ is expansive. Theorem 2 has proved.
To prove the corollary, we put $M=S^{n}$ (an n-sphere) in Theorem 2. Then,

Int $(M^{*}\{p\})$ is the open $(n+1)$-ball, this show that the corollary is established.
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