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1. Introduction.

This paper is a continuation of [7]. We are interested in the invariant
subspace structure and ideal structure of certain subalgebras of von Neumann
algebras constructed as crossed products of finite von Neumann algebras by

trace preserving automorphisms. These subalgebras are called nonselfadjoint
crossed products and most properly should be regarded as operator theoretic
versions of twisted polynomial rings. We seek conditions under which an
analogue of the theorem of Beurling (as generalized by Lax and Halmos) is
valid. The theorem of Beurling, Lax and Halmos (hereafter abbreviated the
BLH theorem) is usually regarded as describing the invariant subspaces of a
unilateral shift (of arbitrary multiplicity). However, from a ring theoretic point
of view it may be thought of as describing certain modules over the algebra
$H^{\infty}(\Delta)$ of bounded analytic functions on the unit disc (regarded as a subalgebra
of $L^{\infty}$ of the circle), and in particular the BLH theorem implies that every
weak*-closed ideal in $H^{\infty}(\Delta)$ is principal. Thus, from an operator theoretic point
of view $H^{\infty}(\Delta)$ is a principal ideal domain, a generalization of the polynomial
algebra in one variable. Since von Neumann algebra crossed products may be
viewed as noncommutative generalizations of $L^{\infty}$ of the circle and since our
nonselfadjoint crossed products are generalizations of $H^{\infty}(\Delta)$ , our search for
analogues of the BLH theorem is tantamount to looking for conditions under
which our algebras are noncommutative principal ideal rings. We shall find
necessary and sufficient conditions for the validity of the BLH theorem for a
nonselfadjoint crossed product and we shall prove that within the context of
subdiagonal algebras defined and first studied by Arveson in [1], the validity
of the BLH theorem essentially characterizes nonselfadjoint crossed products.
More precisely, we shall show that with a minor qualification if a subdiagonal
algebra has the property that every ultraweakly closed two-sided ideal is prin-
cipal, then the algebra is a nonselfadjoint crossed product and every ultraweakly
closed left ideal is principal.

The setting here is the following. Let $M$ be a von Neumann algebra with
$*)$ SuPported in part by a grant from the National Science Foundation.
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a faithful, normal, finite and normalized trace $\phi$ and let $\alpha$ be a $*$-automorphism
of $M$ such that $\phi\circ\alpha=\phi$ . We regard $M$ as acting on the noncommutative
Lebesgue space $L^{2}(M, \phi)$ (cf. [14]), $i$ . $e$ . we identify it, when convenient, with
the von Neumann algebra of left multiplications on $L^{2}(M, \phi)$ . Then $\alpha$ uniquely
extends to a unitary operator $u$ on $L^{2}(M, \phi)$ such that $\alpha(x)=uxu^{*},$ $x\in M$.
From the Hilbert space $L^{2}=l^{2}(Z)\otimes L^{2}(M, \phi)$ and consider the operators $L_{x}$ ,
$x\in M$, and $L_{\delta}$ defined on $L^{2}$ by the formulae $L_{x}=I\otimes x$ and $L_{\delta}=S\otimes u$ where $S$

is the usual bilateral shift on $l^{2}(Z)$ . Then the von Neumann algebra crossed
product determined by $M$ and $\alpha$ is defined to be the von Neumann algebra $\mathfrak{L}$

on $L^{2}$ generated by $\{L_{x} : x\in M\}(=L(M))$ and $L_{\delta}$ , while the subalgebra which
we call a nonselfadjoint crossed product is the ultraweakly closed subalgebra $\mathfrak{L}_{+}$

generated by $L(M)$ and the positive powers of $L_{\delta}$ . Let $H^{2}$ be the subspace
$l^{2}(Z_{+})\otimes L^{2}(M, \phi)$ of $L^{2}$ and let $\mathfrak{Z}(\mathfrak{L})$ be the center of $\mathfrak{L}$ . We shall denote by
$Lat(\mathfrak{L}_{+})$ the lattice of subspaces invariant under $\mathfrak{L}_{+}$ such that $\bigcap_{n\geqq 0}L_{\delta}^{n}\mathfrak{M}=\{0\}$ . If

every subspace $\mathfrak{M}$ in $Lat(\mathfrak{L}_{+})$ is of the form $\mathfrak{M}=R{}_{v}H^{2}$ , where $R_{v}$ is a partial
isometry in the commutant $\Re$ of $\mathfrak{L}$ , we shall say that the BLH theorem is valid.

In [7], we showed that the following three conditions are equivalent: i) $M$

is a factor; ii) a conditioned form of the BLH theorem is valid; and iii) $\mathfrak{L}_{+}$ is
maximal among the ultraweakly closed subalgebras of $\mathfrak{L}$ . Moreover, we showed
that if $M$ is a factor, then the BLH theorem is valid without qualification.
However, as is easily seen, the converse is not necessarily true.

Our objective in this paper is to study necessary and sufficient conditions
under which the BLH theorem is valid. First of all, we find that $\alpha$ fixes the
center $\mathfrak{Z}(M)$ of $M$ elementwise if and only if the BLH theorem is valid. If $M$

is not a factor, then $\mathfrak{L}_{+}$ is not a maximal ultraweakly closed subalgebra of $\mathfrak{L}$

[ $7$ , Theorem 4.1]. However, when $\alpha$ leaves the center $\mathfrak{Z}(M)$ of $M$ elementwise
invariant, then we can describe the ultraweakly closed subalgebras of $\mathfrak{L}$ contain-
ing $\mathfrak{L}_{+}$ . It turns out that every ultraweakly closed subalgebra $\mathfrak{B}$ of $\mathfrak{L}$ containing
$\mathfrak{L}_{+}$ is of the form $\mathfrak{B}=(1-L_{p})\mathfrak{L}\oplus L_{p}\mathfrak{L}_{+}$ where $L_{p}$ is a projection in $\mathfrak{Z}(\mathfrak{L})\cap L(M)$ .
And the converse is also true. Thus the validity of the BLH theorem is tied
to the form of the ultraweakly closed subalgebras of $\mathfrak{L}$ containing $\mathfrak{L}_{+}$ .

In \S 2, we define the nonselfadjoint crossed products. In \S 3, we show the
equivalence of the assertions that $\alpha$ fixes the center $\mathfrak{Z}(M)$ of $M$ eiementwise,
the BLH theorem is valid, every ultraweakly closed subalgebra of $\mathfrak{L}$ containing
$\mathfrak{L}_{+}$ is of the form $(1-L_{p})\mathfrak{L}\oplus L_{p}\mathfrak{L}_{+}$ where $L_{p}$ is a projection in $\mathfrak{Z}(\mathfrak{L})\cap L(M)$ , etc.
In \S 4, we consider a generalization of the results of \S 6 in [7]. That is, we
prove that if a version of the BLH theorem is valid in a subdiagonal algebra,
then the algebra must be a nonselfadjoint crossed product determined by a
finite von Neumann algebra $M$, and a $*$-automorphism of $M$ which fixes the
center $\mathfrak{Z}(M)$ of $M$ elementwise. Finally, in \S 5 we rephrase our results in terms
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of ideals.

2. Nonselfadjoint crossed products.

Let $M$ be a von Neumann algebra with a trace $\phi$ . In this paper, all traces
without exception will be assumed to be faithful, normal, finite and normalized.
We assume $M$ to be in standard form and identify it with the von Neumann algebra
of left multiplications on the noncommutative Lebesgue space $L^{2}(M, \phi)$ associated
with $M$ and $\phi$ (see [14]). Also, we fix once and for all a $*$-automorphism $\alpha$ of
$M$ which preserves $\phi;i$ . $e.,$ $\phi\circ\alpha=\phi$ . Then we have the following proposition.

PROPOSITION 2.1. Let $L_{0}^{2}=$ { $f:Z\rightarrow M|f(n)=0$ for all but finitely many $n$ }.
Then, with respect to pOjntwise addition and scalar multiplicatiOn and the oper-
ations defined by equations (1) $-(3)$ , $L_{0}^{2}$ is a Hilbert algebra with identity $\psi$

defined by $\psi(0)=I_{M}$ , and $\psi(n)=0,$ $n\neq 0$ .
(1) $(f*g)(n)=\sum_{k\in Z}f(k)\alpha^{k}(g(n-k))$ ,

(2) $(f^{*})(n)=[\alpha^{n}(f(-n))]^{*}$ ,
(3) $(f, g)=\sum_{k\in Z}(f(k), g(k))_{L^{2}(M,\phi)}$ .
Observe, too, that the Hilbert space completion $L^{2}$ of $L_{0}^{2}$ is precisely

$\{f:Z\rightarrow L^{2}(M, \phi)|\sum_{n\in Z}\Vert f(n)\Vert_{L^{2}(M.\phi)}^{2}<\infty\}$ and may be identified with $l^{2}(Z)\otimes L^{2}(M, \phi)$ .
For $f$ in $L_{0}^{2}$ , we define operators $L_{f}$ and $R_{f}$ on $L^{2}$ by the formulae $L_{f}g=f*g$

and $R_{f}g=g*f,$ $g\in L^{2}$ . As is customary, we set $\mathfrak{L}=\{L_{f} : f\in L_{0}^{2}\}^{\prime\prime}$ and $\Re=$

$\{R_{f} : f\in L_{0}^{2}\}^{\prime\prime}$ . Also we define $L^{\infty}$ to be the achieved Hilbert algebra of all
bounded elements in $L^{2}$ . That is, $L^{\infty}$ consists of those $f$ in $L^{2}$ such that the
map $g\rightarrow f*g,$ $g\in L_{0}^{2}$ , extends to a bounded operator on all of $L^{2}$ . For such an
$f$, we write $L_{f}$ and $R_{f}$ for the operators it determines. From Hilbert algebra
theory (cf. [2, Chapter 1, \S 5]), we have $\mathfrak{L}=\{L_{f} : f\in L^{\infty}\}$ and $\Re=\{R_{f} : f\in L^{\infty}\}$ .
Since $\alpha$ preserves $\phi$ on $M$, $\alpha$ uniquely extends to a unitary operator $u$ on
$L^{2}(M, \phi)$ . Consequently, the canonical antiunitary involution $J$ on $L^{2}$ , extending
the $*$-operation on $L_{0}^{2}$ , is given by the formula (2) in Proposition 2.1.

The original algebra $M$ is identified with the subalgebra $\{x\psi:X\in M\}$ of
$L^{\infty}$ , and we abbreviate $L_{x\psi}$ and $R_{x\psi}$ by $L_{x}$ and $R_{x}$ respectively. We put
$L(M)=\{L_{x} : x\in M\}$ and $R(M)=\{R_{x} : x\in M\}$ . More generally, if $S$ is a subset
of $L^{\infty}$ , we will write $L(S)$ (resp. $R(S)$ ) for $\{L_{\sigma} : \sigma\in S\}$ (resp. $\{R_{\sigma}$ : $\sigma\in S\}$ ). The
function $\delta$ defined by the formula $\delta(1)=I_{M}$ and $\delta(n)=0$ , $n\neq 1$ , plays a very
important role. It is clear that $\mathfrak{L}=\{L(M), L_{\delta}\}^{\prime\prime}$ and $\Re=\{R(M), R_{\delta}\}^{\prime\prime}$ .

Next we define $H^{2}=\{f\in L^{2} : f(n)=0, n<0\}$ , we define $H^{\infty}$ to be $L^{\infty}\cap H^{2}$ ,

and we refer to it as the nonselfadjoint crossed product determined by $M$ and
$\alpha$ . Also $\mathfrak{L}_{+}=\{L_{f} : f\in H^{\infty}\}$ and $\Re_{+}=\{R_{f} : f\in H^{\infty}\}$ . Then $\mathfrak{L}_{+}$ (resp. $\Re_{+}$ ) is the
ultraweakly closed subalgebra of $\mathfrak{L}$ (resp. $\Re$ ) generated by $L_{\delta}$ and $L(M)$ (resp.
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$R_{\delta}$ and $R(M))$ (cf. [7, Theorem 2.2]).

DEFINITION 2.2. Let $\mathfrak{M}$ be a closed subspace of $L^{2}$ . We shall say that $\mathfrak{M}$ is:
left invariant, if $\mathfrak{L}_{+}\mathfrak{M}\subseteqq \mathfrak{M}$ ; left reducing, if $\mathfrak{L}\mathfrak{M}\subseteqq \mathfrak{M}$ ; left-pure, if $\mathfrak{M}$ contains no
nontrivial left reducing subspace; and left-full, if the smallest left reducing
subspace containing $\mathfrak{M}$ is all of $L^{2}$ . The right-hand versions of these concepts
are dePned similarly, and a closed subspace which is both left and right invariant
will be called two-sided invariant.

In this paper all results will be formulated in terms of left invariant sub-
spaces. We leave it to the reader to rephrase them to obtain “ right-hand ”

statements.

3. Validity of the BLH theorem.

We shall say that the BLH theorem is valid if every left-pure, left invariant
subspace $\mathfrak{M}$ of $L^{2}$ has the form $\mathfrak{M}=R{}_{v}H^{2}$ for some partial isometry $v$ in $L^{\infty}$.
Our main objective in this section is to find necessary and sufficient conditions
that the BLH theorem is valid. If $M$ is a factor, then the BLH theorem is
valid. However, the converse is not necessarily true.

Let $\mathfrak{Z}(M)$ be the center of $M$ and $\mathfrak{Z}(\mathfrak{L})$ (resp. $\mathfrak{Z}(\Re)$ ) the center of $\mathfrak{L}$ (resp.
$\Re)$ . Since the commutant $\mathfrak{L}^{\prime}$ of $\mathfrak{L}$ is $\Re$ and the commutant $\Re^{\prime}$ of $\Re$ is $\mathfrak{L},$ $\mathfrak{Z}(\mathfrak{L})=$

$\mathfrak{Z}(\Re)$ ; put $C=\{z\in \mathfrak{Z}(M):\alpha(z)=z\}$ . Then we have the following lemma. The
proof is straightforward and so will be omitted.

LEMMA 3.1. (1) For every $z\in C,$ $L_{z}=R_{z}$ .
(2) $\mathfrak{Z}(\mathfrak{L})\cap L(M)=\mathfrak{Z}(\Re)\cap R(M)=L(C)$ .
Our first result is
THEOREM 3.2. The following th ree statements are equivalent:
(1) $\alpha$ fixes the center $\mathfrak{Z}(M)$ of $M$ elementwise;
(2) Every left-pure, left invariant subspace of $L^{2}$ has the form $R{}_{v}H^{2}$ for

some partial isometry $v$ in $ L^{\infty},\cdot$ and
(3) Every left invariant subspace of $H^{2}$ has the form $R{}_{v}H^{2}$ for some partial

isometry $v$ in $L^{\infty}$ .
PROOF. (1) $\subset>(2)$ . Suppose that $\alpha$ fixes the center $\mathfrak{Z}(M)$ of $M$ elementwise.

Let $\mathfrak{M}$ be a left-pure, left invariant subspace in $L^{2}$ , let $P$ be the projection of
$L^{2}$ onto $\mathfrak{M}\ominus L_{\delta}\mathfrak{M}$ and let $P_{0}$ be the projection of $L^{2}$ onto $H^{2}\ominus L{}_{\delta}H^{2}$ . By [7,

Theorem 3.2], $P$ and $P_{0}$ lie in the commutant $L(M)^{\prime}$ of $L(M)$ . By the Com-
parability theorem (cf. [2, p. 218, Th\’eorem\‘e 1]), there exists a projection $z$ in
$\mathfrak{Z}(M)$ such that $L_{z}P\prec L_{z}P_{0}$ and $(1-L_{z})P\succ(1-L_{z})P_{0}$ . From Lemma 3.1 and the
hypothesis that (1) is satisfied, we have $L_{f}\in \mathfrak{Z}(\mathfrak{L})\cap L(M)$ . Since $L_{z}\mathfrak{M}$ and $L{}_{z}H^{2}$

are left-pure, left invariant subspaces of $L^{2}$, by [7, Theorem 3.2], there is a
partial isometry $R_{v_{1}}$ in $\Re$ such that $L_{z}\mathfrak{M}=R_{v_{1}}L{}_{z}H^{2}$ . If necessary, we may
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suppose that $R_{v_{1}}R_{v_{1}}^{*},$ $R_{v_{1}}^{*}R_{v_{1}}\leqq L_{z}$ . Similarly, there is a partial isometry $R_{v_{2}}$ in $\Re$

such that $(1-L_{z})H^{2}=R_{v_{2}}(1-L_{z})\mathfrak{M}$ and $R_{v_{2}}R_{v_{2}}^{*},$ $R_{v_{2}}^{*}R_{v_{2}}\leqq 1-L_{z}$ . But then, since
$R_{v_{2}}$ and $L_{\delta}$ commute and $H^{2}$ is left-full, we find that

$R_{v_{2}}(1-L_{z})L^{2}\geqq R_{v_{2}}(L_{\delta}^{n}(1-L_{z})\mathfrak{M})=L_{\delta}^{n}R_{v_{2}}(1-L_{z})\mathfrak{M}n\in Zn\in Z$

$=L_{\delta}^{n}(1-L_{z})H^{2}=(1-L_{z})L^{2}$ ;
$n\in Z$

that is, $R_{v_{2}}R_{v_{2}}^{*}=1-L_{z}$ . Since, however, $\Re$ is finite, $R_{v_{2}}^{*}R_{v_{2}}=1-L_{z}$ and we
may consequently write $(1-L_{z})\mathfrak{M}=R_{v_{2}}^{*}(1-L_{z})H^{2}$ . Therefore, putting $R_{v}=$

$R_{v_{1}}L_{z}+R_{v_{2}}^{*}(1-L_{z}),$ $R_{v}$ is a partial isometry in $\Re$ and $\mathfrak{M}=R{}_{v}H^{2}$ . This completes
the proof that (1) implies (2).

(2) $\subset>(3)$ . Since $H^{2}$ contains no nonzero left reducing subspace, it is clear
that (2) implies (3).

(3) $\subset>(1)$ . Suppose that $\alpha$ does not fix the center $\mathfrak{Z}(M)$ of $M$ elementwise.
Then there is a nonzero projection $e$ in $\mathfrak{Z}(M)$ such that $\alpha(e)e=0$ . Put $\mathfrak{M}=$

$\{f\in H^{2} : ef(O)=f(O)\}$ . As in the proof that (2) implies (1) of [7, Theorem 4.1],

it is clear that $\mathfrak{M}$ is a left-pure, left-full and left invariant subspace of $H^{2}$ and
$L_{e}L_{\delta}^{*}\mathfrak{M}\subseteqq \mathfrak{M}$ . Now we suppose that $\mathfrak{M}=R{}_{v}H^{2}$ where $R_{v}$ is a partial isometry in
$\Re$ . Since $\mathfrak{M}$ is left-full, $R_{v}$ is a unitary operator (cf. [7, Theorem 3.3]). Thus
we have

$L_{e}L_{\delta}^{*}H^{2}=L_{e}L\beta R_{v}^{*}\mathfrak{M}=R_{v}^{*}L_{e}L\zeta \mathfrak{M}\subseteqq R_{v}^{*}\mathfrak{M}=H^{2}$ .

Consequently $L_{e}L_{\delta}^{*}\in \mathfrak{L}_{+}$ . This is a contradiction and so completes the proof that
(3) implies (1).

Next, in connection with validity of the BLH theorem, we shall study the
form of ultraweakly closed subalgebras of $\mathfrak{L}$ containing $\mathfrak{L}_{+}$ and the form of
left-pure, two-sided invariant subspaces of $L^{2}$ . In this section the closure of a
subset $S$ of $L^{2}$ in the $L^{2}$-norm will be denoted by $[S]_{2}$ .

THEOREM 3.3. The following statements are equivalent to (2) (and hence to
(1) and (3)) in Theorem 3.2:

(4) If $\mathfrak{B}$ is an ultraweakly closed subalgebra of $\mathfrak{L}$ which contains $\mathfrak{L}_{+}$ , then
there is a projection $e$ in $C$ such that $\mathfrak{B}=(1-L_{e})\mathfrak{L}\oplus L_{e}\mathfrak{L}_{+};$ and

(5) If $\mathfrak{M}$ is a two-sided invariant subspace of $H^{2}$ , then $\mathfrak{M}$ may be expressed
as $R{}_{v}H^{2}$ where $v$ is a partial isometry in $L^{\infty}$ such that $v^{*}v=vv^{*}\in C$.

PROOF. (3) $\subset>(5)$ . Let $\mathfrak{M}$ be a two-sided invariant subspace of $H^{2}$ . By
Theorem 3.2, $\mathfrak{M}=R{}_{v}H^{2}$ where $v$ is a partial isometry in $L^{\infty}$ . If $e=v^{*}v$ , then we
have $R_{e}\in \mathfrak{Z}(\Re)\cap R(M)=L(\mathfrak{Z}(M))=L(C)$ as in the proof of [7, Proposition 4.5].

Since $R_{e}=L_{e}$ , by Lemma 3.1, $\mathfrak{M}$ may be expressed as $R{}_{v}H^{2}$ where $v$ is a partial
isometry in $L^{\infty}$ such that $v^{*}v=vv^{*}\in C$ and so this completes the proof that (3)

implies (5).
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(5)($\Rightarrow(4)$ . If $\mathfrak{B}$ is a proper ultraweakly closed subalgebra of $\mathfrak{L}$ containing $\mathfrak{L}_{+}$ ,

then $[\mathfrak{B}\psi]_{2}$ is a two-sided invariant subspace of $L^{2}$ . Then $K=L^{2}\ominus[\mathfrak{B}\psi]_{2}\neq\{0\}$

by [7, Corollary 1.5] and $JK$ is a two-sided invariant subspace in $H^{2}$ . By
hypothesis, $JK=R{}_{v}H^{2}$ for a partial isometry $v$ in $L^{\infty}$ such that $v^{*}v=vv^{*}\in C$ .
Put $e=v^{*}v$ and note that $L_{e}=R_{e}$ by Lemma 3.1. Then we have

$(1-L_{e})K=(1-L_{e})JJK=(1-L_{e})JR{}_{v}H^{2}=L_{1- e}L_{v*}JH^{2}=\{0\}$

and so
$(1-L_{e})L^{2}=(1-L_{e})([\mathfrak{B}\psi]_{2}\oplus K)=(1-L_{e})[\mathfrak{B}\psi]_{2}$ .

By [13, Theorem 1], $(1-L_{e})\mathfrak{L}=(1-L_{e})\mathfrak{B}$ . On the other hand,

$L_{e}[\mathfrak{B}\psi]_{2}=L_{e}L^{2}\ominus K=L_{e}L^{2}O-JJK=L_{v*}L^{2}\ominus L_{v*}JH^{2}$

$=L_{v*}(L^{2}O-JH^{2})=L_{v*}H_{0}^{2}=L_{v*}L{}_{\delta}H^{2}$ .

Since $L_{v*}L_{\delta}(L_{v*}L_{\delta})^{*}=(L_{v*}L_{\delta})^{*}L_{v*}L_{\delta}=L_{e}$ , we have

$L_{e}[\mathfrak{B}\psi]_{2}=(L_{v*}L_{\delta})^{*}L_{v*}L_{\delta}[R(\mathfrak{B}\psi)H^{2}]_{2}=(L_{v*}L_{\delta})^{*}[L_{v*}L_{\delta}R(\mathfrak{B}\psi)H^{2}]_{2}$

$=(L_{v*}L_{\delta})^{*}[R(\mathfrak{B}\psi)L_{v*}L{}_{\delta}H^{2}]_{2}=(L_{v*}L_{\delta})^{*}[R(\mathfrak{B}\psi)L_{e}[\mathfrak{B}\psi]_{2}]_{2}$

$=(L_{v*}L_{\delta})^{*}[\mathfrak{B}\psi]_{2}=L{}_{e}H^{2}$ .

Therefore $L_{e}\mathfrak{B}=L_{e}\mathfrak{L}_{+}$ and so $\mathfrak{B}=(1-L_{e})\mathfrak{L}\oplus L_{e}\mathfrak{L}_{+}$ . This completes the proof that
(5) implies (4).

(4)0(1). Suppose that $\alpha$ does not fix the center $\mathfrak{Z}(M)$ of $M$ elementwise.
As in the proof that (3) implies (1) in Theorem 3.2, we construct the left-pure,
left-full and left invariant space $\mathfrak{M}$ of $H^{2}$ . Let $\mathfrak{B}$ be the ultraweakly closed
subalgebra of $\mathfrak{L}$ generated by $L_{e}L_{\delta}^{*}$ and $\mathfrak{L}_{+}$ . Then it is clear that $\mathfrak{L}_{+}\subsetneqq \mathfrak{B}\subsetneqq \mathfrak{L}$ .
By hypothesis, there is a projection $p$ in $C$ such that $\mathfrak{B}=(1-L_{p})\mathfrak{L}\oplus L_{p}\mathfrak{L}_{+}$ . Since
$L_{p}\mathfrak{B}=L_{p}\mathfrak{L}_{+}$ , we have $L_{p}L_{e}L_{\delta}^{*}\in L_{p}\mathfrak{L}_{+}\subset \mathfrak{L}_{+}$ and so $L_{p}L_{e}L_{\delta}^{*}=0$ . Thus $(1-L_{p})\mathfrak{L}$ is
the ultraweakly closed subalgebra generated by $L_{e}L_{\delta}^{*}$ and $(1-L_{p})\mathfrak{L}_{+}$ . Since
$(1-L_{p})L_{\delta}^{2}\in(1-L_{p})\mathfrak{B}$ and $((1-L_{p})L_{e}L_{\delta}^{*})^{2}=0$ , this is a contradiction and completes
the proof that (4) implies (1).

There is a useful variation of condition (5) in Theorem 3.3; it looks mildly
stronger, but in fact it is equivalent. We present it in

PROPOSITION 3.4. The following statement is equivalent to each of the
statements (1) through (5) appearing in Theorems 3.2 and 3.3:

(6) if $\mathfrak{M}$ is a left-pure two-sided invariant subspace of $L^{2}$ , then $\mathfrak{M}$ may be
expressed as $R{}_{v}H^{2}$ where $v$ is a partial isometry in $L^{\infty}$ such that $v^{*}v=vv^{*}\in C$ .

PROOF. Since $H^{2}$ contains no nonzero left reducing subspace, it is clear
that (6) implies (5). To prove the reverse implication, it suffices to prove that
(1) implies (6) by Theorem 3.3. Let $\mathfrak{M}$ be a left-pure, two-sided invariant sub-
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space of $L^{2}$ . By Theorem 3.2, $\mathfrak{M}=R{}_{v}H^{2}$ for some partial isometry $v$ in $L^{\infty}$ . If
$e=v^{*}v$ , then $R_{e}=R_{v}R_{v*}$ , and

$R_{e}L^{2}=R_{v}L^{2}=R_{v}(L_{\delta}^{n}H^{2})=L_{\delta}^{n}R{}_{v}H^{2}=L_{\delta}^{n}\mathfrak{M}n\leq 0n\leq 0n\leqq 0$

is invariant under $\Re_{+}$ . By [7, Corollary 4.3], $e$ lies in the center of $L^{\infty}$ . Since
$L^{\infty}$ is finite, $vv^{*}=e$ . Putting $\mathfrak{B}=\{x\in \mathfrak{L} : x\mathfrak{M}\subseteqq \mathfrak{M}\}$ , it is clear that $\mathfrak{B}$ is a proper
ultraweakly closed subalgebra of $\mathfrak{L}$ containing $\mathfrak{L}_{+}$ . By Theorem 3.3, there is a
projection $P$ in $C=\mathfrak{Z}(M)$ such that $\mathfrak{B}=(1-L_{p})\mathfrak{L}\oplus L_{p}\mathfrak{L}_{+}$ . Since $(1-L_{p})\mathfrak{M}$ is left
reducing and $(1-L_{p})\mathfrak{M}\subseteqq \mathfrak{M},$ $(1-L_{p})\mathfrak{M}=\{0\}$ and so we have

$R_{1-p}R_{e}L^{2}=L_{1-p}R_{e}L^{2}=L_{\delta}^{n}L_{1- p}\mathfrak{M}=n\leqq 0\{0\}$ .

Thus $(1-P)e=0$ . Since $R_{e}\in \mathfrak{Z}(\mathfrak{L}),$ $R_{e}=L_{e}$ and so $L_{e}\in \mathfrak{B}$ , because $L_{e}\mathfrak{M}\subseteqq \mathfrak{M}$ .
Therefore $L_{e}=L_{e}L_{p}\in L_{p}\mathfrak{L}_{+}\subset \mathfrak{L}_{+}$ . This implies that $L_{e}\in \mathfrak{Z}(\mathfrak{L})\cap L(M)=L(\mathfrak{Z}(M))$

$=L(C)$ and completes the proof.
In Theorem 3.2, 3.3 and Proposition 3.4, we need not use reduction theory

to the factor case. Therefore we have the following corollary.
COROLLARY 3.5 ([7]). The following statements are equivalent:
(1) $M$ is a factor:
(2) $C=\{CI\}$ and each left-Pure, left invariant subsPace of $L^{2}$ has the form

$R{}_{v}H^{2}$ for some partial isometry $v$ in $L^{\infty}$ ;
(3) $C=\{CI\}$ and each left invariant subspace of $H^{2}$ has the form $R{}_{v}H^{2}$ for

some $pa$ rtial isometry $v$ in $L^{\infty}$

(4) $\mathfrak{L}_{+}$ is a maximal ultraweakly closed subalgebra of $\mathfrak{L}$ ;
(5) if $\mathfrak{M}$ is a two-sided invariant subspace of $H^{2}$ , then $\mathfrak{M}$ may be expressed

as $R{}_{v}H^{2}$ where $v$ is a unitary $ope$ rator in $L^{\infty}$ ; and
(6) if $\mathfrak{M}$ is a two-sided invariant subspace of $L^{2}$ which is not left reducing,

then there exists a unitary operatOr $v$ in $L^{\infty}$ such that $\mathfrak{M}=R{}_{v}H^{2}$ .
PROOF. It is evident that each of the conditions (1), (4), (5) and (6) implies

that $C=\{CI\}$ . Indeed, if $C\neq\{CI\}$ , then $C$ contains a projection $P$ different
from $0$ and 1. The subspace $\mathfrak{M}=R{}_{p}H^{2}$ violates (5) and (6), while the algebra
$\mathfrak{B}=(1-L_{p})\mathfrak{L}\oplus L_{p}\mathfrak{L}_{+}$ violates (4). Thus, from Theorems 3.2, 3.3 and Proposition
3.4, we may conclude that assertions (1) through (5) are equivalent and that
they are implied by (6). It suffices to prove that (4) implies (6). Let $\mathfrak{M}$ be a
two-sided invariant subspace of $L^{2}$ which is not left reducing. To prove that (4)

implies (6), it is sufficient to prove that $\mathfrak{M}$ is left-pure. Let $P$ be the projection
of $L^{2}$ onto $\bigcap_{n\geq 0}L_{\delta}^{n}\mathfrak{M}$ . Since $\bigcap_{n\not\geqq 0}L_{\delta}^{n}\mathfrak{M}$ is left reducing, $P$ lies in $\mathfrak{L}^{\prime}=\Re$ . In addition,

since $\bigcap_{n\cong 0}L_{\delta}^{n}\mathfrak{M}$ is right invariant, $P$ commutes with $R(M)$ and $R_{\delta}PRf\leqq P$. Since

$\Re$ is finite, $R{}_{\delta}PR_{\delta}^{*}=P$ and so $P\in \mathfrak{Z}(\mathfrak{L})$ . But also $P\mathfrak{M}\subset PL^{2}=\bigcap_{n\not\geqq 0}L_{\delta}^{n}\mathfrak{M}\subset \mathfrak{M}$ . By
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hypothesis (4), $P\in \mathfrak{L}_{+}$ and so $P\in \mathfrak{L}_{+}\cap \mathfrak{L}_{+}^{*}=L(M)$ . Therefore $P\in \mathfrak{Z}(\mathfrak{L})\cap L(M)=$

$L(C)=\{CI\}$ . Since $\mathfrak{M}$ is not left reducing, $P=0$ and so $\mathfrak{M}$ is left-pure. This
completes the proof.

4. Which subdiagonal algebras are crossed products ?

We fix once and for all a finite von Neumann algebra $\mathfrak{B}$ with trace $\phi$ and
a subalgebra $\mathfrak{U}$ of $\mathfrak{B}$ which is a finite, maximal, subdiagonal algebra in $\mathfrak{B}$ with
respect to $\phi$ and expectation $\Phi$ mapping $\mathfrak{B}$ onto $D=\mathfrak{U}\cap \mathfrak{U}^{*}$ , that is, $\mathfrak{U}$ is an
ultraweakly closed subalgebra of $\mathfrak{B}$ containing the identity operator 1 which
satisfies the following conditions: 1) $\mathfrak{U}+\mathfrak{U}^{*}$ is ultraweakly dense in $\mathfrak{B};2$) $\Phi$ is
multiplicative on $\mathfrak{U}$ ; 3) $\mathfrak{U}$ is maximal among those subalgebras of satisfying 1)

and 2); and 4) $\phi\circ\Phi=\phi$ . We shall denote the noncommutative Lebesgue space
associated with $\mathfrak{B}$ and $\phi$ by $L^{2}(\mathfrak{B}, \phi)$ and write $L^{2}=L^{2}(\mathfrak{B}, \phi)$ . As before, the
closure $S$ of $L^{2}$ in the $L^{2}$-norm is denoted by $[S]_{2}$ . We put $H^{2}=[\mathfrak{U}]_{2}$ and $H_{0}^{2}=$

$[\mathfrak{U}_{0}]_{2}$ where $\mathfrak{U}_{0}=\{x\in \mathfrak{U}:\Phi(x)=0\}$ .
If $x$ is in $\mathfrak{B}$, we shall write $L_{x}$ (resp. $R_{x}$ ) for the operator defined by the

equations $L_{x}f=xf$ (resp. $R_{x}f=fx$ ), $f\in L^{2}$ , and we let $\mathfrak{L}=\{L_{x} : x\in \mathfrak{B}\}$ (resp. $\Re=$

$\{R_{x} : x\in \mathfrak{B}\})$ . One may regard $\mathfrak{B}$ as a Pnite, achieved Hilbert algebra whose
completion is $L^{2}$, and $\mathfrak{L}$ and $\Re$ are the left and right von Neumann algebras of
B. Also we put $\mathfrak{L}_{+}=\{L_{x} : x\in \mathfrak{U}\}$ (resp. $\Re_{+}=\{R_{x}$ : $x\in \mathfrak{U}\}$ ). Finally, the canonical
conjugate-linear, isometric involution on $L^{2}$ which extends the map $\chi\rightarrow\chi^{*}$ on $\mathfrak{B}$

will be denoted by $J$. As in Definition 2.2, we define the concept of invariant
subspaces of $L^{2}$ .

In [7], we proved that, if every nonzero two-sided invariant subspace $\mathfrak{M}$ of
$H^{2}$ has the form $\mathfrak{M}=R{}_{v}H^{2}$ for some unitary operator $v$ in $\mathfrak{B}$ , then there is a
$*$-automorphism $\alpha$ of $D$ preserving $\phi$ such that $\mathfrak{B}$ is isomorphic to the crossed
product $L^{\infty}$ determined by $D$ and $\alpha$ in such a way that $\mathfrak{U}$ becomes identified
with the corresponding space $H^{\infty}$ . Further, $D$ is a factor. In this section we
shall consider a generalization of this result. Put $C=\mathfrak{Z}(\mathfrak{B})\cap D$, so that $C\subset \mathfrak{Z}(D)$ .

DEFINITION 4.1. Let $\mathfrak{U}$ be a finite, maximal, subdiagonal algebra with respect
to $\Phi$ and $\phi$ . Then $\mathfrak{U}$ is called pure if there is no nonzero projection $P$ in $C$

such that $\mathfrak{U}p=\mathfrak{B}p$ .
REMARK 4.2. If $\mathfrak{U}$ is a finite, maximal, subdiagonal algebra, then $\mathfrak{U}$ is not

necessarily pure. For example, let $\mathfrak{B}=L^{\infty}(\Delta)\oplus L^{\infty}(\Delta)$ , where $\Delta$ is the unit circle.
Put $\mathfrak{U}=H^{\infty}(\Delta)\oplus L^{\infty}(\Delta)$ . Then $\mathfrak{U}$ is a finite, maximal, subdiagonal algebra with
respect to expectation $\Phi$ where $\Phi(f\oplus g)=(\int fdm)\oplus g,$ $f,$ $g\in L^{\infty}(\Delta)$ . However,
it is clear that $\mathfrak{U}$ is not pure.

THEOREM 4.3. SuppOse that every two-sided invariant subspace $\mathfrak{M}$ of $H^{2}$

has the form $\mathfrak{M}=R_{v}H^{2}$ for some partial isometry $v$ in $\mathfrak{B}$ such that $v^{*}v=vv^{*}\in C$ .
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If $\mathfrak{U}$ is Pure, then there is a $*$-automorphism $\alpha$ of Dpreserving $\phi$ such that $\mathfrak{B}$

is isomorphic to the crossed product $L^{\infty}$ dete rmined by $D$ and $\alpha$ in such a way
that $\mathfrak{U}$ becomes identified with the corresponding space $H^{\infty}$ .

This and Theorem 3.3 immediately yield
COROLLARY 4.4. (1) $C=\{z\in \mathfrak{Z}(D):\alpha(z)=z\}$ .
(2) $\alpha$ fixes the center $\mathfrak{Z}(D)$ of $D$ elementwise.
We break the proof of Theorem 4.3 up into a series of lemmas. In the

remainder of this section, we suppose that every two-sided invariant subspace
$\mathfrak{M}$ of $H^{2}$ has the form $\mathfrak{M}=R_{v}H^{2}$ for some partial isometry $v$ in $\mathfrak{B}$ such that
$v^{*}v=vv^{*}\in C$ and $U$ is pure.

LEMMA 4.5. $H_{0}^{2}=R_{v}H^{2}$ for some unitary $ope$ rator $v$ in B.
PROOF. Since $H_{0}^{2}$ is a nonzero two-sided invariant subspace of $H^{2}$, by

hypothesis, there is a partial isometry $v$ in $\mathfrak{B}$ such that $H_{0}^{2}=R{}_{v}H^{2}$ and $v^{*}v=vv^{*}$

$\in C$. Put $v^{*}v=1-P$ . Then $\phi(pxpy)=0$ for every $y\in H_{0}^{2}$ and $x\in \mathfrak{B}$ . By [1,

Corollary 2.2.4], we have $\mathfrak{B}p=\mathfrak{U}p$ . Since $\mathfrak{U}$ is pure, $p=0$ proving that $v$ is
unitary. This completes the proof.

The proof of Lemma 6.3 in [7] works here too, and yields
LEMMA 4.6. If $v$ is a unitary in $\mathfrak{B}$ such that $R{}_{v}H^{2}=H_{0}^{2}$, then for all $n\in Z$,

$R_{v}^{n}H^{2}=L_{v}^{n}H^{2}$.
LEMMA 4.7. If $\mathfrak{T}$ is a Proper ultraweakly closed subalgebra of $\mathfrak{B}$ containing

$U$, then there is a projection $P$ in $C$ such that $\mathfrak{T}=(1-p)\mathfrak{B}\oplus p\mathfrak{U}$.
PROOF. By [7, Corollary 1.5], $K=L^{2}\ominus[\underline{7}]_{2}\neq\{0\}$ . Then $JK$ is a two-sided

invariant subspace of $H^{2}$ . By hypothesis, then $JK=R_{w}H^{2}$ for some partial
isometry $w$ in $\mathfrak{B}$ such that $w^{*}w=ww^{*}\in C$. As in the proof that (5) implies (4)

in Theorem 3.3, we have $\mathfrak{T}=(1-p)\mathfrak{B}\oplus p\mathfrak{U}$ where $p=w^{*}w$ . This completes the
proof.

LEMMA 4.8. Let $v$ be a unitary in $\mathfrak{B}$ such that $H_{0}^{2}=R{}_{v}H^{2}$ . Then $vDv*=D$ .
PROOF. By Lemma 4.6, $H_{0}^{2}=L{}_{v}H^{2}$ and since $L(D)\subset \mathfrak{L}_{+}$ , we find that

$L_{v*}L(D)L{}_{v}H^{2}\subset H^{2}$ . Thus $L_{v*}L(D)L_{v}\subset \mathfrak{L}_{+\cap}\mathfrak{L}_{+}^{*}=L(D)$ . On the other hand, $vDv^{*}H_{0}^{2}$

$=L_{v}L(D)L_{v*}H_{0}^{2}=L_{v}L(D)H^{2}\subset L{}_{v}H^{2}=H_{0}^{2}$ . This implies that $vDv^{*}\subset \mathfrak{B}\cap H^{2}=\mathfrak{U}$ and
so $vDv^{*}\subset D$ . Consequently $vDv*=D$ as was to be proved.

We may now define a $*$-automorphism $\alpha$ on $D$ by the formula $\alpha(d)=vdv^{*}$ ,
$d\in D$ . Note that $\alpha$ preserves $\phi$ .

PROOF OF THEOREM 4.3. Fix once and for all a unitary operator $v$ in $\mathfrak{B}$

such that $R{}_{v}H^{2}=H_{0}^{2}=L{}_{v}H^{2}$ . By the proof of [7, Theorem 6.1], it suffices to
prove that $\mathfrak{M}=\bigcap_{n\geq 0}L_{v}^{n}H^{2}=\{0\}$ . Since $\mathfrak{M}$ is contained in $H^{2},$ $\mathfrak{M}$ does not reduce
$\mathfrak{L}_{+}$ unless $\mathfrak{M}=\{0\}$ . But if $\mathfrak{M}\neq\{0\}$ , then $\mathfrak{T}=\{x\in \mathfrak{B}:L_{x}\mathfrak{M}\subset \mathfrak{R}_{\dot{t}}^{\neg}\}\subsetneqq \mathfrak{B}$ . By Lemma
4.7, there is a projection $p$ in $C$ such that $\mathfrak{T}=(1-p)\mathfrak{B}\oplus p\mathfrak{U}$ . Since, however,
$L_{v*}\mathfrak{M}=\mathfrak{M},$ $v^{*}\in \mathfrak{T}$ and so $pv^{*}\in p\mathfrak{U}\subset \mathfrak{U}$ . On the other hand, since $H_{0}^{2}=L{}_{v}H^{2},$ $pv\in \mathfrak{U}_{0}$ .
This implies that $pv=0$ . Since $v$ is unitary, $p=0$ and so %=B. This is a
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contradiction and completes the proof.
Finally we suppose that every nonzero two-sided invariant subspace $\mathfrak{M}$ of

$H^{2}$ has the form $\mathfrak{M}=R{}_{v}H^{2}$ for some unitary $v$ in $\mathfrak{B}$ . Then it is clear that
$C=\{CI\}$ and so $\mathfrak{U}$ is always pure. By Theorem 4.3, we obtain Theorem 6.1 of
[7] as a corollary.

5. Ideals.

Our results have all been phrased in terms of the invariant subspace struc-
ture in $L^{2}$ . However, thanks to the results of the third author in [13], we may
extend them to cover subspaces in $L^{p},$ $ 1\leqq p\leqq\infty$ . Of particular interest here
is the case when $ p=\infty$ . For in this case invariant subspaces correspond to
ideals-left, right, or two-sided according to circumstance. We continue with the
notation of the previous section but supplement it as follows. The noncommu-
tative Lebesgue space associated with $\mathfrak{B}$ and $\phi$ will be denoted by $L^{p}$ ([14]),
$H^{p}$ denotes the closure of $\mathfrak{U}$ in $L^{p},$ $ 1\leqq P<\infty$ . We identify $\mathfrak{B}$ with $L^{\infty}$ and $\mathfrak{U}$

with $H^{\infty}$ . By a subspace of $L^{p}$ we shall mean a closed subspace when $ 1\leqq P<\infty$

and an ultraweakly closed subspace when $ p=\infty$ .
The notions of invariant subspace, pure, full, etc. are defined as before. The

following is proved as Theorem 1 of [13]. We state it here for reference in a
slightly different form.

PROPOSITION 5.1. $ SuPPose1\leqq p<s\leqq\infty$ . The map which carries a $ left-(resP\cdot$

right-) invariant subspace $\mathfrak{M}$ in $L^{p}$ to $\mathfrak{M}\cap L^{s}$ sets up $a$ one-to-one corresPondence
between the left- (resp. right-) invariant subspaces of $L^{p}$ and those of $L^{s}$ . Its
inverse carries $\mathfrak{M}\subseteqq L^{s}$ to $[\mathfrak{M}]_{p}\subseteqq L^{p}$ . For an invariant subspace $\mathfrak{M}\subseteqq L^{p}$ , we have
$\mathfrak{M}=[\mathfrak{M}\cap L^{s}]_{p}$ while for $\mathfrak{M}\subseteqq L^{s},$ $\mathfrak{M}=[\mathfrak{M}]_{p}\cap L^{s}$ .

Using this proposition, we see immediately that in our earlier results we
may replace $L^{2}$ by $L^{p}$ and $H^{2}$ by $H^{p},$ $ 1\leqq P\leqq\infty$ , and not affect their validity.
We formally spell out what happens when $ p=\infty$ .

THEOREM 5.2. The conditions (1) through (6) of 3.2, 3.3 and 3.4 are each
equivalent to:

(7) Every ultraweakly closed left- (or right-) ideal in $H^{\infty}$ is principal and
is generated by a partial isometry.

With the notation as in the Theorem 4.3, we conclude with
THEOREM 5.3. SuppOse that every ultraweakly closed two-sided ideal in $\mathfrak{U}$

is principal and is generated by a partial isometry $v$ such that $vv^{*}=v^{*}v\in C$, and
suppOse that $\mathfrak{U}$ is pure. Then there is a $*$-automorphism $\alpha$ of $D$ preserving $\phi$

such that $\mathfrak{B}$ is isomorphic to the crossed product $L^{\infty}$ determined by $D$ and $\alpha$ in
such a way that 1I becomes identified with the corresponding space $H^{\infty}$ .
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