Minimal length of Liouville chain for solutions of an algebraic differential equation

By Shūji ŌTsubo

(Received Dec. 13, 1978)

§ 0. Introduction.

The author [5] proved that the order of a liouvillian element in Liouville's sense is at most 3 if it satisfies an algebraic differential equation of the first order. Here, we shall generalize his theorem as follows: The order of a liouvillian element in Liouville's sense is at most $3 n$ if it satisfies an algebraic differential equation of order n.

Let k be an ordinary differential field of characteristic 0 , and Ω be a universal extension of k. We assume that the field of constants k_{0} of k is algebraically closed. A finite chain of extending differential subfields $L_{0} \subset L_{1} \subset \cdots$ $\subset L_{n}$ in Ω is called a Liouville chain over k if the following three conditions are satisfied:
(i) L_{0} is an algebraic extension of k of finite degree:
(ii) The field of constants of L_{n} is k_{0} :
(iii) For each $i(1 \leqq i \leqq n)$ there exists a finite system of elements w_{1}, \cdots, w_{r} of L_{i} which satisfies the following two conditions; either $w_{j}^{\prime} \in L_{i-1}$ or w_{j}^{\prime} / w_{j} is the derivative of an element of L_{i-1} for each $j(1 \leqq j \leqq r) ; L_{i}$ is an algebraic extension of $L_{i-1}\left(w_{1}, \cdots, w_{r}\right)$ of finite degree.

A subfield L of Ω is called a liouvillian extension of k if there exists a Liouville chain over k which ends with L. Let z be an element of Ω. Then, z is called a liouvillian element over k if there exists a Liouville chain over k such that its end contains z. In particular, if $k=k_{0}(x)$ with $x^{\prime}=1$, then a liouvillian element over k is called an elementary transcendental function of x over k_{0} (cf. Watson [9, p. 111]). The following definition is due to Liouville [3]: A liouvillian element z over k is said to be of order m if m is the minimum of those n such that the end of a Liouville chain $L_{0} \subset \cdots \subset L_{n}$ over k contains z.

Theorem. The order of a liouvillian element over k satisfying an algebraic differential equation over k of order n is at most $3 n$.

It follows from the following:
Lemma. Let k^{*} be a finitely generated differential extension field of k in Ω
whose field of constants is k_{0}, and L^{*} be a differential extension field of k^{*} in Ω. Suppose that L^{*} is contained in a liouvillian extension K^{*} of k^{*}. Then, there exists such an extending chain $L_{0} \subset \cdots \subset L_{n}$ of differential subfields of Ω that satisfies the following conditions: L_{0} is an algebraic extension of k^{*} of finite degree; $n=\operatorname{tr} . \operatorname{deg}_{k^{*}} L^{*} ; L^{*} \subset L_{n} ;$ for each $i(0<i \leqq n)$ there exist an element y_{i} of L_{i} and elements α_{i}, β_{i} of L_{i-1} such that $y_{i}^{\prime}=\alpha_{i} y_{i}+\beta_{i}$ and L_{i} is an algebraic extension of $L_{i-1}\left(y_{i}\right)$ of finite degree.

In $\S 1$ we shall show that Theorem follows from Lemma In $\S 3$ we shall prove Lemma, In the last $\S 4$ an example of liouvillian element in Theorem whose order attains $3 n$ will be given. In $\S 2$ we shall show the following:

Proposition. Let A be a differential extension field of k in Ω. Suppose that two elements t_{1}, t_{2} of Ω are algebraically independent over A and satisfy $t_{i}^{\prime}=a_{i} t_{i}+b_{i}(i=1,2)$; here we assume that each of a_{1}, b_{1} is algebraic over A and each of a_{2}, b_{2} is algebraic over $A\left(t_{1}\right)$. Let B be a differential extension field of A in Ω. Suppose that t_{1} is transcendental over B, t_{2} is algebraic over $B\left(t_{1}\right)$ and the field of constants of $B\left(t_{1}\right)$ is k_{0}. Then, there exist an element t of B_{1} and elements a, b of A_{1} such that t is transcendental over A and $t^{\prime}=a t+b$, where A_{1} and B_{1} are the algebraic closures of A and B respectively.

Remark 1. If we replace " $w_{j}^{\prime} \in L_{i-1}$ " in the definition of a liouvillian element by " $w_{j}^{\prime}=a^{\prime} / a, a \in L_{i-1}$ ", then we have an "elementary" liouvillian element. For such an element let us modify the definition of "order" by the above replacement. Then the order of an elementary liouvillian element satisfying an algebraic differential equation of order n is at most $2 n$. This theorem is due to Singer [8] (cf. Rosenlicht and Singer [7, Theorem 1]). In the special case where $n=1$ and $k=\boldsymbol{C}(x)$ with $x^{\prime}=1$ it is due to Mordukhai-Boltovskoi [4] (cf. Ritt [6, p. 86]).

Remark 2. Our definition of "liouvillian extension" is slightly stronger than the ordinary one. If we replace " $w_{j}^{\prime} / w_{j}=a^{\prime}, a \in L_{i-1}$ " by " $w_{j}^{\prime} / w_{j} \in L_{i-1}$ ", then we have the ordinary definition. The difference is not essential (cf. § 1). If we modify our definition of "order" by this replacement, then $3 n$ in our result is replaced by $2 n$.

The author wishes to express his sincere gratitude to Professor M. Matsuda for his kind advices.

§ 1. Kolchin's existence theorem.

Kolchin [2] obtained the following theorem: Let Λ be a proper prime differential ideal in the differential polynomial algebra $k\left\{u_{1}, \cdots, u_{n}\right\}$ over k, and let J be an element of $k\left\{u_{1}, \cdots, u_{n}\right\}$ which is not in Λ. Then Λ has a solution ($\eta_{1}, \cdots, \eta_{n}$) such that $J\left(\eta_{1}, \cdots, \eta_{n}\right) \neq 0$ and the field of constants of $k\left\langle\eta_{1}, \cdots, \eta_{n}\right\rangle$
is k_{0}.
By this theorem we shall show that our Theorem follows from Lemma: Suppose that y is a liouvillian element over k satisfying an algebraic differential equation over k of order m. Let L denote $k\langle y\rangle$. Then, L is contained in a liouvillian extension of k. The transcendence degree n of L over k is at most m. If we set $k=k^{*}$ and $L=L^{*}$, then the assumption of Lemma is satisfied. Hence there exists such an extending chain $L_{0} \subset \cdots \subset L_{n}$ of differential subfields in Ω as stated in Lemma, There exist elements $v_{01}, \cdots, v_{0 n}, w_{01}, \cdots, w_{0 n}, z_{01}$, $\cdots, z_{0 n}$ of Ω such that

$$
v_{0 i}^{\prime}=\alpha_{i} ; \quad w_{0 i}^{\prime}=v_{0 i}^{\prime} w_{0 i}, \quad w_{0 i} \neq 0 ; \quad w_{0 i} z_{0 i}^{\prime}=\beta_{i}
$$

for each $i(1 \leqq i \leqq n)$. We set $K=L_{n}$ for simplicity. Let Σ be a prime differential ideal in the differential polynomial algebra

$$
K\left\{V_{1}, \cdots, V_{n}, W_{1}, \cdots, W_{n}, Z_{1}, \cdots, Z_{n}\right\}
$$

over K whose generic point is ($v_{01}, \cdots, v_{0 n}, w_{01}, \cdots, w_{0 n}, z_{01}, \cdots, z_{0 n}$), and T be $\Pi W_{i}(1 \leqq i \leqq n)$. Then, $T \notin \Sigma$. The field of constants of K is k_{0}, since K is an algebraic extension of L. By the existence theorem of Kolchin there exists a zero ($v_{1}, \cdots, v_{n}, w_{1}, \cdots, w_{n}, z_{1}, \cdots, z_{n}$) of Σ in Ω such that $T\left(w_{1}, \cdots, w_{n}\right) \neq 0$ and the field of constants of

$$
K\left\langle v_{1}, \cdots, v_{n}, w_{1}, \cdots, w_{n}, z_{1}, \cdots, z_{n}\right\rangle
$$

is k_{0}. We have

$$
\left(y_{i} / w_{i}\right)^{\prime}-z_{i}^{\prime}=0, \quad 1 \leqq i \leqq n
$$

by $y_{i}^{\prime}=\alpha_{i} y_{i}+\beta_{i}$. Then, there exists a constant c_{i} such that $y_{i}=w_{i}\left(z_{i}+c_{i}\right)$ for each $i(1 \leqq i \leqq n)$. We have $c_{i} \in k_{0}$. Since K is an algebraic extension of $k\left(y_{1}\right.$, $\left.\cdots, y_{n}\right)$ of finite degree, there exists an element t of K such that $K=k\left(y_{1}, \cdots\right.$, $\left.y_{n}, t\right)$. We define a chain $M_{0} \subset M_{1} \subset \cdots \subset M_{3 n}$ by

$$
\begin{aligned}
& M_{0}=k\left(\alpha_{1}, \beta_{1}\right), \\
& M_{3 i-2}=M_{3 i-3}\left(v_{i}\right) \quad(1 \leqq i \leqq n), \\
& M_{3 i-1}=M_{3 i-2}\left(w_{i}\right) \quad(1 \leqq i \leqq n), \\
& M_{3 i}=M_{3 i-1}\left(z_{i}, \alpha_{i+1}, \beta_{i+1}\right) \quad(1 \leqq i<n), \\
& M_{3 n}=M_{3 n-1}\left(z_{n}, t\right) .
\end{aligned}
$$

This is a Liouville chain over k and $M_{3 n}$ contains y.

§ 2. Proof of Proposition.

We shall prove that there exist an element t_{3} of $B_{1}\left(t_{1}, a_{2}, b_{2}\right)$ and elements a_{3}, b_{3} of $A_{1}\left(t_{1}, a_{2}, b_{2}\right)$ such that t_{3} is transcendental over $A_{1}\left(t_{1}\right)$ and $t_{3}^{\prime}=a_{3} t_{3}+b_{3}$. Let C and D denote $A_{1}\left(t_{1}, a_{2}, b_{2}\right)$ and $B_{1}\left(t_{1}, a_{2}, b_{2}\right)$ respectively, and G be the minimal polynomial of t_{2} over D :

$$
G(T)=T^{g}+v_{1} T^{g-1}+\cdots+v_{g}, \quad v_{i} \in D \quad(1 \leqq i \leqq g) .
$$

Then, differentiating $G\left(t_{2}\right)=0$ we have

$$
t_{2}^{\prime}\left\{g t_{2}^{g-1}+(g-1) v_{1} t_{2}^{g-2}+\cdots+v_{g-1}\right\}+v_{1}^{\prime} t_{2}^{g-1}+\cdots+v_{g}^{\prime}=0 .
$$

Hence

$$
v_{1}^{\prime}=v_{1} a_{2}-g b_{2}
$$

by $G\left(t_{2}\right)=0$ and $t_{2}^{\prime}=a_{2} t_{2}+b_{2}$. Thus

$$
\left(g t_{2}+v_{1}\right)^{\prime}=a_{2}\left(g t_{2}+v_{1}\right) .
$$

Suppose that v_{1} is algebraic over C. Then $g t_{2}+v_{1}$ is transcendental over C and algebraic over D. Since k_{0} is algebraically closed, the field of constants of $D\left(t_{2}\right)$ is k_{0}. Hence there exists a positive integer q such that $\left(g t_{2}+v_{1}\right)^{q} \in D$. As t_{3} we can take $\left(g t_{2}+v_{1}\right)^{q}: t_{3}^{\prime}=q a_{2} t_{3}$. If v_{1} is transcendental over C, then we can take v_{1} as t_{3}. Thus the existence of t_{3}, a_{3} and b_{3} is proved. We consider C and D as one-dimensional algebraic function fields over A_{1} and B_{1} respectively. There exists a prime divisor P of C such that $\nu_{P}\left(t_{1}\right)<0$, where ν_{P} is the normalized valuation belonging to P. Let τ be prime element in P such that $\tau \in C$. Then $\nu_{P}\left(\tau^{\prime}\right)>0$ by $t_{1}^{\prime}=a_{1} t_{1}+b_{1}$: For, $t_{1}=\sigma^{-e}$ with some prime element σ in P : We have $-e \sigma^{\prime}=a_{1} \sigma+b_{1} \sigma^{e+1}$ and $\nu_{P}\left(\sigma^{\prime}\right)>0$. There exists uniquely a prime divisor Q of D such that the restriction of ν_{Q}^{*} to C is ν_{P}, where ν_{Q}^{*} is the normalized valuation belonging to Q. In this Q, τ is a prime element. The completion C_{P} of C with respect to P is a differential extension of C, and the completion D_{Q} of D with respect to Q is a differential extension of D; the differentiation is continuous in each completion (cf. Chevalley [1, p. 114]). The latter D_{Q} is a differential extension of the former C_{P}. In D_{Q} we have

$$
\begin{array}{ll}
\tau^{\prime}=\Sigma f_{i} \tau^{i+d}, & f_{0} \neq 0, f_{i} \in A_{1}, d>0, \\
a_{3}=\sum a_{i}^{*} \tau^{i+s}, & a_{0}^{*} \neq 0, a_{i}^{*} \in A_{1}, \\
b_{3}=\Sigma b_{i}^{*} \tau^{i+r}, & b_{0}^{*} \neq 0, b_{i}^{*} \in A_{1}, \\
t_{3}=\Sigma \gamma_{i} \tau^{i+p}, & \gamma_{0} \neq 0, \gamma_{i} \in B_{1}, 0 \leqq i<\infty ;
\end{array}
$$

here we assume that $f_{i}=a_{i}^{*}=b_{i}^{*}=0$ if $i<0$. We shall prove that $\gamma_{j} \notin A_{1}$ for some j. To the contrary suppose that each of γ_{i} is in A_{1}. Since t_{1} and t_{3} are alge-
braically dependent over B_{1}, we have

$$
\sum e_{i j} t_{1}^{i} t_{3}^{j}=0 \quad(1 \leqq i, j \leqq \lambda), e_{i j} \in B_{1},
$$

where some $e_{i j}$ is not 0 . Let $\left\{\omega_{1}, \cdots, \omega_{\mu}\right\}$ be a basis of the linear space spanned by all $e_{i j}$ over A_{1}. Then for each $i, j(1 \leqq i, j \leqq \lambda)$

$$
e_{i j}=\Sigma \delta_{i j n} \omega_{h} \quad(1 \leqq h \leqq \mu), \delta_{i j n} \in A_{1} .
$$

We have

$$
0=\Sigma\left\{\Sigma \delta_{i j h} t_{1}^{i} t_{3}^{j}\right\} \omega_{h} \quad(1 \leqq h \leqq \mu ; 1 \leqq i, j \leqq \lambda) .
$$

By our assumption $t_{1}, t_{3} \in A_{1}((\tau))$. Hence we have

$$
\begin{equation*}
\Sigma \delta_{i j h} t_{1}^{i} t_{3}^{j} \in A_{1}((\tau)) \quad(1 \leqq i, j \leqq \lambda) \tag{1}
\end{equation*}
$$

for each $h(1 \leqq h \leqq \mu)$. Since $\omega_{1}, \cdots, \omega_{\mu}$ are linearly independent over A_{1}, each of (1) is 0 . Since t_{1}, t_{3} are algebraically independent over A_{1}, we have

$$
\delta_{i j h}=0, \quad 1 \leqq i, j \leqq \lambda ; 1 \leqq h \leqq \mu .
$$

Hence, each of $e_{i j}$ is 0 . This is a contradiction. Thus we may suppose that $\gamma_{j} \notin A_{1}$ and $\gamma_{i} \in A_{1}(0 \leqq i<j)$ for some $j(j \geqq 0)$. Differentiating the expression of t_{3} in D_{Q} we have

$$
\begin{align*}
& \Sigma \gamma_{i}^{\prime} \tau^{i+p}+\left\{\Sigma(i+p) \gamma_{i} \tau^{i+p-1}\right\}\left\{\Sigma f_{i} \tau^{i+d}\right\} \tag{2}\\
& \quad=\left\{\Sigma a_{i}^{*} \tau^{i+s}\right\}\left\{\Sigma \gamma_{i} \tau^{i+p}\right\}+\Sigma b_{i}^{*} \tau^{i+r} \quad(0 \leqq i<\infty)
\end{align*}
$$

by $t_{3}^{\prime}=a_{3} t_{3}+b_{3}$. We shall see that $s \geqq 0$. To the contrary suppose that $s<0$. Then comparing the coefficients of τ^{s+p+j}, we have

$$
\begin{gathered}
\gamma_{s+j}^{\prime}+\Sigma(i+p) r_{i} f_{m} \quad(i+m+d-1-s=j ; i \geqq 0) \\
=b_{s+p+j-r}^{*}+\Sigma a_{i}^{*} r_{m} \quad(i+m=j ; m \geqq 0) ;
\end{gathered}
$$

here we assume that $\gamma_{s+j}=0$ if $s+j<0$. Since $a_{0}^{*} \neq 0$, we have $\gamma_{j} \in A_{1}$. This is a contradiction. Hence $s \geqq 0$. Comparing the coefficients of τ^{p+j} in (2), we have

$$
\begin{array}{rrr}
\gamma_{j}^{\prime} & +\Sigma(i+p) \gamma_{i} f_{m} & (i+m+d-1=j ; i \geqq 0) \\
=b_{p+j-r}^{*}+\Sigma a_{i}^{*} \gamma_{m} & (i+m+s=j ; m \geqq 0) .
\end{array}
$$

Hence, $\gamma_{j}^{\prime}=a \gamma_{j}+b$ with $a=a_{-s}^{*}-(j+p) f_{1-d}$ and

$$
b=b_{p+j-r}^{*}+\Sigma\left\{a_{j-i-s}^{*}+(i+p) f_{j-i-d+1}\right\} \gamma_{i}:
$$

Here i runs through $0, \cdots, j-1$, because $d>0$ and $s \geqq 0$. We have $b \in A_{1}$. Since γ_{j} is transcendental over A_{1}, we can take γ_{j} as t.

§ 3. Proof of Lemma.

Let Λ be the set of all pairs (k^{*}, L^{*}) satisfying the assumption of Lemma. For each pair $\left(k^{*}, L^{*}\right)$ of Λ there exists such an extending chain $N_{0} \subset N_{1} \subset \ldots$ $\subset N_{f}$ in Ω that satisfies the following condition:
(iv) N_{0} is an algebraic extension of k^{*} of finite degree ; L^{*} is contained in $N_{f} ; \operatorname{tr} . \operatorname{deg}_{k^{*}} N_{f}=f$; the field of constants of N_{f} is k_{0}; for each $i(1 \leqq i \leqq f)$ there exist an element t_{i} of N_{i} and elements a_{i}, b_{i} of N_{i-1} such that $t_{i}^{\prime}=a_{i} t_{i}+b_{i}$ and N_{i} is an algebraic extension of $N_{i-1}\left(t_{i}\right)$ of finite degree. For example we can make it from a Liouville chain over k^{*} which ends with K^{*}. For a pair (k^{*}, L^{*}) of Λ let us define $f\left(k^{*}, L^{*}\right)$ as the minimum of those f such that the condition (iv) is satisfied. Then

$$
f\left(k^{*}, L^{*}\right) \geqq \operatorname{tr} \cdot \operatorname{deg}_{k^{*}} L^{*}
$$

Our Lemma asserts that the equality holds. To the contrary suppose that the subset Γ of all pairs (k^{*}, L^{*}) of Λ for which the equality does not hold is not empty. Let Γ_{e} be the set of all pairs $\left(k^{*}, L^{*}\right)$ of Γ such that $\operatorname{tr} . \operatorname{deg}_{k^{*}} L^{*}=e$. Let n be the minimum of those e such that Γ_{e} is not empty, and m be the minimum of $f\left(k^{*}, L^{*}\right)$ where (k^{*}, L^{*}) runs over all elements of Γ_{n}. Then, $m>$ $n \geqq 1$. We assume that $\left(k^{*}, L^{*}\right) \in \Gamma_{n}, f\left(k^{*}, L^{*}\right)=m$ and $N_{0} \subset \cdots \subset N_{m}$ satisfies (iv) for (k^{*}, L^{*}) with $f=m$. Consider $\left(N_{1}, N_{1}\left(L^{*}\right)\right.$). It belongs to Λ (cf. §1). We have $\operatorname{tr} . \operatorname{deg}_{N_{1}} N_{1}\left(L^{*}\right) \leqq n$ and $N_{1} \subset \cdots \subset N_{m}$ satisfies (iv) for ($N_{1}, N_{1}\left(L^{*}\right)$). Hence, $\left(N_{1}, N_{1}\left(L^{*}\right)\right) \notin \Gamma$ because of the minimality of m and n. Let e be the transcendence degree of $N_{1}\left(L^{*}\right)$ over N_{1}. Then, there exists an extending chain $H_{0} \subset \cdots \subset H_{e}$ satisfying the condition (iv) for ($N_{1}, N_{1}\left(L^{*}\right)$). The chain $N_{0} \subset H_{0} \subset$ $\cdots \subset H_{e}$ satisfies the condition (iv) for (k^{*}, L^{*}). Hence, $e=n$ and $m=n+1$. Thus, t_{1} is transcendental over L^{*} and t_{2} is algebraic over $L^{*}\left(t_{1}\right)$. Two elements t_{1} and t_{2} are algebraically independent over k^{*} by the assumption (iv). By Proposition there exist an element t of the algebraic closure of L^{*} and elements a, b of the algebraic closure of k^{*} such that $t^{\prime}=a t+b$ and t is transcendentaI over k^{*}. The transcendence degree of $L^{*}(a, b, t)$ over $k^{*}(a, b, t)$ is $n-1$. Hence, $\left(k^{*}(a, b, t), L^{*}(a, b, t)\right) \in \Lambda-\Gamma$. There exists a chain $H_{0}^{*} \subset H_{1}^{*} \subset \cdots \subset H_{n-1}^{*}$ satisfying the condition (iv) for ($k^{*}(a, b, t), L^{*}(a, b, t)$). The chain $k^{*}(a, b) \subset$ $H_{0}^{*} \subset H_{1}^{*} \subset \cdots \subset H_{n-1}^{*}$ satisfies (iv) for (k^{*}, L^{*}). Thus $f\left(k^{*}, L^{*}\right)$ is n. This is. a contradiction.

§4. An example.

We assume that $k=k_{0}(x)$ with $x^{\prime}=1$. In the differential polynomial algebra $k\left\{u_{1}, \cdots, u_{n}\right\}$ over k we define $F_{i}(1 \leqq i \leqq n)$ by

$$
\begin{aligned}
& F_{1}=u_{1}^{\prime}-u_{1} /(\alpha x)-1 /(\alpha x+1), \quad \alpha \in k_{0}, \alpha \neq 0, \\
& F_{i}=\left(u_{i-1}+1\right)\left(u_{i-1} u_{i}^{\prime}-u_{i}\right)-u_{i-1}, \quad(2 \leqq i \leqq n) .
\end{aligned}
$$

There exists a solution $\left(y_{1}, \cdots, y_{n}\right)$ of $F_{1}=F_{2}=\cdots=F_{n}=0$ in Ω. Suppose that α is not a rational number. Then, the element y_{n} is proved to be a liouvillian one over k. It satisfies an algebraic differential equation over k of order n. It can be shown that the order of y_{n} over k is $3 n$.

Bibliography

[1] C. Chevalley, Introduction to the theory of algebraic functions of one variable, Math. Surveys 6, Amer. Math. Soc., 1951.
[2] E.R. Kolchin, Existence theorems connected with the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Bull. Amer. Math. Soc., 54 (1948), 927-932.
[3] J. Liouville, Mémoire sur la classification des transcendantes, et sur l'impossibilité d'éxprimer les racines des certaines des équations en fonction finie explicite des coefficients, J. Math. Pures Appl., 2 (1837), 56-104.
[4] D. Mordukhai-Boltovskoi, Sur la résolution des équations différentielles de premier ordre en forme finie, Rend. Circ. Mat. Palermo, 61 (1937), 49-72.
[5] S. Ōtsubo, Order of liouvillian elements satisfying an algebraic differential equation of the first order, Ōsaka J. Math., 16 (1979), 667-673.
[6] J.F. Ritt, Integration in finite terms, Columbia Univ. Press, New York, 1948.
[7] M. Rosenlicht and M.F. Singer, On elementary, generalized elementary, and liouvillian extension field, "Contributions to Algebra", Academic Press, New York, 1977, 329-342.
[8] M.F. Singer, Elementary solutions of differential equations, Pacific J. Math., 59 (1975), 535-547.
[9] G.N. Watson, A treaties on the theory of Bessel functions, Cambridge Univ. Press, London, 1922.

Shūji Ōtsubo
Department of Mathematics
Ōsaka University
Toyonaka, Ōsaka 560
Japan

