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\S 0. Introduction.

The author [5] proved that the order of a liouvillian element in Liouville’s
sense is at most 3 if it satisfies an algebraic differential equation of the first
order. Here, we shall generalize his theorem as follows: The order of a liou-
villian element in Liouville’s sense is at most $3n$ if it satisfies an algebraic dif-
ferential equation of order $n$ .

Let $k$ be an ordinary differential field of characteristic $0$ , and $\Omega$ be a uni-
versal extension of $k$ . We assume that the field of constants $k_{0}$ of $k$ is alge-
braically closed. A finite chain of extending differential subfields $ L_{0}\subset L_{1}\subset\ldots$

$\subset L_{n}$ in $\Omega$ is called a Liouville chain over $k$ if the following three conditions
are satisfied:

(i) $L_{0}$ is an algebraic extension of $k$ of finite degree:
(ii) The field of constants of $L_{n}$ is $k_{0}$ :
(iii) For each $i(1\leqq i\leqq n)$ there exists a finite system of elements $w_{1},$

$\cdots$ , $w_{r}$

of $L_{i}$ which satisfies the following two conditions; either $w_{j}^{\prime}\in L_{i-1}$ or $w_{j}^{\prime}/w_{j}$

is the derivative of an element of $L_{i- 1}$ for each $j(1\leqq j\leqq r);L_{i}$ is an algebraic
extension of $L_{i- 1}(w_{1}, \cdots , w_{r})$ of finite degree.

A subfield $L$ of $\Omega$ is called a liouvillian extension of $k$ if there exists a
Liouville chain over $k$ which ends with $L$ . Let $z$ be an element of $\Omega$ . Then,
$z$ is called a liouvillian element over $k$ if there exists a Liouville chain over $k$

such that its end contains $z$ . In particular, if $k=k_{0}(x)$ with $x^{\prime}=1$ , then a liou-
villian element over $k$ is called an elementary transcendental function of $x$ over
$k_{0}$ (cf. Watson [9, p. 111]). The following definition is due to Liouville [3]: A
liouvillian element $z$ over $k$ is said to be of order $m$ if $m$ is the minimum of
those $n$ such that the end of a Liouville chain $L_{0}\subset\cdots\subset L_{n}$ over $k$ contains $z$.

THEOREM. The order of a liouvillian element over $k$ satisfying an algebraic

differential equation over $k$ of order $n$ is at most $3n$ .
It follows from the following:
LEMMA. Let $k^{*}$ be a finitely generated differential extension field of $k$ in $\Omega$
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whose field of constants is $k_{0}$ , and $L^{*}$ be a differential extension field of $k^{*}$ in $\Omega$ .
SuppOse that $L^{*}$ is contained in a liouvillian extension $K^{*}$ of $k^{*}$ . Then, there
exists such an extending chain $L_{0}\subset\ldots\subset L_{n}$ of differential subfields of $\Omega$ that
satisfies the following conditions: $L_{0}$ is an algebraic extension of $k^{*}$ of finite
degree; $n=tr$ . $\deg_{k^{*}}L^{*};$ $L^{*}\subset L_{n}$ ; for each $i(0<i\leqq n)$ there exist an element $y_{i}$ of
$L_{i}$ and elements $\alpha_{i},$ $\beta_{i}$ of $L_{i-1}$ such that $y_{i}^{\prime}=\alpha_{i}y_{i}+\beta_{i}$ and $L_{i}$ is an algebraic
extension of $L_{i-1}(y_{t})$ of finite degree.

In \S 1 we shall show that Theorem follows from Lemma. In \S 3 we shall
prove Lemma. In the last \S 4 an example $of\sim$ liouvillian element in Theorem
whose order attains $3n$ will be given. In \S 2 we shall show the following:

PROPOSITION. Let $A$ be a differential extension field of $k$ in $\Omega$ . SuPpose
that two elements $t_{1},$ $t_{2}$ of $\Omega$ are algebraically independent over $A$ and satisfy
$t_{i}^{\prime}=a_{i}t_{i}+b_{i}(i=1,2)$ ; here we assume that each of $a_{1},$

$b_{1}$ is algebraic over $A$ and
each of $a_{2},$

$b_{2}$ is algebraic over $A(t_{1})$ . Let $B$ be a differential extension field of
$A$ in $\Omega$ . $SuPPose$ that $t_{1}$ is transcendental over $B,$ $t_{2}$ is algebraic over $B(t_{1})$ and
the field of constants of $B(t_{1})$ is $k_{0}$ . Then, there exist an element $t$ of $B_{1}$ and
elements $a,$

$b$ of $A_{1}$ such that $t$ is transcendental over $A$ and $l^{\prime}=at+b$ , where $A_{1}$

and $B_{1}$ are the algebraic closures of $A$ and $B$ respectively.
REMARK 1. If we replace “

$w_{j}^{\prime}\in L_{i- 1}$
’ in the definition of a liouvillian ele-

ment by “
$w_{j}^{\prime}=a^{\prime}/a,$ $a\in L_{i-1}’$ , then we have an “elementary” liouvillian element.

For such an element let us modify the definition of “order” by the above replace-
ment. Then the order of an elementary liouvillian element satisfying an alge-
braic differential equation of order $n$ is at most $2n$ . This theorem is due to
Singer [8] (cf. Rosenlicht and Singer [7, Theorem 1]). In the special case where
$n=1$ and $k=C(x)$ with $x^{\prime}=1$ it is due to Mordukhai-Boltovskoi [4] (cf. Ritt [6,

p. 86]).

REMARK 2. Our dePnition of “liouvillian extension” is slightly stronger
than the ordinary one. If we replace “

$w_{j}^{\prime}/w_{f}=a^{\prime},$ $a\in L_{i-1}$
’ by “

$w_{j}^{\prime}/w_{j}\in L_{i-1}’$ ,
then we have the ordinary definition. The difference is not essential (cf. \S 1).
If we modify our definition of “order“ by this replacement, then $3n$ in our result
is replaced by $2n$ .

The author wishes to express his sincere gratitude to Professor M. Matsuda
for his kind advices.

\S 1. Kolchin’s existence theorem.

Kolchin [2] obtained the following theorem: Let $\Lambda$ be a proper prime dif-
ferential ideal in the differential polynomial algebra $k\{u_{1}, \cdots , u_{n}\}$ over $k$ , and
let $J$ be an element of $k\{u_{1}, \cdots , u_{n}\}$ which is not in $\Lambda$ . Then $\Lambda$ has a solution
$(\eta_{1}, \cdots , \eta_{n})$ such that $J(\eta_{1}, \cdots , \eta_{n})\neq 0$ and the field of constants of $ k\langle\eta_{1}, \cdots , \eta_{n}\rangle$
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is $k_{0}$ .
By this theorem we shall show that our Theorem follows from Lemma:

Suppose that $y$ is a liouvillian element over $k$ satisfying an algebraic differential
equation over $k$ of order $m$ . Let $L$ denote $ k\langle y\rangle$ . Then, $L$ is contained in a
liouvillian extension of $k$ . The transcendence degree $n$ of $L$ over $k$ is at most
$m$ . If we set $k=k^{*}$ and $L=L^{*}$ , then the assumption of Lemma is satisfied.
Hence there exists such an extending chain $L_{0}\subset\cdots\subset L_{n}$ of differential subfields
in $\Omega$ as stated in Lemma. There exist elements $v_{01},$

$\cdots$ , $v_{0n},$ $w_{01},$
$\cdots$ , $w_{0n},$ $z_{01}$ ,

$\ldots,$ $z_{on}$ of $\Omega$ such that

$v_{0t}^{\prime}=\alpha_{i}$ ; $w_{0i}^{\prime}=v_{0i}^{\prime}w_{0i}$ , $w_{0i}\neq 0$ ; $w_{0i}z_{0i}^{\prime}=\beta_{i}$

for each $i(1\leqq i\leqq n)$ . We set $K=L_{n}$ for simplicity. Let $\Sigma$ be a prime differential
ideal in the differential polynomial algebra

$K\{V_{1}, \cdots, V_{n}, W_{1}, \cdots , W_{n}, Z_{1}, \cdots , Z_{n}\}$

over $K$ whose generic point is $(v_{01}, \cdots , v_{0n}, w_{01}, \cdots, w_{0n}, z_{01}, \cdots , z_{on})$ , and $T$ be
$\prod W_{i}(1\leqq i\leqq n)$ . Then, $ T\not\in\Sigma$ . The field of constants of $K$ is $k_{0}$ , since $K$ is an
algebraic extension of $L$ . By the existence theorem of Kolchin there exists a
zero $(v_{1}, \cdots , v_{n}, w_{1}, \cdots , w_{n}, z_{1}, \cdots , z_{n})$ of $\Sigma$ in $\Omega$ such that $T(w_{1}, \cdots w_{n})\neq 0$

and the field of constants of

$ K\langle v_{1}, \cdots v_{n}, w_{1}, \cdots w_{n}, z_{1}, \cdots z_{n}\rangle$

is $k_{0}$ . We have
$(y_{i}/w_{i})^{\prime}-z_{i}^{\prime}=0$ , $1\leqq i\leqq n$

by $y_{i}^{\prime}=\alpha_{i}y_{i}+\beta_{i}$ . Then, there exists a constant $c_{i}$ such that $y_{i}=w_{i}(z_{i}+c_{i})$ for
each $i(1\leqq i\leqq n)$ . We have $c_{i}\in k_{0}$ . Since $K$ is an algebraic extension of $k(y_{1}$ ,

, $y_{n}$ ) of finite degree, there exists an element $t$ of $K$ such that $K=k(y_{1},$ $\cdots$ ,
$y_{n},$

$t$ ). We define a chain $M_{0}\subset M_{1}\subset\ldots\subset M_{3n}$ by

$M_{0}=k(\alpha_{1}, \beta_{1})$ ,

$M_{3i-2}=M_{3i- 3}(v_{i})$ $(1\leqq i\leqq n)$ ,

$M_{3i-1}=M_{3i- 2}(w_{i})$ $(1\leqq i\leqq n)$ ,

$M_{3i}=M_{3i-1}(z_{i}, \alpha_{i+1}, \beta_{i+1})$ $(1\leqq i<n)$ ,

$M_{3n}=M_{3n-1}(z_{n}, t)$ .
This is a Liouville chain over $k$ and $M_{3n}$ contains $y$ .
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\S 2. Proof of Proposition.

We shall prove that there exist an element $t_{3}$ of $B_{1}(t_{1}, a_{2}, b_{2})$ and elements
$a_{3},$

$b_{3}$ of $A_{1}(t_{1}, a_{2}, b_{2})$ such that $t_{3}$ is transcendental over $A_{1}(t_{1})$ and $t_{3}^{\prime}=a_{3}t_{3}+b_{3}$ .
Let $C$ and $D$ denote $A_{1}(t_{1}, a_{2}, b_{2})$ and $B_{1}(t_{1}, a_{2}, b_{2})$ respectively, and $G$ be the
minimal polynomial of $t_{2}$ over $D$ :

$G(T)=T^{g}+v_{1}T^{g-1}+\cdots+v_{g}$ , $v_{i}\in D(1\leqq i\leqq g)$ .

Then, differentiating $G(t_{2})=0$ we have

$t_{2}^{\prime}\{gt_{2}^{g- 1}+(g-1)v_{1}t_{2}^{g- 2}+\cdots+v_{g-1}\}+v_{1}^{\prime}tg^{-1}+\cdots+v_{g}^{\prime}=0$ .
Hence

$v_{1}^{\prime}=v_{1}a_{2}-gb_{2}$

by $G(t_{2})=0$ and $t_{2}^{\prime}=a_{2}t_{2}+b_{2}$ . Thus

$(gt_{2}+v_{1})^{\prime}=a_{2}(gt_{2}+v_{1})$ .
Suppose that $v_{1}$ is algebraic over $C$ . Then $gt_{2}+v_{1}$ is transcendental over $C$

and algebraic over $D$ . Since $k_{0}$ is algebraically closed, the field of constants of
$D(t_{2})$ is $k_{0}$ . Hence there exists a positive integer $q$ such that $(gt_{2}+v_{1})^{q}\in D$ . As
$t_{3}$ we can take $(gt_{2}+v_{1})^{q}$ : $t_{3}^{\prime}=qa_{2}i_{3}$ . If $v_{1}$ is transcendental over $C$ , then we
can take $v_{1}$ as $t_{3}$ . Thus the existence of $t_{3},$ $a_{3}$ and $b_{3}$ is proved. We consider
$C$ and $D$ as one-dimensional algebraic function fields over $A_{1}$ and $B_{1}$ respectively.
There exists a prime divisor $P$ of $C$ such that $\nu_{p}(t_{1})<0$ , where $\nu_{P}$ is the nor-
malized valuation belonging to $P$ . Let $\tau$ be prime element in $P$ such that $\tau\in C$ .
Then $\nu_{P}(\tau^{\prime})>0$ by $t_{1}^{\prime}=a_{1}t_{1}+b_{1}$ : For, $t_{1}=\sigma^{-e}$ with some prime element $\sigma$ in $P$ :
We have $-e\sigma^{\prime}=a_{1}\sigma+b_{1}\sigma^{e+1}$ and $\nu_{P}(\sigma^{\prime})>0$ . There exists uniquely a prime divisor
$Q$ of $D$ such that the restriction of $\nu_{Q}^{*}$ to $C$ is $\nu_{P}$, where $\nu_{Q}^{*}$ is the normalized
valuation belonging to $Q$ . In this $Q,$ $\tau$ is a prime element. The completion $C_{P}$

of $C$ with respect to $P$ is a differential extension of $C$ , and the completion $D_{Q}$

of $D$ with respect to $Q$ is a differential extension of $D$ ; the differentiation is
continuous in each completion (cf. Chevalley [1, p. 114]). The latter $D_{Q}$ is a
differential extension of the former $C_{P}$ . In $D_{Q}$ we have

$\tau^{\prime}=\sum f_{i}\tau^{i+d}$ , $f_{0}\neq 0,$ $f_{i}\in A_{1},$ $d>0$ ,

$a_{3}=\sum af\tau^{i+s}$ , $a_{0}^{*}\neq 0,$ $a_{i}^{*}\in A_{1}$ ,

$b_{3}=\Sigma bf\tau^{i+r}$ , $b_{0}^{*}\neq 0,$ $b_{i}^{*}\in A_{1}$ ,

$t_{3}=\sum\gamma_{i}\tau^{i+p}$ , $\gamma_{0}\neq 0,$ $\gamma_{i}\in B_{1},0\leqq i<\infty$ ;

here we assume that $f_{i}=a_{i}^{*}=b_{i}^{*}=0$ if $i<0$ . We shall prove that $\gamma_{j}\not\in A_{1}$ for some
$j$ . To the contrary suppose that each of $\gamma_{i}$ is in $A_{1}$ . Since $t_{1}$ and $t_{3}$ are alge-
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braically dependent over $B_{1}$ , we have

$\sum e_{ij}t_{1}^{i}t_{3}^{j}=0$ $(1\leqq i, j\leqq\lambda),$ $e_{ij}\in B_{1}$ ,

where some $e_{ij}$ is not $0$ . Let $\{\omega_{1}, \cdots , \omega_{\mu}\}$ be a basis of the linear space spanned
by all $e_{ij}$ over $A_{1}$ . Then for each $i,$ $j(1\leqq i, j\leqq\lambda)$

$e_{ij}=\sum\delta_{ijh}\omega_{h}$ $(1\leqq h\leqq\mu),$ $\delta_{ijh}\in A_{1}$ .
We have

$0=\sum\{\sum\delta_{ijh}t_{1}^{i}t_{3}^{j}\}\omega_{h}$ $(1\leqq h\leqq\mu;1\leqq i, j\leqq\lambda)$ .

By our assumption $t_{1},$ $t_{3}\in A_{1}((\tau))$ . Hence we have

(1) $\Sigma\delta_{ijh}t_{1}^{i}t_{3}^{j}\in A_{1}((\tau))$ $(1\leqq i, j\leqq\lambda)$

for each $h(1\leqq h\leqq\mu)$ . Since $\omega_{1},$
$\cdots$ , $\omega_{\mu}$ are linearly independent over $A_{1}$ , each of

\langle 1) is $0$ . Since $t_{1},$ $t_{3}$ are algebraically independent over $A_{1}$ , we have

$\delta_{ijh}=0$ , $1\leqq i,$ $ j\leqq\lambda;1\leqq h\leqq\mu$ .

Hence, each of $e_{ij}$ is $0$ . This is a contradiction. Thus we may suppose that
$\gamma_{j}\not\in A_{1}$ and $\gamma_{i}\in A_{1}(0\leqq i<j)$ for some $j(j\geqq 0)$ . Differentiating the expression of

$t_{3}$ in $D_{Q}$ we have

\langle 2) $\Sigma\gamma_{i}^{\prime}\tau^{i+p}+\{\sum(i+p)\gamma_{i}\tau^{i+p- 1}\}\{\sum f_{l}\tau^{i+d}\}$

$=\{\Sigma af\tau^{i+s}\}\{\Sigma\gamma_{i}\tau^{i+p}\}+\Sigma by_{T^{i+r}}$ $(0\leqq i<\infty)$

by $t_{3}^{\prime}=a_{8}t_{3}+b_{3}$ . We shall see that $s\geqq 0$ . To the contrary suppose that $s<0$ .
Then comparing the coefficients of $\tau^{s+p+j}$ , we have

$\gamma_{s+j}^{\prime}+\sum(i+p)\gamma_{i}f_{m}$ $(i+m+d-1-s=j;i\geqq 0)$

$=b_{s+p+j-r}^{*}+\sum aX\gamma_{m}$ $(i+m=j;m\geqq 0)$ ;

here we assume that $\gamma_{s+j}=0$ if $s+j<0$ . Since $a_{0}^{*}\neq 0$ , we have $\gamma_{j}\in A_{1}$ . This is
a contradiction. Hence $s\geqq 0$ . Comparing the coefficients of $\tau^{p+j}$ in (2), we have

$\gamma_{j}^{\prime}+\sum(i+p)\gamma_{i}f_{m}$ $(i+m+d-1=j;i\geqq 0)$

$=b_{p+j-r}^{*}+\sum af\gamma_{m}$ $(i+m+s=j;m\geqq 0)$ .

Hence, $\gamma_{j}^{\prime}=a\gamma_{j}+b$ with $a=a_{-s}^{*}-(j+p)f_{1- d}$ and

$b=b_{p_{T}j- r}^{*}+\sum\{a_{j-i-s}^{*}+(i+p)f_{j- i-d+1}\}\gamma_{i}$ :

Here $i$ runs through $0,$ $\cdots$ , $j-1$ , because $d>0$ and $s\geqq 0$ . We have $b\in A_{1}$ . Since
$\gamma_{j}$ is transcendental over $A_{1}$ , we can take $\gamma_{j}$ as $t$ .
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\S 3. Proof of Lemma.

Let $\Lambda$ be the set of all pairs $(k^{*}, L^{*})$ satisfying the assumption of Lemma.
For each pair $(k^{*}, L^{*})$ of $\Lambda$ there exists such an extending chain $ N_{0}\subset N_{1}\subset\cdots$

$\subset N_{f}$ in $\Omega$ that satisfies the following condition:
(iv) $N_{0}$ is an algebraic extension of $k^{*}$ of finite degree; $L^{*}$ is contained

in $N_{f}$ ; tr. $\deg_{k^{*}}N_{f}=f$ ; the field of constants of $N_{f}$ is $k_{0}$ ; for each $i(1\leqq i\leqq f)$

there exist an element $t_{i}$ of $N_{i}$ and elements $a_{i},$ $b_{i}$ of $N_{i-1}$ such that $t_{i}^{\prime}=a_{i}t_{i}+b_{i}$

and $N_{i}$ is an algebraic extension of $N_{i-1}(t_{i})$ of finite degree. For example we
can make it from a Liouville chain over $k^{*}$ which ends with $K^{*}$ . For a pair
$(k^{*}, L^{*})$ of $\Lambda$ let us define $f(k^{*}, L^{*})$ as the minimum of those $f$ such that the
condition (iv) is satisPed. Then

$f(k^{*}, L^{*})\geqq tr$ . deg $k^{*L^{*}}$ .
Our Lemma asserts that the equality holds. To the contrary suppose that the
subset $\Gamma$ of all pairs $(k^{*}, L^{*})$ of $\Lambda$ for which the equality does not hold is not
empty. Let $\Gamma_{e}$ be the set of all pairs $(k^{*}, L^{*})$ of $\Gamma$ such that tr. $\deg_{k^{*}}L^{*}=e$ .
Let $n$ be the minimum of those $e$ such that $\Gamma_{e}$ is not empty, and $m$ be the
minimum of $f(k^{*}, L^{*})$ where $(k^{*}, L^{*})$ runs over all elements of $\Gamma_{n}$ . Then, $m>$

$n\geqq 1$ . We assume that $(k^{*}, L^{*})\in\Gamma_{n},$ $f(k^{*}, L^{*})=m$ and $N_{0}\subset\ldots\subset\Lambda_{m}^{\Gamma}$ satisfies
(iv) for $(k^{*}, L^{*})$ with $f=m$ . Consider $(N_{1}, N_{1}(L^{*}))$ . It belongs to $\Lambda$ (cf. \S 1).
We have tr. $\deg_{N_{1}}N_{1}(L^{*})\leqq n$ and $N_{1}\subset\ldots\subset N_{m}$ satisfies (iv) for $(N_{1}, N_{1}(L^{*}))$ .
Hence, $(N_{1}, N_{1}(L^{*}))\not\in\Gamma$ because of the minimality of $m$ and $n$ . Let $e$ be the
transcendence degree of $N_{1}(L^{*})$ over $N_{1}$ . Then, there exists an extending chain
$H_{0}\subset\ldots\subset H_{e}$ satisfying the condition (iv) for $(N_{1}, N_{1}(L^{*}))$ . The chain $ N_{0}\subset H_{0}\subset$

$...\subset H_{e}$ satisfies the condition (iv) for $(k^{*}, L^{*})$ . Hence, $e=n$ and $m=n+1$ . Thus.
$t_{1}$ is transcendental over $L^{*}$ and $t_{2}$ is algebraic over $L^{*}(t_{1})$ . Two elements $t_{\iota}$

and $t_{2}$ are algebraically independent over $k^{*}$ by the assumption (iv). By Prop-
osition there exist an element $t$ of the algebraic closure of $L^{*}$ and elements
$a,$

$b$ of the algebraic closure of $k^{*}$ such that $t^{\prime}=at+b$ and $t$ is transcendentaI
over $k^{*}$ . The transcendence degree of $L^{*}(a, b, t)$ over $k^{*}(a, b, t)$ is $n-1$ .
Hence, $(k^{*}(a, b, t), L^{*}(a, b, t))\in\Lambda-\Gamma$ There exists a chain $H_{0}^{*}\subset H_{1}^{*}\subset\ldots\subset H_{n-1}^{*}$

satisfying the condition (iv) for $(k^{*}(a, b, t), L^{*}(a, b, t))$ . The chain $ k^{*}(a, b)\subset$

$H_{0}^{*}\subset H_{1}^{*}\subset\cdots\subset H_{n-1}^{*}$ satisfies (iv) for $(k^{*}, L^{*})$ . Thus $f(k^{*}, L^{*})$ is $n$ . This is
a contradiction.

\S 4. An example.

We assume that $k=k_{0}(x)$ with $x^{\prime}=1$ . In the differential polynomial algebra
$k\{u_{1}, \cdots , u_{n}\}$ over $k$ we define $F_{i}(1\leqq i\leqq n)$ by
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$F_{1}=u_{1}^{\prime}-u_{1}/(\alpha x)-1/(\alpha x+1)$ , $\alpha\in k_{0},$ $\alpha\neq 0$ ,

$F_{i}=(u_{i- 1}+1)(u_{i- 1}u_{i}^{\prime}-u_{t})-u_{i-1}$ , $(2\leqq i\leqq n)$ .

There exists a solution $(y_{1}, \cdots , y_{n})$ of $F_{1}=F_{2}=\ldots=F_{n}=0$ in $\Omega$ . Suppose that
$\alpha$ is not a rational number. Then, the element $y_{n}$ is proved to be a liouvillian
one over $k$ . It satisfies an algebraic differential equation over $k$ of order $n$ .
It can be shown that the order of $y_{n}$ over $k$ is $3n$ .
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