A remark on inhomogeneity of Picard principle

By Michihiko KAWAMURA*)

(Received Sept. 21, 1978)

A nonnegative locally Hölder continuous function P(z) on $0 < |z| \le 1$ will be referred to as a *density* on the punctured unit disk $\Omega: 0 < |z| < 1$. We view Ω as the interior of the bordered Riemann surface: $0 < |z| \le 1$; hence we consider the circle: |z|=1 the relative boundary (border) $\partial \Omega$ of Ω and z=0 the ideal boundary of Ω . The *elliptic dimension* of a density P on Ω at z=0, dim P in notation, is defined (cf. Nakai [7, 8]) to be 'the dimension' of the half module of nonnegative solutions of the equation $\Delta u = Pu$ on Ω with the vanishing boundary values on $\partial \Omega$. After Bouligand we say that the *Picard principle* is valid for P at z=0 if dim P=1.

To illustrate the complexity of elliptic dimensions, Nakai [4] showed the following example of rather pathological nature, at least for the first sight: There exists a pair of rotation free densities P_j (j=1, 2) (i. e. $P_j(z)=P_j(|z|)$) on Ω such that the Picard principle is valid for P_j (j=1, 2) at z=0 but invalid for the density $P_0 \equiv P_1 + P_2$ at z=0. The purpose of this note is to show that any density P on Ω possesses a pair of densities P_j (j=1, 2) with the above property. Namely we shall prove the following

THEOREM. For any density P on Ω there exists a pair of densities P_j (j=1, 2) such that the Picard principle is valid for P_j (j=1, 2) at z=0 and $P=P_1+P_2$. If, moreover, P is rotation free, then P_j (j=1, 2) can be chosen to be rotation free.

Actually we will prove a bit more: For any density P on Ω and any integer $n \ge 2$ there exists a finite set of densities P_j $(j=1, 2, \dots, n)$ satisfying the following condition $[C]: P=\sum_{j=1}^n P_j$ and the Picard principle is valid for the density Q defined by the sum of any m $(1 \le m < n)$ elements of $\{P_j\}_{j=1}^n$, especially dim $P_j=1$ $(j=1, 2, \dots, n)$. The construction of such a set of P_j $(j=1, 2, \dots, n)$ will be given in nos. 2-4.

1. There have been given various practical sufficient conditions for the validity of the Picard principle (Nakai [3, 5, 6, 8], Kawamura-Nakai [1], Kawamura [2], etc.). Some of these conditions sufficient for the validity of Picard

^{*)} The author is grateful to Professor Nakai for the valuable discussions with him.

principle are of homogeneous character in the sense that if P_j (j=1, 2, ..., n) satisfy one of these conditions, then $\sum_{j=1}^{n} P_j$ also satisfies the same condition. For example, $\int_{\mathcal{Q}-E} P(z) \log |z|^{-1} dx dy < +\infty$ where E is a closed subset of \mathcal{Q} thin at z=0 ([5]); $\int_{\mathcal{Q}} P(z) dx dy < +\infty$ ([8]); $P(z)=\mathcal{O}(|z|^{-2})$ $(z \to 0)$ ([2]). On the other hand the existence of the densities P_j (j=1, 2) in Nakai's example suggests us inhomogeneity of the Picard principle. The construction of his example is based on the *P*-unit criterion in [1]. For a given density P we will construct densities P_j (j=1, 2, ..., n) in our theorem as an application of the theorem in 3.1 in [2].

2. To construct the required densities P_j $(j=1, 2, \dots, n)$ we need to consider a finite set of C^1 -functions f_j $(j=1, 2, \dots, n)$, $f_j: [0, \infty) \rightarrow [0, 1]$, with the following properties (1) $\sum_{j=1}^n f_j=1$, (2) f_j $(j=1, 2, \dots, n)$ are periodic functions with the same period, and (3) the zero set of the function g defined by the sum of any m $(1 \le m < n)$ functions among f_j $(j=1, 2, \dots, n)$ contains an infinite sequence of disjoint closed intervals with the constant positive length l. For example, $f_j(t)$ are periodic C^1 -functions with the period 2n on $[0, +\infty)$ defined by $f_j(t)=1$ on [2j-2, 2j-1], $f_j(t)=\psi(t-2j+1)$ on [2j-1, 2j], $f_j(t)=0$ on [2j, 2j+2n-3] and $f_j(t)=1-\psi(t-2j-2n+3)$ on [2j+2n-3, 2j+2n-2], where ψ is C^1 -mapping of [0, 1] into itself such that $\psi(0)=1$, $\psi(1)=0$ and $\psi'(0)=\psi'(1)=0$.

With the aid of these auxiliary functions f_j $(j=1, 2, \dots, n)$ we successively define $h_j(z)=f_j(-\log|z|)$ and $P_j(z)=P(z)h_j(z)$ $(j=1, 2, \dots, n)$. These are certainly densities on Ω and P_j is rotation free if P is rotation free. The property (1) for auxiliary functions f_j $(j=1, 2, \dots, n)$ implies that $P=\sum_{j=1}^n P_j$. Therefore we only have to prove that $\{P_j\}_{j=1}^n$ satisfies the latter part of the condition [C].

3. Before proceeding to the proof of the latter part of the condition [C] we need to make some preparation. Let $\{A_k\}_{k=1}^{\infty}$ be a sequence of disjoint annuli $A_k = \{z \in \Omega; a_k \leq |z| \leq b_k\}$, where $b_k > a_k > b_{k+1}$ and $\lim_{k \to \infty} a_k = 0$. We say that $\{A_k\}_{k=1}^{\infty}$ satisfies the condition [A] if

 $\inf_k \mod A_k > 0 \pmod{(m \log A_k = \log(b_k/a_k))}$.

It is known (the theorem in 3.1 in [2]) that if the density P(z) on Ω satisfies $P(z) \leq c |z|^{-2}$ on $\bigcup_{k=1}^{\infty} A_k$ with the condition [A] where c is some positive constant, then the Picard principle is valid for P at z=0.

4. We are ready to prove the assertion in the last part of no. 2. Observe that by the properties (2) and (3) for $\{f_j\}$ $(j=1, 2, \dots, n)$, the inverse image $g^{-1}(0)$ of g defined by the sum of m functions of $\{f_j\}_{j=1}^n$ as in the property (3)

contains an infinite sequence of disjoint closed intervals $[c_k, d_k]$ $(k=1, 2, \cdots)$ with constant positive length l. By setting $a_k = \exp(-d_k)$, $b_k = \exp(-c_k)$ and $A_k = \{z \in \Omega ; a_k \leq |z| \leq b_k\}$, we have that $Q^{-1}(0) \supset \bigcup_{k=1}^{\infty} A_k$ where Q(z) is the density, corresponding to g, defined by the sum of m elements of $\{P_j\}_{j=1}^n (1 \leq m < n)$. We deduce that $Q(z) \leq |z|^{-2}$ (in reality $Q(z) \equiv 0$) on $\bigcup_{k=1}^{\infty} A_k$. Since mod $A_k = l$, $\{A_k\}_{k=1}^{\infty}$ satisfies the condition [A]. Thus we conclude that the Picard principle is valid for Q at z=0.

The proof of the theorem is herewith complete.

References

- M. Kawamura and M. Nakai, A test of Picard principle for rotation free densities, II, J. Math. Soc. Japan, 28 (1976), 323-342.
- M. Kawamura, On a conjecture of Nakai on Picard principle, J. Math. Soc. Japan, 31 (1979), 359-371.
- [3] M. Nakai, Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507.
- [4] M. Nakai, A remark on Picard principle, Proc. Japan Acad., 50 (1974), 806-808.
- [5] M. Nakai, A test for Picard principle, Nagoya Math. J., 56 (1975), 105-119.
- [6] M. Nakai, A test of Picard principle for rotation free densities, J. Math. Soc. Japan, 27 (1975), 412-431.
- [7] M. Nakai, Picard principle and Riemann theorem, Tôhoku Math. J., 28 (1976), 277-292.
- [8] M. Nakai, Picard principle for finite densities, Nagoya Math. J., 70 (1978), 7-24.

Michihiko KAWAMURA

Department of Mathematics Faculty of Education Gifu University Nagara, Gifu 502 Japan