A remark on inhomogeneity of Picard principle

By Michihiko Kawamura*)

(Received Sept. 21, 1978)

A nonnegative locally Hölder continuous function $P(z)$ on $0<|z| \leqq 1$ will be referred to as a density on the punctured unit disk $\Omega: 0<|z|<1$. We view Ω as the interior of the bordered Riemann surface: $0<|z| \leqq 1$; hence we consider the circle: $|z|=1$ the relative boundary (border) $\partial \Omega$ of Ω and $z=0$ the ideal boundary of Ω. The elliptic dimension of a density P on Ω at $z=0, \operatorname{dim} P$ in notation, is defined (cf. Nakai [7,8]) to be 'the dimension' of the half module of nonnegative solutions of the equation $\Delta u=P u$ on Ω with the vanishing boundary values on $\partial \Omega$. After Bouligand we say that the Picard principle is valid for P at $z=0$ if $\operatorname{dim} P=1$.

To illustrate the complexity of elliptic dimensions, Nakai [4] showed the following example of rather pathological nature, at least for the first sight: There exists a pair of rotation free densities $P_{j}(j=1,2)$ (i. e. $\left.P_{j}(z)=P_{j}(|z|)\right)$ on Ω such that the Picard principle is valid for $P_{j}(j=1,2)$ at $z=0$ but invalid for the density $P_{0} \equiv P_{1}+P_{2}$ at $z=0$. The purpose of this note is to show that any density P on Ω possesses a pair of densities $P_{j}(j=1,2)$ with the above property. Namely we shall prove the following

Theorem. For any density P on Ω there exists a pair of densities $P_{j}(j=1,2)$ such that the Picard principle is valid for $P_{j}(j=1,2)$ at $z=0$ and $P=P_{1}+P_{2}$. If, moreover, P is rotation free, then $P_{j}(j=1,2)$ can be chosen to be rotation free.

Actually we will prove a bit more: For any density P on Ω and any integer $n \geqq 2$ there exists a finite set of densities $P_{j}(j=1,2, \cdots, n)$ satisfying the following condition [C]: $P=\sum_{j=1}^{n} P_{j}$ and the Picard principle is valid for the density Q defined by the sum of any $m(1 \leqq m<n)$ elements of $\left\{P_{j}\right\}_{j=1}^{n}$, especially $\operatorname{dim} P_{j}=1(j=1,2, \cdots, n)$. The construction of such a set of $P_{j}(j=1,2, \cdots, n)$ will be given in nos. 2-4.

1. There have been given various practical sufficient conditions for the validity of the Picard principle (Nakai [3, 5, 6, 8], Kawamura-Nakai [1], Kawamura [2], etc.). Some of these conditions sufficient for the validity of Picard

[^0]principle are of homogeneous character in the sense that if $P_{j}(j=1,2, \cdots, n)$ satisfy one of these conditions, then $\sum_{j=1}^{n} P_{j}$ also satisfies the same condition. For example, $\int_{\Omega-E} P(z) \log |z|^{-1} d x d y<+\infty$ where E is a closed subset of Ω thin at $z=0([5]) ; \int_{\Omega} P(z) d x d y<+\infty([8]) ; P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$ ([2]). On the other hand the existence of the densities $P_{j}(j=1,2)$ in Nakai's example suggests us inhomogeneity of the Picard principle. The construction of his example is based on the P-unit criterion in [1]. For a given density P we will construct densities $P_{j}(j=1,2, \cdots, n)$ in our theorem as an application of the theorem in 3.1 in [2].
2. To construct the required densities $P_{j}(j=1,2, \cdots, n)$ we need to consider a finite set of C^{1}-functions $f_{j}(j=1,2, \cdots, n), f_{j}:[0, \infty) \rightarrow[0,1]$, with the following properties (1) $\sum_{j=1}^{n} f_{j}=1$, (2) $f_{j}(j=1,2, \cdots, n)$ are periodic functions with the same period, and (3) the zero set of the function g defined by the sum of any $m(1 \leqq m<n)$ functions among $f_{j}(j=1,2, \cdots, n)$ contains an infinite sequence of disjoint closed intervals with the constant positive length l. For example, $f_{j}(t)$ are periodic C^{1}-functions with the period $2 n$ on $[0,+\infty)$ defined by $f_{j}(t)=1$ on $[2 j-2,2 j-1], f_{j}(t)=\psi(t-2 j+1)$ on $[2 j-1,2 j], f_{j}(t)=0$ on $[2 j$, $2 j+2 n-3]$ and $f_{j}(t)=1-\psi(t-2 j-2 n+3)$ on $[2 j+2 n-3,2 j+2 n-2]$, where ψ is C^{1}-mapping of $[0,1]$ into itself such that $\psi(0)=1, \psi(1)=0$ and $\psi^{\prime}(0)=\psi^{\prime}(1)=0$.

With the aid of these auxiliary functions $f_{j}(j=1,2, \cdots, n)$ we successively define $h_{j}(z)=f_{j}(-\log |z|)$ and $P_{j}(z)=P(z) h_{j}(z)(j=1,2, \cdots, n)$. These are certainly densities on Ω and P_{j} is rotation free if P is rotation free. The property (1) for auxiliary functions $f_{j}(j=1,2, \cdots, n)$ implies that $P=\sum_{j=1}^{n} P_{j}$. Therefore we only have to prove that $\left\{P_{j}\right\}_{j=1}^{n}$ satisfies the latter part of the condition [C].
3. Before proceeding to the proof of the latter part of the condition [C] we need to make some preparation. Let $\left\{A_{k}\right\}_{k=1}^{\infty}$ be a sequence of disjoint annuli $A_{k}=\left\{z \in \Omega ; a_{k} \leqq|z| \leqq b_{k}\right\}$, where $b_{k}>a_{k}>b_{k+1}$ and $\lim _{k \rightarrow \infty} a_{k}=0$. We say that $\left\{A_{k}\right\}_{k=1}^{\infty}$ satisfies the condition [A] if

$$
\inf _{k} \bmod A_{k}>0 \quad\left(\bmod A_{k}=\log \left(b_{k} / a_{k}\right)\right) .
$$

It is known (the theorem in 3.1 in [2]) that if the density $P(z)$ on Ω satisfies $P(z) \leqq c|z|^{-2}$ on $\cup_{k=1}^{\infty} A_{k}$ with the condition [A] where c is some positive constant, then the Picard principle is valid for P at $z=0$.
4. We are ready to prove the assertion in the last part of no. 2. Observe that by the properties (2) and (3) for $\left\{f_{j}\right\}(j=1,2, \cdots, n)$, the inverse image $g^{-1}(0)$ of g defined by the sum of m functions of $\left\{f_{j}\right\}_{j=1}^{n}$ as in the property (3)
contains an infinite sequence of disjoint closed intervals $\left[c_{k}, d_{k}\right](k=1,2, \cdots)$ with constant positive length l. By setting $a_{k}=\exp \left(-d_{k}\right), b_{k}=\exp \left(-c_{k}\right)$ and $A_{k}=\left\{z \in \Omega ; a_{k} \leqq|z| \leqq b_{k}\right\}$, we have that $Q^{-1}(0) \supset \cup_{k=1}^{\infty} A_{k}$ where $Q(z)$ is the density, corresponding to g, defined by the sum of m elements of $\left\{P_{j}\right\}_{j=1}^{n}(1 \leqq m<n)$. We deduce that $Q(z) \leqq|z|^{-2}$ (in reality $Q(z) \equiv 0$) on $\cup_{k=1}^{\infty} A_{k}$. Since $\bmod A_{k}=l$, $\left\{A_{k}\right\}_{k=1}^{\infty}$ satisfies the condition [A]. Thus we conclude that the Picard principle is valid for Q at $z=0$.

The proof of the theorem is herewith complete.

References

[1] M. Kawamura and M. Nakai, A test of Picard principle for rotation free densities, II, J. Math. Soc. Japan, 28 (1976), 323-342.
[2] M. Kawamura, On a conjecture of Nakai on Picard principle, J. Math. Soc. Japan, 31 (1979), 359-371.
[3] M. Nakai, Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507.
[4] M. Nakai, A remark on Picard principle, Proc. Japan Acad., 50 (1974), 806-808.
[5] M. Nakai, A test for Picard principle, Nagoya Math. J., 56 (1975), 105-119.
[6] M. Nakai, A test of Picard principle for rotation free densities, J. Math. Soc. Japan, 27 (1975), 412-431.
[7] M. Nakai, Picard principle and Riemann theorem, Tôhoku Math. J., 28 (1976), 277-292.
[8] M. Nakai, Picard principle for finite densities, Nagoya Math. J., 70 (1978), 7-24.

Michihiko Kawamura
Department of Mathematics
Faculty of Education
Gifu University
Nagara, Gifu 502
Japan

[^0]: *) The author is grateful to Professor Nakai for the valuable discussions with him.

