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\S 1. Introduction and statement of results.

Let $G$ be a compact Lie group and $h_{G}()$ be an equivariant multiplicative
cohomology theory. Let $M$ and $N$ be closed G-manifolds of class $C^{3}$ . Then
for a G-map $f:M\rightarrow N$, we defined an “equivariant Gysin homomorphism”

$f_{l}$ : $h_{G}(M)\rightarrow h_{G}(N)$

under certain conditions and obtained equivariant Riemann-Roch type theorems
in general [13], [14]. When $N$ is a point, $f!$ is called an “index homomorphism”
and is denoted by $Ind$ . On the other hand, we got a localization theorem.
Consequently by virtue of the functorial property of our equivariant Gysin
homomorphism, we have many equations between invariants of a G-manifold
and fixed point data.

In the present paper, we shall confine ourselves to two special cases. Let
$G\rightarrow EG\rightarrow BG$ be the universal principal G-bundle.

Case 1. $G=T^{n}$ (torus), $h_{G}(M)=H^{*}(EG\times M:GR)$ where $R$ is the real num-

ber field, manifolds are oriented G-manifolds of class $C^{3}$ .
Case 2. $G=(Z_{2})^{n},$ $h_{G}(M)=H^{*}(EG\times M;Z_{2})G$ manifolds are non oriented G-

manifolds of class $C^{3}$ ,

The greater part of the results in Case 1 will be those in [12]. The
results in Case 2 will be analogous to those in Case 1 and include the main
theorems of [17], [18].

First we shall show that our $f_{!}$ has the functorial property and is an
$h_{G}(*)$-module homomorphism where $*stands$ for a point. Now we consider
the set $S\subset h_{G}(*)$ of Euler classes of the vector bundles $ EG\times R^{m}\rightarrow BG\phi$ where

$G$ acts on $R^{m}$ by representations $\phi$ : $G\rightarrow 0(m)$ without trivial direct summand.
Then $S$ is a multiplicative set of $h_{G}(*)$ . It follows that we get a localization
$S^{-1}h_{G}(M)$ and an induced homomorphism
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$S^{-1}f_{!}$ : $S^{-1}h_{G}(M)\rightarrow S^{-1}h_{G}(N)$

for a G-map $f:M\rightarrow N$ (see Bourbaki [6] for notion and notation).

Let $F_{\mu}$ be a component of the fixed point set of a G-manifold $M$ and
$i_{\mu}$ : $F_{\mu}\rightarrow M$ be the inclusion. As in the case of the equivariant K-theory [2],

there exists the following isomorphism,

$\sum_{\mu}S^{-1}i_{\mu}^{*}:$ $S^{-1}h_{G}(M)\rightarrow\sum_{\mu}S^{-1}h_{G}(F_{\mu})$

where the summation is taken over all the components $F_{\mu}$ of the fixed point
set (Lemma 3.1). Denote by $N_{\mu}$ the normal bundle of $F_{\mu}$ in $M$. In Case 1, $N_{\mu}$

has a complex vector bundle structure such that $T^{n}$ acts on $N_{\mu}$ as complex
vector bundle automorphism. It follows that a Pber of $N_{\mu}$ has the orientation
induced by the complex structure. We then orient $F_{\mu}$ so that the orientation
of a fiber followed by that of $F_{\mu}$ yields the orientation of $N_{\mu}$ , where $N_{\mu}$ has
the orientation of a tubular neighborhood of $F_{\mu}$ in $M$.

Then we have
$i_{\mu}^{*}i_{\mu!}(x)=x_{G}(N_{\mu})\cdot x$ for $x\in h_{G}(F_{\mu})$

where $\chi_{G}(N_{\mu})$ denotes the Euler class of the bundle $EG\times N_{\mu}G\rightarrow BG\times F_{\mu}$ (Lemma

2.2). One verifies that $\chi_{G}(N_{\mu})$ is a unit in $S^{-1}h_{G}(F_{\mu})$ (Lemma 3.5). By the
functorial property of our $f!$ , we shall have the following commutative dia-
gram (Lemma 3.6):

$(*)$

It will be shown that the local index is given by the generalized slant
products $/[F_{\mu}]$ by the orientation classes $[F_{\mu}]$ chosen above. Thus we shall
obtain the following theorem on which our results in the present paper are
based.

THEOREM 1.1. For any $x\in S^{-1}h_{G}(M)$ , we have

$S^{-1}$ Ind $x=\sum_{\mu}\frac{S^{-1}i_{\mu}^{*}(x)}{\chi_{G}(N_{\mu})}/[F_{\mu}]$ .

In the following, we shall apply the equation to suitable elements $ x\in$

$S^{-1}h_{G}(M)$ and have many relations between global invariants and local in-
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variants.
We shall first deal with Case 1. Let $M$ be an oriented $T^{n}$-manifold of

class $C^{3}$ . Denote by $ET_{m}^{n}$ the product $S^{2m+1}\times\cdots\times S^{2m+1}$ of n-copies of the
$(2m+1)$-sphere. Then the torus $T^{n}$ acts on $ET_{m}^{n}$ naturally and the orbit space
$BT_{m}^{n}=ET_{m}^{n}/T^{n}$ is the product $CP^{m}\times\cdots\times CP^{m}$ of n-copies of the m-dimensional
complex projective space. Hereafter we abbreviate the coefficients of equi-
variant cohomology theories. Consider the fiber bundle

$M\rightarrow ET_{m_{T}}^{n}\times_{n}M\rightarrow^{P}BT_{m}^{n}$

and the usual Gysin map (the Poincar\’e dual of the homology homomorphism)

$\overline{P}_{!}$ : $H^{*}(ET_{m_{T}}^{n}\times_{n}M)\rightarrow H^{*}(BT_{m}^{n})$ .

Then we shall show that our Ind and the Gysin maP $\overline{P}_{!}$ are related by the
following commutative diagram (Lemma 4.1)

$(**)$ $H^{*}(ET_{m_{T}}^{n}\times_{n}M)H^{*}(BT_{m}^{n})H^{*}(ET^{n}.\times M)|_{\underline{\overline{P}_{!}}}^{\tau_{1}n}i^{*}|j_{4}^{*}\underline{Ind}H^{*}(BT^{n})$

where $j_{1}^{*}$ and $j_{4}^{*}$ are induced by the natural inclusions. Denote by $TM$ the
tangent bundle of $M$ and by $L()$ the Hirzebruch L-genus [11]. Then the
strictly multiplicative property of the L-genus (see Borel-Hirzebruch [5]) im-
plies that

$\overline{P}_{1}(L(ET_{m}^{n}\times TM))\in H^{0}(BT_{m}^{n})\tau n$

It follows from the diagram $(**)$ above that

Ind $L(ET^{n_{T}}\times_{n}TM)\in H^{0}(BT^{n})$ .

Thus we shall show (Theorem 4.3)

Ind $L(ET^{n_{T}}\times_{n}TM)=Index$ of $M$

where “Index of $M$ ’ denotes the Thom-Hirzebruch index of an oriented mani-
fold $M$.
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Remark that this information corresponds to that of the analytic index of
the Atiyah-Singer theory [4].

On the other hand, the local index can be expressed in terms of the L-
genus of the fixed point set, of the Chern class of the normal bundle of the
fixed point set and of the weights of the normal representations.

By combining the global index and the local index, we obtain the Atiyah-

Singer G-signature theorem [4] in $C^{3}$ category.
THEOREM 1.2. Let $M$ be an oriented $T^{n}$-manifold of class $C^{3}$ . Denote by

$F_{\mu}$ each component of the fixed point set and by $N_{\mu}$ the normal bundle of $F_{\mu}$ in
M. Let

$N_{\mu}=\sum_{\lambda}N_{\mu}(\lambda)$

be the decomposition of $N_{\mu}$ determined by the normal representation of $T^{n}$ where
$\lambda=\lambda_{1}t_{1}+\cdots+\lambda_{n}t_{n},$ $\lambda_{i}\in Z$ and $t_{i}$ correspond to the canonical generators of the
representation ring $R(T^{n})$ . We regard an irreducible representati0n $\lambda=\lambda_{1}t_{1}+\cdots$

$+\lambda_{n}t_{n}$ also as an element of $H^{2}(BT^{n})$ . Finally let $L()$ be the Hirzebruch L-
genus. Then we can orient each $F_{\mu}$ so that we have the equation:

Index of $M=\sum_{\mu}L(TF_{\mu})\prod_{\lambda,i}(\frac{e^{(\lambda+x_{\mu\lambda}^{i})}+e^{-(\lambda+x_{\mu\lambda}^{i})}}{e^{(\lambda+x_{\mu\lambda}^{i})}-e^{-(\lambda+x_{\mu\lambda)}^{i}}})/[F_{\mu}]$ .

He $re$ the summation is taken over all the compOnents of the fixed Point set and
the total Chern class of the bundle $N_{\mu}(\lambda)$ is written formally as $\prod_{i}(1+x_{\mu\lambda}^{i})$ and
$/[F_{\mu}]$ denotes the slant product.

COROLLARY 1.3 [10], [12], [15], [16]. We can orient each $F_{\mu}$ so that we get

Index of $M=\sum_{\mu}$ Index of $F_{\mu}$ .

Denote by dim $F$ the maximum of $\{\dim F_{\mu}\}$ . We can replace $\lambda$ by a
suitably chosen complex number in Theorem 1.2 and have

COROLLARY 1.4. Let $M$ be a semi-free $S^{1}$-manifold of class $C^{3}$ . If Index of
$M$ is non zero, then dim $F\geqq\dim M/2$ .

More generally we can apply our Theorem 1.1 as follows. Let $\xi\rightarrow M$ be a
$T^{n}$-vector bundle of dimension $2k$ (resp. $2k+1$ ). Let $f(x_{1}, \cdots , x_{k})$ be a sym-
metric formal power series of $(x_{1})^{2},$ $\cdots$ $(x_{k})^{2},$ $X_{1}\cdots x_{k}$ (resp. $(x_{1})^{2},$ $\cdots$ $(x_{k})^{2}$)

over $R$ . Set $\xi_{\mu}=\xi|F_{\mu}$ . Let
$\xi_{\mu}=\sum_{\rho}\xi_{\mu}(\rho)$

be the decomposition of $\xi_{\mu}$ determined by the representation of $T^{n}$ where $\rho$

run through the irreducible representations of $T^{n}$ . Denote by $\rho_{0}$ the trivial
real irreducible representation of $T^{n}$ which corresponds to the zero of $H^{2}(BT^{n})$ .
Then for $\rho\neq\rho_{0},$ $\xi_{\mu}(\rho)$ has a complex vector bundle structure. We express the
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total Pontrjagin class of $ ET^{n}\tau^{n}\times\xi$ (resp. $\xi_{\mu}(\rho_{0})$) formally as $\prod_{i}(1+(x_{i})^{2})$ (resp.

$\prod_{i}(1+(x_{\mu\rho_{0}}^{i})^{2}))$ . When dim $\xi=2k$ , we denote by $x_{1}\cdots x_{k}$ (resp. $x_{\mu\rho_{0}}^{1}\cdots x_{u\rho_{0}}^{a}$) the

Euler class of $ ET^{n_{T}}\times_{n}\xi$ (resp. $\xi_{\mu}(\rho_{0})$) where $a=\dim\xi_{\mu}(\rho_{0})/2$ . Similarly for

$\rho\neq\rho_{0}$ , we express the total Chern class of $\xi_{\mu}(\rho)$ formally as $\prod_{i}(1+x_{\mu\rho}^{i})$ . Then
we have

THEOREM 1.5.

Ind $f(x_{1}, \cdots x_{k})=\sum_{\mu}(\frac{f(\cdots.’\rho+x_{\mu\rho}^{i},\cdots)}{\prod_{\lambda i}(\lambda+x_{\mu\lambda}^{i})})/[F_{\mu}]$

where $f(\cdots , \rho+x_{\rho\mu}^{l}, )$ means that we replace $\{x_{i}|i=1, \cdots k\}$ by $\{\rho+x_{\mu\rho}^{i}|\rho, i\}$

in $f(x_{1}, \cdots , x_{k})$ and $x_{\mu\lambda}^{i}$ are those given in Theorem 1.2. The constant $tem$ of
Ind $f(x_{1}, \cdots, x_{k})$ is the evaluation $f(x_{1}^{\prime}, \cdots, x_{k}^{\prime})[M]$ where the (non equivariant)

total Pontrjagin class (resp. the Euler class) of $\xi\rightarrow M$ is written formally as
II $(1+(x_{i}^{\prime})^{2})$ (resp. $x_{1}^{\prime}\cdots x_{k}^{\prime}$ when dim $\xi=2k$ ).

Let $f(t)$ be a formal power series of $t^{2}$ over $R$ with leading term 1 and
$K()$ be the multiplicative sequence belonging to $f(t)[11]$ . Then as a special
case of Theorem 1.5 we have

THEOREM 1.6.

Ind $K(ET^{n_{T}}\times_{n}TM)=\sum_{\mu}(\frac{\prod_{i}f(z_{\mu}^{i})\prod_{\lambda_{l}}f(\lambda+x_{\mu\lambda}^{i})}{\prod_{\lambda,i}(\lambda’+x_{\mu\lambda}^{i})})/[F_{\mu}]$

where the total Pontrjagin class of $TF_{\mu}$ is written formally as $\prod_{i}(1+(z_{\mu}^{i})^{2})$ and
$x_{\mu\lambda}^{i}$ are those given in Theorem 1.2.

Let $\omega$ be a partition $(i_{1}, \cdots, i_{r})$ of $k$ and $s_{\omega}$ be the characteristic class
defined by using Pontrjagin classes [19]. Let $M$ be an oriented $T^{n}$-manifold
of class $C^{3}$ and of dimension $4k$ . Then we have

PROPOSITION 1.7.

$s_{\omega}[M]=\sum_{\mu\omega_{1}}\sum_{\omega_{2}=\omega}\frac{s_{\omega_{1}}(\prod_{i}(1+(z_{\mu}^{i})^{2})s_{\omega_{2}}(\prod_{\lambda,i}(1+(\lambda+x_{\mu\lambda}^{i})^{2}))}{\prod_{\lambda.i}(\lambda+x_{l^{\ell\lambda}}^{i})}/[F_{\mu}]$ .

REMARK 1.8. Quite similar formulae hold for Stiefel-Whitney classes in-
stead of Pontrjagin classes. Hence Proposition 1.7 gives an explicit way to
compute the bordism class $[M]$ of the oriented bordism group from the Pxed
point data.

In particular, we have
PROPOSITION 1.9. When an action is non-trivial,

$s_{k}[M]=\sum_{\mu}(\frac{\sum_{\lambda.i},(\lambda+x_{\mu\lambda}^{i})^{2k}}{\prod_{\lambda i}(\lambda+x_{\mu\lambda}^{i})})/[F_{\mu}]$ .
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REMARK 1.10. It is pointed out by D. Zagier that there is an interesting
relation between Proposition 1.9 and a residue formula when $M=CP^{m}$ and
$T^{n}=S^{1}$ .

Let $M$ be an oriented $T^{n}$-manifold of dimension $4k$ and $u$ be the number
of the subgroups $H$ of $T^{n}$ satisfying:

(1) $T^{n}/H\cong S^{1}$

(2) $H$ is an isotropy group at some point of $M$.

Let $k=(2u+1)a+b,$ $0\leqq b\leqq 2u$ . When $0\leqq b\leqq u$ , we set $v=4a$ . When $u<b\leqq 2u$ ,

we set $v=4a+2$ .
PROPOSITION 1.11. If $s_{k}[M]\neq 0$ , then dim $F\geqq v$ .
PROPOSITION 1.12. Let $M$ be an oriented semi-free $S^{1}$-manifold of class $C^{3}$ .

SuppOse that $M$ satisfies one of the following conditions:

(a) dim $M$ : odd, dim $F<(2/5)$ dim $M$,

(b) dim $M$ : even, dim $F<(1/4)$ dim $M$.
Then $M$ bounds as $S^{1}$-manifold.
PROPOSITION 1.13. Let $M$ be an oriented $T^{n}$-manifold of class $C^{3}$ . Then

$\chi(M)=\sum_{\mu}\chi(F_{\mu})$ where $\chi()$ denotes the ordinary Euler number.

Next we deal with Case 2. Except for Theorem 1.2, quite analogous
theorems hold in this case too. Hence we only describe some of them in the
following.

Let $M$ be an unoriented $(Z_{2})^{n}$-manifold of class $C^{3}$ . Denote by $F_{\mu}$ each
component of the fixed point set of $M$ and by $N_{\mu}$ the normal bundle of $F_{\mu}$ in
$M$. Let $\xi\rightarrow M$ be a $(Z_{2})^{n}$-vector bundle of dimension $k$ . Set $\xi_{\mu}=\xi|F_{\mu}$ . Let

$\xi_{\mu}=\sum_{\rho}\xi_{\mu}(\rho)$
(resp. $N_{\mu}=\sum_{\lambda}N_{\mu}(\lambda)$ )

be the decomposition of $\xi_{\mu}$ (resp. $N_{\mu}$) determined by the representation of
$(Z_{2})^{n}$ . We express the total Stiefel-Whitney classes of

$E(Z_{2})^{n}\times\xi(Z_{2})n$
$\xi_{\mu}(\rho)$ and $N_{\mu}(\lambda)$

formally as
$\prod_{i}(1+x_{i})$ , $\prod_{i}(1+x_{\mu\rho}^{i})$ and $\prod_{i}(1+x_{\mu\lambda}^{i})$

respectively. Let $f(x_{1}, \cdots , x_{k})$ be a symmetric formal power series over $Z_{2}$ .
Regarding irreducible representations $\rho$ and $\lambda$ as elements of $H^{1}(B(Z_{2})^{n} ; Z_{2})$ ,

we have the main theorem of [18].

THEOREM 1.14.

Ind $f(x_{1}, \cdots , x_{k})=\sum_{\mu}(\frac{f(\cdots,\rho+x_{\mu\rho}^{i},\cdots)}{\prod_{\lambda.i}(\lambda+x_{\mu\lambda}^{i})})/[F_{\mu}]$ .
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REMARK 1.15. The constant term of the left hand side is $f(x_{1}^{\prime}, \cdots , x_{k}^{\prime})[M]$

where the (non equivariant) total Stiefel-Whitney class of $\xi\rightarrow M$ is written
formally as fi $(1+x_{l}^{\prime})$ .

Let $f(x_{1}, \cdots, x_{k})$ be a symmetric polynomial over $Z_{2}$ of degree at most
dim $M$.

THEOREM 1.16. If there exists a homomorPhism $A:H^{1}(B(Z_{2})^{n} ; Z_{2})\rightarrow Z_{2}$ such
that $A(\lambda)=1$ for all $\mu,$

$\lambda$ with $N_{\mu}(\lambda)\neq 0$, then

$f(x_{1}^{\prime}, \cdots x_{k}^{\prime})[M]=\sum_{\mu}\frac{f(\cdots,A(\rho)+x_{\mu\rho}^{i},\cdots)}{\prod_{\lambda,i}(1+x_{\mu\lambda}^{i})}[F_{\mu}]$ .

In particular, we have the main theorem of [17].

COROLLARY 1.17. Let $M$ be a $Z_{2}$-manifold of dimension $k$ and $f(x_{1}, \cdots x_{k})$

be a symmetric Polynomial over $Z_{2}$ of degree at most $k$ . Then

$f(\chi_{1}^{\prime}\ldots x_{k}^{\prime})[M]=\sum_{\mu}\frac{f(1+y_{\mu u}^{1}z_{l}^{1},\cdots)}{\prod_{i}(1+y_{\mu}^{i})}[F_{\mu}]$

where the total Stiefel-Whitney classes of $TM,$ $N_{\mu}$ and $TF_{\mu}$ are written formally
$as$

$\prod_{i}(1+x_{i}^{\prime})$ , $\prod_{i}(1+y_{\mu}^{i})$ and $\prod_{i}(1+z_{\mu}^{i})$

respectively.
The present paper is organized as follows. In \S 2 we define our equivari-

ant Gysin homomorphism and investigate fundamental properties of it. Theo-
rem 1.1 is proved in \S 3. In \S 4 we shall analyze the global index and show
that

Ind $L(ET^{n_{T}}\times_{n}TM)=Index$ of $M$ .

By combining the above, we shall give proofs of Theorem 1.2 and of Corol-
laries 1.3 and 1.4 in \S 5. Propositions 1.11 and 1.12 are proved in \S 6. Since
the proofs of the rest of the results are analogous, they are omitted.

The author wishes to thank Professor A. Hattori for his kind and helpful
suggestions. Thanks are also due to Professors C. Kosniowski and R. E. Stong
for sending their preprints to the author.

\S 2. Equivariant Gysin homomorphism.

Let $G,$ $h_{G}(),$ $M,$ $N$ be those of Case 1 or of Case 2 in \S 1. Then for a G-
map $f:M\rightarrow N$, we define our equivariant Gysin homomorphism

$f_{!}$ : $h_{G}(M)\rightarrow h_{G}(N)$
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as follows. Since $f$ is G-homotopic to a differentiable G-map $f^{\prime}$ of class $C^{3}$ ,

we first define our Gysin homomorphism $f_{!}^{\prime}$ and then define $f_{!}$ to be $f_{!}^{\prime}$ . The
forthcoming Lemma 2.2 will assure that $f_{!}$ is independent of the choice of

$f^{\prime}$ . Therefore we may assume that $f$ itself is differentiable of class $C^{3}$ . As
is well-known, there is a G-embedding $e$ of $M$ in some G-vector space $V$. For
the proof, see Palais [20]. Choose a G-invariant Riemannian metric on $N\times V$

and let $\nu$ be an invariant open tubular neighborhood of $(f\times e)(M)$ in $N\times V$ .
Here we need the assumption $C^{3}$ . Then $\nu$ may be identified with the normal
G-vector bundle of $(f\times e)(M)$ in $N\times V$. For a G-vector $bu\eta dle\xi$ , we denote
by $D(\xi)$ (resp. $S(\xi)$) the disk bundle (resp. sphere bundle) associated with $\xi$ .
Denote by $D(V)$ (resp. $S(V)$) the unit disk (resp. unit sphere) in $V$ . Here we
may assume without loss of generality that $D(\nu)$ is in $N\times IntD(V)$ . Then
the homomorphism $f_{!}$ is defined by the composition of the following three
homomorphisms which we explain in a moment:

$\phi_{1}$ : $h_{G}(M)\rightarrow\tilde{h}_{G}(D(\nu)/S(\nu))$

$\phi_{2}$ : $\tilde{h}_{G}(D(\nu)/S(\nu))\rightarrow\tilde{h}_{G}((N\times D(V))/(N\times S(V)))$

$\phi_{3}$ : $\tilde{h}_{G}((N\times D(V))/(N\times S(V)))\rightarrow h_{G}(N)$ .
Explanation: Here $\tilde{h}_{G}()$ denotes the reduced cohomology ring as usual. Let
$t(M)\in\tilde{h}_{G}(D(TM)/S(TM))$ (resp. $t(N)\in\tilde{h}_{G}(D(TN)/S(TN))$) be the orientation
class of the manifold $M$ (resp. $N$) where $TM$ and $TN$ denote the tangent G-
vector bundles. Fix an orientation class $t(V)\in\tilde{h}_{G}(D(TV)/S(TV))$ of $V$. It is
easy to see that we can choose a canonical orientation class $t(\nu)\in\tilde{h}_{G}(D(\nu)/S(\nu))$

such that
$t(M)\times t(\nu)=(f\times e)*(t(N)\times t(V))$ .

Then the homomorphism $\phi_{1}$ is defined to be the Thom isomorphism by mak-
ing use of the Thom class $t(\nu)$ . The homomorphism $\phi_{2}$ is the induced homo-
morphism by the natural collapsing map

$(N\times D(V))/(N\times S(V))\rightarrow D(\nu)/S(\nu)$ .
The homomorphism $\phi_{3}$ is again defined by the Thom isomorphism using $t(V)$

in the manner of the definition of $\phi_{1}$ .
DEFINITION 2.1. When $N$ is a point $*,$ $f_{1}$ is called an index homomorphism

and denoted by
$Ind:h_{G}(M)\rightarrow h_{G}(*)$ .

LEMMA 2.2. The equivariant Gysin homomorphism is independent of all
choices made and has the following ProPerties:

i) $f_{I}$ depends only on the $G$-homotopy class of $f$
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ii) $f_{I}$ is an $h_{G}(*)$-module homomorphism
iii) $(fg)_{f}=f_{\downarrow}\cdot g_{I}$

iv) $f_{\downarrow}(x\cdot f^{*}(y))=f_{1}(x)\cdot y$ for $x\in h_{G}(M),$ $y\in h_{G}(N)$

v) if $f$ is a G-embedding of class $C^{3}$ with a normal bundle $\nu$ , then $f^{*}f_{1}(x)$

$=\chi_{G}(\nu)\cdot x$ for $x\in h_{G}(M)$ where $\chi_{G}(\nu)$ denotes the equivariant Euler class of $\nu$ .
PROOF. Easy and omitted.

\S 3. Localization.

We consider the subset $S$ of $h_{G}(*)$ consisting of Euler classes of G-vector
bundles $ EG\times R^{m}\rightarrow BG\Phi$ where $G$ acts on $R^{m}$ by representations $\phi:G\rightarrow 0(m)$

without trivial direct summand. Then $S$ is a multiplicative set of $h_{G}(*)$ and
we get a localization $S^{-1}h_{G}(M)$ .

For a G-manifold $M$, we denote by $F_{\mu}$ each component of the fixed point
set of $M$ and by $i_{\mu}$ : $F_{\mu}\rightarrow M$ the inclusion map.

LEMMA 3.1 [9]. The following homomorphism

$\sum_{\mu}S^{-1}i_{\alpha}^{*}$ : $S^{-1}h_{G}(M)\rightarrow\sum_{\mu}S^{-1}h_{G}(F_{\mu})$

is an isomorphism where the summation is taken over all the compOnents $F_{\mu}$ of
the fixed point set.

In the following, we consider Case 1 first. Let $\phi:T^{n}\rightarrow O(m)$ be a repre-
sentation without trivial direct summand. Then by representation theory
(see Adams [1]), $m$ is even, say $2k$ , and $\phi$ comes from a unitary representation

$\psi:T^{n}\rightarrow U(k)$ .

Let $T^{k}$ be the maximal torus of $U(k)$ consisting of diagonal matrices. In
view of the maximal tori theorem of E. Cartan (see Weil [22]), we may as-
sume that $\psi(T^{n})\subset T^{k}$ . Then $\psi$ induces the homomorphism $\psi*$ of $H^{1}(T^{k})$ in
$H^{1}(\dot{T}^{n})$ . Let $\{t_{i}|i=1,2, \cdots, n\}$ (resp. $\{t_{i}^{\prime}|i=1,2,$

$\cdots,$
$k\}$ ) be the canonical base

of $H^{1}(T^{n})$ (resp. $H^{1}(T^{k})$). The elements $\omega_{i}=\psi^{*}(t_{i}^{\prime})$ will be called the weights
of $\psi$ and can be written as

$\omega_{i}=\sum_{j\Rightarrow 1}^{n}a_{ij}t_{j}$ , $a_{ij}\in Z$ .
According to Borel-Hirzebruch [5], the total Chern class $ c(ET^{n}\times C^{k})\psi$ of the
complex vector bundle

$ET^{n}\times\psi C^{k}\rightarrow BT^{n}$

is given by

$c(ET^{n}\times\psi C^{k})=\prod_{i=1}^{k}(1+\omega_{i})=\prod_{i=1}^{k}(1+\sum_{j=1}^{n}a_{ij}t_{j})$ .
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It follows that the Euler class $\chi(ET^{n}\times\psi C^{k})$ is given by

$\chi(ET^{n}\times\psi C^{k})=\prod_{i=1}^{k}(\sum_{j=1}^{n}a_{ij}t_{j})$ .

Since $\psi$ has no trivial direct summand, $\omega_{i}\neq 0$ for all $i$, that is,

II $(\sum a_{ij^{2}})\neq 0n$

$i=1j=1$

Conversely, for a $(k\times n)$-matrix $(a_{ij})$ satisfying

$\prod_{i=1}^{k}(\sum_{j=1}^{n}a_{ij^{2}})\neq 0$ , $a_{ij}\in Z$ ,

we can construct a homomorphism

$\psi:T^{n}\rightarrow T^{k}\subset U(k)$ ,

such that

$\psi^{*}(t_{i}^{\prime})=\epsilon_{=}^{n}:_{1}a_{ij}t_{j}$ for all $i$ .

The representation $\psi$ has no trivial direct summand. Therefore we have shown
the following

LEMMA 3.2. The set $S$ consists of those elements

$\Pi(\sum^{k}a_{ij}t_{j})n$

$i=1j=1$

where $a_{ij}$ satisfy I $(\sum^{n}a_{ij^{2}})\neq 0,$
$a_{ij}\in Z$ and $k$ may vary.

$i=1j=1$

Since $S$ does not contain the zero element by Lemma 3.2 and since $H^{*}(BT^{n})$

is an integral domain, the localization map

$H^{*}(BT^{n})\rightarrow S^{-1}H^{*}(BT^{n})$

is injective.
Next we study the fixed point set and its normal bundle. As introduced

in \S 1, we denote by $F_{\mu}$ a component of the fixed point set and by $N_{\mu}$ its
normal bundle. As is well-known the normal bundle $N_{\mu}$ has a complex vector
bundle structure such that the group $T^{n}$ acts on $N_{\mu}$ as complex vector bundle
automorphism. It follows from [3] that $N_{\mu}$ has the following decomposition

$N_{\mu}=\sum_{\lambda}N_{\mu}(\lambda)$ , $N_{\mu}(\lambda)=E_{\mu\lambda}\otimes V_{\lambda}$

where $\lambda$ run through the complex irreducible representations, $V_{\lambda}$ denote their
representation spaces and $E_{\mu\lambda}$ denote complex vector bundles. We now show
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the following
LEMMA 3.3.

$ ET^{n_{T}}\times_{n}N_{\mu}=\sum_{\lambda}(ET^{n_{T}}\times_{n}V_{\lambda})\otimes E_{\mu\lambda}\wedge$

where $\otimes\wedge$ denotes the extemal tensor product and $ET^{n}\times V_{\lambda}\tau n$ denotes the $\lambda$-2xten-
sion of the principal $T^{n}$-bundle $ET^{n}\rightarrow BT^{n}$ .

PROOF. Obviously we have

$ET^{n_{T}}\times_{n}N_{\mu}=\sum_{\lambda}(ET^{n}\times N_{\mu}(\lambda))\tau^{n}$

Hence it will suffice to show that

$ ET^{n_{T}}\times_{n}(E_{\mu\lambda}\otimes V_{\lambda})=(ET^{n_{T}}\times_{n}V_{\lambda})\otimes E_{\mu\lambda}\wedge$ .

But this is easily seen by the following correspondence

$ x\times(y\otimes z)\rightarrow(x\times z)\otimes y\wedge$

for $x\in ET^{n},$ $y\in E_{\mu\lambda},$ $z\in V_{\lambda}$ .
For a complex vector bundle $\xi$ , we denote by $c(\xi)$ the total Chern class

of $\xi$ .
LEMMA 3.4. The total Chern class and the Euler class of the bundle

$ET^{n_{T}}\times_{n}N_{\mu}\rightarrow BT^{n}\times F_{\mu}$ are given by

$c(ET^{n_{T}}\times_{n}N_{\mu})=\prod_{\lambda.9}(1+\lambda_{1}t_{1}+\cdots+\lambda_{n}t_{n}+x_{\mu\lambda}^{l})$

$\chi_{T^{n}}(N_{\mu})=\chi(ET^{n_{T}}\times_{n}N_{\mu})=\prod_{\lambda.i}(\lambda_{1}t_{1}+\cdots+\lambda_{n}t_{n}+x_{\mu\lambda}^{i})$ .

Here we identified $\lambda$ with the element $\lambda_{1}t_{1}+\cdots+\lambda_{n}t_{n}$ of $H^{2}(BT^{n})$ by the follow-
ing translations

$\left\{\begin{array}{l}icomplexrreducible\\representations\end{array}\right\}-H^{1}(T^{n})H^{2}(BT^{n})\underline{transgression}$

and the total Chem class of the complex vector bundle $E_{\mu\lambda}$ is $w$ ritten formally
as $\prod_{i}(1+x_{\mu\lambda}^{i})$ .

PROOF. Lemma 3.4 will follow from Lemma 3.3 by the arguments of
Borel-Hirzebruch [5].

We are now ready to prove that the Euler class $\chi_{\tau n}(N_{\mu})$ is a unit in
$S^{-1}H^{*}(BT^{n}\times F_{\mu})$ . It follows from Lemma 3.4 that $\chi_{\tau n}(N_{\mu})$ has the form
$\prod_{\lambda.i}(\lambda+x_{\mu\lambda}^{i})$ . Since the representations $\lambda$ are non trivial, $\lambda$ are in $\pi^{*}(S)$ where

$\pi:BT^{n}\times F_{\mu}\rightarrow BT^{n}$ is the projection. Consider the formal equation
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$1=\prod_{\lambda.i}(1+\frac{x_{\mu\lambda}^{i}}{\lambda})\cdot\{\sum_{j=0}^{\infty}(\frac{-x_{\mu\lambda}^{i}}{\lambda})^{j}\}$ .

Since $F_{\mu}$ is of finite dimension, we have the equation

$1=f_{i}^{I}(1+\frac{x_{\mu\lambda}^{i}}{\lambda})\cdot\{\sum_{j=0}^{m}(\frac{-x_{\mu\lambda}^{i}}{\lambda})^{j}\}$

in $S^{-1}H^{*}(BT^{n}\times F_{\mu})$ where $m=[\dim M/2]$ . It follows that

$1=\chi_{\tau n}(N_{\mu})\prod_{\lambda}\frac{A(\mu,\lambda)}{\lambda^{n(\mu.\lambda)}}$

in $S^{-1}H^{*}(BT^{n}\times F_{\mu})$ where $A(\mu, \lambda)$ is given by

$A(\mu, \lambda)=\prod_{i}$ $\{ \sum_{j=0}^{m}\lambda^{m-j}(-X_{\mu\lambda}^{i})^{j}\}\in H^{*}(BT^{n}\times F_{\mu})$

and $n(\mu, \lambda)=(m+1)\dim_{C}E_{\mu\lambda}$ .
Thus we have shown the following
LEMMA3.5. Each equivariant Euler class $\chi_{T^{n}}(N_{\mu})isaunitinS^{-1}H^{*}(BT^{n}\times F_{\mu})$

for any compOnent $F_{\mu}$ .
We are now ready to prove
LEMMA 3.6. The following diagram

commutes.
PROOF. It follows from (V) in Lemma 2.2 that for an element $x=\sum_{\mu}x_{\mu}$ of

$\sum_{\mu}H^{*}(BT^{n}\times F_{\mu})$ , we have

$(\sum_{\mu}i_{\mu}^{*})(\sum_{\mu}i_{\mu I})(\sum_{\mu}x_{\mu})=\sum_{\mu}\chi_{T^{n}}(N_{\mu})\cdot x_{\mu}$ .

Since $\chi_{T^{n}}(N_{\mu})$ is a unit in $S^{-1}H^{*}(BT^{n}\times F_{\mu})$ and since $\sum_{\mu}S^{-1}i_{\mu}^{*}$ is an isomorphism

of the localized rings by Lemma 3.1,
$\sum_{\mu}S^{-1}i_{\mu!}$ is also an isomorphism and its

inverse is given by
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$(\sum_{\mu}S^{-1}i_{\mu 1})^{-1}=\sum_{\mu}\frac{S^{-1}i_{\mu}^{*}}{\chi_{\tau n}(N_{\mu})}$ .

Hence Lemma 3.6 follows from the functorial property (iii) of Lemma 2.2.
LEMMA 3.7. Let $F$ be an oriented manifold on which $T^{n}$ acts trivially. Then

our localized index homomorphism

$S^{\rightarrow 1}Ind:S^{-1}H^{*}(BT^{n}\times F)\rightarrow S^{-1}H^{*}(BT^{n})$

is given by the generalized slant product $/[F]$ where $[F]$ denotes the orientation
class of $F$.

PROOF. Let $F\subset R^{m}$ be a $T^{n}$-embedding where $T^{n}$ acts on $R^{m}$ trivially.
Denote by $t\times x(\in H^{*}(BT^{n}\times F))$ the cross product of $t(\in H^{*}(BT^{n}))$ and $x$

$(\in H^{*}(F))$ . Let $f:F\rightarrow*be$ the constant map. In view of Lemma 2.2, we may
use $R^{m}$ as $V$ in \S 2 and have easily that

Ind $(t\times x)=\overline{f}_{1}(x)t$

where $\overline{f}_{!}$ denotes the classical Gysin map

$\overline{f}_{1}$ : $H^{*}(F)\rightarrow H^{*}(*)$ .

It follows by definition that

$\overline{f}_{I}(x)t=t\times x/[F]$ .
Since any element of $H^{*}(BT^{n}\times F)$ can be written as the sum of elements of
the form $t\times x$ , Ind is given by the slant product $/[F]$ . Since the slant pro-
duct $/[F]$ is an $H^{*}(BT^{n})$-module homomorphism, it induces naturally the lo-
calized homomorphism

$S^{-1}H^{*}(BT^{n}\times F)\rightarrow S^{-1}H^{*}(BT^{n})$

which is denoted also by $/[F]$ . Hence $S^{-1}$ Ind is given by this generalized
slant product $/[F]$ .

PROOF OF THEOREM 1.1. Combining Lemmas 3.6 and 3.7, we have Theorem
1.1 in Case 1. The proof of Theorem 1.1 in Case 2 is quite similar.

\S 4. The global index.

In this section, we are concerned with toral actions on oriented manifolds
and analyze the global index, which will give an information corresponding
to that of the analytic index of the Atiyah-Singer G-signature theorem.

First, we show the following
LEMMA 4.1. Let $M$ be an oriented $T^{n}$-manifold, then the diagram
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$H^{*}(ET^{n}\times M)H^{*}(BT_{m}^{n})H^{*}(ET^{n}\times M)H^{*}(BT^{n})1_{m_{T^{n}}}^{j_{1}^{*}}\tau^{n}1^{j_{4}^{*}}\underline{\underline{Ind}\overline{P}_{!}}$

commutes, where $j_{1}^{*}$ and $j_{4}^{*}$ are induced by the natu ral inclusions and $\overline{P}_{1}$ is the
classical Gysin map. Here $BT_{m}^{n}(=CP^{m}\times\cdots\times CP^{m})$ has a canonical orientation
class and the orientation class of $ET_{m}^{n}T^{n}\times M$ is the induced one from $BT_{m}^{n}$ and $M$.

PROOF. First we consider four homomorphisms:

$\phi_{1}$ $\phi_{2}^{\prime}$

$ H^{*}(ET^{n_{T}}\times_{n}M)\rightarrow H^{*}(ET^{n_{T}}\times_{n}D(\nu), ET^{n_{T}}\times_{n}S(\nu))\rightarrow$

$\phi_{\Delta}^{\prime\prime}$

$H^{*}(ET^{n_{T}}\times_{n}D(V), ET^{n_{T}}\times_{n}$ ($ D(V)-$ Int $D(\nu)$)) $\rightarrow$

$H^{*}(ET^{n_{T}}\times_{n}D(V), ET^{n_{T}}\times_{n}S(V))\rightarrow H^{*}(BT^{n})\phi_{3}$

where $\phi_{1}$ and $\phi_{3}$ are those in \S 2 and $\phi_{2}^{\prime}$ is an excision isomorphism and $\phi_{2}^{\prime\prime}$ is
induced by the natural inclusion. The composition $\phi_{2}^{\prime\prime}\circ\phi_{2}^{\prime}$ is nothing but $\phi_{2}$

in \S 2.
Similarly we dePne $\psi_{1},$ $\psi_{2}^{\prime},$ $\psi_{2}^{\prime\prime},$ $\psi_{3}$ using $ET_{m}^{n}$ instead of $ET^{n}$ . Let

$j_{2}$ : $ET_{m_{T}}^{n}\times_{n}D(\nu)\rightarrow ET^{n_{T}}\times_{n}D(\nu)$

and
$j_{3}$ : $ET_{m_{T}}^{n}\times_{n}D(V)\rightarrow ET^{n_{T}}\times_{n}D(V)$

be the natural inclusions. Then we have

$j_{i+1}^{*}\circ\phi_{i}=\psi_{i}\circ j_{i}^{*}$ for $i=1,3$ ,

and
$j_{3}^{*}\circ\phi_{2}^{\prime}=\psi_{2}^{\prime}\circ j_{2}^{*}$ , $j_{3}^{*}\circ\phi_{2}^{\prime\prime}=\psi_{2}^{\prime\prime}\circ j_{3}^{*}$ .

If we denote by $Ind_{m}$ the composition $\psi_{3}\circ\psi_{2}^{\prime\prime}\circ\psi_{2}^{\prime}\circ\psi_{1}$ , then we have

$Ind_{m}\circ j_{1}^{*}=j_{4}^{*}\circ Ind$ .
Next we show that $Ind_{m}$ is equal to the Gysin map $\overline{P}_{\iota}$ . For an oriented

manifold $X$ (with or without boundary), we denote by [X] the orientation



Equivariant characteristic numbers 315

class. Let $p_{1}$ : $ET_{m_{T^{n}T^{n}}}^{n}\times D(\nu)\rightarrow ET_{m}^{n}\times M$ be the projection. Then we show that

the following diagram is commutative

(1) $H^{*}(ET_{m_{T^{n}}}^{n}\times 1M)H^{*}(ET_{m}^{n}\times_{n}D(\nu),E\mathcal{T}_{?il}^{\prime\prime}\times S(\nu))H_{*}(ET_{m_{T}}^{n}\times_{n}M)H_{*}(ET_{m_{T^{\times_{n}}}}^{n}D(\nu))\iota\cap[ET_{t1}^{l}\underline{\tau^{n}\times M]p_{1*}}|\cap[ET_{m_{T}}^{n}\times_{n}D(\nu)]\underline{\psi_{1}}\tau\tau^{n}$

where $\cap denote$ the cap products.
Denote by $\tau$ the Thom class of the Thom isomorphism $\psi_{1}$ . Notice that

$p_{1*}(\tau\cap[ET_{m}^{n}\times D(\nu)])=[ET_{m}^{n}\times M]T^{n}T^{n}$

by Thom [21]. It follows tbat, for any $x\in H^{*}(ET_{m_{T}}^{n}\times_{n}M)$ , we have

$p_{1*}\{(p_{1}^{*}x\cup\tau)\cap[ET_{m_{T}}^{n}\times_{n}D(\nu)]\}=p_{1*}\{p_{1}^{*}x\cap(\tau\cap[ET_{m_{T}}^{n}\times_{n}D(\nu)])\}$

$=x\cap p_{1*}(T\cap[ET_{m_{T}}^{n}\times_{n}D(\nu)])$

$=x\cap[ET_{m}^{n}\times_{n}M]r$

that is, the diagram (1) commutes where $U$ denotes the cup product. Next
we show that the following diagram

(2)
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commutes, where $e_{*}$ is induced by the natural inclusion and $\overline{k}_{*}$ is induced by
the natural inclusion:

$\overline{k}:(ET_{m_{T}}^{n}\times_{n}D(V), ET_{m_{T}}^{n}\times_{n}S(V))\rightarrow$

$(ET_{m_{T}}^{n}\times_{n}D(V), ET_{m_{T}}^{n}\times_{n}$ ($ D(V)$–Int $D(\nu)$)).

Let
$\overline{e}:(ET_{m_{T}}^{n}\times_{n}D(\nu), ET_{m_{T}}^{n}\times_{n}S(\nu))\rightarrow$

$(ET_{m_{T}}^{n}\times_{n}D(V), ET_{m_{T}}^{n}\times_{n}$ ($ D(V)$–Int $D(\nu)$))

be the natural inclusion, then we have

$\overline{k}_{*}[ET_{m_{T}}^{n}\times_{n}D(V)]=\overline{e}_{*}[ET_{m_{T}}^{n}\times_{n}D(\nu)]$ .
Hence for any $x\in H^{*}(ET_{m_{T}}^{n}\times_{n}D(V), ET_{m_{T}}^{n}\times_{n}(D(V)-IntD(\nu)))$ , we have

$e_{*}(\psi_{2^{-1}}^{\prime}X\cap[ET_{m_{T^{n}T^{n}}}^{n}\times D(\nu)])=e_{*}(\overline{e}^{*}x\cap[ET_{m}^{n}\times D(\nu)])$

$=x\cap\overline{e}_{*}[ET_{m_{T}}^{n}\times_{n}D(\nu)]$

$=x\cap\overline{k}_{*}[ET_{m_{T}}^{n}\times_{n}D(V)]$ ,

that is, the diagram (2) commutes.
Similar arguments prove that the following two diagrams commute:

(3)
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(4) $H^{*}(ET_{m_{T}}^{n}\times_{n}D(V),ET_{m_{T}}^{n}\times_{n}S(V))H^{*}(BT_{m}^{n})H_{*}(ET_{m_{T^{\times_{n}}}}^{n}D(V))H_{*}(BT_{m}^{n})\downarrow_{\underline{p_{2*}}}^{\cap[ET_{m_{T}}^{n}\times_{n}D(V)]}I^{\cap[BT_{m}^{n}]}\underline{\psi_{3}}$

where $p_{2}$ is the projection.
Let $i:ET_{m_{T}}^{n}\times_{n}M\rightarrow ET_{m_{T}}^{n}\times_{n}D(\nu)$ be the zero section map. Then $(p_{1*})^{-1}$ is

given by $i_{*}$ and the composition $p_{2}\circ e\circ j$ is nothing but the projection

$P:ET_{m_{T}}^{n}\times_{n}M\rightarrow BT_{m}^{n}$ .

It follows that the composition

$(\cap[BT_{m}^{n}])^{-1}\circ p_{2*}\circ e_{*}\circ i_{*}(\cap[ET_{m_{T}}^{n}\times_{n}M])$

is the Gysin homomorphism $\overline{P}_{!}$ .
Putting the commutative diagrams (1) $-(4)$ together, we obtain the required

equation
$\overline{P}_{!}=\psi_{3}\circ\psi_{2}^{\prime\prime}\circ\psi_{2}^{\prime}\circ\psi_{1}$ .

Thus we have shown that

$ j_{4}^{*}\circ$ Ind $=Ind_{m}\circ j_{1}^{*}=\overline{P}_{|}\circ j_{1}^{*}$ .

This makes the proof of Lemma 4.1 complete.
LEMMA 4.2. Ind $L(ET^{n_{T}}\times_{n}TM)$ is in $H^{0}(BT^{n})$ .

PROOF. According to Chern [7], the Gysin homomorphism $\overline{P}_{\iota}$ is equivalent
to the integration over the fiber (see Borel-Hirzebruch [5]) of the fiber bundle

$P:ET_{m_{T}}^{n}\times_{n}M\rightarrow BT_{m}^{n}$ .

It is easy to see that the bundle

$ET_{m_{T}}^{n}\times_{n}TM\rightarrow ET_{m_{T}}^{n}\times_{n}M$

is equivalent to the bundle along the fiber of the fiber bundle

$P:ET_{m_{T}}^{n}\times_{n}M\rightarrow BT_{m}^{n}$ .

It follows from Borel-Hirzebruch [5] that the L-genus is strictly multiplica-
tive for the fiber bundle above, that is,
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$\overline{P}_{t}L(ET_{m_{T}}^{n}\times_{n}TM)\in H^{0}(BT_{n}^{n},)$ .

Obviously there is a natural bundle map:

$ET_{m}^{n}\times TM$ $ET^{n}\times TM$

$ET_{m_{T}}^{n}\times MET^{n_{T}}\times\tau_{I_{n}^{nT}\underline{j_{1}}1_{n}^{n}}M$

.

Hence, by Lemma 4.1, we have

$j_{4}^{*}IndL(ET^{n_{T}}\times_{n}TM)=\overline{P}_{\downarrow}j_{1}^{*}L(ET^{n_{T}}\times_{n}TM)$

$=\overline{P}_{!}L(ET_{m_{T}}^{n}\times_{n}TM)$

which belongs to $H^{0}(BT_{m}^{n})$ . Since $m$ is arbitrary, we may conclude that

Ind $L(ET^{n_{T}}\times_{n}TM)\in H^{0}(BT^{n})$ .

This completes the proof of Lemma 4.2.
THEOREM 4.3.

Ind $L(ET^{n_{T}}\times_{n}TM)=Index$ of $M$ .

PROOF. Taking $0$ as $m$ in Lemma 4.1, we have the following commutative
diagram

$H^{*}(ET^{n_{T}}x_{n}M)H^{*}(BT^{n})\underline{Ind}$

$H^{*}(ET_{0}^{n}\times\downarrow j_{\iota_{T^{n}}}^{*}M)H^{*}(BT_{0}^{n})\underline{\overline{P}_{!}}\downarrow j_{4}^{*}$

.

Notice that $ET_{0}^{n}\tau^{n}\times M=M,$ $BT_{0}^{n}=*where*denotes$ a point. Hence the Gysin
homomorphism

$\overline{P}_{!}$ : $H^{\dim M}(ET_{0_{T}}^{n}\times_{n}M)=Z\rightarrow H^{0}(*)=Z$

is the identity map and is trivial for other dimensions. Obviously the bundle

$ET_{0}^{n_{T}}\times_{n}TM\rightarrow ET_{0}^{n_{T}}\times_{n}M$
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is equivalent to the tangent bundle $TM\rightarrow M$, Hence we have:

$j_{4}^{*}$ Ind $L(ET^{n}\times TM)=\overline{P}_{I}j_{1}^{*}L(ET^{n}\times TM)\tau^{n}\tau^{n}$

$=\overline{P}_{\iota}L(TM)$

$=L(M)[M]$

$=Index$ of $M$ .
Since Ind $L(ET^{n_{T}}\times_{n}TM)\in H^{0}(BT^{n})$ by Lemma 4.2 and since

$j_{4}^{*}:$ $H^{0}(BT^{n})=Z\rightarrow H^{0}(*)=Z$

is the identity map, we may conclude that

Ind $L(ET^{n_{T}}\times_{n}TM)=Index$ of $M$ ,

by the natural identifications.
This makes the proof of Theorem 4.3 complete.

\S 5. $G$-signature theorem.

In this section we prove G-signature Theorem 1.2 and Corollaries 1.3 and
1.4. In view of Lemma 3.3, the total Pontrjagin class of the bundle

$ET^{n_{T}}\times_{n}N_{p}\rightarrow BT^{n}\times F_{\mu}$

is given by
$P(ET^{n_{T}}\times_{n}N_{\mu})=\prod_{\lambda,i}(1+(\lambda+x_{\mu\lambda}^{i})^{2})$ .

Therefore, in the localized ring $S^{-1}H^{*}(BT^{n})$ , we have

Index of $M=IndL(ET^{n_{T}}\times_{n}TM)$ by Theorem 4.3,

$=\sum_{\mu}\frac{i_{\mu}^{*}L(ET^{n_{T}}\times_{n}TM)}{\chi_{T^{n}}(N_{\mu})}/[F_{\mu}]$ by Theorem 1.1,

$=\sum_{\mu}\frac{L(TF_{\mu})\cdot L(ET^{n_{T}}\times_{n}N_{\mu})}{\chi_{Tn}(N_{\mu})}/[F_{\mu}]$

$=\sum_{\mu}L(TF_{\mu})\cdot\prod_{\lambda,i}(\frac{e^{(\lambda+x_{\mu\lambda}^{i})}+e^{-(\lambda+x_{\mu\lambda)}^{i}}}{e^{(\lambda+x_{\mu\lambda)}^{i}}-e^{-(\lambda+x_{\mu\lambda}^{i})}})/[F_{\mu}]$ .

This makes the proof of Theorem 1.2 complete.
PROOF OF COROLLARY 1.3. Since the number of the irreducible representa-

tions $\lambda$ which appear as normal representations are finite, we can find a
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sequence $a=(a_{1}, \cdots , a_{n})$ of integers such that

$(\lambda, a)=\lambda_{1}a_{1}+\cdots+\lambda_{n}a_{n}\neq 0$

for every irreducible representations $\lambda$ which aPpear in normal representations.
We can choose a complex structure of $N_{\mu}$ so that $(\lambda, a)>0$ for every $\lambda$ . Ac-
cordingly $F_{\mu}$ is oriented. Note that the formula in Theorem 1.2 holds even
if we regard $t_{i}$ as real numbers satisfying $\lambda=\sum_{i}\lambda_{i}t_{i}\neq 0$ . Set $t_{i}=a_{i}t$ . Then
we have

$\lim_{t\rightarrow\infty}\frac{e^{((\lambda,a)t+x_{\mu\lambda)}^{i}}+e^{-((\lambda,a)t+x_{\mu\lambda)}^{i}}}{e^{((\lambda.a)t+x_{\mu\lambda)}^{i}}-e^{-((\lambda.a)t+x_{\mu\lambda}^{i})}}=1$ in $H^{*}(F_{\mu} : R)$ .

Therefore Corollary 1.3 is an immediate consequence of Theorem 1.2.
PROOF OF COROLLARY 1.4. In this case, $\lambda=t$ and we extend the coefficients

$R$ to $C$. As in the manner of the proof of Corollary 1.3, we can put $\lambda=\sqrt{-1}\pi/2$ .
Then we have

Index of $M=\sum_{\mu}L(TF_{\mu})\{(\prod_{i}x_{\mu}^{i})+higherterm\}/[F_{\mu}]$ .

Hence if dim $M-\dim F_{\mu}>\dim F_{\mu}$ for every component $F_{\mu}$ , Index of $M$ must
vanish. This completes the proof of Corollary 1.4.

\S 6. Dimension of fixed point set.

In this section, we prove Propositions 1.11 and 1.12.
PROOF OF PROPOSITION 1.11. Let $B$ be the set of the irreducible repre-

sentations $\rho$ which appear as $N_{\mu}(\rho)$ for some $N_{\mu}$ . Denote by $u^{\prime}$ the order of
the set $B$ . Let $k=(2u^{\prime}+1)a^{\prime}+b^{\prime},$ $0\leqq b^{\prime}\leqq 2u^{\prime}$ . When $0\leqq b^{\prime}\leqq u^{\prime}$ , we set $c=2a^{\prime}$ ,
$d=a^{\prime}+b^{\prime}$ . When $u^{\prime}<b^{\prime}\leqq 2u^{\prime}$ , we set $c=2a^{\prime}+1,$ $d=a^{\prime}+b^{\prime}-u^{\prime}$ . In both cases,
$k=u^{\prime}\cdot c+d$ and min $\{c, 2d\}=c$ . Since $u^{\prime}\leqq u,$ $2c\geqq v$ .

We now consider

$f(\rho, x)=\lambda^{\urcorner}(x_{i})^{2d}\prod_{\rho i=1\in B}(-\rho^{2}+(x_{i})^{2})^{c}2k$

$=s_{k}(x)+terms$ of lower degree in $x$ ,

which is inspired by [17]. As before, we regard each element $\rho$ of $B$ as an
element of $H^{2}(BT^{n})$ and express the total Pontrjagin class of $ET^{n_{T}}\times_{n}TM$

formally as $\Pi(1+(x_{i})^{2})$ . We also use the notations $z_{\mu}^{i},$ $x_{\mu\lambda}^{i}$ as in \S 1. We then
have

Ind $f(\rho, x)=s_{k}[M]\neq 0$ .
Note that
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$i_{\mu}^{*}f(\rho, x)=\sum_{i=1}^{\mu}(z_{\mu}^{i})^{2d}\prod_{\rho\in B}(-\rho^{2}+(z_{\mu}^{t})^{2})^{c}d()$

$+\sum_{\lambda,i}(\lambda+x_{\mu\lambda}^{i})^{2a}\prod_{\rho\in B}(-\rho^{2}+(\lambda+x_{\mu\lambda}^{i})^{2})^{c}$

where $d(\mu)=\dim F_{\mu}/2$ . Hence the term of least degree of $H^{*}(F_{\mu})$ part in

$\frac{i_{\mu}^{*}f(\rho,x)}{\prod_{\lambda,i}(\lambda+x_{u\lambda}^{i})}$

is of degree at least $c$ . It follows that $\dim F\geqq 2c$ .
This completes the proof of Proposition 1.11.
PROOF OF PROPOSITION 1.12. Let $M^{m}$ be a semi-free $S^{1}$-manifold. Then

$M$ bounds as semi-free $S^{1}$-manifold if and only if $\sum_{\mu}(F_{\mu}, N_{\mu})$ represents the
zero element of

2 $\Omega_{m-2k}(BU(k))$ .

Since $H_{*}(BU(k))$ has no torsion, any element of $\sum_{k}\Omega_{m-2k}(BU(k))$ is characterized

by bordism Stiefel-Whitney numbers and by bordism Pontrjagin numbers [8].

Now for any pair of partitions $\omega=(i_{1}, \cdots i_{r})$ and $\omega^{\prime}=(j_{1}, -- , j_{s})$ , we con-
sider

$f_{\omega,\omega},(x)=\{\Sigma(-t^{2}+(x_{1})^{2})^{2i_{1}+1}\cdot(x_{1})^{2i_{1}}\cdots(-t^{2}+(x_{r})^{2})^{2i_{r}+1}\cdot(x_{r})^{2i_{r}}\}$

$\times\{\sum(-t^{2}+(x_{1})^{2})^{j_{1}}\cdot(x_{1})^{2[j_{1}/2]+2}\cdots(-t^{2}+(x_{s})^{2})^{J_{s}}\cdot(x_{s})^{2[j_{s}/2]+2}\}$ ,

where the summations are taken as these are smallest symmetric polynomials
containing the given terms.

As usual, the total Pontrjagin class of $ES^{1}\times TMS^{1}$ (resp. $TF$) is expressed

formally as $\Pi(1+(x_{i})^{2})$ (resp. $\prod(1+(z_{\mu}^{i})^{2})$). Similarly the total Chern class of
$N_{\mu}$ is expressed formally as $\Pi(1+x_{\mu}^{i})$ . Denote by $t$ the first Chern class of
the bundle $S^{1}\rightarrow ES^{1}\rightarrow BS^{1}$ where we identify $S^{1}$ with $U(1)$ canonically. Then
the term of least degree of $H^{*}(F_{\mu})$ part in

$\frac{i_{\mu}^{*}f_{\omega.\omega^{\prime}}(x)}{\prod_{i}(t+x_{\mu}^{i})}$

is of degree at least $2|\omega|+|\omega^{\prime}|$ and

$\frac{i_{\mu}^{*}f_{\omega,\omega^{\prime}}(x)}{\Pi(t+x_{\mu}^{i})}=c(t)s_{\omega}((z_{\mu})^{2})\cdot s_{\omega},(x_{\mu})+terms$ of higher degree,

where $c(t)$ is a non zero rational function of $t$ and
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$s_{\omega}((z_{\mu})^{2})=\sum(z_{\mu}^{1})^{2i_{1}}\cdots(z_{\mu}^{r})^{2i_{\gamma}}$

and
$s_{\omega}(x_{\mu})=\Sigma(X_{\beta}^{1})^{j_{1}}\cdots(x_{\mu}^{s})^{j_{s}}$ .

Here the summations are taken as above.
The term of highest degree in $f_{\omega.\omega},$ $(x)$ is of degree

$6|\omega|+2\{|\omega^{\prime}|+r+s+\sum_{i=1}^{s}[\frac{j_{i}}{2}]\}$ .

Since $1+[\frac{j_{i}}{2}]\leqq j_{i}$ , we have

6 $|\omega|+2\{|\omega^{\prime}|+r+s+\sum_{i=1}^{s}[\frac{j_{i}}{2}\rfloor\}\leqq 8|\omega|+4|\omega^{\prime}$ .

Note that any bordism Pontrjagin numbers of $\sum_{\mu}(F_{\mu}, N_{\mu})$ can be written as a

linear combination of $s_{\omega}((z_{\mu})^{2})\cdot s_{\omega},(x_{\mu})[F_{\mu}]$ . Therefore if dim $F<\dim M/4$ , any
bordism Pontrjagin numbers must vanish.

A similar argument works for bordism Stiefel-Whitney numbers. Let
$\omega=(i_{1}, --, i_{r})$ and $\omega^{\prime}=(j_{1}, \cdots , j_{s})$ be partitions such that none of the $ i_{j}\in\omega$ is
of the form $2^{p}-1$ and all $j_{i}$ are even. Then

$2|\omega|+r+2|\omega^{\prime}|+s\leqq\frac{5}{2}(|\omega|+|\omega^{\prime}|)$

and we make use of

$f_{\omega.\omega^{\prime}}(x)=\{\sum(1+x_{1})^{r_{1^{+1}\cdot\chi_{1}^{i_{1}}}}\cdots(1+x_{r})\cdot x_{r}\}$

$\times\{\sum(1+x_{1})^{f_{1}}\cdot x_{1}^{j_{1}+1}\cdots(1+x_{s})^{j_{S}}\cdot x_{s}^{j_{s}+1}\}$ .

Notice that in our situation we have only to consider the partitions as
above.

When dim $M$ is odd, each dim $F_{\mu}$ is also odd. Hence every bordism Pon-
trjagin number of $(F_{\mu}, N_{\mu})$ vanishes.

This makes the proof of Proposition 1.12 complete.
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