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\S 1. Introduction.

Let $P(z, \partial_{z})$ be a linear partial differential operator of order $m$ with holo-
morphic coefficients defined near a point $p$ in $C^{n}$ and $\Omega$ be an open set such
that the point $P$ belongs to the $C^{2}$-boundary $\partial\Omega$ . In this paper we shall study

the following problem:

(Q) Let $u$ be a holomorphic solution of $Pu=f$ in $\Omega$ , where $f$ is holomorphic
near $p$ . What conditions on $\Omega$ and $P$ garantees that $u$ can be con-
tinued across $p$ ?

The results already obtained to this problem are in the cases where $\partial\Omega$

is tangent to the holomorphic hypersurface $S$ which is non-characteristic with
respect to $P$ (Bony-Schapira [2], Zerner [10]) or simple characteristic (Pallu

de La Barriere [5], Persson [6], Tsuno [7]) or some other special cases ([5],
[8], [9]). In [5], the case where the tangential operator of $P$ on $\partial\Omega$ has the
regular characteristic variety is studied. In [6] Persson also studied the
general case using the so called “cones of analytic continuation”. The Pur-
pose of this paper is to extend these results to the case where $P(z, \partial_{z})$ is
highly degenerated at $p$ . Since the problem (Q) is invariant under the holo-
morphic change of variables, it is desirable to describe the results free from
the choice of the local coordinates. But the treatment of the normal direction
of $\partial\Omega$ at $p$ and the tangential directions of $\partial\Omega$ at $p$ is different, so we intro-
duce the weighted coordinates in the next section. The weighted coordinates
are systematically used to determine the type of $\partial\Omega$ at $P$ by T. Bloom and
I. Graham [1]. The weighted coordinate system used in this article is the
simplest one such that the complex normal coordinate $z_{1}$ of $\partial\Omega$ at $p$ is assigned
the weight 2, while the complex tangential coordinates $z_{2},$ $z_{3},$

$\cdots$ , $z_{n}$ are each
assigned the weight 1. In the second section, some invariances are shown
under the equivalent change of the weighted coordinates. Then in the third
section, we state the basic theorem under some fixed local coordinates. The
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method used here is the analogy of that of Zerner [10]. Zerner’s proof is
based on the quantitative estimate of the existence-domain of solutions of the
Cauchy-Kowalewsky theorem. We use the Goursat problem instead of the
Cauchy problem. All the necessary estimates to obtain the basic theorem are
already known (see H\"ormander [3] Theorem 5.1.1). As a corollary of this
basic theorem, another proof of the simple characteristic case ([7], Corollary
1) is also obtained. In the last section, \S 4, we study the geometric conditions
on $P(z, \partial_{z})$ and $\partial\Omega$ to insure the existence of the local coordinates in the third
section. All the conditions in this section are invariant under some equivalent
change of variables. Interesting is the fact that these conditions are formally

similar to the Levi-condition of the constant multiple characteristic surface $S$

and the bicharacteristic space of the localization of $P$ in the normal direction
at $P$ which is due to H\"ormander [4]. The results in this paper in the two
dimensional case is already announced in [11]. The author wishes to thank
Professor J. Persson who points out to him the mistakes of the original
manuscript.

\S 2. Weighted coordinates.

Since the problem (Q) is local, we always assume that $P$ is the origin of
the local coordinates. Let $(z_{1}, z_{2}, \cdots , z_{n})$ be a local coordinate system. Then
we say that $(z_{1}, \cdots , z_{n})$ is the weighted coordinate system with the weights
(2, 1, $\cdots$ , 1) if the coordinate function $z_{1}$ has the weight 2, while $z_{j}(j=2, n)$

has the weight 1. A monomial in $z$ has the weight 1 if the sum of the
weights of $z_{j}$ which occur is $l$ . For a holomorphic function $f(z)$ , we say that
$f(z)$ has the weight $l$ if, among the monomials in the Taylor series expansion
of $f(z)$ , there is one of weight $l$ but none of lower weight. For convenience,

the weight of $f=0$ is assigned $+\infty$ . It is easy to see that if $f_{1}$ and $f_{2}$ are
holomorphic functions,

(2.1) weight $(f_{1}+f_{2})\geqq\min$ (weight $(f_{1})$ , weight $(f_{2})$ )

(2.2) weight $(f_{1}f_{2})=weight(f_{1})+weight(f_{2})$ .

Next we assign corresponding negative weights to differential operators. We
begin by assigning weight $-2$ to $\partial/\partial z_{1}$ and weight $-1$ to $\partial/\partial z_{j}$ $(j=2, \cdots , n)$ .
The weight of differential monomial $(\partial/\partial z)^{a}=(\partial/\partial z_{1})^{\alpha_{1}}\cdots(\partial/\partial z_{n})^{\alpha_{n}}$ , where $\alpha=$

$(\alpha_{1}, \cdots , \alpha_{n})$ is a multi-index, is determined by $-\alpha_{1}-|\alpha|=-(2\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n})$ .
Similarly the weight of $a(z)(\partial/\partial z)^{\alpha}$ is defined by weight $(a(z))+weight(\partial/\partial z)^{\alpha})$ .
Lastly the weight of a linear partial differential operator $P(z, \partial_{z})=$

$\sum_{|\alpha|\leqq m}a_{a}(z)(\partial/\partial z)^{\alpha}$ is determined by min weight $(a_{a}(z)(\partial/\partial z)^{\alpha})$ . These definitions
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are due to T. Bloom and I. Graham [1]. Corresponding to the properties (2.1)
and (2.2), the following relations are easily derived.

(2.3) weight $(P_{1}+P_{2})\geqq\min$ (weight $(P_{1})$ , weight $(P_{2})$ )

(2.4) weight $(P_{1}\circ P_{2})\geqq weight(P_{1})+weight(P_{2})$

(2.5) weight $(Pf)\geqq weight(P)+weight(f)$

for non-zero differential operators $P,$ $P_{1},$ $P_{2}$ and a holomorphic function $f$.
DEFINITION 2.1 (T. Bloom and I. Graham [1]). Let $(z_{1}, \cdots , z_{n})$ and

$(w_{1}, \cdots , w_{n})$ be local coordinates with the same origin. We say that these
coordinate systems are equivalent as the weighted coordinates if the coordinate
function $w_{j}$ has the same weight as $z_{j}$ as a holomorphic function of $z$ and
the converse is also true.

REMARK 2.1. In this paper the weight of the coordinate system is always
(2, 1, $\cdots$ , 1). Therefore $(z_{1}, \cdots , z_{n})$ and $(w_{1}, \cdots , w_{n})$ are equivalent if and only if

$\frac{\partial(w_{1},\cdot\cdot.\cdot.’ w_{n})}{\partial(z_{1},\cdot,z_{n})}(0)=\left|\begin{array}{llll}c & 0 & \cdots & 0\\a_{2} & c_{22} & \cdots & c_{2n}\\\vdots & \vdots & & \vdots\\ a_{n} & c_{n2} & \cdots & c_{nn}\end{array}\right|\neq 0$ .

REMARK 2.2. The weights of functions or differential operators are in-
variant under the equivalent weighted coordinate system.

By this remark the following proposition is easy to prove.
PROPOSITION 2.1. Let $P(z, \partial_{z})$ be a linear differential operator of the weight

1 and denote by $Q(z, \partial_{z})$ the sum of the terms in $P$ with the weight $l$ . Then
$Q(z, \partial_{z})$ is invariant modulo differential operatOrs of the weight larger than $l$

under the equivalent change of the weighted coordinate systems.
PROOF. If we decompose $P=Q+Q^{\prime}$ such that the weight of $Q^{\prime}$ is larger

than $l$ , then under the equivalent change of variables, $Q^{\prime}$ is transformed to
the operator of the weight $>1$ . While the weight of $P$ is invariant. This
shows that $Q$ is invariant modulo differential operators of the weight larger
than $l$ .

DEFINITION 2.2. The sum of the terms in $P(z, \partial_{z})$ with the lowest weight
is said to be the weighted principal part of $P(z, \partial_{z})$ .

Lastly we introduce some notion concerning the relation between a com-
plex hypersurface $S$ and a real $C^{2}$-hypersurface $M$. Let $T_{p}$ be the holomorphic
tangent spase of $S$ at $p$ . If $\Lambda^{\prime}$ is a complex linear subspace of $T_{p}$ , and $M$ is
tangent to $S$ at $p$ , then we make the following definition.

DEFINITION 2.3. The real hypersurface $M$ is said to be tangent to $S$ at $P$

of the second order holomorphically in $\Lambda^{\prime}$ if for some defining function $\rho$ of
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$M,$ $(XY\rho)(P)=0$ for all holomorphic vector fields $X$ and $Y$ such that $X$ and $Y$

are tangent to $S$ and $x(p)$ or $Y(P)$ is in $\Lambda^{\prime}$ .
REMARK 2.3. This definition is independent of the choice of the defining

function $\rho$ of $M$. Indeed if $\rho^{\prime}$ is another dePning function of $M$ then there
exists a positive $C^{1}$ function $g$ such that $\rho^{\prime}=g\rho$ and $\rho(D^{2}g)$ , which is well
defined where $\rho\neq 0$ , is uniquely extended as $0$ when $\rho=0$, where $D^{2}$ denotes
any differentiation of order 2.

REMARK 2.4. It is well known that for a suitable choice of holomorphic
coordinates with the origin $p,$ $M$ has the dePning function $\rho$ such that

$\rho(z,\overline{z})=z_{1}+\overline{z}_{1}+\sum_{j,k\geqq 2}c_{j\overline{k}}z_{j}\overline{z}_{k}+o(|z|^{2})$ .

In this case $M$ is tangent to $S=\{z_{1}=0\}$ at $0$ of the second order holomor-
phically in any subspace $\Lambda^{\prime}$ . The restrictive case is happened when the sur-
face $S$ is previously given.

\S 3. The basic theorem.

We begin this section by recalling the following theorem which is in
H\"ormander [3].

THEOREM 3.1 ([3] Theorem 5.1.1). Consider a differential equation

(3.1) $(\frac{\partial}{\partial z})^{\beta}u=\sum_{|\alpha|\leqq|\beta|}a_{\alpha}(z)(\frac{\partial}{\partial z})^{\alpha}u+f$ ,

where the coefficients $a_{\alpha}(z)$ are holomorphic on the closed polydisc $\Omega=\{z||z_{j}|\leqq r_{j}$ ,
$j=1,$ $\cdots$ , $n$ }. Pose the boundary conditions

(3.2) $(\frac{\partial}{\partial z_{j}})^{k}(u-\phi)=0$ when $z_{j}=0$ if $0\leqq k<\beta_{j}$ ; $j=1,$ $\cdots$ , $n$ .

Set $A=\max_{z\in\Omega}\sum_{|\alpha|\leqq|\beta|}\frac{r^{\beta}}{r^{a}}|a_{a}(z)|$ where $r=(r_{1}, \cdots , r_{n})$ and assume that $A(2e)^{|\beta|}<1$ .
Then the boundary pr0blem (3.1), (3.2) has one and only one holomorphic solution
$u$ in

$\Omega^{\prime}=\{z;z\in\Omega,$ $\prod_{1}^{n}(1-\frac{|z_{j}|}{r_{j}})^{m}>A(2e)^{|\beta|}\}$

for arbitrary functions $f$ and $\phi$ which are holomorphic on $\Omega$ .
REMARK 3.1. It is well known that if the functions $\phi_{j}^{k},$ $0\leqq k\leqq\alpha_{j}$ , are holo-

morphic in the plane $z_{j}=0$ and satisfy the compatibility conditions

$(\frac{\partial}{\partial z_{i}})^{l}\phi_{j}^{k}=(\frac{\partial}{\partial z_{j}})^{k}\phi_{i}^{l}$ on $z_{i}=z_{j}=0$ ,
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then there exists a function $\phi$ holomorphic on $\{z;|z_{j}|\leqq r_{j}\}$ , satisfying the
boundary conditions

$(\frac{\partial}{\partial z_{j}})^{k}\phi|_{z_{j}=0}=\phi^{k}$ .

We now study the problem (Q) in the introduction. The differential opera-
tor studied in this section is the following one:

(3.3) $P(z, \partial_{z})=(\frac{\partial}{\partial z_{1}})^{m- l}(\frac{\partial}{\partial z_{2}})^{l}+\sum_{\alpha}a_{\alpha}(z)(\frac{\partial}{\partial z})^{a}$ $(1\leqq l<m)$

where $a_{\alpha}(z)$ are holomorphic in some neighborhood $U$ of $0$ and the summation
is taken over the multi-indices $\alpha$ such that $|\alpha|\leqq m$ and $\alpha\neq(m-l, l, 0, \cdots , 0)$ .
The domain $\Omega$ is given by

(3.4) $\Omega=\{z\in U|\rho(z,\overline{z})<0\}$

where $\rho$ is a real-valued $C^{2}$ function such that

$(\Omega.1)$ $\rho(0)=0$, $\frac{\partial\rho}{\partial z_{1}}(0)=1$ , $\frac{\partial\rho}{\partial z_{j}}(0)=0$ $j=2,$ $\cdots$ , $n$ .

The local coordinates $(z_{1}, \cdots , z_{n})$ are always fixed in this section and
regarded as the weighted coordinate system with the weights (2, 1, $\cdots$ , 1).

Then we make the following conditions on the operator $P(z, \partial_{z})$ .
(P.1) Every weight of $a_{\alpha}(z)(\partial/\partial z)^{\alpha}$ in $P(z, \partial_{z})$ is larger than or equal to $1-2m$

$=the$ weight of $(\partial/\partial z_{1})^{m-l}(\partial/\partial z_{2})^{l}$ and also every weight of $(a_{\alpha}(z)-a_{\alpha}(O))$

$\times(\partial/\partial z)^{\alpha}$ is larger than $1-2m$ .
(P.2) There exists a positive integer $\mu(2\leqq\mu\leqq n)$ such that if the weight of

$a_{a}(z)(\partial/\partial z)^{\alpha}$ is equal to $l-2m$ , then $\alpha_{\mu+1}=\ldots=\alpha_{n}=0$ .
(P.3) There are no terms except $(\partial/\partial z_{1})^{m-l}(\partial/\partial z_{2})^{l}$ of the weight $1-2m$ which

are generated only by $\partial/\partial z_{1}$ and $\partial/\partial z_{2}$ .
We remark here that if $\mu=2$ in (P.2), then these conditions mean that

there is no term of the weight $1-2m$ in $P$ except $(\partial/\partial z_{1})^{m-l}(\partial/\partial z_{2})^{l}$ .
REMARK 3.2. If $P$ is simple characteristic at $(0, N)$ with $N=(1,0, \cdots , 0)$ ,

then it is always possible to choose the local coordinates so that $P$ is in the
form (3.3) with $l=1$ , and $\alpha_{1}<m-1$ in the sum of the second terms. In this
case, all conditions (P.1), (P.2) with $\mu=2$ and (P.3) are automatically satisPed.

REMARK 3.3. It is easy to see that these conditions (P.1), (P.2) and (P.3)

are only restrictive on the terms of order larger than or equal to $m-1/2$ .
Concerning the boundary function $\rho(z,\overline{z})$ of $\partial\Omega$ , the following conditions

are made in addition to $(\Omega.1)$ .
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$(\Omega.2)$ $\frac{\partial^{2}\rho}{\partial_{X_{2}^{2}}}(0)<0$

where $x_{2}$ is the real part of $z_{2}$ .

$(\Omega.3)$ $\frac{\partial^{2}\rho}{\partial z_{i}\partial z_{j}}(0)=0$ if $3\leqq i$ or $j\leqq\mu,$ $2\leqq i,$ $j\leqq n$

$(\Omega.4)$ $\frac{\partial^{2}\rho}{\partial z_{i}\partial\overline{z}_{j}}(0)=0$ if $3\leqq i$ or $j\leqq\mu,$ $2\leqq i,$ $j\leqq n$

where $\mu$ is the number taken in the condition (P.2). If $\mu=2$ , then conditions
$(\Omega.3)$ and $(\Omega.4)$ become empty. Under these preparations we can state the
basic theorem.

THEOREM 3.2. Let $P(z, \partial_{z})$ be a diffe rential operator of the form (3.3) which
satisfies the conditions (P.1), (P.2) and (P.3), and $\Omega$ be an open set given by (3.4)
with the conditions $(\Omega.1),$ $(\Omega.2),$ $(\Omega.3)$ and $(\Omega.4)$ . If $u(z)$ is a holomorphic solu-
tion of $Pu=f$ in $\Omega$ where $f$ is holomorphic near $0$ , then $u(z)$ can be holomorphically
prolonged across $\partial\Omega$ at $0$ .

REMARK 3.4. If $P$ is simple characteristic at $(0, N)$ , then by the remark
3.2, (P.1), (P.2) and (P.3) always hold and the conditions $(\Omega.3),$ $(\Omega.4)$ are
empty because $\mu=2$ . Moreover in this case $z_{2}$-axis is considered as the
bicharacteristic curve. Thus this theorem is exactly reduced to the result of
[7, Corollary 1].

For the rest of this section we devote ourselves to prove this theorem.
LEMMA 3.1. Let $\rho(z,\overline{z})$ be a real valued $C^{2}$ function satisfying the conditions

$(\Omega.1),$ $(\Omega.2),$ $(\Omega.3)$ and (Q.4). Then there exist positive constants $M$ and $\alpha$ such
that for any small positive number $\epsilon$

(3.5) $\rho\leqq\rho^{\prime}=2x_{1}-\alpha x_{2}^{2}+\frac{M}{\epsilon}|z_{1}|^{2}+\epsilon(|z_{3}|^{2}+\cdots+|z_{\mu}|^{2})$

$+M(y_{2}^{2}+|z_{\mu+1}|^{2}+\cdots+|z_{n}|^{2})$

if $z$ is sufficiently near $0$ , where $z_{j}=x_{j}+\sqrt{-1}y_{j}$ .
PROOF. We expand $\rho$ in the Taylor series up to the order 2. The Prst

order part is equal to $z_{1}+\overline{z}_{1}=2x_{1}$ . For the terms of the second order we
divide into the next four groups by $(\Omega.3)$ and $(\Omega.4)$ : (i) terms containing only
$z_{2}$ and $\overline{z}_{2}$ , (ii) terms containing $z_{1}$ or $\overline{z}_{1}$ , (iii) terms consisted by the products
of $z_{2}$ or $\overline{z}_{2}$ and $z_{\mu+1},$

$\cdots$ , $z_{n}$ or $\overline{z}_{\mu+1},$
$\cdots$ , $\overline{z}_{n}$ , (iv) quadratic terms of $z_{\mu+1},$

$\cdots$ , $z_{n}$

and these complex adjoints. For the sums of the terms in each groups (i),
(ii), (iii) and (iv), we estimate these by $-\alpha^{\prime}x_{2}^{2}+\beta y_{2}^{2}$ with $\alpha^{\prime}>0,$ $\beta>0$ because
of $(\Omega.2),$ $(A/\epsilon^{\prime})|z_{1}|^{2}+\epsilon^{\prime}(|z_{2}|^{2}+\cdots+|z_{n}|^{2})$ for some constant $A$ and any $\epsilon^{\prime}>0$ ,
$\lambda|z_{2}|^{2}+(B/\lambda)(|z_{\mu+1}|^{2}+\cdots+|z_{n}|^{2})$ for some $B$ and any $\lambda>0$ , and $ C(|z_{\mu+1}|^{2}+\cdots$

$+|z_{n}|^{2})$ , respectively. If we take $\lambda+\epsilon^{\prime}<\alpha^{\prime}$ then (3.5) is easily derived.



Holomorphic continuation of solutions 291

LEMMA 3.2. For any small positive numbers $\delta$ and $\lambda(\lambda<\epsilon/2M)$ , the Polydisc

$\{z|z_{1}=-\lambda, |z_{2}-\delta|\leqq r_{2}, |z_{j}|\leqq r_{j}, j=3, \cdots n\}$

on the surface $ z_{1}=-\lambda$ is contained in $\Omega$ provided that

(3.6) $|_{r_{\mu+1}^{2}=\cdot\cdot=r_{n}^{2}=\frac{\lambda}{2nM}}^{r^{2}=\frac{\lambda}{M}.+.\frac{\alpha}{\alpha+M}\delta^{2}}r_{3}^{2}=\cdot\cdot=r_{\mu}^{2}=\frac{\lambda}{2n\epsilon}2$

PROOF. On the surface $ z_{1}=-\lambda$ ,

$\rho^{\prime}=-2\lambda-\alpha x_{2}^{2}+\frac{M\lambda^{2}}{\epsilon}+\epsilon(|z_{3}|^{2}+\cdots+|z_{\mu}|^{2})$

$+M(y_{2}^{2}+|z_{\mu+1}|^{2}+\cdots+|z_{n}|^{2})$ .
If $|z_{j}|^{2}\leqq\gamma_{j}^{2}(j\geqq 3)$ and $\lambda<\epsilon/2M$, then

$\rho^{\prime}<-2\lambda-\alpha\chi_{2}^{2}+\frac{M\lambda^{2}}{\epsilon}+My_{2}^{2}+\frac{\lambda}{2}$

$<-\lambda-\alpha x_{2}^{2}+My_{2}^{2}$ .

Then it is easy to see that if $(x_{2}-\delta)^{2}+y_{2}^{2}\leqq\frac{\lambda}{M}+\frac{\alpha}{\alpha+M}\delta^{2}$ , then $\rho^{\prime}<0$ . This proves
the lemma.

LEMMA 3.3. For any small positive number $\delta$ and $\lambda$ ($\delta\leqq 4\sqrt{}\frac{\overline\epsilon}{\alpha M}$ , $\lambda<\frac{\epsilon}{M}$), the
$P^{olydisc}$

$\{z||z_{1}+\lambda|\leqq r_{1}, z_{2}=\delta, |z_{j}|\leqq r_{j}, j=3, \cdots n\}$

on the surface $ z_{2}=\delta$ is contained in $\Omega$ prOvided that

(3.7) $\left\{\begin{array}{l}r_{1}=\lambda+\frac{l}{8}\alpha\delta^{2}\\r_{3}^{2}=\ldots=r_{\mu}^{2}=\frac{\alpha}{2n\epsilon}\delta^{2}\\r_{\mu+1}^{2}=\ldots=r_{n}^{2}=\frac{\alpha}{2nM}\delta^{2}.\end{array}\right.$

PROOF. On the surface $ z_{2}=\delta$

$\rho^{\prime}=2x_{1}-\alpha\delta^{2}+\frac{M}{\epsilon}(x_{1}^{2}+y_{1}^{2})+\epsilon(|z_{3}|^{2}+\cdots+|z_{\alpha}|^{2})$

$+M(|z_{\mu+1}|^{2}+\cdots+|z_{n}|^{2})$ .
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If $|z_{j}|^{2}\leqq r_{j}^{2}(j\geqq 3)$ , then

$\rho^{\prime}<\frac{M}{\epsilon}\{(x_{1}+\frac{\epsilon}{M})^{2}+y_{1}^{2}-(\frac{1}{2}\alpha\delta^{2}+\frac{\epsilon}{M})\frac{\epsilon}{M}\}$ .

Here if we take $\delta\leqq 4(\epsilon/\alpha M)^{1/2}$ then

$\{(\frac{1}{2}\alpha\delta^{2}+\frac{\epsilon}{M})(\frac{\epsilon}{M})\}^{1/2}\geqq\frac{\epsilon}{M}+\frac{1}{8}\alpha\delta^{2}$ .

Thus $\rho^{\prime}<0$ for $z_{1}$ satisfying the inequality $|z_{1}+\lambda|\leqq\lambda+(1/8)\alpha\delta^{2}$ if $\lambda<\epsilon/M$.
This proves the lemma.

LEMMA 3.4. There exist constants $k(k>1)$ and $\gamma(\gamma>\alpha)$ which depend only
on $\alpha$ and $M$, such that

$\Delta_{1}=\{z|z_{1}=-\gamma\delta^{2}, |z_{2}-\delta|\leqq r_{2}, |z_{j}|\leqq r_{j} j=3, \cdots n\}$

and
$\Delta_{2}=\{z||z_{1}+\gamma\delta^{2}|\leqq r_{1}, z_{2}=\delta, |z_{j}|\leqq r_{j} j=3, \cdots n\}$

are contained in $\Omega$ and the inequalities

(3.8) $r_{1}\geqq\gamma\delta^{2}k$ , $ r_{2}\geqq k\delta$

hold for suJficiently small $\delta(\delta>0)$ , where

(3.9) $|21$

PROOF. Take $k(1<k<9/8)$ and $\gamma(\gamma>\alpha)$ so that the next inequalities
hold:

(3.10) $\frac{\alpha}{8(k-1)}\geqq\gamma\geqq M(k^{2}-\frac{\alpha}{\alpha+M})$ .

And set $\lambda=\gamma\delta^{2}$ in the lemmas 3.2 and 3.3. Then $\Delta_{1}$ and $\Delta_{2}$ are contained in
$\Omega$ for sufficiently small $\delta$ . The inequalities (3.8) are easily derived from (3.10).
This completes the proof.

PROOF OF THE THEOREM 3.2. Let $P(z, \partial_{z})$ be a differential operator con-
sidered in the theorem 3.2 and $\Omega(r(\delta))$ be the polydisc $\{z||z_{j}|\leqq r_{j}\}$ where $r_{j}$

is given by (3.9). Set $A=\max_{z\in\Omega(r)}\sum_{a}\frac{r_{1}^{m-l}r_{2}^{l}}{r^{\alpha}}|a_{a}(z)|$ . Then if the weight of
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$a_{a}(z)(\partial/\partial z)^{\alpha}$ is larger than $l-2m$ , then

$\frac{r_{1}^{m-l}r_{2}^{l}}{r^{\alpha}}|a_{\alpha}(z)|=o(1)$ as $\delta\rightarrow 0$ .

As for the terms of the weight $1-2m$ ,

$\frac{r_{1}^{m-l}r_{2}^{l}}{r^{\alpha}}|a_{a}(z)|\leqq\frac{r_{1}^{m-l}r_{2}^{\prime}}{r^{\alpha}}|a_{a}(z)-a_{\alpha}(0)|+\frac{r_{1}^{m-l}r_{2}^{l}}{r^{\alpha}}|a_{\alpha}(0)|$

$=O(\delta)+\frac{r_{1}^{m- l}r_{2}^{l}}{\gamma^{a}}|a_{\alpha}(0)|$ .

But in the second terms of these estimates, $\alpha_{j}\neq 0$ for some $j(3\leqq j\leqq\mu)$ by the
conditions (P.2) and (P.3). Thus if we take $\epsilon$ small enough, then these terms
are also arbitrary small since $r_{j}^{-1}=const$ . $\epsilon^{1/2}$ . Therefore the constant A be-
comes arbitrary small if we take $\epsilon$ and $\delta$ small enough. Now we fix $\epsilon$ and
$\delta_{0}$ so that $A(2e)^{m}<(1-k^{-1})^{2m}$ for all $\delta\leqq\delta_{0}$ where $k$ is the number in the lemma
3.4. Let $u(z)$ be any solution of $Pu=f$ in $\Omega$ . We consider $u(z)$ to be the
solution of the Goursat problem with the boundary conditions given on $\Delta_{1}$

and $\Delta_{2}$ for sufficiently small $\delta$ so that $\Delta_{1}$ and $\Delta_{2}$ are contained in $\Omega(r(\delta_{0}))$ .
Applying the theorem 3.1, $u(z)$ is holomorphic in

$\Delta=\{z|(1-|\frac{z_{1}+\gamma\delta^{2}}{r_{1}}|)^{m}(1-|\frac{z_{2}-\delta}{\gamma_{2}}|)^{m}\prod_{3}^{n}(1-|\frac{z_{j}}{r_{j}}|)^{m}>A(2e)^{m}\}$ .

Then by (3.8), the origin is contained in $\Delta$ , which proves the theorem.
REMARK 3.5. Persson [6] constructed the solution $u(z)$ of $Pu=0$ which

had singularities on the set ${\rm Re} z_{1}>0$ where $P$ is in the similar form as (3.3).

\S 4. Choice of the local coordinates in the basic theorem.

In this section we seek the geometric conditions on $P(z, \partial_{z})$ and $\Omega$ which
insure the existence of a local coordinate system under which $P(z, \partial_{z})$ and $\Omega$

satisfy all the conditions in the basic theorem. Let $(z_{1}, \cdots , z_{n})$ be a local
coordinates such that the surface $z_{1}=0$ is tangent to $\partial\Omega$ at $z=0$ . We con-
sider this coordinates at the weighted coordinate system with the weights
(2, 1, $\cdots$ , 1). Let $P(z, \partial_{z})$ be a linear differential operator of order $m$ with
holomorphic coefficients which is characteristic at $0$ in the cotangential direc-
tion $N=(1, 0, \cdots , 0)$ and $l(1\leqq l<m)$ be the multiplicity of Pat $(0, N)$ . That is

(4.1) $P_{m}(0, N+t\zeta)=p(\zeta)t^{l}+higher$ order terms of $t$

where $P_{m}$ is the principal part of $P$ and $p(\zeta)$ is a non-zero polynomial of $\zeta$ .
(4.1) means that in $P_{m}(0, \partial/\partial z)$ there is none of the terms of order larger than
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$m-l$ with respect to $\partial/\partial z_{1}$ and the sum of the coefficients of $(\partial/\partial z_{1})^{m-l}$ is equal

to $p(\partial/\partial z_{2}, \cdots , \partial/\partial z_{n})$ . Since $P$ is the homogeneous polynomial of order $l$ , the
weight of $p(\partial/\partial z_{2}, \cdots , \partial/\partial z_{n})(\partial/\partial z_{1})^{m-l}$ is $1-2m$ . We now assume tbat

(P.I) the weight of $P(z, \partial_{z})$ is equal to $1-2m$ .
DEFINITION 4.1. A holomorphic function $\phi(z)$ with $grad_{z}\phi(0)=N$ is said to

be a weighted characteristic function of $P(z, \partial_{z})$ if it satisfies the following
condition

(4.2) $e^{-t\phi(z)}Q(z, \partial_{z})e^{\iota\phi(z)}\equiv 0$ (mod weight $l-2m+1$ )

where $Q(z, \partial_{z})$ is the weighted principal part of $P$ and the complex parameter
$t$ is assigned the weight $-2$ .

Since $Q(z, \partial_{z})$ is invariantly defined modulo operators of the weight larger
than or equal to $l-2m+1$ (Proposition 2.1), the above definition is also invari-
ant under the equivarent weighted coordinate change. To find such a weighted
characteristic function $\phi(z)$ , it is sufficient that $\phi$ is in the form

$\phi(z)=z_{1}+\sum_{i.j\geqq 2}a_{ij}z_{i}z_{j}$ .

Assume that

(P.II) there exists a weighted characteristic function $\phi(z)$ .
By the suitable equivalent change of the weighted coordinates, we can

assume that $\phi(z)=z_{1}$ . Then we have the next proposition.
PROPOSITION 4.1. If $\phi(z)=z_{1}$ , then (4.2) is equivalent to that there is none

of the differential monomials in $Q(z, \partial_{z})$ which are generated only by $\partial/\partial z_{1}$ .
PROOF. It is easy and omitted.
We now fix some weighted characteristic function $\phi(z)$ and consider the

local coordinates $(z_{1}, z_{2}, \cdots , z_{n})$ as $\phi(z)=z_{1}$ and each $z_{j}(j\geqq 2)$ has the weight
1. This means that the coordinate transformation considered from now on is
always in the following form:

(4.3) $\left\{\begin{array}{ll}w_{1}=z_{1} & \\w_{j}=a_{j}z_{1}+\sum_{k\Leftarrow 2}^{n}c_{jk}z_{k}+f_{j}(z) & j=2, \cdots n\end{array}\right.$

where det $(c_{jk})\neq 0$ and $f_{j}(z)=O(|z|^{2})$ (cf. Remark 2.1). Under some of these
coordinate system if $P(z, \partial_{z})$ is written as

$P(z, \partial_{z})=\sum_{k=0}^{m}p_{k}(z, \partial/\partial z^{\prime})(\partial/\partial z_{1})^{k}$

where $\partial/\partial z^{\prime}=(\partial/\partial z_{2}, \cdots , \partial/\partial z_{n})$ , then the weight of $p_{k}$ is larger than or equal
to $l-2m+2k$ . We set $Q_{k}(z, \partial_{z^{\prime}})$ the sum of the terms in $p_{k}$ of the weight
$l-2m+2k$ .
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PROPOSITION 4.2. Each $Q_{k}(z, \partial_{z^{\prime}})$ is invariant modulo differential operators
of the weight larger than $l-2m+2k$ under the coordinate change of the form
(4.3).

PROOF. By (4.3),

$\frac{\partial}{\partial z_{1}}=\frac{\partial}{\partial w_{1}}+\sum_{j=2}^{n}a_{J}\frac{\partial}{\partial w_{j}}+terms$ of the $weight\geqq 0$

$\frac{\partial}{\partial z_{j}}=\sum_{k=2}^{n}c_{kj}\frac{\partial}{\partial w_{k}}+terms$ of the $weight\geqq 0$ .

Therefore by recalling the relation (2.4)

(4.4) $\left\{\begin{array}{l}(\frac{\partial}{\partial z_{1}})^{p}=(\frac{\partial}{\partial w_{1}})^{p}+terms of the weight >-2P\\(\frac{\partial}{\partial z_{j}})^{q}=(\sum_{k=2}^{n}c_{kj}\frac{\partial}{\partial w_{k}})^{q}+terms of the weight >-q.\end{array}\right.$

This proves that each sum of the coefficients of $(\partial/\partial z_{1})^{k}$ of the lowest weight
$l-2m+2k,$ $Q_{k}(z, \partial_{z^{\prime}})$ , is invariant modulo operators of the weight larger than
$1-2m+2k$ under these transformation.

PROPOSITION 4.3. The polynomial $Q_{k}(0, \xi^{\prime})$ is invariant under the trans-
formation (4.3) if $\xi^{\prime}$ is transformed as the cotangent vector at $0$ .

PROOF. By the same way of the preceding proof this is easily derived
from (4.4) and the details are omitted.

Relating to the polynomial $Q_{k}(0, \xi^{\prime})$ , we introduce some complex linear
subspaces in the holomorphic tangent space $T_{0}$ and the cotangent space $T_{0}^{*}$ of
the surface $S=\{z_{1}=0\}$ at $0$ . Define the complex subspaces $\Lambda(Q_{k})$ and $\Lambda(Q)$ as
follows:

(4.5) $\left\{\begin{array}{ll}\Lambda(Q_{k})=\{ \eta^{\prime}\in T_{0}^{*}|Q_{k}(0, \xi^{\prime}+t\eta^{\prime})=Q_{k}(0, \xi^{\prime}) & for any t, \xi^{\prime}\}\\\Lambda(Q)=\bigcap_{k}\Lambda(Q_{k}). & \end{array}\right.$

Then $\Lambda^{\prime}(Q)$ is settled by

$\Lambda^{\prime}(Q)=$ { $v\in T_{0}|\langle v,$ $\eta\rangle=0$ for any $\eta\in\Lambda(Q)$ }

where $\langle, \rangle$ denotes the contraction between cotangent vectors and tangent
vectors. By the proposition 4.3, these subspaces are invariant for the coordi-
nate transformation of the type(4.3). We remark here that these subspaces
$\Lambda$ and $\Lambda^{\prime}$ are originally introduced by H\"ormander [4] to analyse the singular
support of distribution solutions of $P(D)u=0$ .

DEFINITION 4.1. $\Lambda^{f}(Q)$ is called the weighted bicharacteristic space of $P$

at $(0, N)$ with respect to the weighted characteristic function $\phi(z)$ .
REMARK 4.1. If $P$ is simple characteristic at $(0, N)$ then $\Lambda^{\prime}(Q)$ is generated
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by the vector $(P_{m}^{(1)}(0, N),$ $\cdots$ , $P_{m}^{(n)}(0, N))$ which is the bicharacteristic direction
of $P$ at $(0, N)$ .

We now make the third assumption for $P$ as follows:

(P.III) weight $(Q_{k}(z, \partial_{z^{\prime}})-Q_{k}(0, \partial_{z^{\prime}}))\geqq l-2m+2k+1$ .

By the proposition 4.2, this assumption is invariant for the change of variables
of the form (4.3).

REMARK 4.2. Since $Q_{k}$ is the coefficient of $(\partial/\partial z_{1})^{k}$ , its order of differentia-
tion is not larger than $m-k$ . Moreover $Q_{k}(0, \xi^{\prime})$ is a homogeneous polynomial
in $\xi^{\prime}$ of degree $2m-2k-l$ , because the weight of $Q_{k}(0, \partial_{z^{\prime}})(\partial/\partial z_{1})^{k}$ is equal to
$l-2m$ . Thus the inequalities $0\leqq 2m-2k-l\leqq m-k$ implies that $m-l\leqq k\leqq m-l/2$ .
If $k=m-l/2$ ( $l$ even), $Q_{k}(0, \xi^{f})$ becomes constant. Then by the proposition 4.1
$Q_{k}(0, \xi^{\prime})=0$ . Consequently $Q_{k}(0, \xi^{\prime})$ is not necessarily zero only if $m-l\leqq k<$

$m-l/2$ .
REMARK 4.3. $Q_{m-l}(0, \xi^{\prime})$ is equal to the localization of $P_{m}(z, \xi)$ at $(0, N)$ ,

which is due to H\"ormander. Indeed the relation

$P_{m}(0, N+t\xi)=Q_{m-l}(0, \xi^{\prime})t^{l}+higher$ order terms of $t$

is easy to prove.
The last assumption for $P$ is the following one:

(P.IV) there exists a non-zero cotangent vector $\xi_{0}^{f}$ at $0$ such that

(i) $Q_{m-l}(0, \xi_{0}^{f})\neq 0$

(ii) $Q_{k}(0, \xi_{0}^{\prime})=0$ $(m-l<k<m-1/2)$ .

We remark that $\xi_{0}^{f}$ is not contained in $\Lambda(Q)$ because by (i) we have the rela-
tion

$Q_{m-l}(0, \xi_{0}^{f})\neq 0=Q_{m-l}(0, \xi_{0}^{\prime}+(-1)\xi_{0}^{\prime})$

which shows that $\xi_{0}^{f}\not\in\Lambda(Q_{m-l})$ .
Now we proceed to examine the conditions on $\Omega$ under the assumptions

(P.I), (P.II), (P.III) and (P.IV).

Let $\xi_{0}^{f}$ be the covector in (P.IV) and set

(4.6) $\left\{\begin{array}{l}\Lambda^{\prime}(\xi_{0}^{\prime})=\{v\in T_{0}|\langle v, \xi_{0}^{f}\rangle=0\}\\\Lambda_{1}^{\prime}=\Lambda^{\prime}(\xi_{0}^{\prime})\cap\Lambda^{\prime}(Q).\end{array}\right.$

Since $\xi_{0}^{\prime}\not\in\Lambda(Q),$ $\Lambda^{\prime}(\xi_{0}^{f})$ is not contained in $\Lambda^{\prime}(Q)$ and its dimension is equal to
$n-2$ . If the dimension of $\Lambda^{\prime}(Q)$ is $\mu-1$ , where $\mu\geqq 2$ because $Q$ is not identi-
cally zero, we assume that

$(\Omega.I)$ dim $\Lambda_{1}^{f}=\mu-2$ .
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In addition to this assumption, we suppose that

$(\Omega.II)$ the Levi form of $\partial\Omega$ is degenerate on $\Lambda_{1}^{\prime}$ ,

$(\Omega.III)$ $\partial\Omega$ is tangent to $S=\{z_{1}=0\}$ at $0$ of the second order holomorphically
in $\Lambda_{1}^{\prime}$ (cf. Definition 2.3).

If $\Omega$ is given by $\{\rho(z)<0\}$ and the complex Hessian form of $\rho$ at $0$ is
denoted by

$H_{\rho^{(0)}}(t, s)=\sum_{i,j}\frac{\partial^{2}\rho}{\partial z_{i}\partial\overline{z}_{j}}(0)dz_{\ell}(t)d\overline{z}_{j}(\overline{s})$

for two holomorphic tangent vectors $t$ and $s$ in $T_{0}$ , then $(\Omega.II)$ means that
the linear form on $T_{0},$ $H_{\rho^{(0)}}(\cdot, s)$ , vanishes for all $s$ in $\Lambda_{1}^{\prime}$ .

REMARK 4.4. These conditions are invariant under the holomorphic change
of variables. Moreover they are also invariant from the choice of the defin-
ing function $\rho(z)$ (see Remark 2.3).

The last assumption for $\partial\Omega$ is the following one:
$(\Omega.IV)$ there exist a holomorphic curve $\zeta(t)$ in $S=\{z_{1}=0\}$ and a non-zero

complex number $t_{0}$ such that

$\zeta(0)=0$ , $d\zeta(0)\in\Lambda^{f}(Q)$ , $\langle d\zeta(O), \xi_{0}^{\prime}\rangle\neq 0$

and
$d^{2}$

$\overline{d\tau^{2}}\rho(\zeta(t_{0}\tau))|_{\tau=0}<0$

for a real parameter $\tau$ .
Now we construct the local coordinates $(z_{1}, \cdots , z_{n})$ so that the operator

$P(z, \partial_{z})$ is reduced to the form (3.3) and all assumptions in the basic theorem
are fulfilled.

First we fix some weighted characteristic function $\phi(z)$ and set $\phi(z)=z_{1}$ .
Secondly we fix the tangential coordinates $(z_{2}, \cdots , z_{n})$ so that the next

conditions are satisfied:

(4.7) $\left\{\begin{array}{ll}(i) & \partial/\partial z_{2}=d\zeta(0)\\(ii) & \Lambda_{1}^{f} is generated by \partial/\partial z_{3}, \cdots , \partial/\partial z_{\mu}.\end{array}\right.$

This is indeed possible because $d\zeta(O)$ is not contained in $\Lambda_{1}^{f}$ . Under these co-
ordinates $\Lambda^{\prime}(Q)$ is generated by the vectors $\partial/\partial z_{2},$ $\partial/\partial z_{3},$ $\cdots$ , $\partial/\partial z_{\mu}$ because the
codimension of $\Lambda_{1}^{\prime}$ in $\Lambda^{\prime}(Q)$ is equal to 1.

Now we check all the conditions in the basic theorem.
PROPOSITION 4.4. Under these coordinates we have that $Q_{m-l}(0, dz_{2})\neq 0$,

$Q_{k}(0, dz_{2})=0(m-l<k<m-l/2)$ .
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PROOF. If we write the covector $\xi_{0}^{\prime}$ as

$\xi_{0}^{\prime}=c_{2}dz_{2}+\cdots+c_{n}dz_{n}$

then by (4.6)
$\langle\xi_{0}^{f}, \partial/\partial z_{j}\rangle=0$ $j=3,$ $\cdots$

$\mu$ .
Thus $\xi_{0}^{\prime}=c_{2}dz_{2}+\eta^{\prime}$ where $\eta^{\prime}=c_{\mu+1}dz_{\mu+1}+\cdots+c_{n}dz_{n}$ which is in $\Lambda(Q)$ . There-
fore by (4.5)

$Q_{k}(0, \xi_{0}^{f})=Q_{k}(0, \xi_{0}^{\prime}-\eta^{f})=Q_{k}(0, c_{2}dz_{2})$

which proves the proposition.
PROPOSITION 4.5. Under these coordinates, $P(z, \partial_{z})$ can be written as in the

form (3.3).

POOOF. This is easy from the preceding proposition because $Q_{m-l}$ is the
coefficient of $(\partial/\partial z_{1})^{m-l}$ .

PROPOSITION 4.6. (P.1) is equivalent to (P.I) and (P.III).

PROOF. Trivial.
PROPOSITION 4.7. (P.2) follows from (P.III) and (4.7).

PROOF. If the weight of $a_{\alpha}(z)(\partial/\partial z)^{\alpha}$ in $P(z, \partial_{z})$ is equal to $1-2m$ , then by
(P.III), $a_{\alpha}(z)$ does not vanish at $0$ . Therefore $a_{\alpha}(O)\xi^{\alpha}$ is the term in $Q(O, \xi)$

which is by (4.7) generated only by $\xi_{2},$ $\cdots$ , $\xi_{\mu}$ .
PROPOSITION 4.8. (P.3) follows from (P.III) and (P.IV).
PROOF. Let $a(z)(\partial/\partial z_{1})^{p}(\partial/\partial z_{2})^{q}$ be the term in $P(z, \partial_{z})$ with the weight

$1-2m$ . Then by (P.III) $a(O)$ is not zero. Thus the weight of $a(z)$ is equal to
zero. Therefore we have the equality $1-2m=-2p-q=-p-(p+q)$ , which
shows that $p\geqq m-l$ (because $p+q\leqq m$). If $P>m-1,$ $ a(0)\xi\S$ is the term in
$Q_{p}(0, \xi^{\prime})$ which contradicts the proposition 4.4.

Since the assumption $(\Omega.1)$ is easily followed from the choice of the
weighted characteristic function, we examine the rest of the conditions with
respect to $\partial\Omega$ .

PROPOSITION 4.9. $(\Omega.2),$ $(\Omega.3)$ and $(\Omega.4)$ are derived from (Q.II), $(\Omega.III)$ and
$(\Omega.IV)$ .

PROOF. It is easy and omitted.
Summing up these propositions we have the next theorem.
THEOREM 4.1. Let $P(z, \partial_{z})$ be a differential operatOr of order $m$ with holo-

morphic coefficients in a neighborhood of $p$ and $\Omega$ be an oPen set with $C^{2}$-boundary
$\partial\Omega\ni p$ . We $suPPose$ that $P(z, \partial_{z})$ and $\Omega$ satisfy the conditions $(P.I)\sim(P.IV)$ and
$(\Omega.I)\sim(\Omega.IV)$ . Under these assumptions if $u(z)$ is a holomorphic solution of Pu
$=f$ in $\Omega$ where $f$ is holomorphjc near $p$, then $u(z)$ can be holomorphically pro-
longed across $\partial\Omega$ at $p$ .
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