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\S 1. Introduction.

The stochastic differential equations for multi-dimensional diffusion pro-
cesses with boundary conditions were formulated by Ikeda [5] in the two-
dimensional case and Watanabe [17] in the case of general dimensions. They
solved the equations with Lipschitz continuous coefficients and showed the
strong Markov property of the solutions in the sense of the measure on the
path space. Furthermore, Nakao and Shiga [11], [12] solved the equations
under more general conditions on the coefficients.

In this paper, we shall consider the stochastic differential equation for a
Brownian motion on the upper half plane $\overline{D}=\{(x, y):x\in R^{1}, y\geqq 0\}$ with the

boundary condition: $\frac{\partial u}{\partial y}+\alpha(x)\frac{\partial u}{\partial x}+\frac{1}{2}\beta^{2}(x)\frac{\partial^{2}u}{\partial x^{2}}=0$ . Let $(B(t), b(t),$ $g(t))$ be

a three-dimensional Brownian motion starting from the origin. Then the
equation is written in the form:

(1.1) $\left\{\begin{array}{l}dy(t)=db(t)+d\phi(t),\\dx(t)=dB(t)+\alpha(x(t))d\phi(t)+\beta(x(t))dg(\phi(t)).\end{array}\right.$

Here the first equation of (1.1) is the so-called Skorohod equation, which deter-
mines the reflecting Brownian motion $y(t)$ on $[0, \infty$) and its local time $\phi(t)$ at
$0$ , that is,

(1.2) $y(t)=y(0)+b(t)+\phi(t)$ $(y(O)\geqq 0)$ ,

(1.3) $\phi(t)=$ $\min\{(y(0)+b(s))\wedge 0\}$ ,

where we set $a\wedge b=\min(a, b)$ .
We consider the case where $\alpha(x)$ is bounded Borel measurable, and $\beta(x\rangle$

is bounded and satisfies the continuity condition of Yamada and Watanabe
(see [19], Theorem 1, $(i)$). The equation (1.1) is a special type of the equations
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treated in the papers [5], [17], [11], [12]; however, the existence of solutions
of (1.1) is unknown in our case, in general. So, we will generalize the concept
of the solution by introducing the concept of relaxed solutions. The concept
of relaxed solutions was first introduced by Conway [1] for It\^o’s stochastic
differential equations, which describe Markov processes without boundary. If
$\alpha(x)$ is continuous, the relaxed solutions of (1.1) coincide with the ordinary
solutions which are considered in the papers [5], [17], [11], [12].

Our relaxed solution is constructed in the following way. We consider a
stochastic differential equation on the boundary $\partial\overline{D}=R^{1}$ , which is obtained
from (1.1) through time change by $\phi(t)$ . Then we show the solutions of (1.1)

can be represented by the underlying Brownian motion and the solutions of
the equation on the boundary (see Lemma 3.2). Using this, we then prove
that if $\alpha(x)$ satisfies the Osgood type condition and $\beta(x)$ satisfies the condition
mentioned above, the existence and the uniqueness of solutions hold for (1.1)
(see Proposition 4.1). Furthermore, we get a comparison theorem (see Theorem
4.1) analogous to the one obtained by Ikeda and Watanabe [6] for It\^o’s sto-
chastic differential equations. For a general $\alpha(x)$ , we take the minimum upper
semi-continuous majorant $\overline{\alpha}(x)$ and the maximum lower semi-continuous mino-
rant $\underline{\alpha}(x)$ of $\alpha(x)$ . Here the majorants and the minorants are defined in the
almost everywhere sense with respect to the Lebesgue measure on $R^{1}$ . Appro-
ximate $\overline{\alpha}(x)$ or $\underline{\alpha}(x)$ by continuous functions, monotonically. A relaxed solu-
tion of (1.1) will then be obtained on a given probability space. So, we can
construct a strong solution with shift property (see Theorem 2.1).

In Section 2, we will give the definition of the relaxed solutions of (1.1)

and state the main result (Theorem 2.1). We will prove Lemma 3.2 in Section
3. In Section 4, a comparison theorem (Theorem 4.1) will be stated and con-
struct the solutions described in Theorem 2.1. Finally, in Section 5, we will
give a condition for the uniqueness of solutions, and under this condition we
prove that the relaxed solution coincides with the ordinary solution. In rela-
tion to this condition, some correction of a result in my paper [15] is made.

The author is very grateful to Professors N. Ikeda, H. Tanaka and
S. Watanabe for their valuable advice and comments. The author would also
like to thank the referee for helpful suggestions, which led to the improve-
ment of the original manuscript.

\S 2. The main result.

For a real function $f$ on $R^{1}$ , define functions $\overline{f}$ and $\underline{f}$ by

$\overline{f}(x)=\lim_{\delta\downarrow 0}ess\sup_{y-x|\leq\delta}f(y)$ , $\underline{f}(X)=\lim_{\delta\downarrow 0}eSS|yi^{n}f^{f(y)}$ ,
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where $ess\sup$ and (
$ess$ inf” mean the essential supremum and the essential

inPmum with respect to the Lebesgue measure on $R^{1}$ , respectively. Then $\underline{f}(x)$

$\leqq\overline{f}(x)$ for all $x\in R^{1}$ . Furthermore, the functions $\overline{f}$ and $\underline{f}$ have the following
properties.

LEMMA 2.1. Let $f$ be essentially bounded. Then $\overline{f}$ is bounded and uPper
semi-continuous, and $\underline{f}$ is bounded and lower semi-continuous. Furthermore, $\underline{f}(x)$

$\leqq f(x)\leqq\overline{f}(x)a$ . $e$ . $x$ . If $g$ is lower semi-continuous and $g(x)\leqq f(x)a.e$ . $x$ , then
$g(x)\leqq\underline{f}(x)$ for all $x\in R^{1}$ . If $h$ is upper semi-continuous and $f(x)\leqq h(x)a.e$ . $x$ ,
then $\overline{f}(x)\leqq h(x)$ for all $x\in R^{1}$ .

PROOF. The boundedness and the semi-continuity of $\overline{f}$ and $\underline{f}$ follow from
the definition. Moreover, it is easy to see that for every Lebesgue point $x$

of $f,$ $\underline{f}(x)\leqq f(x)\leqq\overline{f}(x)$ and it is well-known that almost every point is a Lebes-
gue point of a bounded function. So, this proves the second assertion. The
last assertion for $\underline{f}$ and $\overline{f}$ is obvious. Q. E. D.

In the same way as in the proof of Dini’s theorem, we have
LEMMA 2.2. Let $\{f_{n}\}$ be a decreasing sequence of continuous functions on

$R^{1}$ and let $f(x)=\lim_{n\rightarrow\infty}f_{n}(x)$ be finite for each $x\in R^{1}$ . Then, for a real sequence

$\{x_{n}\}$ with $x_{n}\rightarrow x_{0}(n\rightarrow\infty)$ , we have

$\lim_{n\rightarrow}\sup_{\infty}f_{n}(x_{n})\leqq f(x_{0})$ .

PROOF. Since the function $f$ is upper semi-continuous, for any $\epsilon>0$ there
exists a $\delta>0$ such that

$ f(x)<f(x_{0})+\epsilon$ for all $x\in[x_{0}-\delta, x_{0}+\delta]$ .
Let $G_{n}=\{x:f_{n}(x)<f(x_{0})+\epsilon\}(n=1, 2, )$ . Then $G_{n}$ are open sets. By the
assumption that $f_{n}(x)\downarrow f(x)$ as $ n\rightarrow\infty$ for each $x\in R^{1}$ , it follows that $[x_{0}-\delta$ ,

$ x_{0}+\delta]\subset_{m}U_{=1}G_{m}\infty$ . So, by the compactness of the interval $[x_{0}-\delta, x_{0}+\delta]$ , there

is a finite subcovering $\{G_{m(j)} : j=1,2, \cdots , k\}$ of $\{G_{m}\}$ . Let $N_{1}=\max\{m(j)$ :
$j=1,2,$ $\cdots$ , $k$ }. Since $x_{n}\rightarrow x_{0}$ as $ n\rightarrow\infty$ , for the above $\delta>0$ there exists a posi-
tive integer $N_{2}$ such that $x_{n}\in[x_{0}-\delta, x_{0}+\delta]$ for all $n\geqq N_{2}$ . Therefore, for
$n\geqq N_{2}$ ,

$x_{n}\in G_{m(j)}$ for some $j:1\leqq j\leqq k$ .
Hence, for $n\geqq\max(N_{1}, N_{2})$ ,

$ f_{n}(x_{n})<f(x_{0})+\epsilon$ ,

so the proof is finished. Q. E. D.
We will state some conditions for the coefficients of (1.1).
(A) $\alpha(x)$ is a real Borel measurable function on $R^{1}$ and is bounded.
(A) $\alpha(x)$ is a real function on $R^{1}$ and satisfies the conditions:
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(i) $\alpha(x)$ is bounded;
(ii) there exists a positive increasing concave function $\kappa(u)$ on $[0, \infty$)

such that

$\kappa(0)=0$ , $\int_{0+}\kappa^{-1}(u)du=+\infty$ ,

$|\alpha(x)-\alpha(y)|\leqq\kappa(|x-y|)$ for all $x,$ $y\in R^{1}$ .

(B) $\beta(x)$ is a real function on $R^{1}$ and satisfies the conditions:
(i) $\beta(x)$ is bounded;
(ii) there exists a positive increasing function $\rho(u)$ on $[0, \infty$) such that

$\rho(0)=0$ , $\int_{0+}\rho^{-2}(u)du=+\infty$ ,

$|\beta(x)-\beta(y)|\leqq\rho(|x-y|)$ for all $x,$ $y\in R^{1}$ .

Let $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ be a probability space with an increasing family $(\mathcal{F}_{t})$ of
$sub-\sigma- fields$ of a $\sigma- field\mathcal{F}$ on a set $\Omega$ and with a probability measure $P$. A
k-dimensional process $B(t)=(B_{1}(t), B_{2}(t),$ $\cdots$ , $B_{k}(t))$ defined on $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ is
said to be an $(\mathcal{F}_{t})$-Brownian motion, if $B_{j}(t)$ ($j=1,2,$ $\cdots$ , k) are $(\mathcal{F}_{t})$-adapted
real continuous processes and, for $s<t$ and $\lambda_{1},$ $\lambda_{2},$

$\cdots,$
$\lambda_{k}\in R^{1}$ ,

$E[\exp\{i\sum_{j=1}^{k}\lambda_{j}(B_{j}(t)-B_{j}(s))\}|\mathcal{F}_{s}]=\exp\{-\frac{1}{2}(t-s)\sum_{j=1}^{k}\lambda_{j}^{2}\}$ .

DEFINITION 2.1. By a relaxed solution of (1.1), we mean a D-valued process
$z(t)=(x(t), y(t))$ over a probability space $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ satisfying the following
conditions (i), (ii), (iii) and (iv).

(i) There exists a three-dimensional Brownian motion $(B(t), b(t),$ $g(t))$

defined on the probability space such that $B(O)=b(O)=g(O)=0,$ $(B(t), b(t))$ is a
two-dimensional $(\mathcal{F}_{t})$-Brownian motion and $g(\phi(t))$ is a continuous martingale
with respect to $(\mathcal{F}_{t})$ satisfying $E[\{g(\phi(t))-g(\phi(s))\}^{2}|\mathcal{F}_{s}]=E[\phi(t)-\phi(s)|\mathcal{F}_{s}]$

$(s<t)$ , where $\phi(t)$ is the process defined from $b(t)$ as in (1.3).
(ii) $y(t)$ is the process defined from $b(t)$ as in (1.2).
(iii) $x(t)$ is an $(\mathcal{F}_{t})$-adapted real continuous process.
(iv) With probability one, for $0\leqq s<t$ ,

$x(t)-x(s)\leqq B(t)-B(s)+\int_{s}^{t}\overline{\alpha}(x(u))d\phi(u)+\int_{s}^{t}\beta(x(u))dg(\phi(u))$ ,

$x(t)-x(s)\geqq B(t)-B(s)+\int_{s}^{t}\underline{\alpha}(x(u))d\phi(u)+\int_{s}^{t}\beta(x(u))dg(\phi(u))$ .

The process $(B(t), b(t),$ $g(t))$ is called the underlying Brownian motion for the
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solution $z(t)$ .
REMARK 2.1. Let $A[x]$ denote the interval $[\underline{\alpha}(x),\overline{\alpha}(x)]$ . Then, in the

above definition, we can replace the condition (iv) by the following condition:
(iv’) There is a well measurable process $\alpha(t)$ such that with probability

one,

$x(t)=x(0)+B(t)+\int_{0}^{t}\alpha(s)d\phi(s)+\int_{0}^{t}\beta(x(s))dg(\phi(s))$ $(t\geqq 0)$

and
$\alpha(s)\in A[x(s)]$ for all $s\geqq 0$ .

REMARK 2.2. If $\alpha(x)$ is continuous, $\underline{\alpha}(x)=\overline{\alpha}(x)$ for all $x\in R^{1}$ . Hence, in
this case, the relaxed solutions are the ordinary solutions, that is, the solutions
considered by Ikeda, Watanabe, Nakao and Shiga.

DEFINITION 2.2. We say that the uniqueness of solutions holds for (1.1) if
any two solutions $z_{1}(t)$ and $z_{2}(t)$ , defined on a common probability space
$(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ with $z_{1}(0)=z_{2}(0)$ and with a common underlying Brownian motion,
are equal with probability one, that is, $P$[$z_{1}(t)=z_{2}(t)$ for all $t\geqq 0$] $=1$ .

A relaxed solution $z(t)=(x(t), y(t))$ is said to be maximum if $x(t)$ is the
maximum solution of the second equation of (1.1). The minimum solution of
(1.1) is defined similarly.

We will introduce some notations. Hereafter, $B(A)$ denotes the $\sigma- field$

consisting of Borel sets in a topological space $A$ . Let $C$ be the space of real
continuous functions on $[0, \infty$) and let $C_{0}$ be the subset of $C$ consisting of
functions vanishing at $0$ . We consider the compact uniform topology on $C$.
For $w\in C$, let

$\Vert w\Vert_{T}=\max_{0\leqq t\leqq T}|w(t)|$ $(T>0)$ .

Let $W=C_{0}\times C_{0}\times C_{0}$ . For $w=(u, v, w)\in W$ and $y\geqq 0$ , we set

(2.1) $\phi(t, y, w)\equiv\phi(t, y, v)=-\min_{0\leqq S\leqq t}\{(y+v(s))\wedge O\}$ ,

(2.2) $y(t, y, w)\equiv y(t, y, v)=y+v(t)+\phi(t, y, v)$ .
Define mappings $\phi_{y}$ : $W\rightarrow W,$

$\rho_{s}$ : $W\rightarrow W$ and $\theta_{s}$ : $W\rightarrow W$ by

(2.3) $\phi_{y}w(t)=(u(t), v(t),$ $w(\phi(t, y, v)))$ for $w=(u, v, w)$ ;

(2.4) $\rho_{s}w(t)=w(t\wedge s)$ ;

(2.5) $\theta_{s}w(t)=w(t+s)-w(s)$ .

Let $P$ be the Wiener measure on $(W, B(W))$ . Denote by $\mathcal{M}$ the P-completion
of $B(W)$ . For $y\geqq 0$ and $t\geqq 0,$ $\mathcal{M}_{t}^{y}$ denotes the P-completion of $(\rho_{t}\circ\phi_{y})^{-1}B(W)$
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in $\mathcal{M}$ . Next, denote by $V$ the space of D-valued continuous functions on
$[0, \infty)$ endowed with the compact uniform topology and let $B_{t}(V)=\rho_{t}^{-1}B(V)$ ,

where the stopped operator $\rho_{t}$ : $V\rightarrow V$ is defined as in (2.4). Furthermore, in
what follows, for $z=(x, y)\in\overline{D}$, we set

$\phi_{z}=\phi_{y}$ , $\mathcal{M}_{t}^{z}=\mathscr{H}$ .
Following Watanabe ([18], [19]), who has investigated the concept of

strong solutions for It\^o’s stochastic differential equations, we define the fol-
lowing concept.

DEFINITION 2.3. A function $\overline{z}:[0$ , oo) $\times\overline{D}\times W\ni(t, z, w)\rightarrow\overline{z}(t, z, w)\in\overline{D}$ is
said to be the maximum strong solution of (1.1), if it satisPes the following
conditions (i), (ii), (iii) and (iv).

(i) The mapping: $\overline{D}\times W\ni(z, w)\rightarrow\overline{z}(\cdot, z, w)\in V$ is $B(\overline{D}\times W)/B(V)$-measur-
able.

(ii) For each $z\in\overline{D}$, the mapping: $W\ni w\rightarrow\overline{z}(\cdot, z, w)\in V$ is $\mathcal{M}_{t}^{z}/B_{t}(V)-$

measurable for every $t\geqq 0$ .
(iii) For each $z=(x, y)\in\overline{D},\overline{z}(t, z, w)=(\overline{x}(t;x, y;w),$ $y(t, y, w))$ is the

maximum relaxed solution of (1.1) over the probability space $(W, \mathcal{M}, P;\mathcal{M}_{t}^{z})$

with initial value $z$ and with underlying Brownian motion $w(t)=(u(t), v(t),$ $w(t))$ .
(iv) Let $z(t)$ be the maximum relaxed solution of (1.1) over a probability

space $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ with underlying Brownian motion $B(t)=(B(t), b(t),$ $g(t))$ .
Then

$P$[$z(t)=\overline{z}(t,$ $z(O),$ $B)$ for all $t\geqq 0$] $=1$ .
Similarly, we define the minimum strong solution $\underline{z}(t, z, w)$ of (1.1). If the
maximum strong solution and the minimum strong solution exist and
$P[\overline{z}(\cdot, z, w)=\underline{z}(\cdot, z, w)]=1$ for each $z\in\overline{D}$, then we say that the equation (1.1)

has a unique strong solution.
THEOREM 2.1. SuppOse that the coefficients $\alpha(x)$ and $\beta(x)$ of (1.1) satisfy the

conditions (A) and (B), respectively. Then, there exist the maximum strong solu-
tion and the minimum strong solution, and they have the shift ProPerty, that is,

for each finite $(\mathcal{M}_{t}^{z})$ -stoPping time $S$ , with probability one

$z(\cdot+S, z, w)=z(\cdot, z(S, z, w), \theta_{S}\circ\phi_{z}w)$ ,

provided $z(t, z, w)$ is $\overline{z}(t, z, w)$ or $\underline{z}(t, z, w)$ .
REMARK 2.3. The system $\{W,\overline{z}(t, z, w), \mathcal{M}_{t}^{z}, P;z\in\overline{D}\}$ is a diffusion pro-

cess on $\overline{D}$, that is, it has continuous paths and satisfies the strong Markov
property: Let $z\in\overline{D}$ and let $S$ be a finite $(\mathcal{M}_{\dot{t}})$-stopping time. Then

$\int_{W}L(w)f(\overline{z}(t+S, z, w))P(dw)=\int_{W}L(w)P(dw)\int_{W}f(\overline{z}(t,\overline{z}(S, z, w), w^{\prime}))P(dw^{\prime})$
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for every bounded $\mathcal{M}_{S}^{z}$-measurable function $L$ and every bounded $B(\overline{D})$-meas-
urable function $f$.

The system consisting of the minimum strong solution has the same pro-
perty.

\S 3. Stochastic differential equation on the boundary.

Let $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ be a probability space with a Brownian motion $(B(t)$ ,
$b(t),$ $g(t))$ satisfying the condition (i) of Definition 2.1. Suppose that the prob-
ability space satisfies the usual condition, that is, $(\Omega, \mathcal{F}, P)$ is complete, $\mathcal{F}_{0}$

contains all P-null sets of $\mathcal{F}$ and $\mathcal{F}_{t}=\mathcal{F}_{t+}\equiv\bigcap_{\epsilon>0}\mathcal{F}_{t+\text{\’{e}}}(t\geqq 0)$ . Let $\phi(t)$ be the
process defined by (1.3).

LEMMA 3.1. Let $\phi^{-1}(t)=\inf\{u:\phi(u)>t\}$ and let $Y(t)$ be a bounded predictable
process on $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ . Then we have, with probability one,

(i) $\int_{0}^{t}Y(s)d\phi(s)=\int_{0}^{\phi^{(t)}}Y(\phi^{-1}(s))ds$ $(t\geqq 0)$ ,

(ii) $\int_{0}^{t}Y(s)dg(\phi(s))=\int_{0}^{\phi^{(t)}}Y(\phi^{-1}(s))dg(s)$ $(t\geqq 0)$ .

PROOF. The assertion (i) is well-known (cf. [9], Chap. VII, T.12). To
prove the second assertion, it is enough to consider the case of step functions.
For $0=u_{0}<u_{1}<\ldots<u_{n}=t$ , let

$Y(s)=\sum_{i=0}^{n-1}Y_{i}I_{Iu_{i},u_{i+1})}(s)$ ,

where $Y_{i}$ are bounded $\mathcal{F}_{u_{i}}$-measurable functions. Then

$Y(\phi^{-1}(s))=\sum_{i=0}^{n-1}Y_{i}I_{\zeta u_{i},u_{i+1})}(\phi^{-1}(s))$

$=\sum_{i=0}^{n-1}Y_{i}I_{I\phi^{(u_{i})}\phi^{(}u_{i+1}))}(s)$ ,

because the inequality $u_{i}\leqq\phi^{-1}(s)<u_{i+1}$ is equivalent to the inequality $\phi(u_{i})\leqq$

$s<\phi(u_{i+1})$ . On the other hand, setting $\mathcal{B}_{u}=\mathcal{F}_{\phi^{-1(u)}}$ , then $\mathcal{F}_{u}\subset \mathcal{B}_{\phi^{(u)}},$ $g(t)$ is a
$(\mathcal{B}_{t})$-Brownian motion and $\phi(u)$ is a $(\mathcal{B}_{t})$-stopping time. Hence,

$\int_{0}^{\phi^{(t)}}Y(\phi^{-1}(s))dg(s)=\sum_{i=0}^{n-1}Y_{i}\{g(\phi(u_{i+1}))-g(\phi(u_{i}))\}$

$=J_{0}^{t}Y(s)dg(\phi(s))$ . Q. E. D.

A process $l(t)$ defined on a probability space $(\Omega, \mathcal{B}, P;\mathcal{B}_{t})$ is said to be a
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one-dimensional $(\mathcal{B}_{t})$-Cauchy process, if $1(t)$ is a L\’evy process adapted to $(\mathcal{B}_{t})$

and for $0\leqq s<t,$ $\lambda\in R^{1}$

$E[\exp\{i\lambda(l(t)-l(s))\}|\mathcal{B}_{s}]=\exp\{-|\lambda|(t-s)\}$ .

We consider a stochastic differential equation

(3.1) $d\xi(t)=dl(t)+\alpha(\xi(t))dt+\beta(\xi(t))dg(t)$ ,

where $1(t)$ is a Cauchy process and $g(t)$ is a Brownian motion .
DEFINITION 3.1. By a relaxed solution of (3.1), we mean a real process $\xi(t)$

over a probability space $(\Omega, \mathcal{B}, P;\mathcal{B}_{t})$ satisfying the following conditions (i),
(ii), (iii) and (iv).

(i) There are a one-dimensional $(\mathcal{B}_{t})$-Cauchy process $1(t)(l(O)=0)$ and a
one-dimensional $(\mathcal{B}_{t})$-Brownian motion $g(t)(g(O)=0)$ .

(ii) With probability one, the paths of $\xi(t)$ are right continuous and have
left-hand limits.

(iii) $\xi(t)$ is adapted to $(\mathcal{B}_{t})$ .
(iv) With probability one, for $0\leqq s<t$ ,

$\xi(t)-\xi(s)\leqq l(t)-l(s)+\int_{s}^{t}\overline{\alpha}(\xi(u))du+\int_{s}^{t}\beta(\xi(u))dg(u)$ ,

$\xi(t)-\xi(s)\geqq l(t)-l(s)+\int_{s}^{t}\underline{\alpha}(\xi(u))du+\int_{s}^{t}\beta(\xi(u))dg(u)$ .

The process $(1(t), g(t))$ is called the underlying process for the solution $\xi(t)$ .
REMARK 3.1. In the above definition, we can replace the condition (iv) by

the condition:
(iv’) There is a well measurable process $\alpha(t)$ such that with probability

one,

$\xi(t)=\xi(0)+l(t)+\int_{0}^{t}\alpha(s)ds+\int_{0}^{t}\beta(\xi(s))dg(s)$ $(t\geqq 0)$

and
$\alpha(s)\in A[\xi(s)]$ for all $s\geqq 0$ .

DEFINITION 3.2. We say that the uniqueness of solutions holds for (3.1) if
any two solutions $\xi_{1}(t)$ and $\xi_{2}(t)$ , defined on a common probability space with
$\xi_{1}(0)=\xi_{2}(0)$ and with a common underlying process, are equal with probability
one.

The strong solution of (3.1) is defined in the analogous way to the case
of (1.1). Denote by $D$ the space of real right continuous functions on $[0, \infty$)
having limits from the left and by $D_{0}$ the subset of $D$ consisting of functions
vanishing at $0$ . We endow the Skorohod topology on the space $D$ . Then $D_{0}$
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is a closed subset of $D$ . Set $U=D_{0}\times C_{0}$ and define the stopped operators $\rho_{t}$ :
$U\rightarrow U$ and $\rho_{t}$ : $D\rightarrow D$ as in (2.4). Let $R$ be the measure on $(U, B(U))$ induced
by a process $(l(t), g(t))$ , where $1(t)$ and $g(t)$ are a Cauchy process and a
Brownian motion defined on a common probability space. Denote by $\mathcal{G}$ the
R-completion of $B(U)$ and by $\mathcal{G}_{t}$ the R-completion of $B_{t}(U)\equiv\rho_{t}^{-1}B(U)$ in $\mathcal{G}$ .

DEFINITION 3.3. By the maximum strong solution of (3.1), we mean a func-
tion $\xi;[0, \infty$) $\times R^{1}\times U\ni(t, x, u)\rightarrow\xi(t, x, u)\in R^{1}$ satisfying the following condi-
tions (i), (ii), (iii) and (iv).

(i) The mapping: $R^{1}\times U\ni(x, u)\rightarrow\overline{\xi}(\cdot, x, u)\in D$ is $B(R^{1} \times U)/B(D)$-meas-
urable.

(ii) For $x\in R^{1}$ , the mapping: $U\ni u\rightarrow\xi(\cdot, x, u)\in D$ is $\mathcal{G}_{t}/B_{t}(D)$-measurable
for each $t\geqq 0$, where $B_{t}(D)=\rho_{t}^{-1}B(D)$ .

(iii) For each $x\in R^{1},\overline{\xi}(t, x, u)$ is the maximum relaxed solution of (3.1)

over the probability space $(U, \mathcal{G}, R;\mathcal{G}_{t})$ with initial value $x$ and with under-
lying process $u(t)=(P(t), q(t))$ .

(iv) If $\xi(t)$ is the maximum relaxed solution of (3.1) over a probability
space $(\Omega, \mathcal{B}, P;\mathcal{B}_{t})$ with underlying process $L(t)=(l(t), g(t))$ ,

$P$ [$\xi(t)=\xi(t,$ $\xi(0),$ $L)$ for all $t\geqq 0$] $=1$ .

The minimum strong solution $\underline{\xi}(t, x, u)$ of (3.1) is defined similarly. If the
maximum strong solution and the minimum strong solution exist and $R[\overline{\xi}(\cdot, x, u)$

$=\underline{\xi}(\cdot, x, u)]=1$ for all $x\in R^{1}$ , then we say that the equation (3.1) has a unique
strong solution.

LEMMA 3.2. Let $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ be a probability space with a Brownian mo-
tion $(B(t), b(t),$ $g(t))$ satisfying the condition (i) of Definition 2.1. Let $y(t)$ and
$\phi(t)$ be the prOcesxs defined from $b(t)$ as in (1.2) and (1.3), respectively. SuppOse
that the Probability space satisfies the usual condition. Set

$l(t)=B(\phi^{-1}(t))-B(\phi^{-1}(0))$ , $\mathcal{B}_{t}=\mathcal{F}_{\psi^{-1(t)}}$ .
Then we have:

(i) Let $z(t)=(x(t), y(t))$ be a relaxed solution of (1.1) over the prObability
space $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ with underlying Brownian motion $(B(t), b(t),$ $g(t))$ . If we
set $\xi(t)=x(\phi^{-1}(t))$ , then $\xi(t)$ is a relaxed solution of (3.1) over the probability
space $(\Omega, \mathcal{F}, P;\mathcal{B}_{t})$ with $\xi(0)=x(0)+B(\phi^{-1}(0))$ and with underlying process
$(l(t), g(t))$ . Moreover, with probability one,

$x(t)=B(t)-B(\phi^{-1}(0))+\xi(\phi(t))-l(\phi(t))$ , $t\geqq 0$ .

(ii) Take an $\mathcal{F}_{0}$-measurable real function $x_{0}$ . Let $\xi(t)$ be a relaxed solution
of (3.1) over the probability space $(\Omega, \mathcal{F}, P;\mathcal{B}_{t})$ with $\xi(0)=x_{0}+B(\phi^{-1}(0))$ and
with underlying process $(l(t), g(t))$ . If we set
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$x(t)=B(t)-B(\phi^{-1}(0))+\xi(\phi(t))-l(\phi(t))$ $(t\geqq 0)$ ,

then $z(t)=(x(t), y(t))$ is a relaxed solution of (1.1) over the probability space
$(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ with $x(O)=x_{0}$ and with underlying Brownian motion $(B(t), b(t),$ $g(t))$ .
Furthermore, with probability one,

$x(\phi^{-1}(t))=\xi(t)$ $(t\geqq 0)$ .

PROOF. Using Lemma 3.1, we have the assertion (i). So, we prove the
assertion (ii). Obviously we have by the definition of $x(t)$ that, with prob-
ability one,

$x(\phi^{-1}(t))=\xi(t)$ for all $t\geqq 0$ ,

because $\phi\circ\phi^{-1}(t)=t(t\geqq 0)$ . The paths of $x(t)$ are continuous. Next, we show
that $x(t)$ is adapted to $(\mathcal{F}_{t})$ . For a $(\mathcal{B}_{t})$-stopping time $T$ , denote by $\mathcal{B}_{T-}$ the
$\sigma- field$ generated by $\mathcal{B}_{0}\cup\{A\cap(t<T):A\in \mathcal{B}_{t}, t\geqq 0\}$ . Note that for each $t\geqq 0$ ,
$\phi(t)$ is a $(\mathcal{B}_{s})$-stopping time. We see that

(3.2) $\mathcal{B}_{\phi^{(t)-1\}}}\subset \mathcal{F}_{t}\phi^{-1(0)}\leqq t$} for all $t\geqq 0$ ,

that is,
$B\cap\{\phi^{-1}(0)\leqq t\}\in \mathcal{F}_{t}$ for all $B\in \mathcal{B}_{\phi^{(t)-}}$ .

In fact, if $B\in \mathcal{B}_{0}$ , then $B\cap\{\phi^{-1}(0)\leqq t\}\in \mathcal{F}_{t}$ , because $\phi^{-1}(0)$ is an $(\mathcal{F}_{s})$-stopping
time. Let $A\in \mathcal{B}_{u}$ . Then $A\cap\{\phi^{-1}(u)<v\}\in \mathcal{F}_{v}$ for all $v$ , because $\phi^{-1}(u)$ is an
$(\mathcal{F}_{s})$-stopping time and $\mathcal{F}_{v}=\mathcal{F}_{v+}$ . If $v>t$ , then $\{u<\phi(t)\}\subset\{\phi^{-1}(u)<v\}$ . Hence,
for $v>t$ ,

$A\cap\{u<\phi(t)\}=A\cap\{\phi^{-1}(u)<v\}\cap\{u<\phi(t)\}\in \mathcal{F}_{v}$ .
Therefore, using that $\mathcal{F}_{t}=\mathcal{F}_{t+}$ , we have $A\cap\{u<\phi(t)\}\in \mathcal{F}_{t}$ , so that

$A\cap\{u<\phi(t)\}\cap\{\phi^{-1}(0)\leqq t\}\in \mathcal{F}_{t}$ .

This shows that (3.2) holds. Since the process $\xi(s)-l(s)$ is adapted to $(\mathcal{B}_{s})$ and
has continuous paths, it is predictable (see [3], T22). So $\xi(\phi(t))-l(\phi(t))$ is
$\mathcal{B}_{\phi^{(t)-}}$ -measurable (see [3], T20). Therefore $x(t)I_{\{\phi^{-1(0)\leqq t1}}$ is $\mathcal{F}_{t}$ -measurable.
On the other hand, $x(t)I_{\{\psi-1(0)>tI}=(x_{0}+B(t))I_{\{\phi^{-1(0)>t\}}}$ is also $\mathcal{F}_{t}$ -measurable.
This proves that $x(t)$ is $\mathcal{F}_{t}$ -measurable. It is easy to see that $x(t)$ satisfies
the condition (iv) of Definition 2.1. Hence $x(t)$ is a relaxed solution of (1.1)

over the probability space $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ with initial value $x_{0}$ and with under-
lying Brownian motion $(B(t), b(t),$ $g(t))$ . Q. E. D.

\S 4. Construction of the solution.

Let $\phi(t, y, v)$ and $y(t, y, v)$ be the processes defined by (2.1) and (2.2), re-
spectively. If the shift operator $\theta_{s}$ : $C_{0}\rightarrow C_{0}$ is defined as in (2.5), then, by ele-
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mentary fashion, we have
LEMMA 4.1. (i) For $y,$ $y^{\prime}\geqq 0;v,$ $v^{\prime}\in C_{0}$ ; $T>0$ ,

$\Vert\phi(\cdot, y, v)-\phi(\cdot, y^{\prime}, v^{\prime})\Vert_{T}\leqq|y-y^{\prime}|+\Vert v-v^{\prime}\Vert_{T}$ .
(ii) For $t,$ $s\geqq 0,$ $y\geqq 0,$ $v\in C_{0}$ ,

$\phi(t+s, y, v)=\phi(s, y, v)+\phi(t, y(s, y, v), \theta_{s}v)$ .
(iii) For $t,$ $s\geqq 0,$ $y\geqq 0,$ $v\in C_{0}$ ,

$y(t+s, y, v)=y(t, y(s, y, v), \theta_{s}v)$ .
We first prove Theorem 2.1 under stronger assumptions on the coefficients.
PROPOSITION 4.1. SuPpose that $\alpha(x)$ and $\beta(x)$ of the coefficients of (1.1)

satisfy the conditions (A) and (B), respectively. Then (1.1) has a unique strong
solution, and it has the shift property.

PROOF. Consider the equation (3.1) with coefficients $\alpha(x)$ and $\beta(x)$ . Then,
applying the same method as in Yamada and Watanabe [19], it is easy to see
that the uniqueness holds for (3.1). So, using Lemma 3.2, the uniqueness holds
for (1.1). APplying Skorohod’s method, we see that for any probability meas-
ure $\mu$ on $B(\overline{D})$ there exists a solution of (1.1) with initial distribution $\mu$ on the
Wiener space (cf. [11], [15]). Next, we will prove that (1.1) has a unique
strong solution. For $z=(x, y)\in\overline{D}$, let

$W^{\prime}=\{w:\varliminf_{t\infty}\phi(t, y, w)=\infty\}$ .

Then $W^{\prime}$ is a Borel set of $W$. Since $\phi_{z}$ is continuous and $\phi_{z1W^{\prime}}$ is an injection,
it follows from Kuratowski’s theorem that $\phi_{z}(W^{\prime})$ is a Borel set of $W$. Let
$z(t)$ be a solution on a probability space $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ with initial value $z$ and
with underlying Brownian motion $B(t)=(B(t), b(t),$ $g(t))$ . Denote by $P_{z}$ the
probability measure on $(V\times W, B(V\times W))$ induced by the process $(z(t), B(t))$ .
Take the projection $\pi;VXW\rightarrow W$. Then the image measure $\pi P_{z}$ is the Wiener
measure $P$ on $(W, B(W))$ . Denote by $P_{z}$ the image measure $\phi_{z}\circ\pi P_{z}$ . Then
$P_{z}=\phi {}_{z}P$. Since $V\times W$ is a Polish space, there exists a disintegration $Q_{z}’$ ’(dvdw)

of $P_{z}$ by $\phi_{z}\circ\pi$ (see [4]). Let

$Q_{z}(w^{\prime} ; dv)=Q_{l}^{A^{\prime}}(dv\times W)$ .

Since $P(W^{\prime})=1,$ $\phi_{z1W^{\prime}}$ is an injection and since $Q_{z}^{\prime}$ (dvdw) is concentrated on
$(\phi_{z^{Q}}\pi)^{-1}(\{w^{\prime}\})(P_{z^{-}}a.s. w^{\prime}),$ $Q_{z}(\phi_{z}w;dv)$ satisfies the following conditions:

(i) for fixed $w\in W,$ $Q_{z}(\phi_{z}w;dv)$ is a probability measure on (V, $B(V)$);
(ii) for fixed $A\in B(V),$ $Q_{z}(\phi_{z}w;A)$ is $\phi_{z}^{-1}B(W)$-measurable;
(iii) for $A\in B(V)$ and $B\in B(W)$ ,
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$P_{z}(A\times B)=\int_{B}Q_{z}(\phi_{z}w;A)P(dw)$ .

Take another solution $z^{\prime}(t)$ of (1.1) over a probability space with initial value
$z$ and with underlying Brownian motion $B^{\prime}(t)$ . Denote by $P_{z}^{\prime}$ the measure on
$(V\times W, B(V\times W))$ induced by the process $(z^{\prime}(t), B^{\prime}(t))$ and define $Q_{z}^{\prime}(w^{\prime} ; dv)$

from $P_{z}^{\prime}$ as before. Moreover, define a probability measure $Q$ on $(V\times V\times W$,
$B(V\times V\times W))$ by

$Q(dvdv^{\prime}dw)=Q_{z}(\phi_{z}w;dv)Q_{z}^{\prime}(\phi_{z}w;dv^{\prime})P(dw)$ .
Then, in the same way as in [18], [19], we have $Q(v=v^{\prime})=1$ and hence there
exists a mapping $F_{z}$ : $W\rightarrow 7^{\prime}$ such that

(i) $Q[v=v^{\prime}=F_{z}(w)]=1$ ;

(ii) $F_{z}$ is $\phi_{z}^{-1}B(W)/B(V)$-measurable and $\mathcal{M}_{t}^{z}/B_{t}(V)$-measurable for each
$t\geqq 0$ ;

(iii) $F_{z}$ is a solution of (1.1) over the probability space $(W, \mathcal{M}, P;\mathcal{M}_{t}^{z})$

with initial value $z$ and with underlying Brownian motion $w(t)$ . Hence, to
prove that $F_{z}(w)\equiv F(z, w)$ is the unique strong solution of (1.1), it remains to
show that $F(z, w)$ is measurable in $(z, w)$ . We can write $F(z, w)$ in component
wise

$F(z, w)=(x(\cdot, z, w), y(\cdot, y, w))$ ,

where $y(t, y, w)$ is the process defined by (2.2). So, we will prove that $x(\cdot, z, w)$

is measurable. To do this, we construct the unique strong solution of (3.1).
In the same way as in the above argument, we can get a mapping $G:R^{1}\times U$

$\ni(x, u)\rightarrow G(x, u)\in D$ such that
(i) for each $x\in R^{1}$ , the mapping: $U\ni u\rightarrow G(x, u)\in D$ is $B(U)/B(D)-$

measurable and $\mathcal{G}_{t}/B_{t}(D)$-measurable for each $t\geqq 0$ ;
(ii) for each $x\in R^{1}$ , $G(x, u)$ is a solution of (3.1) over the probability

space $(U, \mathcal{G}, R;\mathcal{G}_{t})$ with initial value $x$ and with underlying process $u(t)=$

$(p(t), q(t))$ ;
(iii) rewriting $G(x, u)=G(x;p, q)$ for $u=(P, q)\in U$, we have

$R[G(x;p, q)-P\in C]=1$ for all $x\in R^{1}$

Since $C$ is a Borel set of $D$ , we may assume that

(iii’) $H(x, u)\equiv H(x;p, q)=G(x;p, q)-p\in C$

for $u=(p, q)\in U$ and $x\in R^{1}$ .
Let $M$ be the set of all $B(U)/B(C)$-measurable mappings from $U$ to $C$,
with two mappings identified if they are equal R-almost everywhere. If $f$ is
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a measurable mapping from $U$ to $C$, we denote by $[f]$ the equivalence class
containing $f$. Define a metric $\rho$ on $M$ by

$\rho([f], [g])=\int_{U}\frac{d(f(u),g(u))}{1+d(f(u),g(u))}R(du)$ ,

where $d$ is the metric on $C$. By virtue of the uniqueness of solutions and the
continuity of the coefficients of (3.1), the mapping $\hat{H}$ : $R^{1}\ni x\rightarrow[H(x, )]\in M$ is
continuous. Therefore, it follows from Chung and Doob’s result ([2], Proposi-
tion 32) that $H$ has a measurable version (again denote by $H$), that is, $H$ is
$B(R^{1}\times U)/B(C)$-measurable. Furthermore, we find that $G(x, u)$ is the unique
strong solution of (3.1). Therefore, by Lemma 3.2, we have P-almost surely,

$x(\cdot, z, w)=u(\cdot)-u(\phi^{-1}(0, y, v))$

$+H(x+u(\phi^{-1}(0, y, v));u(\phi^{-1}(\cdot, y, v))-u(\phi^{-1}(0, y, v)), w)(\phi(\cdot, y, v))$ .

Hence $x(\cdot, z, w)$ has a measurable version, that is, we may assume that the
mapping: $\overline{D}\times W\ni(z, w)\rightarrow x(\cdot, z, w)\in C$ is $B(\overline{D}\times W)/B(C)$-measurable. Moreover,
setting $z(t, z, w)=(x(t, z, w), y(t, y, w))$ , it is easily seen that for any solution
$z(t)$ over a probability space with underlying Brownian motion $B(t)$ , with
probability one,

$z(t)=z(t, z(O),$ $B$) for all $t\geqq 0$ .
Finally, by virtue of the uniqueness, $z(t, z, w)$ has the shift property. Q. E. D.

Next, exactly in the same way as in Ikeda and Watanabe [6], we can
obtain the following comparison theorem for solutions of (1.1). So, the proof
will be omitted.

THEOREM 4.1. SuppOse that $\beta(x)$ satisfies the condition (B). Let $\alpha_{1}(x)$ and
$\alpha_{2}(x)$ be real continuous functions on $R^{1}$ such that

(4.1) $\alpha_{1}(x)<\alpha_{2}(x)$ for all $x\in R^{1}$ .
Let $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ be a pr0bability space satisfying the usual condition. Supp0se
that on this pr0bability space, the following stochastic pr0cesses are given:

(i) two real $\mathcal{F}_{t}$ -adapted continuous pr0cesses $x_{1}(t)$ and $x_{2}(t)$ ;
(ii) a three-dimensional Brownian motion $(B(t), b(t),$ $g(t))$ satisfying the

condition (i) of Definition 2.1;
(iii) two real $(\mathcal{F}_{t})$-adapted well measurable pr0cesses $\alpha_{1}(t)$ and $\alpha_{2}(t)$ .

Assume that the following conditions satisfy with pr0bability one:

$x_{i}(t)=x_{i}(0)+B(t)+\int_{0}^{t}\alpha_{i}(s)d\phi(s)+\int_{0}^{t}\beta(x_{i}(s))dg(\phi(s))$ $(i=1,2)$ ,

$x_{1}(0)\leqq x_{2}(0)$ ,
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$\alpha_{1}(t)\leqq\alpha_{1}(x_{1}(t))$ for all $t\geqq 0$ ,

$\alpha_{2}(t)\geqq\alpha_{2}(x_{2}(t))$ for all $t\geqq 0$ .
Then we have

(4.2) $P$[ $x_{1}(t)\leqq x_{2}(t)$ for all $t\geqq 0$] $=1$ .
If, furthermore, the uniqueness of solutions holds for at least one of the sto-
chastic differential equations (1.1) with coefficients $\alpha(x)=\alpha_{i}(x)$ and $\beta(x)(i=1,2)$ ,
then we have the same conclusion (4.2) replacing(4.1) by the following weaker
condition:

(4.1) $\alpha_{1}(x)\leqq\alpha_{2}(x)$ for all $x\in R^{1}$ .

PROOF OF THEOREM 2.1. Since $\overline{\alpha}(x)$ is bounded upper semi-continuous, it
can be monotonically approximated by a decreasing sequence $\{\alpha_{n}(x)\}$ of uni-
formly bounded Lipschitz continuous functions. Let $z_{n}(t)=(x_{n}(t), y(t))(n=$

$1,$ 2, ) be the solutions of (1.1) with coefficients $\alpha(x)=\alpha_{n}(x)$ and $\beta(x)$ over a
probability space $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ with underlying Brownian motion $(B(t), b(t)$ ,
$g(t))$ , that is, $y(t)$ and $\phi(t)$ are the processes defined from $b(t)$ as in (1.2) and
(1.3), respectively, and with probability one

$x_{n}(t)=x_{n}(0)+B(t)+\int_{0}^{t}\alpha_{n}(x_{n}(s))d\phi(s)+\int_{0}^{t}\beta(x_{n}(s))dg(\phi(s))$ .

Suppose that $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ satisfies the usual condition. Moreover, assume
that $\{x_{n}(0)\}$ is a decreasing sequence of $\mathcal{F}_{0}$-measurable real functions and
$x_{n}(0)\rightarrow\overline{x}(0)$ as $ n\rightarrow\infty$ , with probability one. Then, by Theorem 4.1, $x_{n}(t)$ con-
verges to an $(\mathcal{F}_{t})$-adapted process $\overline{x}(t)$ . Hence we can choose a subsequence

$\{n^{\prime}\}$ of $\{n\}$ such that with probability one, $\int_{0}^{t}\beta(x_{n^{\prime}}(s))dg(\phi(s))$ converges to

$\int_{0}^{t}\beta(\overline{x}(s))dg(\phi(s))$ as $ n^{\prime}\rightarrow\infty$ , uniformly on each compact time interval. For

simplicity, we write $\{n^{\prime}\}=\{n\}$ again. Then

$\overline{x}(t)=\overline{x}(0)+B(t)+\lim_{n\rightarrow\infty}\int_{0}^{t}\alpha_{n}(x_{n}(s))d\phi(s)+\int_{0}^{t}\beta(\overline{x}(s))dg(\phi(s))$ .

Since $\{\alpha_{n}\}$ is uniformly bounded, we find that, with probability one,

$\lim_{n\rightarrow\infty}\int_{0}^{t}\alpha_{n}(x_{n}(s))d\phi(s)$ is continuous in $t$ . Therefore, $\overline{x}(t)$ is a continuous process.

By Fubini’s lemma and Lemma 2.2,

$\lim_{n\rightarrow\infty}\int_{s}^{t}\alpha_{n}(x_{n}(u))d\phi(u)\leqq\int_{s}^{t}\overline{\alpha}(\overline{x}(u))d\phi(u)$ for all $0\leqq s<t$ ,

with probability one. Furthermore, with probability one
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$\lim_{n\rightarrow\infty}\int_{s}^{t}\alpha_{n}(x_{n}(u))d\phi(u)\geqq\int_{s}^{t}\underline{\alpha}(\overline{x}(u))d\phi(u)$ for all $0\leqq s<t$ ,

because $\lim_{n\rightarrow}\inf_{\infty}\alpha_{n}(x_{n}(u))\geqq\underline{\alpha}(\overline{x}(u))$ . Therefore, $\overline{z}(t)=(\overline{x}(t), y(t))$ is a relaxed

solution with coefficients $\alpha(x)$ and $\beta(x)$ and with initial value $\overline{z}(0)=(\overline{x}(0), y(O))$

over the probability space $(\Omega, \mathcal{F}, P;\mathcal{F}_{t})$ . By Remark 2.1 and Theorem 4.1, it
follows that $\overline{z}(t)$ is the maximum relaxed solution of (1.1) with initial value
$\overline{z}(0)$ . Hence for any probability measure $\mu$ on $B(\overline{D})$ , we can construct the
maximum relaxed solution of (1.1) with initial distribution $\mu$ over a probability
space. Denote by $z_{n}(t, z, w)$ the unique strong solution of (1.1) with coefficients
$\alpha_{n}(x)$ and $\beta(x)$ . Then for any probability measure $\mu$ on $B(\overline{D})$ , we have

$\mu\times P$ [$z_{n}(\cdot,$ $z,$ $w)$ converges in $V$ as $ n\rightarrow\infty$] $=1$ .
So if we set

$\overline{z}(\cdot, z, w)=\lim_{n\rightarrow\infty}z_{n}(\cdot, z, w)$ ,

then $\overline{z}(t, z, w)$ is the maximum strong solution of (1.1). Finally, we show the
shift property of $\overline{z}(t, z, w)$ . We can write $\overline{z}(t, z, w)$ in component wise

$\overline{z}(t, z, w)=(\overline{x}(t;x, y;w),$ $y(t, y, w))$ for $z=(x, y)$ .

Let $S$ be a finite $(\mathcal{M}_{t}^{z})$-stopping time. By the shift property of $z_{n}(t, z, w)$ , we
have

$P[x_{n}(\cdot+S ; x, y ; w)=x_{n}(\cdot ; x_{n}(S ; x, y ; w), y(S, y, w);\theta_{s}\circ\phi_{z}w)]=1$ .
Since $P$[ $x_{n}(S;x,$ $y;w)\downarrow\overline{x}(S;x,$ $y;w)$ as $ n\rightarrow\infty$] $=1$ , it follows from Theorem
4.1 that

$P[\overline{x}(\cdot+S ; x, y ; w)=\overline{x}(\cdot ; \overline{x}(S;x, y ; w), y(S, y, w) ; \theta_{s^{Q}}\phi_{z}w)]=1$ .
Hence $\overline{z}(t, z, w)$ has the shift property. Q. E. D.

\S 5. Final remarks.

First, we will give a condition for the relaxed solutions to coincide with
the ordinary solutions.

THEOREM 5.1. SuppOse that (A) and (B) hold for the coefficients $\alpha(x)$ and
$\beta(x)$ of (1.1), respectively. Furthermore, assume that

$\underline{\alpha}(x)=\overline{\alpha}(x)$ $a$ . $e$ . $x$ ,

$\beta(x)>0$ for all $x\in R^{1}$ .
Then, the relaxed solutions of (1.1) coincide with the ordinary solutions and the
uniueqness of solutions holds for (1.1).
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PROOF. Consider the equation (3.1) with coefficients $\alpha(x)$ and $\beta(x)$ . Noting
Remark 3.1, it follows from the Krylov type inequality (see [8], Th\’eor\‘eme
$III_{15}$ , Corollaire $III_{16}$) that for any relaxed solution $\xi(t)$ of (3.1) over a prob-
ability space $(\Omega, \mathcal{B}, P;\mathcal{B}_{t})$ with underlying process $(l(t), g(t))$ ,

$E[\int_{0}^{t}I_{N}(\xi(s))ds]=0$

for every $t\geqq 0$ and Lebesgue measure null set $N$ of $R^{1}$ . By the assumption
and Lemma 2.1, $\underline{\alpha}(x)=\alpha(x)=\overline{\alpha}(x)a$ . $e$ . $x$ . Hence, with probability one,

$\xi(t)=\xi(0)+l(t)+\int_{0}^{t}\alpha(\xi(s))ds+\int_{0}^{t}\beta(\xi(s))dg(s)$ $(t\geqq 0)$ ,

that is, $\xi(t)$ is an ordinary solution of (3.1). On the other hand, it is well-
known that the uniqueness holds for solutions of the martingale problem as-
sociated with (3.1) (see [7], [13]). Therefore, the maximum relaxed solution
and the minimum relaxed solution of (3.1) over any probability space coincide,
that is, the uniqueness holds for (3.1). This implies that the uniqueness of
solutions holds for (1.1). Q. E. D.

REMARK 5.1. If $\alpha(x)$ is Riemann-integrable on each compact interval, then
$\overline{\alpha}(x)=\underline{\alpha}(x)a$ . $e$ . $x$ . If $\beta(x)>0$ and if the set $\{x;\overline{\alpha}(x)>\underline{\alpha}(x)\}$ has positive
Lebesgue measure, then the uniqueness of relaxed solutions of (1.1) does not
generally hold. There exists a bounded semi-continuous function $\alpha(x)$ satis-
fying such a condition.

In the case where $\beta=0$ , in [15], we discussed conditions for the unique-
ness of solutions, and a relation between the relaxed solutions of (1.1) and the
processes constructed by Motoo [10]. In this case, the maximum strong solu-
tion and the minimum strong solution can also be constructed by following
Viktrovskii [16] and the outline was given in [15]. However, the construc-
tion of the solutions in this paper lies in the same lines as in [14]. Some
conditions for the uniqueness of solutions were given in Theorem 2.2 in [15].
$lt$ should be noticed that the statement (ii) of the theorem is incorrect. To
correct it, in addition to the assumption of Theorem 2.2, (ii), we have to as-
sume that $\underline{a}(x)=\overline{a}(x)a$ . $e$ . $x$ , here $a(x)$ indicates $\alpha(x)$ in this paper.

Finally, we note that our result of this paper remains valid when we
replace the condition of the boundedness of $\alpha(x)$ and $\beta(x)$ by the condition:

$|\alpha(x)|+|\beta(x)|\leqq K(1+|x|)$ for all $x\in R^{1}$

with a positive constant $K$.
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