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§0. Introduction.

In 1971 Kerzman showed there exists a solution of d-equation with
bounded data which is Hoélder continuous for any exponent smaller than 1/2.
Since then many results have been obtained concerning this problem. Henkin-
Romanov and Range-Siu [5] proved the exact 1/2-Hélder estimate. More-
over Siu showed the Holder continuity of higher derivatives of the solu-
tion assuming the data are sufficiently smooth. In this paper we shall improve
Siu’s result and get a new estimate which is sharper in some tangential direc-
tions. We follow the method of Siu [6]; however, various parts of his cal-
culus are ameliorated. [ thank Professor H. Tanabe, who encouraged me to
write this paper and corrected my manuscript.

0.1. Notations.

Let 2 be a bounded strongly pseudoconvex domain in C* with C¥-boundary.
We assume that £ is represented as {z€C™; p(z)<0}, where p is a function
of class C¥ and in some neighborhood of 082 is strictly plurisubharmonic and
satisfies dp+0. We use the following notations;

D 0 1(6 . 0 0 0

- 0 1 .
T 0z, 2 —6}7—1 6yj>’ D= 0z, _~2—(8x,~ T ayj>’
lullo=sup{lu(z)|; z& 2},

lulle=sup{lu(z)—u@|/1z—L|*; {, z€2, {#z} +ulo
lull ;e=max{|D*DPully; |a|+|8| <k},

lull pre=max {| D*Dbul.; la|+|BI <k}
where kN and 0<e<l. For a form =3 f;dz,,

1fl e=max{llf:ll,; 1SiZn}.
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DEFINITION 0.1. A vector field ¥ on £ is called holomorphic tangential
when 0p(Y)=0 on 02, i.e. if Y=23)a4(2) 0/0z;+ 2 b;(z) 0/0Z;, then X a;(z)0p/0z;
=0 on 0.

When we differentiate forms, we use the Euclid connection, that is, we
differentiate them componentwise. In the next section, following Henkin
we shall construct an inverse operator for ¢ which we denote by 7. Our
main results are the followings.

THEOREM 1. Let N=k+2 and f be a 3-closed C*-(0.1) form on 2. Then

1T ks =Cillf1l e -

REMARK. Our improvement consists in the condition N=k+2. Y.T. Siu
required N=k+4 in [6].

THEOREM 2. Let N=k+2, f be a d-closed C*-(0.1) form on 2 and Y be a
C%-holomorphic tangential vector field. Then for \a|=k—1,

NYDT(Ollg=Cplfll %, for any j smaller than 1.

§1. Henkin’s kernel.

In this section we construct an inverse operator for ¢ following Henkin

[zl

1.1. Let
P 9= 5 28Ot 3 B, 52

Then

aCIaCJ (C)(Zt Ct)(zj"—c;) .

—Re F¥¢, 2)2 p(O)— p(2)+CIL—2 1%,

for |{—z| and |p({)| small. Moreover if we set

) F(Cr 2): ac (C)(Zt Cl)+2¢‘b J(F)(Zl C‘L)(ZJ C])

1 o
2 0C,0C;

—Re F({, 2)=C{p(0)—p(2)+ |{—2]%

for |{—z|, |p({)| and ¢ small. (c.f. [1], [4] and [5].)

1.2. As in Henkin we can prove the existence of a function @, 2)
defined in Vx02=1{; [ o) <y} X{z; p(z2)<v}, v>0, with the following pro-
perties :

(1) @, 2) belongs to C¥-{Vx?) and is holomorphic in z.

(2) @K, 2)+0 for z0, L=V, L#2z and p(Q)=p(2).

where ¢;, ({)=— #X.(0) (X.; a mollifier), then
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(3) For {’=0Q, there exist a neighborhood U of £° in V and a C¥-! non-

vanishing function H({, z) on UXU holomorphic in z such that @ 2)=
F(, 2)H(, z) on UXU.

(4) There exist n C¥-*! functions P;(, z), 1<i<n, on VX holomorphic
in z such that

0C =3 (—CIP 2 on VX4,
1.3. DEFINITION 1.1.

D) GG =C0(E, 2) B (VPPN - oo AdcPanal0),

where the notation 3 means o:P; is omitted, w({)=d{:A -+ AdE, and Cy=
(n—1)1/Q2xi)".
2) Letting

7;=2E—C)| 2L +(1=DP(L, 2)07'C, 2),
define

K& 2, )=Co 5 (=10 3camA -+ 5o AdganaholQ).

3) Letting 7,0)=(—1)*1d&,A - 7 -+ AdE,, we set
L@, 2)=—C,y|C—z| " 2 G—CtOnal).

4) K( z) is given by integrating K({, z, 1) from 0 to 1 in 4.
5) Moreover we write

CE 2)=ZCAL 2 DNnal), L& =2 LyE 2)rOA(©),

where C; and L; are defined by these equalities.

REMARK. The relations 3 (z,—;)n,=1 and X (z;,—;)P,=® imply d:C(, 2)
=0 and d¢ K, z, A)=0.

1.4. LEmMMA 1.2. Let

K 2= Ko G EA i for Ndunald).
Then K; ; has the following form:
Ko (G 2= % 04, 2)IC—21 3 Eu—EnCIAC, 2)
where C™* is CY¥~% and holomorphic in z.

PROOF. From the definition, the coefficient of dAAdZ, A i J-- AdEn A(©)
is as follows.
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Opy Oy 1% 071 Opy 01 1 % e
7 02 aCX agn R ' 02 aCl 5&11
p) '—l)k77k ........................... h——
OYn O i 7n 0nn O & & 7
04 dZ, oz, T ox ag, Cn
i 7 i 7

The terms which occur by derivating denominators are represented as some
linear combinations of the first two column vectors. So they can be omitted
from the above determinant. Hence computing the resulting determinant
proves the lemma.
1.5. The following formula is proved in Henkin [2].
u@)=| w0 2+ suOAKE 2-{ JuOnLE 2

for u=CY{(Q). ‘
DEFINITION 1.2. We define the operator T from the space of continuous
(0, 1) forms into the space of continuous functions by

T(H=|, AONKE 2=| AONLE 2.
One can see o7 (f)=/f, if df=0.

§2. Estimateé of kernels.

2.1. DEFINITION 2.1.

D oQ)=3100/0 7D Na(l).

0 n 0p 0
D S=gf-lopl (55 5 +00)

where A is the laplacian.

S; is a first order differential operator in the neighborhood of 02 where dp+0.
LEMMA 2.1. . The following two equalities hold on 08.

1) 10p 2@ AT Q=(—1)"8p/010(Q),

2) 19p %t QA(Q)=0p/010(0).

PrOOF. Since 30p/0¢;dl;+X>0p/0C;df;=0 on 82,

(1) ap/afjw(f)/\rk(i)z—ap/adeil/\ de-1/\de/\d€j+1 = AN ATHO)
=(=1)"**19p/0LsdTi A+ ] - Ndln AdLu ATH(E)
=(—=1)"0p/8C st (D) N (Q);
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(2) similarly 8p/8C;7 Q) A(Q)=0p/0C iz &) A(().

Multiplying both sides of (1) and (2) by dp/0; and summing up in j, we
get 1) and 2).

2.2. Cartan’s formula.
Let w be a form and X be a vector field. Then the following formula
(Cartan’s formula) holds. (c.f. Sternberg [7].)

Lyo=X-dot+dX — w),

where Ly is the Lie derivative and — is the interier product. In the above
formula we take X=0/0{;. Then the Lie derivative Ly agrees with the Euclid
connection because X is parallel. So Stoke’s theorem implies the following
lemma.

LEMMA 2.2. If w be a 2n—1) form, then

Sag%w: Sag’a% — do.

ExaMmpPLE 1. Let K({) be a d-closed (n, n—1) form and u() be a C* func-
tion. Then

Joa 3 WOK@) =1 o A {7~ KQY}.

We shall use this formula in section 3 for u=({—2)*(—%)# and K=X'C(, 2),
where X is coming later.

EXAMPLE 2. Let f be a d-closed (0,1) form and K({) be a C*-(n, n—2)
form. Then

foo a8 HONKQ)=—{_ O3~ a0}

We shall use this in the proof of
ExaMPLE 3. If a({) be a C! function, then

f1o 8 10@o@ =, 15,6010
Indeed on 092,
— d{aQaQ} =(— ) £8/38:{a©dp/35 0O A7,0
=0p/3¢,10p|~*{S0p/0%:0a/0C+a©Ap} 0(Q).

2.3. DEFINITION 2.2.
1) For feC* ),

2
ac;
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(E—2)*€—2)*

la€gisk al B!

DD?f(z).

F®E, =0—
2) For f=3 fiQ)dE, d-closed (fi=C),

f(k)(c; Z): éfi(k)(c’ Z)dzt ’
and for |7|=k+1, f{Q=DFf,({) where D?D,=Dr.
LEMMA 2.3. If f=C¥, then
D D DI =CIf a1 L—2] 5,
2)  WLf*DE, 291 =Clflle|—2|*1,

where W is 0/0z;, 0/0%,, 8/9C; or 8/3C;.
3) If f=Xf.d; is d-closed (f;€C*), then

C—2)"

lal+i7isk+r al 7!

FPE 2)=,0— D*f(2)5(E—2) .

PrROOF. 1) is a simple consequence of

€—2)*C~2)°*

=t al B!

JEDE, 2=k

g:(l—mk-lmﬁﬂ fz-00C—2))d6.

2) is obvious from 1) and some simple calculations. 3) See Siu [6] p. 174.
2.4. LEMMA 24. Let c be a positive constant. Then

1
Sm=1, z1>0 le—f—c < —%IOg (1+ _C—>

where x=(x,, -, xy)ERY, N=3 and do is the canonical measure of the unit
sphere in RY. (See Range-Siu [5] p. 342.)
LEMMA 2.5.

1) (1 +7r) "2 Vdx, - dxy<C,

S.’El>0, 1ZI<R

2) (x14+0-+7r) (2 +0Y) ¥ Vdx, - dxy<C(+|log dl?),

S11>0, lz|<R

3 (x14+0+73)" 2> N¥dx, - dxy<Co™ V%,

S:c1>o, 1ZI<R

where r’=x}+ - +x¥% and 0>0.
PrOOF. 1) and 3) See Range-Siu [5].
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2) (X1 +0+77) (" +0") " Vdx, - dxw

S|x|<R, z1>0

=CSfr(r2+52)drS >0(x1+r—i~5/r)da

1z1=1, 2y

<C50Rr(72+52)‘1 log (1+7/(r*+0))dr<C(1+|log d1%).

2.5. Later we shall prove that a function u on Q is a-Hélder continuous
by showing |grad u| <C|p(z)|~%, so the following proposition is important.
PROPOSITION 3.

D |, 1C—2l " dp<Ci+ | log (—p())),
2 {101 1¢—2]* " du<Cl1+(logl p(@)] 11,
|, 101zl dp<Clo@] e,

o 1e1g—zprdp<c,

where dp is the Lebesgue measure induced on 082.

PrROOF. It suffices to show the above inequalities when |p(z)| is small.
Let £° be the orthogonal projection of z to 0f£. We calculate the integral
near (° using some new coordinate system (x;, -+, Xsn-1) With x,=Im F(, 2)

(c.f. Henkin [1]).
Let S,={{<02; |{*-{|<e}. We divide the integral Sag into SS +Ss”'
1 1

Then ’ gsﬁ

<C where C depends on ¢ but not on |p(z)|. Thus we have only

to estimate the integrals on S;. Let d=]p(2)]|.
__Sl1-2n 2 2\-1,.3-2n
1) Ssllc 2| d;e<CSm<R(r L3t e Ay
<Clog (14+R?*/0%).

D [, 101121y

r4=2 J[(x A0+ r2)(r*+0%)1d xy -+ dxXon-,

Slz <R, £1>0

<C(1+|logdl®.
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We can show 3) and 4) analogously to the above using

2.6. DEFINITION 2.4. We introduce the notations,
1) XJ:a/aZJ+a/aC],
2)  K(z)=I1+[logl|p(2)|1*.

LEmMMA 26. 1) | X0, 2)| =C|L—=z].
2) Let u be a function defined in £ such that |grad u| <CK(z). Then u is

Hoblder continuous for any exponent smaller than 1.

PROOF. 1) is an easy consequence of (4) of the properties of @, 2).
2) One can show |u(z)—u(z")|=A.|lz—2z"|* for 0<a<1 by integrating du

along an appropriate path connecting z and z’.

§3. Estimates in the polynomial case.

Here we shall establish the Holder estimates of
S”Q(C—z)“((:—i)ﬁDlC(C, 2).  (Recall D;=3/dz,)
3.1. LEmMMA 3.1. For a function a({, z) which is smooth in z

Carpta =, 3 (5)(§)Drre—25ag, 21,

Proor. By induction on §, we shall prove

) CarDta=, 3 (§VDRCGHDMC—27Y ),

from which the conclusion follows easily. If f=0, it is trivial. Suppose (*)
is true for 8. We replace a by Dj;a. Combining the equality thus obtained
and the following relation

{(8/80)P((—2)"} D a=D,[{(8/60)**(C—2)"} a1+ {(8/90)%*0/0C (L —2)"} a,

we get (*) with Df=D;D? in the place of Df. This proves the lemma.

PROPOSITION 4. Let |y|=M=N—2. Then
alf 3 7 — 7 « 71 —N\a-To(f _ 5
[@a@-2rDcC = 5 (7)(5)p] @2 @-2PCC, 2).

ProoF. This is an easy conclusion from Lemma 3.1l
3.2. LeMMA 3.2. Let |y|=M=N—2. Then
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() pel, (G227 2)

=[G E—XCC 2+ 2 3 | €= all, /070

where a. is CYN*¥-4-1 gnd C* in z.

ProOOF. We shall prove this by induction on a. If a=0, there is nothing
to be proved. We assume (°) is true for «. Then we apply 9/0z; to (°), regard
0/0z; as X;—0/0(; under the integral sign and convert 9/0(; to S; using the
formula in Example 3 after Then we get

DD (C=2*E-270C H=| ,C~PCX,X°CC, 2)

|, 9/0LE—PE—2y X°C(C, 2)]

M-1
+2

k=0 lel=k

[,, X (€20, 20-*4C, 2a(0)

— (=25 (0t /074, 200

Now,

F‘BQ%[(C—ZW(C—E)VX‘”C(C, = {23027 A| 2

L XC(, z)] :

J

(See Example 1 after Lemma 2.21) But

XCC D=3 % 3

k=0 l=1 |el

(C—2ra. (&, 2/ 0™, 2)r ) Aal©),

k

where a.,, is in the class C¥*#-#-2 g0 these terms are allowed to appear in
the formula for a’. (D*=D;D*.)

(C—2)#*S,La./O"**(, 2)]

(¥ +e asAp+S*as _ (7’1+ k)ae(C, Z)Z(ZZ_C1)S*P1(Cy 2)
_‘(C Z)ﬁ BJ<C)[ ¢n+k<c’ Z) @n+k+1(c’ z) ]’

where Bj(c)z—%/mpv and S*=3X10p/0¢, 8/oC..

From the hypothesis a.eCY**-¥-1 g0 B;Apa., B;a.€C¥**-#-% and B;a.S*P;
eCV+#-%-1 Hence the above terms are allowed to appear in the formula for
’

«'. In a similar way we can decompose the term ({—z)?*X,[a.(C, 2)/
O™ *(, 2)0(0)] into sums of the desired form.
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3.3. The following lemma is proved in Siu [6].

LEMMA 3.3. Let k and m be integers such that m=k=N and G be an open
set of C™. Suppose 0p/9L;#0 on U where U is the open set appeared in 1.2.

Then for any h({, 2)EC*(UN0R) X G), there exists an h°({, z2)eC* ™ (UXG)
such that h°(&, 2)=h(, z) for {col2NU and 0h°/oC;=7(&, 2)p™ X&) for some
C*-™ function 7({, z) on UXG.

EXAMPLE. Suppose ap/az,-;bo on U. Then applying the lemma to 0p/0l;
and ¢; , we get a C' function F°({, z) such that

F° 2)=F& 20 on (UNndDx2,
|0F° /04, 2)| =CIE—z|]p)|V -2,

—Re F°((, 2)2C{pQ)—p)+|0—21%  for |p()| and |{—z]
small. F°(, z) will play an important role in the proofs of the following
lemmas.

3.4. In what follows in this section all functions are to be C* in z.
LEMMA 3.4. Let a(l, z) be a C* function and |Bl=k<=N—2. Then

[, C=2aC, 2/0mHC, 0@ <C Ke2)

PrOOF. If k=0, it is already shown in Let k=1. It suf-

fices to show the above inequality when |p(z)| is small. As in the proof of
‘let {° be the orthogonal projection of z to 02 and U be the
neighborhood of {° introduced in 1.2. Similarly to we divide

the integal S into the sum of S and Ssc where S,={(=02; |{—-{"| <e}. By
1

o0 Sy
the same reason as in we have only to estimate the integral on
S;. Since dp#0 near 92, we can assume 9p/9l,#0 near S,. By Lemma 21
there exists a C* function b(, z) such that on S,

(C==)a, 2)/O"**(, 2)o(O)=(—2)?b(C, 2)/F"**(, 2)r:(O) Ae(©) .

If we apply to b({, z), then we get a C' function 5°(, z) such that
b, 2)=0b°(, 2) for £=S, and

18b° /60,(L, 2)| <C| p(©)| *-*.
Let F°(, z) be the function in the example after and
B={{eC"; |[{-C1<einf° and S,=oBNL°.

Then we get the following by Stokes’ theorem.
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[, @282, DF4C, 2@ nal0)
={,d1C—2%°(C, 2F =4, ArDAWO)

[, @20 2P G DO R0

Since the distance between z and S, is larger than ¢, the integral on S, is
bounded.

|dLE€—2)°b°(C, 2F° " *(&, D)@ A (@]
<CIE—z[* p@QI*HF* " *(, )| +CIC—z]** oV ? | F* " *73(, 2)]
<C|C—z||F° ", 2)].

We compute the integral on B in an appropriate coordinate system (x,,
oy Xan) With x;=p(). Then

ClC—z||F°(, 2)| "' <C(xy+0+r) " r* 2" (r*+06%)
where r*=x}+ .- +x}, and d=|p(z)|. Hence by

|| dcc—20°C, DF°"*C, e 0@l <CKE).

REMARK. In the above lemma if |j3|=k%, then the bound C K(z) can be
replaced by a constant C.
LEMMA 35. Let k=<N-3, |Bl=Fk and a(l, z2)=C**'. Then

|grad | €=2%aC, 2/074C, 20Q] <C K@)

PrOOF. We differentiate the above integral under the integral sign. For
0/0z; compute directly and for 9/0z; regard it as X;—0/0(; and convert 9/9(;
to S;. Then the conclusion follows from

LEMMA 3.6. Let 1=k<N—1, |Bl=Fk, |7I=1 and a({, z2)=C*-'. Then

[, E=2PE—2ra(c, /074, 20Q)| <C KC2).
Proor. If k=1, then

|C—=2*C~2)a(C, )/ O™, 2)| <C|{—z|**"| @1,

thus the conclusion follows from [Proposition 3. Let 2=2. As in the proof of
we get
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— (3 —2)#(C—z 7

on S, for some b(¢, z2)C**. Next applying Lemma 3.3 we get the extensions
b°(, z) and ¢, z) of b(&, z) and ({—Z)" such that

13b° /62,1 =C| p(©)|*-* and |8c/aC,| =C|p(@)|¥-2.
Moreover the fact ¢(&, 2)=((—2)" on S, implies
le€ | = 1L—z|+1C—27—c( 2)| =C{I{—z|+]p@)]}.
Hence as in the calculation of we obtain
| d{C—2)Pb° (&, 2)eC, 2)/F° &, 2™ 2O A} |
<CIE—z| ¥ @17 2{|C—2]+|p@I}/IF° (&, 2)| "5+
+CIL—2 *{(I€—2| +1p@ DI p@1 ¥ 2+ o1 *1} /| F° (€, 2)|***
<ClL—z|/IF°E, )™

From this the lemma is proved by applying the argument of
LEMMA 3.7. Let N—2=Fk=1, |Bl=k, |7|=1 and a(l, z2)=C*. Then

|grad | (C—2)PC—2Va(C, 2)/0"+*0(0)| <C K(2).

PrOOF. This is easily shown with the aid of analogously to
REMARK. If |j3|>k, the above bound can also be replaced by C.
3.5. LEmMMA 3.8,

0
|, @rpsc, z)={

al! a=p '

a+pB

Proor. By Henkin’s representation (see 1.5) (z—z")ﬂ:&m(C—z’)f8 CE, 2)
holds.

Applying DZ to both sides and taking z’=2z we obtain the desired result.

3.6. LEMMA 3.9. Let Y be a C*-holomorphic tangential vector field. Then
| Y. 0, 2)| =C|{—z]| for {<0Q.

PrOOF. This follows easily from the properties of @(, 2).

3.7. The following proposition is the main result of this section.

PROPOSITION 5. Let a, B be any multi-indices. Then

1) If |[r|EN-3, SGQ(C—Z)“(E—E)ﬁDlC(C, z) is of class C.

2) For |7|=N-2, Sag(C—z)“(C—é)ﬁDZC(C, 2) 1s -;— Holder continuous.
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3) For |r|=N—-3 and C*holomorphic tangential vector field Y,
SaQ(C—z)“(C_~E)‘3 Y. .DIC(C, z) i1s Holder continuous for any exponent smaller than 1.

ProorF. It suffices to show that for any multi-indices «, 8
i) for |y|=N-2, |D"B(a, B, z)| is bounded,

if) for |y|=N—1, |D"B(a, B, 2)| <C|p(z)| ",

iii) for |7|=N-=3, |D;YD"B(a, B, 2)| <C K(2)

where B(e, ‘8? z):SaQ(C—Z)“(C—E)ﬁC(C, z).

If =0, B(a, 0, z) is a constant by From for |7|=
M<EN-2,

D'B(a, §, D=, C~2)"€~2X7C¢, 2
+3 3,| carral 2/0m Q).

By 3.5, 3.6 and 3.7 we have already shown i).
To prove ii), let |r|=N—2. If we write

XCE D=8 2, 52l 20" QA0

then implies
|grad | €—2y€=2%a.,C 2/0™ e, noD)] <C K@)
except for 2=0. On the other hand, implies
|grad | C—2yaC, 2/07*o(©| <C K@)

In case k=0, we apply D; directly under the integral sign to

[, C=2" €= a0, /P DN
Then the derivation of this term is bounded by C lp(z)l'”é in view of Prop-
osition 3.

REMARK. If a#0 or |B8|=2, the above derivation is bounded by C K(z).

To prove iii), we show |YD;D"B(a, B, 2)| <CK(2).
From the proof of ii) it remains to show

¥{ (2@ a0, /Ot DAWOD| <C KC2).
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But this follows easily from

§4. Proofs of theorems.

4.1. LEMMA 4.1. The following relations hold:
) dd XK, 2} =X*dK(C, 2)=X*{C(, 2)— L&, 2)}.
2) 9/ F®E ]=(D;)* P, 2),
0/L,Lf P&, 2)]=(D,;/)* >, 2),
XL P 21=(D;1) P, 2)
Jor k=0 (we set <V, 2)=,()).

PrROOF. 2) is proved only by simple calculations.
D dKG D= deK, 2 D= —a:K(, 2 »

=K(, z, 00— K, z, D=C({, 2)—LE, 2).

(Recall d K, z, 2)=0.)

4.2. The following proposition is the main tool for the proofs of the
theorems.

PROPOSITION 6. Let |a|=k<N—2 and f be a C* §-closed (0, 1) form on 2.
Then

o D (C=2PC=2
) DT(= B D g DICE 2

+ 2 (O (upaene HaxaKE 2

ajtag=a al

i=21 |ﬂ|+|rl<kSaQ(DﬂD_rfi>(k—lﬂl_m_n(c’ 2)K5:(E, 2)0(0)

_ngu:m(c, 2)ADILE, 2)

=Da, s +Da, s+, s +AV)a, s

where K§¥(, z) are written in the form

e, (&, 2)@/00) X {Li(C, 2)—Ci((, 2)} (a.,.. €CV-E+erteyy
lel+ler I<k=1B1=171

Proor. We shall prove (°) by induction on a. If a=0 there is nothing
to be proved. Suppose (°) is true for a. We first replace f() by g.(0)=
f®E, 2) in (°) (0g.(@)=0 by and then set z'=z.
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Noting
l) ggKC; Z) l F =z:f(k)(c.' Z) fOI’ lé k »

2) Dylﬁvzf(k)(c’ Z)IC=Z:0 for lV1‘+|D2|§k,

—NB(Z 3"\
3)  DT(g.)=DT(/)— = Dﬂf,@pa{(_zﬁ_(ﬂ

ek =
A
we get
@ rTo=, 3, e, G e
aﬁ%:a(s)gagw“lf )2, D) A X 2K, 2)

+2 2 [ (DD, HKEE 2o

=1 iBI+i7I<k

= f*@ DADILE, 2
=({)a. s +({1)q, r+{ida, s +(AV)a, s -
Next we compute D;D*T(f) regarding it as
{D;D*T(f)—D*T(D; /) +D*T(D;f).
If we apply (¥) to the inside of the bracket and (°) to the last term, we get
D)e s— @ 21+ Doy 7

—N\B(F—3
prp @G D, 2

C=2PfC=2r ..
—15|+1§§k+1Dﬁ(Djf)7SWDzC(C, )

—N(F—Z
E2EH prog,

= C=2C=2r ..
_lﬁl+l%)sk+1Dﬂfr(Z)DjS_—-WDzC(C, z)

Jlﬁl+l7‘|§k+1

DA(D, 1

1Bt+ITISk

—NB(F—3
Do) A proe,

- C=2*C=2y ., L
~lﬂ'+lrzisk+1Dﬁfr(z)g—ﬂ—!_—rl—l)‘c(c' Z)' (D _DfD )

181+1TISE
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D(ii)q, y—(iD)a, Djf+(H)a, D;f

= 3 (9)|ex—asmg)pap nxake, 2)

[44
ajtag=a al
—(D;Derf) a2 N X2 K(E, z)+(D;D*1f) %2 =D N X*2K(E, 2)]

:a 2 =a<§ )g[(Dcuf)(lazl)AXan2K+(DjDa1f)(lagl—l)/\XazK
+(Da1f)(lazl)/\(a/acj . XQZ{C(C, Z)—‘L(C, Z)})]

:Z‘<&

ajtag=4 Ay

)E(Dalf)(lazl—l)AXazK(c’ Z)

n

+=0r 3 3 (S| xe e, 9- LG 2e@An©)

a
t=1 ajtag=a \(X;

where we used Example 2 after [Lemma 2.2. The terms in the last sum are
to go into (Ill)4 ;; in fact we have

(— 1)”S(D“1fi)““2‘> X2 {Ci(, 2)— Li(C, D@ A0

=S(D“‘fi)"“2‘)ap/aij lopl?X2{Ci(C, 2)— L&, 2)} (D),

and ag4,=0p/0C;|0p|"? actually belongs to C¥-¢*+b+le2l Now we compute
Dj(iii)e, y—(iii)e, p;7+ (D4, p,s termwisely.

(X;—0/9C){g P Kiio (D} —(D;8) P K§io(O+g“ P Kgio(Q)
=(D;8)" VK5i0(Q+8 X;Kgi0(Q)—[S;{g P Kg# 10(0),

where g=D?D'f; and [=k—|B|—|7|. One can see that the hypothesis for
K§} are satisfied for these terms.

Dj(iv)a, f—'(iv>a,Djf+(IV)a,Djf

=—| (X—9/00)LFR(C HADELE, )]
+,(DiN®E AADILE, = [(D, 4D, HADELE, 2)

== /PQ AM0/0GDILE, 2 =={ 7@ DADELE 2).

Thus the proof of the proposition is complete.
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4.3. Proof of

Let f and % be as in [Theorem 1. We prove that, for each term in the
decomposition (°) of D*T(f), the 1/2 Holder norm is estimated by the right
side of the desired inequality. We have already established the estimates for
(Da. s in section 3. It is well-known that (IV),,, is Holder continuous for any

exponent smaller than 1. assures that each term of (IIl),,, is
once more differentiable in {. So we compute its gradient.

D\ g0 DRE, 20®

=(X,1e2(¢, 2RE, 200} —S,LeC, ARE, 2700,

where I=k—|B|—17]1—1, g, z)z(Dﬁb_rfi)(k"ﬂ'"‘T"l’ and I?(C, 2)=K§iC, 2).
By |WR| <C(1¢—2|1t*7 4 [C—2[*| @] 1) where W=2X; or

S;. Hence
Igrad S(Dﬁb'rfiyk—'ﬁl—m-an;;a(c){ <CK(@).

Next we observe each term of (II),, ;. If a; is neither 0 nor «, by Lemma
1.2 (Doif)deei-b A X2 K({, z) is once more differentiable in {. Thus by the
previous method they are shown to be Holder continuous for any exponent
smaller than 1.

Hence the essential parts for the exact 1/2 Holder estimate are
W (2@ anxeKE 2 and
@ |DFOAKE, 2).

We apply 0/0z; to (1) and (2) directly under the integral sign. Then Prop-
osition 3 implies that their gradients are dominated by |p(z)|"*2. The proof
is complete.

4.4. Proof of

Let 2, a, B, f and Y be as in If we write Y= a,(2)0/0z;
+>b:(2)0/0Z;, then

YDT (/=Y D*T(f)+2b(2)D*f(2),

where Y,=> a,(z)0/0z;. Hence we can consider Y=Y,. By the argument in

the proof of and it remains to show that
®  Ba@|DDAONKE 2 and
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W) 3 a@|4PE DAXXKCE, 2

are both S-Hoélder continuous.
() Set g(Q)=D*f(). It suffices to show

(2 ai(z)g Dig(QN3/oz,K(C, 2)| <CK(Z).

Then
D;g(QN0/0z;K(E, 2)=D;g(QONX;K(, 2)—D:g(QAD;KE, z).

In the right hand side the first term is bounded by C K(z). Now

Dig AD;K—D,;g AD;K=D,{Dig NK} —D:{D;g NK}.
So

[Dig@AD;KE, 2= Dig@ADKE, 2)

ZSDig/\[a/an {CC, 2)— L& 2} ]—D;g A[6/0L:—{CC, 2)— L&, 2)}].

Hence the difference is dominated by K(z).

REMARK. In the above calculus we need approximate g({) by smooth form
since it is only continuously differentiable. In Kerzman he proved that
for d-closed (in distribution sense) C*-(0, 1) form f on 2, there exist C* §-closed
forms f. which converge to f in C! topology.

Thus to estimate Eai(z)SDig(C)/\DjK(C, z), it suffices to estimate
S )| Dg@ADKE, 2)

=20 [Dig QA XK, 2~ DgQAYKE, 2).

But these terms are bounded by K(z) frem and 3.9,
D fERE DANXXKE, 2)=[f* ", 2)N6/0z; X°K(E, z)
+0/0C{f* P DNXKE, 2)} —(Dif)*2(C, 2) AXK(, 2)]
=[f* P, 2)N0/02: XKL, 2)+f*D(C, 2)A{0/08:— X*C(, 2)}
—(Dif)E2E )ANXKE, 2)].

The last two terms in the integrand are differentiable in &, so by the
preceding method we can show that the last two terms are pB-Holder con-
tinuous. Hence in order to prove (II) is 3-Holder continuous, we have only
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to show

But

@ | Sa@D,{ 4 C DN3/02X K, 2)| <CKG).

D\ f*D(C, 2)N8/32 X K, 2)

=S[X;- {f#=2( 2)N0/02: X *K(, 2)} —f*~P(, 2)N0/0z:. X *{9/9L;—C(L, 2)}].

Hence

Sa@D,{ 41, A0/ X K, 2)

:S(Djf)“’“”(C, DAY, XKE, 2)+f* 2 )NV, X;X*K(E, 2)

—f*E DNY,X{0/0L;-C(E, 2)}.

Hence implies (&).
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