J. Math. Soc. Japan Vol. 32, No. 1, 1980

On (x)-complexes

By Yasuji TAKEUCHI

(Received May 1, 1978)

Let N be a finitely generated module over a noetherian local ring R with maximal ideal m. It is well known that a maximal R-sequence and a maximal N-sequence have connections with a minimal injective resolution of N. For example, the length of a maximal R-sequence, namely the depth of R, is equal to the length of a minimal injective resolution of N, namely the injective dimension of N, if it is finite, and the length of a maximal N-sequence, namely the depth of N, is equal to the minimal integer of i with $\mu^i(\mathfrak{m}, N) > 0$ where $\mu^i(\mathfrak{m}, N)$ is the dimension of an R/\mathfrak{m} -vector space $\operatorname{Ext}_R^i(R/\mathfrak{m}, N)$. But we have thought there are more connections between them. In particular we are interested in studying possible connections between the terms of an R-sequence or of an N-sequence, and the terms of a minimal injective resolution of N.

First we shall introduce a complex associated to a minimal injective resolution of N for a sequence of elements in m [see Definition 1]. This complex characterizes some N-sequence. We shall study properties of this complex. In particular we shall give, using a term of this complex, a necessary and sufficient condition for the following conjecture of Bass to hold: a noetherian local ring is Cohen-Macaulay if it possesses a finitely generated module of finite injective dimension. Moreover we shall show some property of a minimal injective resolution, applying this complex.

Throughout this note, R is a noetherian local ring with a unique maximal ideal m. The unlabeled Hom and Ext mean Hom _R and Ext _R, respectively.

We begin by introducing a definition. Let x_0, x_1, \dots, x_r be a sequence of elements in m. We denote this sequence by (x_0, x_1, \dots, x_r) or, for brevity, (x). The ideal generated by x_0, x_1, \dots, x_r is also denoted by (x_0, x_1, \dots, x_r) or (x). Let N be an R-module and $0 \longrightarrow N \xrightarrow{d^{-1}} E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} \cdots$ be a minimal injective resolution of N.

DEFINITION 1. Let $N_{(x)}^0 = \{e \in E^0 \mid x_0 e \in d^{-1}(N)\}$. For any integer *i* with $0 < i \leq r$, we define inductively $N_{(x)}^i$ as follows; $N_{(x)}^i = \{e \in (0 : (x_0, x_1, \dots, x_{i-1}))_{E^i} \mid x_i e \in d^{i-1}(N_{(x)}^{i-1})\}$. For i > r, $N_{(x)}^i = (0 : (x_0, x_1, \dots, x_r))_{E^i}$. Each $N_{(x)}^i$ is a submodule of E^i . Each d^i induces an *R*-homomorphism: $N_{(x)}^i \rightarrow N_{(x)}^{i+1}$, denoted again by d^i . In this case we have a complex of *R*-modules

$$0 \longrightarrow N \xrightarrow{a^{-1}} N^0_{(x)} \xrightarrow{a^0} N^1_{(x)} \longrightarrow \cdots .$$

This complex is unique for a sequence (x) and N up to isomorphism. This complex is also denoted by $0 \rightarrow N \rightarrow N^0 \rightarrow N^1 \rightarrow \cdots$ for simplicity, which is called (x)-complex under N.

As its obvious properties, we obtain the followings;

1) For each $i N^i$ can be naturally identified with a submodule of Hom $(R/(x_0, x_1, \dots, x_{i-1}), E^i)$, since $(0:(x_0, x_1, \dots, x_{i-1}))_{E^i}$ is naturally isomorphic to Hom $(R/(x_0, x_1, \dots, x_{i-1}), E^i)$. In this case, for each i with i > r, $N^i = \text{Hom}(R/(x), E^i)$.

2) For each i > r, N^i is R/(x)-injective.

3) If $(x)=(x_0, x_1, \dots, x_r)$ is an *R*-sequence, the sequence $N^{r+1} \rightarrow N^{r+2} \rightarrow \dots$ is exact, because $\text{Ext}^{i}(R/(x), N)=0$ for i>r+1 follow from proj. dim $_{R}R/(x)=r+1$.

PROPOSITION 2. If $(x) = (x_0, x_1, \dots, x_r)$ is an R-sequence, then an (x)-complex under any R-module N is always acyclic.

PROOF. Let $0 \longrightarrow N \xrightarrow{d^{-1}} E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} \cdots$ be a minimal injective resolution of N. From an exact sequence $0 \longrightarrow E^0/d^{-1}(N) \longrightarrow E^1 \longrightarrow E^2$, we obtain an exact sequence $0 \longrightarrow \text{Hom}(R/(x_0), E^0/d^{-1}(N)) \longrightarrow \text{Hom}(R/(x_0), E^1) \longrightarrow \text{Hom}(R/(x_0), E^2)$. Since $\text{Hom}(R/(x_0), E^0/d^{-1}(N)) \cong N^0/d^{-1}(N) \cong d^0(N^0), \ 0 \longrightarrow d^0(N^0) \longrightarrow \text{Hom}(R/(x_0), E^1) \longrightarrow$ $\text{Hom}(R/(x_0), E^2)$ is exact. So $N^0 \longrightarrow N^1 \longrightarrow N^2$ is exact. Since $\text{Ext}^i(R/(x_0), N) = 0$ for i > 1, $\text{Hom}(R/(x_0),)$ is a functor from R-modules to $R/(x_0)$ -modules which preserves minimal injective resolutions [see 1, Lemma 2.1]. Hence we have a minimal injective resolution of the $R/(x_0)$ -module $d^0(N^0): 0 \longrightarrow d^0(N^0) \longrightarrow$ $\text{Hom}(R/(x_0), E^1) \longrightarrow \cdots \longrightarrow \text{Hom}(R/(x_0), E^i) \longrightarrow \cdots$. Using the same argument as above, $N^1 \longrightarrow N^2 \longrightarrow N^3$ is exact, and so on.

COROLLARY 3. Let $0 \rightarrow N \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots \rightarrow E^r \rightarrow 0$ be a minimal injective resolution of a finitely generated R-module N where r is finite. Then, for any R-sequence x_0, x_1, \cdots, x_s , there is an element y_i of E^i (i=1, 2, \cdots , s) such that $(x_0, x_1, \cdots, x_{i-1})y_i=0$ and $x_iy_i\neq 0$ for i=1, 2, \cdots , s.

PROOF. Let $0 \rightarrow N \rightarrow N^0 \rightarrow \cdots \rightarrow N^r \rightarrow 0$ be the (x_0, x_1, \cdots, x_i) -complex under N. This complex is acyclic and $N^{i+k} = (0:(x_0, x_1, \cdots, x_i))_{E^{i+k}}$ for $1 \leq k \leq r-i$. Since depth $R/(x_0, x_1, \cdots, x_i)$ +Sup $\{j \mid \text{Ext }^j(R/(x_0, x_1, \cdots, x_i), N) \neq 0\}$ =depth R(=r) [see 5, Théorème (4.15)], we have Sup $\{j \mid \text{Ext }^j(R/x_0, x_1, \cdots, x_i), N) \neq 0\}$ =i+1. Hence the sequence $\text{Hom}(R/(x_0, x_1, \cdots, x_i), E^i) \rightarrow \text{Hom}(R/(x_0, x_1, \cdots, x_i), E^{i+1}) \rightarrow \text{Hom}(R/(x_0, x_1, \cdots, x_i), E^{i+2})$ is not exact and so $N^i - (0:(x_0, x_1, \cdots, x_i))_{E^i}$ is not empty. Choose any element y_i in $N^i - (0:(x_0, x_1, \cdots, x_i))_{E^i}$. Then we obtain $(x_0, x_1, \cdots, x_{i-1})y_i = 0$ and $x_i y_i \neq 0$.

THEOREM 4. Let x_0, x_1, \dots, x_r be an R-sequence. Then x_0, x_1, \dots, x_r is an N-sequence if and only if x_i is a nonzero divisor of N^i for $i=0, 1, \dots, r$ and

 $N/(x_0, x_1, \cdots, x_r)N \neq 0.$

PROOF. First we shall show 'if' part. Since the sequence $0 \longrightarrow R \xrightarrow{x_0} R \longrightarrow R/(x_0) \longrightarrow 0$ is exact, we have $x_0 E = E$ for any injective *R*-module *E*. Let $0 \longrightarrow N \xrightarrow{d^{-1}} E^0 \xrightarrow{d^0} E^1 \longrightarrow \cdots$ be a minimal injective resolution of *N*. It is obvious that x_0 is a nonzero divisor of *N* and so is a nonzero divisor of E^0 . Hence the multiplication map by $x_0: E^0 \to E^0$ is an isomorphism. This isomorphism induces $E^0/d^{-1}(N) \cong E^0/x_0 d^{-1}(N)$. So we obtain $d^0(N^0) \cong N^0/d^{-1}(N) \cong$ Hom $(R/(x_0), E^0/d^{-1}(N)) \cong$ Hom $(R/(x_0), E^0/x_0 d^{-1}(N)) \cong \{e \in E^0 \mid x_0 e \in x_0 d^{-1}(N)\} \cong d^{-1}(N)/x_0 d^{-1}(N) \cong N/x_0 N$. This shows x_1 is a nonzero divisor on $N/x_0 N$. Since $0 \to d^0(N^0) \to$ Hom $(R/(x_0), E^1) \to$ Hom $(R/(x_0), E^2) \to \cdots$ is a minimal injective resolution of the $R/(x_0)$ -module $d^0(N^0) (\cong N/x_0 N)$, repeating the same reasoning we prove inductively that x_0, x_1, \cdots, x_r is an *N*-sequence. Conversely assume that x_0, x_1, \cdots, x_r is an *N*-sequence. Then it is trivial that x_0 is a nonzero divisor of N^0 . Moreover we have $N/(x_0, x_1, \cdots, x_i)N \cong d^i(N^i)$, proceeding in the above fashion, and $d^i(N^i)$ is an essential submodule of N^{i+1} for $i=0, 1, \cdots, r$. So x_i is a nonzero divisor of N^i for $i=1, 2, \cdots, r$. This completes the proof.

COROLLARY 5. Let x_0, x_1, \dots, x_r be elements of m. Then x_0, x_1, \dots, x_r is an R-sequence if and only if the (x_0, x_1, \dots, x_r) -complex under $R: 0 \to R \to R^0$ $\to R^1 \to \dots$ is acyclic and x_i is a nonzero divisor of R^i for $i=0, 1, \dots, r$.

THEOREM 6. Let $(x)=(x_0, x_1, \dots, x_r)$ be an R-sequence and N a nonzero finitely generated R-module. If x_0, x_1, \dots, x_s $(s \le r)$ is an N-sequence, each term Nⁱ of the (x)-complex under N is finitely generated $(0 \le i \le s)$. Conversely assume each Nⁱ is finitely generated $(0 \le i \le s < r)$. Then x_0, x_1, \dots, x_s is an N-sequence.

PROOF. Assume x_0, x_1, \dots, x_s is an N-sequence $(s \leq r)$. Then we have $N^0/d^{-1}(N) \cong d^0(N^0) \cong N/x_0 N$. Since both $N/x_0 N$ and $d^{-1}(N)$ are finitely generated, so is N^0 . In general we have $N^i/d^{i-1}(N^{i-1}) \cong d^i(N^i) \cong N/(x_0, x_1, \dots, x_i)N$ $(0 \leq i \leq s)$. It is inductively proved that each N^i is finitely generated $(0 \leq i \leq s)$. Assume the converse. Since $(0:x_0)_{E^0} \subseteq N^0$, $(0:x_0)_{E^0}$ is finitely generated. On the other hand $(0:x_0)_{E^0}$ is injective as an $R/(x_0)$ -module. So we have $(0:x_0)_{E^0}=0$, because depth $R/(x_0) \neq 0$. Hence x_0 is a nonzero divisor of N and $d^0(N^0) \cong N/x_0 N$. Suppose x_0, x_1, \dots, x_i is an N-sequence $(0 \leq i < s)$. Since $(0:(x_0, x_1, \dots, x_{i+1}))_{E^{i+1}} \subseteq N^{i+1}$, $(0:(x_0, x_1, \dots, x_{i+1}))_{E^{i+1}}$ is finitely generated. Hence it is a zero module and so x_{i+1} is a nonzero divisor of $(0:(x_0, x_1, \dots, x_i))_{E^{i+1}}$ is a nonzero divisor of N^{i+1} and so of $d^i(N^i)$. Since $d^i(N^i) \cong N/(x_0, x_1, \dots, x_i)N$, x_0, x_1, \dots, x_{i+1} is an N-sequence. By induction the proof is completed.

COROLLARY 7. Let $(x) = (x_0, x_1, \dots, x_s)$ be an R-sequence (s < depth R) and N a nonzero finitely generated R-module. Then x_0, x_1, \dots, x_s is an N-sequence if and only if $N = N^0$, $d^0(N^0) \cong N^1$, \dots , $d^{s-1}(N^{s-1}) \cong N^s$ for the (x)-complex under $N: 0 \longrightarrow N \xrightarrow{d^{-1}} N^0 \xrightarrow{d^0} N^1 \xrightarrow{d^1} \dots$.

PROOF. The 'if' part follows from the theorem. Suppose x_0, x_1, \dots, x_s is an N-sequence. Let $0 \longrightarrow N \xrightarrow{d^{-1}} E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} \dots$ be a minimal injective resolution of N. Since x_0 is a nonzero divisor of R and of E^0 , the multiplication map by x_0 induces an automorphism of E^0 . So the multiplication map by $x_0: N^0 \longrightarrow d^{-1}(N) \ (\cong N)$ is an isomorphism. In general, x_i is a nonzero divisor of $d^{i-1}(N^{i-1}) \ (\cong N/(x_0, x_1, \dots, x_{i-1})N)$ and $\operatorname{Hom} (R/(x_0, x_1, \dots, x_{i-1}), E^i)$ is an injective envelope of the $R/(x_0, x_1, \dots, x_{i-1})$ -module $d^{i-1}(N^{i-1}) \ (1 \le i \le s)$. Using the same argument as above, we have $N^i \cong d^{i-1}(N^{i-1}) \ (1 \le i \le s)$.

COROLLARY 8. Let R be a Gorenstein local ring with a maximal ideal \mathfrak{m} . Then, for any maximal R-sequence (x), each term of the (x)-complex under R is finitely generated and its final nonzero term is isomorphic to the injective envelope of an R/(x)-module R/\mathfrak{m} .

THEOREM 9. Assume depth $R \leq n+1$ for a non negative integer n. If there exists a sequence $(x)=(x_0, x_1, \dots, x_n)$ of elements of \mathfrak{m} such that the (x)-complex under R is acyclic with each term finitely generated, then dim $R \leq n+1$.

PROOF. Let $0 \longrightarrow R \xrightarrow{d^{-1}} E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} \cdots$ be a minimal injective resolution of R. Then $(0:x_0)_{E^0}$ is embedded in the first term R^0 of the (x)-complex under R and so is finitely generated. If $(0:x_0)_{E^0} \neq 0$, we have depth $R/(x_0)=0$ and hence dim $R \leq 1$ [see 4, Corollaire 1.3]. Assume $(0:x_0)_{E^0}=0$. Then x_0 is a nonzero divisor of R. Since $(0:(x_0, x_1))_{E^1}$ is embedded in R^1 , it is finitely generated. If $(0:(x_0, x_1))_{E^1}\neq 0$, we have depth $R/(x_0, x_1)=0$ and so dim $R \leq 2$. If $(0:(x_0, x_1))_{E^1}=0$, x_1 is a nonzero divisor of $(0:x_0)_{E^1}$. Since $d^0(R^0) \cong R/x_0R$ is embedded in $(0:x_0)_{E^1}$, x_1 is a nonzero divisor of R/x_0R . Proceeding in this fashion, if $(0:(x_0, x_1, \cdots, x_i))_{E^i}\neq 0$ $(0\leq i\leq n)$, we have dim $R\leq i+1$ and if $(0:(x_0, x_1, \cdots, x_i))_{E^i}=0$ for all i with $0\leq i\leq n$, x_0, x_1, \cdots, x_n is an R-sequence. Hence we have depth R=n+1 and so $(0:(x_0, x_1, \cdots, x_n))_{E^{n+1}}\neq 0$. Since $(0:(x_0, x_1, \cdots, x_n))_{E^{n+1}} (\cong R^{n+1})$ is finitely generated by the hypothesis, we obtain dim $R\leq n+1$.

THEOREM 10. Suppose a noetherian local ring R possesses a finitely generated module N of finite injective dimension such that, for any maximal R-sequence $(x)=(x_0, x_1, \dots, x_r)$, some term of the (x)-complex under N is nonzero and finitely generated. Then R is Cohen-Macaulay.

PROOF. Assume N^i is finitely generated where N^i is some term of the (x)-complex under $N: 0 \rightarrow N \rightarrow N^0 \rightarrow N^1 \rightarrow \cdots \rightarrow N^{r+1} \rightarrow 0$. If i=r+1, our statement obviously holds. When i=r, N^{r+1} is also finitely generated. Hence we suppose i < r. Let $0 \rightarrow N \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots \rightarrow E^{r+1} \rightarrow 0$ be a minimal injective resolution of N. We have $(0:(x_0, x_1, \cdots, x_i))_{E^i}=0$. For, if $(0:(x_0, x_1, \cdots, x_i))_{E^i}\neq 0$, it is finitely generated since it is contained in N^i , and so depth $R/(x_0, x_1, \cdots, x_i)=0$, which is a contradiction. Therefore x_i is a nonzero divisor on $(0:(x_0, x_1, \cdots, x_{i-1}))_{E^i}$ and so we have $d^{i-1}(N^{i-1})\neq 0$. Since $d^{i-1}(N^{i-1})$ is a submodule of the

102

On (x)-complexes

finitely generated module N^i and of finite injective dimension as an $R/(x_0,$ x_1, \dots, x_{i-1})-module, its isomorphic module $N^{i-1}/d^{i-2}(N^{i-2})$ is a finitely generated $R/(x_0, x_1, \dots, x_{i-1})$ -module of finite injective dimension. Set a =Ann $_{R/(x_0, x_1, \dots, x_{i-1})} N^{i-1}/d^{i-2}(N^{i-2})$. If $\mathfrak{a}=0$, $R/(x_0, x_1, \dots, x_{i-1})$ is Cohen-Macaulay [see 2, Lemma (3.1), (3.3)]. Next assume $a \neq 0$. Then there is an element x'_i of R such that the residue class \bar{x}'_i belongs to a and x'_i is a nonzero divisor on $R/(x_0, x_1, \dots, x_{i-1})$ [see 3, Theorem 4.1]. For a maximal R-sequence (x') $=(x_0, x_1, \dots, x_{i-1}, x'_i, x'_{i+1}, \dots, x'_r)$, the *i*-th term $N^i_{(x')}$ of the (x')-complex under N is non finitely generated, for $N^{i-1}/d^{i-2}(N^{i-2})$ ($\neq 0$) is embedded in $(0:(x_0, x_1, \dots, x_{i-1}, x_i'))_{E^i}$ and so $(0:(x_0, x_1, \dots, x_{i-1}, x_i'))_{E^i} \neq 0$. Thus, if *i* is a minimal non negative integer such that N^i is finitely generated, $R/(x_0, x_1, \dots, x_n)$ x_{i-1}) is Cohen-Macaulay or there is a maximal R-sequence (x') such that all $N_{(x')}^i$ are non finitely generated for $0 \leq j \leq i$. When the second statement holds, repeating the above argument, we obtain that $R/(x_0, x_1, \dots, x_k)$ is Cohen-Macaulay or there is a maximal R-sequence (x'') such that $N_{(x')}^{r+1}$ is finitely generated. In either case, R is Cohen-Macaulay.

References

- H. Bass, Injective dimension in noetherian rings, Trans. Amer. Math. Soc., 102 (1962), 18-29.
- [2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z., 82 (1963), 8-28.
- [3] G. Levin and W.V. Vasconcelos, Homological dimension and Macaulay rings, Pacific J. Math., 25 (1968), 315-323.
- [4] C. Peskine and L. Szpiro, Modules de type fini et de dimension injective finie sur un anneau local noethérien, C. R. Acad. Sci. Paris 226, Sér. A, (1968), 1117-1120.
- [5] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ. Math., 42 (1973), 47-119.

Yasuji TAKEUCHI Department of Mathematics College of Liberal Arts Kobe University Nada, Kobe 657 Japan