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On $(x)$ -complexes

By Yasuji TAKEUCHI
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Let $N$ be a finitely generated module over a noetherian local ring $R$ with
maximal ideal $\mathfrak{m}$. It is well known that a maximal R-sequence and a maximal
N-sequence have connections with a minimal injective resolution of $N$. For
example, the length of a maximal R-sequence, namely the depth of $R$ , is
equal to the length of a minimal injective resolution of $N$, namely the injective
dimension of $N$, if it is finite, and the length of a maximal N-sequence,
namely the depth of $N$, is equal to the minimal integer of $i$ with $\mu^{i}(\mathfrak{m}, N)>0$

where $\mu^{i}(\mathfrak{m}, N)$ is the dimension of an $R/\mathfrak{m}$-vector space Ext $R(R/m, N)$ . But
we have thought there are more connections between them. In particular
we are interested in studying possible connections between the terms of an
R-sequence or of an N-sequence, and the terms of a minimal injective resolu-
tion of $N$.

First we shall introduce a complex associated to a minimal injective
resolution of $N$ for a sequence of elements in $\mathfrak{m}$ [see Definition 1]. This
complex characterizes some N-sequence. We shall study properties of this
complex. In particular we shall give, using a term of this complex, a necessary
and sufficient condition for the following conjecture of Bass to hold: a
noetherian local ring is Cohen-Macaulay if it possesses a finitely generated
module of finite injective dimension. Moreover we shall show some Property

of a minimal injective resolution, applying this complex.
Throughout this note, $R$ is a noetherian local ring with a unique maximal

ideal $\mathfrak{m}$ . The unlabeled Hom and Ext mean Hom $R$ and Ext $R$, respectively.
We begin by introducing a definition. Let $x_{0},$ $x_{1},$

$\cdots$ , $x_{r}$ be a sequence of
elements in $\mathfrak{m}$ . We denote this sequence by $(x_{0}, x_{1}, \cdots , x_{r})$ or, for brevity,
$(x)$ . The ideal generated by $x_{0},$ $x_{1},$

$\cdots$ , $x_{r}$ is also denoted by $(x_{0}, x_{1}, \cdots , x_{r})$ or
$(x)$ . Let $N$ be an R-module and $0\rightarrow N\rightarrow E^{0}d^{-1}\rightarrow^{d^{0}}E^{1}\rightarrow^{d^{1}}$ be a minimal in-
jective resolution of $N$.

DEFINITION 1. Let $N_{(x)}^{0}=\{e\in E^{0}|x_{0}e\in d^{-1}(N)\}$ . For any integer $i$ with
$0<i\leqq r$, we define inductively $N_{(x)}^{i}$ as follows; $ N_{(x)}^{i}=\{e\in$ $(0:(x_{0}, x_{1}, \cdots , x_{i-1}))_{E^{i}}|$

$x_{i}e\in d^{i-1}(N_{(x)}^{i-1})\}$ . For $i>r,$ $N_{(x)}^{i}=(0: (x_{0}, x_{1}, \cdots , x_{\gamma}))_{E^{i}}$ . Each $N_{(x)}^{i}$ is a submodule
of $E^{i}$ . Each $d^{i}$ induces an R-homomorphism: $N_{(x)}^{i}\rightarrow N_{(x)}^{i+1}$ , denoted again by
$d^{i}$ . In this case we have a complex of R-modules
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$ 0\rightarrow N\rightarrow N_{(x)}^{0}d^{-1}\rightarrow^{d^{0}}N_{(x)}^{1}\rightarrow\cdots$ .

This complex is unique for a sequence $(x)$ and $N$ up to isomorphism. This
complex is also denoted by $ 0\rightarrow N\rightarrow N^{0}\rightarrow N^{1}\rightarrow\cdots$ for simplicity, which is called
$(x)$-complex under $N$.

As its obvious properties, we obtain the followings;
1) For each $i$ $N^{i}$ can be naturally identified with a submodule of

Hom $(R/(x_{0}, x_{1}, \cdots , x_{i-1}), E^{i})$ , since $(0:(x_{0}, x_{1}, \cdots , x_{i-1}))_{E^{i}}$ is naturally isomor-
phic to Hom $(R/(x_{0}, x_{1}, , , x_{i-1}), E^{i})$ . In this case, for each $i$ with $i>r$,
$N^{i}=Hom(R/(x), E^{i})$ .

2) For each $i>r,$ $N^{i}$ is $R/(x)$-injective.
3) If $(x)=(x_{0}, x_{1}, \cdots , x_{r})$ is an R-sequence, the sequence $ N^{r+1}\rightarrow N^{r+2}\rightarrow\cdots$

is exact, because Ext $i(R/(x), N)=0$ for $i>r+1$ follow from proj. dim $RR/(x)=r+1$ .
PROPOSITION 2. If $(x)=(x_{0}, x_{1}, \cdots , x_{r})$ is an R-sequence, then an $(x)$-comPlex

under any R-module $N$ is always acyclic.

PROOF. Let $0\rightarrow N\rightarrow E^{0}a^{-1}\rightarrow^{d^{0}}E^{1}\rightarrow^{d^{1}}$ be a minimal injective resolution
of $N$. From an exact sequence $0\rightarrow E^{0}/d^{-1}(N)\rightarrow E^{1}\rightarrow E^{2}$, we obtain an exact
sequence $0\rightarrow Hom(R/(x_{0}), E^{0}/d^{-1}(N))\rightarrow Hom(R/(x_{0}), E^{1})\rightarrow Hom(R/(x_{0}), E^{2})$ . Since
Hom $(R/(x_{0}), E^{0}/d^{-1}(N))\cong N^{0}/d^{-1}(N)\cong d^{0}(N^{0}),$ $ 0\rightarrow d^{0}(N^{0})\rightarrow$ Hom $(R/(x_{0}), E^{1})\rightarrow$

Hom $(R/(x_{0}), E^{2})$ is exact. So $N^{0}\rightarrow N^{1}\rightarrow N^{2}$ is exact. Since Ext $i(R/(x_{0}), N)=0$

for $i>1$ , Hom $(R/(x_{0}), )$ is a functor from R-modules to $R/(x_{0})$-modules which
preserves minimal injective resolutions [see 1, Lemma 2.1]. Hence we have
a minimal injective resolution of the $R/(x_{0})$-module $d^{0}(N^{0})$ : $ 0\rightarrow d^{0}(N^{0})\rightarrow$

Hom $(R/(x_{0}), E^{1})\rightarrow\cdots\rightarrow Hom(R/(x_{0}), E^{i})\rightarrow\cdots$ . Using the same argument as
above, $N^{1}\rightarrow N^{2}\rightarrow N^{3}$ is exact, and so on.

COROLLARY 3. Let $0\rightarrow N\rightarrow E^{0}\rightarrow E^{1}\rightarrow\cdots\rightarrow E^{\tau}\rightarrow 0$ be a minimal injective re-
solution of a finitely generated R-module $N$ where $r$ is finite. Then, for any
R-sequence $x_{0},$ $x_{1},$

$\cdots$ , $x_{s}$ , there is an element $y_{i}$ of $E^{i}$ ($i=1,2,$ $\cdots$ , s) such that
$(x_{0}, X_{1}, \cdots , x_{i- 1})y_{i}=0$ and $x_{i}y_{i}\neq 0$ for $i=1,2,$ $\cdots$ , $s$ .

PROOF. Let $0\rightarrow N\rightarrow N^{0}\rightarrow\cdots\rightarrow N^{r}\rightarrow 0$ be the $(x_{0}, x_{1}, \cdots , x_{t})$-complex under
$N$. This complex is acyclic and $N^{i+k}=(0:(x_{0}, x_{1}, \cdots , x_{i}))_{E^{i+k}}$ for $1\leqq k\leqq r-i$ .
Since depth $R/(x_{0}, x_{1}, \cdots , x_{i})+Sup\{j|Ext^{j}(R/(x_{0}, x_{1}, \cdots , x_{i}), N)\neq 0\}=depthR$

$(=r)$ [see 5, Th\’eor\‘eme (4.15)], we have $Sup\{j|Ext^{j}(R/x_{0}, x_{1}, \cdots , x_{i}), N)\neq 0\}$

$=i+1$ . Hence the sequence Hom $(R/(x_{0}, x_{1}, \cdots , x_{i}), E^{i})\rightarrow Hom(R/(x_{0}, X_{1}, \cdots , x_{i})$ ,
$E^{i+1})\rightarrow Hom(R/(x_{0}, x_{1}, \cdots , x_{i}), E^{i+2})$ is not exact and so $N^{i}-(0:(x_{0}, x_{1}, \cdots , x_{i}))_{E^{i}}$

is not empty. Choose any element $y_{i}$ in $N^{i}-(0:(x_{0}, x_{1}, -- , x_{i}))_{E^{i}}$ . Then we
obtain $(x_{0}, x_{1}, \cdots , x_{i-1})y_{i}=0$ and $x_{i}y_{i}\neq 0$ .

THEOREM 4. Let $x_{0},$ $x_{1},$
$\cdots$ , $x_{r}$ be an R-sequence. Then $x_{0},$ $x_{1},$

$\cdots$ , $x_{r}$ is an
N-sequence if and only if $x_{i}$ is a nonzero divisor of $N^{i}$ for $i=0,1,$ $\cdots$ , $r$ and
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$N/(x_{0}, x_{1}, \cdots x_{r})N\neq 0$ .
$x_{0}$

PROOF. First we shall show ’if’ part. Since the sequence $ 0\rightarrow R\rightarrow$

$R\rightarrow R/(x_{0})\rightarrow 0$ is exact, we have $x_{0}E=E$ for any injective R-module $E$ .
Let $ 0\rightarrow N\rightarrow E^{0}a^{-1}\rightarrow^{d^{0}}E^{1}\rightarrow\cdots$ be a minimal injective resolution of $N$. It is
obvious that $x_{0}$ is a nonzero divisor of $N$ and so is a nonzero divisor of $E^{0}$ .
Hence the multiplication map by $x_{0}$ ; $E^{0}\rightarrow E^{0}$ is an isomorphism. This isomor-
phism induces $E^{0}/d^{-1}(N)\cong E^{0}/x_{0}d^{-1}(N)$ . So we obtain $ d^{0}(N^{0})\cong N^{0}/d^{-1}(N)\cong$

Hom $(R/(x_{0}), E^{0}/d^{-1}(N))\cong Hom(R/(x_{0}), E^{0}/x_{0}d^{-1}(N))\cong\{e\in E^{0}|x_{0}e\in x_{0}d^{-1}(N)\}$

$\cong d^{-1}(N)/x_{0}d^{-1}(N)\cong N/x_{0}N$. This shows $x_{1}$ is a nonzero divisor on $N/x_{0}N$.
Since $ 0\rightarrow d^{0}(N^{0})\rightarrow Hom(R/(x_{0}), E^{1})\rightarrow Hom(R/(x_{0}), E^{2})\rightarrow\cdots$ is a minimal injective
resolution of the $R/(x_{0})$-module $d^{0}(N^{0})(\cong N/x_{0}N)$ , repeating the same reasoning
we prove inductively that $x_{0},$ $x_{1},$

$\cdots$ , $x_{r}$ is an N-sequence. Conversely assume
that $x_{0},$ $x_{1},$

$\cdots$ , $x_{r}$ is an N-sequence. Then it is trivial that $x_{0}$ is a nonzero
divisor of $N^{0}$ . Moreover we have $N/(x_{0}, x_{1}, \cdots , x_{i})N\cong d^{i}(N^{i})$ , proceeding in
the above fashion, and $d^{i}(N^{i})$ is an essential submodule of $N^{i+1}$ for $i=0,1,$ $\cdots$ , $r$.
So $x_{i}$ is a nonzero divisor of $N^{i}$ for $i=1,2,$ $\cdots$ , $r$ . This completes the proof.

COROLLARY 5. Let $x_{0},$ $x_{1},$
$\cdots$ , $x_{\gamma}$ be elements of $\mathfrak{m}$ . Then $x_{0},$ $x_{1},$

$\cdots$ , $x_{r}$ is
an R-sequence if and only if the $(x_{0}, x_{1}, \cdots , x_{r})- comPlex$ under $R:0\rightarrow R\rightarrow R^{0}$

$\rightarrow R^{1}\rightarrow\cdots$ is acyclic and $x_{i}$ is a nonzero divisor of $R^{i}$ for $i=0,1,$ $\cdots$ , $r$.
THEOREM 6. Let $(x)=(x_{0}, x_{1}, \cdots , x_{\gamma})$ be an R-sequence and $N$ a nonzero

finitely generated R-module. If $x_{0},$ $x_{1},$
$\cdots$ , $x_{s}(s\leqq r)$ is an N-sequence, each term

$N^{i}$ of the $(x)- comPlex$ under $N$ is finitely generated $(0\leqq i\leqq s)$ . Conve rsely assume
each $N^{i}$ is finitely generated $(0\leqq i\leqq s<r)$ . Then $x_{0},$ $x_{1},$

$\cdots$ , $x_{s}$ is an N-sequence.
PROOF. Assume $x_{0},$ $x_{1},$

$\cdots$ , $x_{s}$ is an N-sequence $(s\leqq r)$ . Then we have
$N^{0}/d^{-1}(N)\cong d^{0}(N^{0})\cong N/x_{0}N$. Since both $N/x_{0}N$ and $d^{-1}(N)$ are finitely generated,
so is $N^{0}$ . In general we have $N^{i}/d^{i-1}(N^{i-1})\cong d^{i}(N^{i})\cong N/(x_{0}, x_{1}, \cdots , x_{i})N$

$(0\leqq i\leqq s)$ . It is inductively proved that each $N^{l}$ is finitely generated $(0\leqq i\leqq s)$ .
Assume the converse. Since $(0:x_{0})_{E^{0}}\subseteqq N^{0},$ $(0;x_{0})_{E^{0}}$ is finitely generated. On
the other hand $(0:x_{0})_{E^{0}}isinjectiveasanR/(x_{0})$-module. So we have $(0:x_{0})_{E^{0}}=0$,
$becausedepthR/(x_{0})\neq 0$ . $Hencex_{0}isanonzerodivisorofNandd^{0}(N^{0})\cong N/x_{0}N$.
Suppose $x_{0},$ $x_{1},$

$\cdots$ , $x_{i}$ is an N-sequence $(0\leqq i<s)$ . Since $(0: (x_{0}, x_{1}, \cdots , x_{i+1}))_{E^{i+1}}$

$\subseteqq N^{i+1}$ , $(0:(x_{0}, x_{1}, \cdots , x_{t+1}))_{E^{i+1}}$ is finitely generated. Hence it is a zero module
and so $x_{i+1}$ is a nonzero divisor of $(0:(x_{0}, x_{1}, \cdots , x_{i}))_{E^{i+1}}$ . Hence $x_{i+1}$ is a
nonzero divisor of $N^{i+1}$ and so of $d^{i}(N^{i})$ . Since $d^{i}(N^{i})\cong N/(x_{0}, X_{1}, \cdots , x_{i})N$,
$x_{0},$ $x_{1},$

$\cdots$ , $x_{i+1}$ is an N-sequence. By induction the proof is completed.
COROLLARY 7. Let $(x)=(x_{0}, x_{1}, \cdots , x_{s})$ be an R-sequence $(s<depthR)$ and

$N$ a nonzero finitely generated R-module. Then $x_{0},$ $x_{1},$
$\cdots$ , $x_{s}$ is an N-sequence

if and only if $N=N^{0},$ $d^{0}(N^{0})\cong N^{1},$ $\cdots$ , $d^{s-1}(N^{s-1})\cong N^{s}$ for the $(x)$-comPlex under

$N$ : $ 0\rightarrow N\rightarrow N^{0}d^{-1}\rightarrow^{a^{0}}N^{1}\rightarrow^{d^{1}}\cdots$ .
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PROOF. The ’if’ part follows from the theorem. Suppose $x_{0},$ $x_{1},$
$\cdots$ , $x_{s}$

is an N-sequence. Let $0\rightarrow N\rightarrow E^{0}d^{-1}\rightarrow^{d^{0}}E^{1}\rightarrow^{d^{1}}$ be a minimal injective re-
solution of $N$. Since $x_{0}$ is a nonzero divisor of $R$ and of $E^{0}$ , the multiplication
map by $x_{0}$ induces an automorphism of $E^{0}$ . So the multiplication map by
$x_{0}$ : $N^{0}\rightarrow d^{-1}(N)(\cong N)$ is an isomorphism. In general, $x_{i}$ is a nonzero divisor
of $d^{i- 1}(N^{i-1})(\cong N/(x_{0}, x_{1}, \cdots , x_{i-1})N)$ and Hom $(R/(x_{0}, x_{1}, \cdots , x_{i- 1}), E^{i})$ is an
injective envelope of the $R/(x_{0}, x_{1}, \cdots , x_{i- 1})$-module $d^{i-1}(N^{i-1})(1\leqq i\leqq s)$ . Using
the same argument as above, we have $N^{i}\cong d^{i-1}(N^{i- 1})(1\leqq i\leqq s)$ .

COROLLARY 8. Let $R$ be a Gorenstein local ring with a maximal ideal $\mathfrak{m}$ .
Then, for any maximal R-sequence $(x)$ , each term of the $(x)$-comPlex under $R$ is
finitely generated and its final nonzero term is isomorphic to the injective envelope

of an $R/(x)$-module $R/\mathfrak{m}$ .
THEOREM 9. Assume depth $R\leqq n+1$ for a non negative integer $n$ . If there

exists a sequence $(x)=(x_{0}, x_{1}, \cdots , x_{n})$ of elements of $\mathfrak{m}$ such that the $(x)$-comPlex
under $R$ is acyclic with each term finitely generated, then dim $R\leqq n+1$ .

$d^{-1}$ $d^{0}$ $d^{1}$

PROOF. Let $ 0\rightarrow R\rightarrow E^{0}\rightarrow E^{1}\rightarrow\cdots$ be a minimal injective resolution
of $R$ . Then $(0:x_{0})_{E^{0}}$ is embedded in the first term $R^{0}$ of the $(x)$-complex
under $R$ and so is finitely generated. If $(0:x_{0})_{E^{0}}\neq 0$, we have depth $R/(x_{0})=0$

and hence dim $R\leqq 1$ [see 4, Corollaire 1.3]. Assume $(0:x_{0})_{E^{0}}=0$ . Then $x_{0}$ is
a nonzero divisor of $R$ . Since $(0:(x_{0}, x_{1}))_{E^{1}}$ is embedded in $R^{1}$ , it is finitely
generated. If $(0:(x_{0}, x_{1}))_{E^{1}}\neq 0$, we have depth $R/(x_{0}, x_{1})=0$ and so $\dim R\leqq 2$ .
If $(0:(x_{0}, x_{1}))_{E^{1}}=0,$ $x_{1}$ is a nonzero divisor of $(0:x_{0})_{E1}$ . Since $d^{0}(R^{0})\cong R/x_{0}R$

is embedded in $(0:x_{0})_{E^{1}},$ $x_{1}$ is a nonzero divisor of $R/x_{0}R$ . Proceeding in
this fashion, if $(0:(x_{0}, x_{1}, \cdots , x_{i}))_{E^{i}}\neq 0(0\leqq i\leqq n)$ , we have dim $R\leqq i+1$ and if
$(0:(x_{0}, x_{1}, \cdots , x_{i}))_{E^{i}}=0$ for all $i$ with $0\leqq i\leqq n,$ $x_{0},$ $x_{1},$ $\cdots,$ $x_{n}$ is an R-sequence.
Hence we have depth $R=n+1$ and so $(0:(x_{0}, x_{1}, \cdots , x_{n}))_{E^{n+1}}\neq 0$ . Since
$(0:(x_{0}, \chi_{1}, \cdots , x_{n}))_{E^{n+1}}(\cong R^{n+1})$ is finitely generated by the hypothesis, we
obtain dim $R\leqq n+1$ .

THEOREM 10. SuppOse a noetherian local ring RPossesses a finitely generated
module $N$ of finite injective dimension such that, for any maximal R-sequence
$(x)=(x_{0}, x_{1}, \cdots , x_{r})$ , some tem of the $(x)$ -comPlex under $N$ is nonzero and finitely
generated. Then $R$ is Cohen-Macaulay.

PROOF. Assume $N^{t}$ is finitely generated where $N^{i}$ is some term of the
(x)-complex under $N:0\rightarrow N\rightarrow N^{0}\rightarrow N^{1}\rightarrow\cdots\rightarrow N^{r+1}\rightarrow 0$ . If $i=r+1$ , our statement
obviously holds. When $i=r,$ $N^{r+1}$ is also Pnitely generated. Hence we suppose
$i<r$ . Let $0\rightarrow N\rightarrow E^{0}\rightarrow E^{1}\rightarrow\cdots\rightarrow E^{r+1}\rightarrow 0$ be a minimal injective resolution of $N$.
We have $(0:(x_{0}, x_{1}, \cdots , x_{i}))_{E^{i}}=0$ . For, if $(0:(x_{0}, x_{1}, \cdots , x_{i}))_{E^{i}}\neq 0$, it is finitely
generated since it is contained in $N^{i}$ , and so depth $R/(x_{0}, x_{1}, \cdots , x_{i})=0$,

which is a contradiction. Therefore $x_{i}$ is a nonzero divisor on $(0:(x_{0},$ $x_{1},$
$\cdots$ ,

$x_{i-1}))_{E^{i}}$ and so we have $d^{i-1}(N^{t-1})\neq 0$ . Since $d^{i-1}(N^{i-1})$ is a submodule of the
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finitely generated module $N^{i}$ and of finite injective dimension as an $R/(x_{0}$ ,
$x_{1},$

$\cdots$ , $x_{i-1}$)-module, its isomorphic module $N^{i-1}/d^{i-2}(N^{i-2})$ is a finitely gener-
ated $R/(x_{0}, x_{1}, \cdots , x_{i-1})$-module of finite injective dimension. Set $\mathfrak{a}=$

Ann $R/(x_{0}\cdot x_{1},\ldots.x_{i-1})N^{i-1}/d^{i-2}(N^{i-2})$ . If $a=0,$ $R/(x_{0}, x_{1}, \cdots , x_{i-1})$ is Cohen-Macaulay
[see 2, Lemma (3.1), (3.3)]. Next assume $\mathfrak{a}\neq 0$ . Then there is an element $x_{i}^{\prime}$

of $R$ such that the residue class $\overline{x}_{i}^{\prime}$ belongs to $\mathfrak{a}$ and $x_{i}^{\prime}$ is a nonzero divisor
on $R/(x_{0}, x_{1}, \cdots , x_{i-1})$ [see 3, Theorem 4.1]. For a maximal R-sequence $(x^{\prime})$

$=(x_{0}, x_{1}, \cdots , x_{i-1}, x_{i}^{\prime}, x_{i+1}^{\prime}, \cdots , \chi_{r}^{\prime})$ , the i-th term $N_{(x^{\prime})}^{i}$ of the $(x^{\prime})$-complex under
$N$ is non finitely generated, for $N^{i-1}/d^{i-2}(N^{i-2})$ $(\neq 0)$ is embedded in
$(0:(x_{0}, x_{1}, \cdots , x_{i-1}, x_{i}^{\prime}))_{E^{i}}$ and so $(0:(x_{0}, x_{1}, \cdots , x_{i-1}, x_{i}^{\prime}))_{E^{i}}\neq 0$ . Thus, if $i$ is a
minimal non negative integer such that $N^{i}$ is finitely generated, $R/(x_{0},$ $x_{1},$

$\cdots$

$x_{i-1})$ is Cohen-Macaulay or there is a maximal R-sequence $(x^{\prime})$ such that all
$N_{(x^{\prime})}^{i}$ are non finitely generated for $0\leqq j\leqq i$ . When the second statement
holds, repeating the above argument, we obtain that $R/(x_{0}, x_{1}, \cdots , x_{k})$ is
Cohen-Macaulay or there is a maximal R-sequence $(x^{\prime\prime})$ such that $N_{(x^{\prime})}^{r+1}$ is
finitely generated. In either case, $R$ is Cohen-Macaulay.
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