Free group actions of $Z_{p,q} \times Z_h$ on homotopy spheres

By Yoshinobu KAMISHIMA

(Received March 2, 1978)

Introduction.

Let $Z_{p,q}$ be the metacyclic group with presentation

$$\{x, y | x^p = y^q = 1, yxy^{-1} = x^{\sigma}\},\$$

where p is an odd integer, q an odd prime, $(\sigma-1, p)=1$, and σ is a primitive q^{th} root of 1 mod p. Denote by Θ_n the group of homotopy spheres, and by $\Theta_n(\partial \pi)$ the group of homotopy spheres which bound parallelizable manifolds. Then Petrie [5] proved that for each $\Sigma \in \Theta_{2q-1}(\partial \pi)$ there is a free smooth action of $Z_{p,q}$ on Σ . This theorem will be generalized as follows in this paper.

THEOREM. Let Z_h denote a cyclic group of order h and assume $h=2^n h'$, (2, h')=1. If n takes 0, 1, or 2 and (h', pq)=1, then for each $\Sigma \in \Theta_{2q-1}(\partial \pi)$ there is a free smooth action $Z_{p,q} \times Z_h$ on Σ .

Our theorem follows immediately from the following two propositions.

PROPOSITION 5.7. There exists a free smooth action of $Z_{p,q} \times Z_h$ on some homotopy sphere $\Sigma \in \Theta_{2q-1}(\partial \pi)$. Here (h, pq)=1.

PROPOSITION 6.1. Let m be any integer ≥ 1 . Assume $h=2^{n}h'$ where n=0, 1, or 2 and (h', pq)=1. If $\Sigma \in \Theta_{4m+1}$ admits a free $Z_{p,q} \times Z_{h}$ -action, then $\Sigma \# \Sigma_{0}$ admits a free $Z_{p,q} \times Z_{h}$ -action, where Σ_{0} generates $\Theta_{4m+1}(\partial \pi)$.

Our methods are analogous to those in Petrie [5]. \$\$1-4 are preliminaries for Proposition 5.7 which is proved in \$5. In \$6, we prove Proposition 6.1 by applying a theorem of Browder [1].

I would like to thank Professor Y. Kitada, Professor H. Suzuki and Professor M. Nakaoka for their useful suggestions and criticism.

1. Construction of a $Z_{p,q} \times Z_h$ -action.

We set $\pi = Z_{p,q} \times Z_h$ for the groups $Z_{p,q}$ and Z_h in Introduction, where (h, pq)=1. We denote by π_p, π_q the cyclic subgroups generated by x, y respectively. Let Z_{ph} be a cyclic group of order ph. Since (p, h)=1, there exist integers m and n such that mp+nh=1, and an isomorphism of Z_{ph} to

 $\pi_p \times \pi_h$ is given by

$$g \mapsto x^n z^m$$
,

where z, g are generators of Z_h , Z_{ph} respectively. There is an integer k such that $x^{\sigma n} z^m = (x^n z^m)^k$, $k - \sigma \equiv 0$ (p), and $k - 1 \equiv 0$ (h). Such m, n, and k will be fixed throughout this paper.

First we construct a linear action of π on C^{q+1} .

LEMMA 1.1. Let ξ_{ph} be a primitive ph^{th} root of unity so that $\xi_p = (\xi_{ph})^h$, $\xi_h = (\xi_{ph})^p$ are primitive p^{th} , h^{th} roots of unity respectively, and let ξ_q be a primitive q^{th} root of unity. If z_1, \dots, z_{q+1} are complex coordinates for C^{q+1} , an action of π on C^{q+1} is given as follows:

$$\begin{aligned} x(z_1, \cdots, z_q, z_{q+1}) &= (\xi_p z_1, \xi_p^k z_2, \cdots, \xi_p^{kq-1} z_q, z_{q+1}), \\ z(z_1, \cdots, z_q, z_{q+1}) &= (\xi_h z_1, \xi_h z_2, \cdots, \xi_h z_q, z_{q+1}), \\ y(z_1, \cdots, z_q, z_{q+1}) &= (z_2, z_3, \cdots z_q, z_1, \xi_q z_{q+1}). \end{aligned}$$

PROOF. We dissect the group π by means of the exact sequence

$$1 \longrightarrow Z_{ph} \xrightarrow{i} \pi \xrightarrow{j} \pi_q \longrightarrow 1.$$

Let V_{ph} and V_q be one dimensional complex representations of Z_{ph} and π_q given by ξ_{ph} and ξ_q respectively. Then

$$V = i_* V_{ph} + j^* V_q$$

is a complex q+1 dimensional representation of π . Here $i_*V_{ph} = C(\pi) \bigotimes_{C(Z_{ph})} V_{ph}$ is the induced representation, $C(\pi)$ the complex group ring of π and j^*V_q the one dimensional complex representation of π defined by V_q viewed as a $C(\pi)$ module via j. We may take z_1, \dots, z_q as complex coordinates for i_*V_{ph} and z_{q+1} as a complex coordinate for j^*V_q .

By V we mean C^{q+1} with the action of π in Lemma 1.1. Putting $l=q^r$, we consider a polynomial

$$f_l(z_1, \dots, z_{q+1}) = z_1^{ph} + z_2^{ph} + \dots + z_q^{ph} + z_{q+1}^l$$

which is invariant under the action of π .

PROPOSITION 1.2. π acts freely on the (2q-1)-dimensional Brieskorn manifold

$$K_{f_l} = \{v \in V | f_l(v) = 0, \|v\| = \eta\}$$
,

where η is a small positive number.

PROOF. If $g \in \pi$ fixes a point, then g^k fixes a point, for any k and all conjugates of g fixes a point. Hence it is enough to select for each prime

t dividing the order of π one Sylow t subgroup S_t and show that no element of order t in S_t fixes a point.

Case 1. t=q. Let S_q be the subgroup generated by y. Then if $y\vec{z}=\vec{z}$ for $\vec{z}=(z_1, \dots, z_{q+1}) \in V$, it follows that $\vec{z}=(z_1, \dots, z_1, 0)$ and $f_l(\vec{z})=qz_1^{ph}=0$. Therefore we get $z_1=0$ but we have $|\vec{z}|^2=q|z_1|^2=\eta^2>0$. Hence y fixes no point.

Case 2. t | p. Let S_t be the subgroup generated by $\delta = x^d$, where $p = t^n d$ and (t, d) = 1. Set $u = x^{t^{n-1}d}$. If $u\vec{z} = \vec{z}$, it follows that $\vec{z} = (0, .., 0, z_{q+1})$ and $f_l(\vec{z}) = z_{q+1}^l = 0$. Therefore we have $z_{q+1} = 0$, and u fixes no point.

Case 3. $t \mid h$. Let S_t be the subgroup generated by $\delta' = z^e$, where $h = t^{n'e}$ and (t, e) = 1. Set $u' = z^{t^{n'-1}e}$. Similarly to Case 2, we see that u' fixes no point.

2. Description of $H_{q-1}(K_{f_l})$.

The (2q-1)-dimensional smooth manifold K_{fl} is (q-2)-connected (see [4, p. 45]). We shall describe the $Z(\pi)$ -module $H_{q-1}(K_{fl})$ following Milnor [4]. Here $Z(\pi)$ is the group ring of π over Z.

PROPOSITION 2.1. There is an exact sequence of $Z(\pi)$ -modules

$$0 \longrightarrow H_q(K_{f_l}) \longrightarrow H_q(F) \xrightarrow{1-\phi} H_q(F) \longrightarrow H_{q-1}(K_{f_l}) \longrightarrow 0$$

where

(i) $F = \{v \in V | f_l(v) = \text{const.} \}$,

(ii) $H_q(F)$ is the tensor product $I_{ph}^q \otimes I_{qr}$ as a $Z(\pi)$ -module (Two $Z(\pi)$ -modules I_{ph}^q and I_{qr} are settled in Proof),

(iii) $1-\phi$ is a $Z(\pi)$ -homomorphism.

PROOF. From the Milnor fibering $S_{\eta} - K_{f_l} \longrightarrow S^1$, we have the above exact sequence and it follows that

$$H_q(F) \cong \widetilde{H}_0(\mathcal{Q}_{ph}) \otimes \cdots \otimes \widetilde{H}_0(\mathcal{Q}_{ph}) \otimes \widetilde{H}_0(\mathcal{Q}_{qr}) \qquad (q+1 \text{ fold}),$$

 Ω_{ph} and Ω_{qr} being the finite cyclic groups consisting of all ph^{th} and $q^{r \text{th}}$ roots of unity respectively (see [4]).

Denote by I_{ph} the ideal $(1-x^n z^m)Z(Z_{ph})$ of $Z(Z_{ph})$, and I_{qr} the ideal $(1-s)Z(\pi_{qr})$ of $Z(\pi_{qr})$. Here π_{qr} is the cyclic subgroup of order q^r generated by s. Obviously we see that

$$\widetilde{H}_0(\Omega_{ph}) = I_{ph}$$
 and $\widetilde{H}_0(\Omega_{qr}) = I_{qr}$.

The q-fold tensor product of I_{ph} over Z with itself is denoted by I_{ph}^q . So, $H_q(F)$ is the tensor product $I_{ph}^q \otimes I_{qr}$. Moreover, $H_q(F)$ inherits the action of π on V. By Lemma 1.1, the action on I_{ph}^q is given by

$$\begin{aligned} x(\lambda_1 \otimes \cdots \otimes \lambda_q) &= (x\lambda_1 \otimes x^k \lambda_2 \otimes \cdots \otimes x^{k^{q-1}} \lambda_q), \\ z(\lambda_1 \otimes \cdots \otimes \lambda_q) &= (z\lambda_1 \otimes z\lambda_2 \otimes \cdots \otimes z\lambda_q), \\ y(\lambda_1 \otimes \cdots \otimes \lambda_q) &= (\lambda_2 \otimes \lambda_3 \otimes \cdots \otimes \lambda_q \otimes \lambda_1), \end{aligned}$$

and the action of π on I_{q^r} is given by

$$x\lambda = \lambda$$
, $z\lambda = \lambda$, and $y\lambda = s^{l/q}\lambda$.

Put

$$A = I_{ph}^q \otimes I_{qr}$$
.

The diagonal action on the tensor product A makes $H_q(F)$ a module over $Z(\pi)$. This proves (ii).

From the fact that

$$\phi(\lambda_1 \otimes \cdots \otimes \lambda_q \otimes \lambda_{q+1}) = (x^n z^m \lambda_1 \otimes \cdots \otimes x^n z^m \lambda_q \otimes s \lambda_{q+1}),$$

it follows that the homomorphism $\phi: A \rightarrow A$ is a $Z(\pi)$ -homomorphism. This complets the proof of Proposition 2.1.

By Proposition 2.1 and its proof, our present task is to know the cokernel of $1-\phi$. Let C denote the cokernel of $1-\phi$.

LEMMA 2.2. C is annihilated by a power of q, so that $C \otimes Z_{(q)} = C$, where $Z_{(q)}$ denotes the integers localized at the prime ideal $(q) \subset Z$.

PROOF. If $1-\phi$ is viewed as a linear transformation over Z, it suffices to show that the determinant of $1-\phi$ is a power of q. By the proof of (iii) in Proposition 2.1,

$$(1-\phi^{ph})(\lambda_1\otimes\cdots\otimes\lambda_{q+1})=\lambda_1\otimes\cdots\otimes\lambda_q\otimes(1-s^{ph})\lambda_{q+1}.$$

If we choose $\{(1-s^{ph})s^{phi}, i=0, 1, \dots, q^r-2\}$ as a basis of I_{qr} , the homomorphism $1-s^{ph}$ of I_{qr} to itself is given by the $(q^r-1)\times(q^r-1)$ matrix:

$$\begin{bmatrix} 1 & & 1 \\ -1 & 1 \cdot & & 1 \\ -1 & \cdot & & \vdots \\ & -1 & \cdot & & \vdots \\ & & & \cdot & 1 & 1 \\ 0 & & & & 1 \\ & & & -1 & 2 \end{bmatrix}.$$

The determinant of this matrix is q^r . Hence

$$\det (1-\phi^{ph})=q^{r(ph-1)q}$$

Since $1-\phi^{ph}=(1-\phi)(1+\phi+\cdots+\phi^{ph-1})$ and q is prime, det $(1-\phi)$ is a power of q. This proves the lemma.

In view of Lemma 2.2, C is also the cokernel of

$$(1-\phi)\otimes 1: A\otimes Z_{(q)} \longrightarrow A\otimes Z_{(q)}.$$

Let ω be a primitive ph^{th} root of 1. We can describe the $Z(\pi)$ -module structure $C \otimes Z_{(q)}(\omega)$ rather than C itself. $C \otimes Z_{(q)}(\omega)$ is the cokernel of

$$(1-\phi)\otimes 1: A\otimes Z_{(q)}(\omega) \longrightarrow A\otimes Z_{(q)}(\omega).$$

Let $I = (s_1, s_2, \dots, s_q)$ be a q-tuple with $s_j \in \mathbb{Z}_{ph} - \{0\}$ and put

$$|I| = \sum_{j=1}^q s_j.$$

Set

$$\chi_{s'} = \sum_{i=0}^{ph-1} \omega^{-s'i} (x^n z^m)^i \qquad s' \in Z_{ph} - \{0\}$$

and

$$\chi_I = \chi_{s_1} \otimes \chi_{s_2} \otimes \cdots \otimes \chi_{s_q}.$$

PROPOSITION 2.3. $C \otimes Z_{qr}(\omega) = \sum_{|I| \equiv 0 \ (ph)} Z_{qr}(\omega) \chi_I$. The $Z(\pi)$ -module structure of $C \otimes Z_{qr}(\omega)$ is given by

- (i) $x\chi_I = \omega^{h \alpha(I)}\chi_I$ with $\alpha(I) = \sum_{j=1}^q k^{j-1}s_j$,
- (ii) $z\chi_I = \chi_I$ (trivial action),
- (iii) $y\chi_I = \chi_{y(I)}$,

where $y(I) = y(s_1, s_2, \dots, s_q) = (s_2, s_3, \dots, s_q, s_1)$. PROOF. By definition of $\chi_{s'}$, $\{\chi_{s'}, s' \in \mathbb{Z}_{ph} - \{0\}\}$ is a basis of $I_{ph}(\omega)$. Thus

$$A \otimes Z_{(q)}(\boldsymbol{\omega}) = \sum_{I \subset S'} Z_{(q)}(\boldsymbol{\omega}) \boldsymbol{\chi}_{I} \otimes (1-s) Z_{(q)}(\pi_{q^{r}}).$$

S' is the set of all I with $s_j \in Z_{ph} - \{0\}$. Since $(x^n z^m) \chi_{s'} = \omega^{s'} \chi_{s'}$, we have

$$\phi(\chi_I \otimes (1-s)) = \omega^{|I|} \chi_I \otimes s(1-s).$$

Set

$$\eta_I = 1 - s \omega^{|I|}$$

and

$$N=(1-s)Z_{(q)}(\boldsymbol{\omega})(\pi_{q^r}).$$

Then we get

$$C \otimes Z_{(q)}(\omega) = \sum_{I \subset S'} [N/\eta_I N] \chi_I.$$

For $|I| \neq 0$ (*ph*), $\eta_I N = N$ and if $|I| \equiv 0$ (*ph*), $N/\eta_I N = Z_{qr}(\omega)$. Hence it follows that

$$C \otimes Z_{(q)}(\omega) = \sum_{|I| \equiv 0 (ph)} Z_{qr}(\omega) \chi_I.$$

By Lemma 2.2, $C \otimes Z_{q^r}(\omega) \cong C \otimes Z_{(q)}(\omega)$. This proves the first assertion. The second follows since π acts on χ_I as in the proof of Proposition 2.1 and $x = (x^n z^m)^h$, $z = (x^n z^m)^p$.

3. Some representations of $Z_{p,q} \times Z_h$.

We discuss certain representations of $\pi = Z_{p,q} \times Z_h$ over the ring Z_l where $l=q^r$. For each integer *i*, let S_i denote the set of primitive *i*th roots of unity and let

$$\Phi_i(t) = \prod_{\omega \in S_i} (t - \omega)$$

denote the i^{th} cyclotomic polynomial.

LEMMA 3.1. For each integer d dividing ph, the ring

$$\theta_d = Z[t]/(\Phi_d(t))$$

is a $Z(\pi)$ -module if we set

- (i) $x(\sum a_i t^i) = \sum a_i t^{i+h}$,
- (ii) $z(\sum a_i t^i) = \sum a_i t^{i+p}$,
- (iii) $y(\sum a_i t^i) = \sum a_i t^{ki}$.

PROOF. Note that $\Phi_d(t^k) = \Phi_d(t)\psi(t)$ where $\psi(t)$ is an integral polynomial. It is easily seen that the action of π on θ_d is well defined.

For $l=q^r$, let (l) be the principal ideal defined by l in θ_d , and we set

$$(3.2) M_d = \theta_d / (l) \,.$$

From the identities

$$t^p - 1 = \prod_{d \mid p} \boldsymbol{\Phi}_d(t),$$

(3.4)
$$\Sigma = 1 + t + \dots + t^{p-1} = \prod_{d \mid p, d \neq 1} \Phi_d(t),$$

and the fact that the polynomials $\Phi_d(t)$ are relatively prime over $Z_l[t]$, we have

LEMMA 3.5. $\Gamma_l = Z_l[t]/(\Sigma) \cong \sum_{d \mid p, d \neq 1} M_d$, where (Σ) denotes the ideal generated by Σ .

For the group $Z_{ph} \cong \pi_p \times Z_h$, we also need following representations over $Z_l(\omega)$, ω being a primitive ph^{th} root of 1. N_{sh} is the free $Z_l(\omega)$ -module with one generator χ_{sh} for $s \in Z_p$ and relations

$$x\chi_{sh} = \omega^{(sh)h}\chi_{sh}$$
,

Actions of $Z_{p,q} \times Z_h$ on spheres

 $z\chi_{sh} = \chi_{sh}$ (z acts trivially).

From the $Z_l(\omega)(Z_{ph})$ -modules N_{sh} for $s \in Z_p$ and $d \mid p$, we can form the sums

$$L_d = \sum_{s \in S_d} N_{sh} \, .$$

These L_d are $Z_l(\omega)(\pi)$ -modules if we set

 $y\chi_{sh} = \chi_{k-1sh}$.

If S is a $Z_l(\pi)$ -module, we denote the $Z_l(\omega)(\pi)$ -module $\underset{Z_l}{\otimes}Z_l(\omega)$ by $E_*(S)$. The Krull-Schmidt Theorem [2] implies that

$$E_*(S) \cong E_*(S')$$
 if and only if $S \cong S'$.

 $E_*(M_d) = L_d$,

PROPOSITION 3.7.

$$E_*(\Gamma_l) = \sum_{d \neq j \neq 1} L_d$$

PROOF. A correspondence of L_d onto $E_*(M_d)$ is defined by

$$\chi_{sh} \longrightarrow \bar{\chi}_{sh} = \sum_{i=0}^{ph-1} [t^i] \otimes \omega^{-shi}.$$

It is easily seen that this correspondence is an equivariant isomorphism. The second follows from Lemma 3.5.

4. $Z(\pi)$ -module structure of $H_{q-1}(K_{f_1})$.

In this section we determine $H_{q-1}(K_{f_l})$ as a $Z(\pi)$ -module. Set $T = \sum_{|I|=0(ph)} Z_l(\omega) \chi_I,$

where $I = (s_1, s_2, \dots, s_q)$ is a *q*-tuple with $s_j \in Z_{ph} - \{0\}$ and $|I| = \sum_{j=1}^{q} s_j$.

Recall that the action of π on T. From Proposition 2.3, we have

$$(x^n z^m) \chi_I = \omega^{\alpha(I)} \chi_I$$
, $y \chi_I = \chi_{y(I)}$,

where $\alpha(I) = \sum_{j=1}^{q} k^{j-1} s_j$, $y(I) = y(s_1, s_2, \dots, s_q) = (s_2, s_3, \dots, s_q, s_1)$. From the relation $k-1\equiv 0$ (h), we have $\alpha(I)\equiv 0$ (h). And $x=(x^nz^m)^h$, $z=(x^nz^m)^p$ show that $x\chi_I = \omega^{h\alpha(I)}\chi_I$.

 $z\chi_I = \chi_I$ (the action of z is trivial).

For $i \in \mathbb{Z}_p$, we set

$$A_i = \{I \mid |I| \equiv 0 \ (ph), \ \alpha(I) = hi \in \mathbb{Z}_{ph}\}$$
.

Then we obtain

$$T = \sum_{i \in \mathbb{Z}_{p, I}} \sum_{I \in A_i} Z_l(\omega) \chi_I.$$

LEMMA 4.1. The cardinalities n_i of the sets A_i satisfy:

- (i) $n_i \equiv 0$ (2), $i \in \mathbb{Z}_p$,
- (ii) $n_i = n_j$ if i, j are not zero in Z_p ,
- (iii) $n_0 \equiv 0$ (2q).

PROOF. Consider tuples $I = (s_1, s_2, \dots, s_q)$ with the properties

- (1) $s_j \in Z_{ph}$ admits zero,
- (2) $|I| \equiv 0 \ (ph)$,
- (3) $\alpha(I) = hi \in \mathbb{Z}_{ph}$.

Let P_j be the "property" such that $s_j=0$, and R be the set of "properties" $\{P_j | 1 \leq j \leq q\}$. For each subset $X \subset R$, let N(X) be the number of tuples satisfying (1), (2), and (3), and at least the properties of X. Then it follows that

$$n_i = \sum_{X \subset R} (-1)^{|X|} N(X)$$
,

where |X| is the number of elements in X and |X|=0 if $X=\emptyset$.

If |X| = q or q-1, we have

$$N(X) = \begin{pmatrix} 0 & (i \neq 0) \\ 1 & (i = 0) \end{pmatrix}$$

Assume |X| < q-1 and suppose P_{α} , $P_{\beta} \in X$. Solving (2) and (3) for s_{α} , s_{β} , we have

(4)
$$\begin{pmatrix} s_{\alpha}+s_{\beta}=*\\ k^{\alpha-1}s_{\alpha}+k^{\beta-1}s_{\beta}=*, \end{pmatrix}$$

* being terms given by conditions (2) and (3). The determinant of the coefficients of s_{α} , s_{β} in the equation (4) is $k^{\alpha-1}(k^{\beta-\alpha}-1)$ (say $\beta > \alpha$). Since $k-1 \equiv 0$ (*h*), this determinant is not invertible over Z_{ph} . But in the image of the projection $\pi: Z_{ph} \rightarrow Z_p$, we have from (4)

(5)
$$\begin{pmatrix} \bar{s}_{\alpha} + \bar{s}_{\beta} = \bar{*} \\ k^{\alpha - 1} \bar{s}_{\alpha} + k^{\beta - 1} \bar{s}_{\beta} = \bar{*}, \end{pmatrix}$$

where $\bar{}$ is the image of π . The determinant of the coefficients of $\bar{s}_{\alpha}, \bar{s}_{\beta}$ in (5) is $\overline{k^{\alpha-1}(k^{\beta-\alpha}-1)}$. This is invertible over Z_p , because the relations $\sigma-k \equiv 0$ (p), $(\sigma-1, p)=1$, and $k^q \equiv 1$ (p) imply that $(k^{\alpha}-1, p)=1$ $(1 \leq \alpha < q)$. There are $(ph)^{|R-X|-2}$ choices of * in (4), and $\bar{s}_{\alpha}, \bar{s}_{\beta}$ are unique by (5). Therefore, from the exact sequence

(6) $0 \longrightarrow Z_h \xrightarrow{xp} Z_{ph} \xrightarrow{\pi} Z_p \longrightarrow 0$, it follows that $N(X) = (ph)^{|R-X|-2} \cdot h$.

$$\begin{split} n_{i} &= (ph)^{-2} (\sum_{|X| < q^{-1}, X \subset R} (-1)^{|X|} (ph)^{|R-X|} h) + \delta_{0i} ((-1)^{q-1} q + (-1)^{q}) \\ &= (ph)^{-2} h ((ph-1)^{q} + (-1)^{q} (phq-1)) + \delta_{0i} ((-1)^{q-1} q + (-1)^{q}) , \end{split}$$

which implies (i) and (ii).

 π acts on $\sum_{I \in A_0} Z_l(\omega) \chi_I$ invariantly, since $\alpha(y(I)) = k^{-1} \alpha(I) = 0$ $(I \in A_0)$

and

We can form $\sum Z_l(\omega)\chi_I$ as the sum of disjoint union

$$\sum Z_{l}(\omega)\chi_{I} = Z_{l}(\omega)(\pi(\chi_{I_{1}})) \oplus \cdots \oplus Z_{l}(\omega)(\pi(\chi_{I_{n}})),$$

|v(I)| = |I| = 0.

 $\pi(\chi_{I_i})$ being orbits (*i*=1, ..., μ). Set

$$\pi_{I_i} = \{g \in \pi \mid g \chi_{I_i} = \chi_{I_i}\}.$$

Since $\alpha(I_i)=0$, $x\chi_{I_i}=\omega^{h\alpha(I_i)}\chi_{I_i}=\chi_{I_i}$ and also $z\chi_{I_i}=\chi_{I_i}$. But we have $y^j(I_i)\neq I_i$ for $1\leq j < q, q$ prime. Thus

$$\pi_{I_i} \cong \pi_p \times Z_h.$$

The orbits $\pi(\chi_{I_i})$ consist of q elements. Hence the cardinality n_0 of A_0 is divisible by q. This completes the proof.

THEOREM 4.2. $H_{q-1}(K_{f_l}) \cong n_0/qZ_l(\pi_q) + n_1\Gamma_l$ as a $Z(\pi)$ -module.

PROOF. When we regard $Z_l(\pi_q)$ as a $Z_l(\pi)$ -module such that x and z act trivially, it has been seen in the proof of Lemma 4.1 that

(4.3)
$$\sum_{I \in A_0} Z_l(\omega) \chi_I = n_0 / q E_*(Z_l(\pi_q)).$$

In view of Proposition 3.7, there is an isomorphism of $\sum_{i \in \mathbb{Z}_p - 0} \sum_{A_i} Z_i(\omega) \chi_I$ onto $n_1 E_*(\Gamma_i)$, i.e.,

$$\psi: \sum_{A_i} Z_l(\omega) \chi_I \longrightarrow n_i Z_l(\omega) \chi_{\alpha(I)}.$$

Here we use (ii) of Lemma 4.1. It is easily checked that ϕ is an isomorphism of modules, and so

(4.4)
$$\sum_{i\in \mathbb{Z}_p^{-0}, \ I\in A_i} \sum_{Z_l(\omega)} \chi_I = n_1 E_*(\Gamma_l).$$

By (4.3) and (4.4), it follows that

(4.5)
$$T = E_*(n_0/qZ_l(\pi_q) + n_1\Gamma_l).$$

By Proposition 2.3, $E_*(C) = T$. Applying the Krull-Schmidt Theorem, we have

$$(4.6) C \cong n_0/qZ_l(\pi_q) + n_1\Gamma_l .$$

Since C is the cokernel of $1-\phi$ (see Proposition 2.1), the result follows from (4.6).

5. Surgery on K_{f_l} .

Since q is an odd prime, we try to apply the Theorem 5.6 [8] (or equivalently §5 in [5]) to the (2q-1)-smooth manifold K_{f_l} . Here is the Theorem stated in §5 of [5] which also holds for $\pi = Z_{p,q} \times Z_h$.

THEOREM 5.6 OF [8]. A necessary and sufficient condition that surgery is possible on K_{f_l}/π yielding a manifold N with $\pi_1(N) = \pi$ and such that the universal cover Σ of N is a homotopy sphere is that there exist a free module F of finite rank s over $Z(\pi)$ and an $(s \times s)$ -matrix B such that $B^* = -B$ and an exact sequence

$$0 \longrightarrow F \xrightarrow{B} F \xrightarrow{\omega} H_{q-1}(K_{f_l}) \longrightarrow 0$$

such that the linking number form

$$\phi: H_{q-1}(K_{f_l}) \longrightarrow \operatorname{Hom}_{Z(\pi)}(H_{q-1}(K_{f_l}), Q(\pi)/Z(\pi))$$

is given by

$$\phi(y)(x) = \sum x_i B_{ij}^{-t} \bar{y}_j \mod Z(\pi)$$

when $x=(x_1, \dots, x_s), y=(y_1, \dots, y_s) \in F$.

To apply this theorem, we must know a homological property of Γ_i and $Z_i(\pi_q)$ in view of Theorem 4.2. The homological dimension of both constructed as above is the same as that of §3 [5].

Fix $l=q^r$ where r is the order of the projective class group $K_0(Z(\pi))$ which is finite (see [6],[7]). Moreover, from the fact that n_0 , n_1 are even by Lemma 4.1, we have the following theorem similar to the theorem 3.2 [5].

THEOREM 5.1. There exists a free $Z(\pi)$ -module F of rank s, an $(s \times s)$ -matrix A over $Z(\pi)$ with $A^* = -A$, and the following exact sequence

$$0 \longrightarrow F \xrightarrow{A} F \longrightarrow n_0/qZ_l(\pi_q) + n_1\Gamma_l \longrightarrow 0.$$

Since the linking number form (see [8], p 248)

$$\phi: H_{q-1}(K_{f_l}) \longrightarrow \operatorname{Hom}_{Z(\pi)}(H_{q-1}(K_{f_l}), Q(\pi)/Z(\pi))$$

is a non-singular skew Hermitian form, we have only to classify skew Hermitian forms on $H_{q-1}(K_{f_l})$ over $(Z_l(\pi), -)$ where - denotes an involution.

LEMMA 5.2. If $\phi: H_{q-1}(K_{f_l}) \times H_{q-1}(K_{f_l}) \rightarrow Z_l(\pi)$ is a skew Hermitian form, ϕ can be reduced "uniquely" to a skew Hermitian form

$$\phi': H_{q-1}(K_{f_l}) \times H_{q-1}(K_{f_l}) \longrightarrow Z_l(Z_{p,q})$$

on the $Z(Z_{p,q})$ -module $H_{q-1}(K_{f_l})$ over $Z_l(Z_{p,q})$.

PROOF. We shall recall the action of π on $H_{q-1}(K_{f_l})$. On $Z_l(\pi_q)$, x and z act trivially and y acts cyclotomically. We have $\Gamma_l = Z_l[t]/(\Sigma) = \sum_{d \mid p, d \neq 1} M_d$ by Lemma 3.5. π acts on Γ_l as follows:

$$x[\sum a_i t^i] = [\sum a_i t^{i+h}],$$

$$z[\sum a_i t^i] = [\sum a_i t^{i+p}] = [\sum a_i t^i],$$

$$y[\sum a_i t^i] = [\sum a_i t^{ki}].$$

From the relation mp+nh=1, we may replace a generator of π_p by x^n . Then we have

$$x^{n}[\sum a_{i}t^{i}] = [\sum a_{i}t^{i+1}].$$

From $k - \sigma \equiv 0$ (p), it follows that

$$y[\sum a_i t^i] = [\sum a_i t^{\sigma i}].$$

Note that $y(x^n)y^{-1} = (x^n)^{\sigma}$. Comparing this action with that of $Z_{p,q}$ in §2 [5], we see that the $Z(\pi)$ -module $H_{q-1}(K_{f_l}) = n_0/qZ_l(\pi_q) + n_1\Gamma_l$ is the same as the one stated in §2 [5] if we ignore the action of Z_h . Since the action of Z_h is trivial on $H_{q-1}(K_{f_l})$, Im ϕ is contained in $Z_l(\pi)^{Z_h} \subset Z_l(\pi)$ and we have an isomorphism $Z_l(\pi)^{Z_h} \cong Z_l(Z_{p,q})$ preserving the involution –. Hence ϕ can be reduced uniquely to a skew Hermitian form

$$\phi': H_{q-1}(K_{f_l}) \times H_{q-1}(K_{f_l}) \longrightarrow Z_l(Z_{p,q})$$

on the $Z(Z_{p,q})$ -module $H_{q-1}(K_{f_l})$ over $Z_l(Z_{p,q})$.

As for the uniqueness of skew Hermitian forms on the $Z(Z_{p,q})$ -module $H_{q-1}(K_{f_l})$ over $Z_l(Z_{p,q})$, there is a proposition (see Corollary 4.18 [5]).

PROPOSITION 5.3. Every "skew Hermitian Form" on

$$C = H_{q-1}(K_{f_l}) = n_0/qZ_l(\pi_q) + n_1\Gamma_l$$

over $(Z_l(Z_{p,q}), -)$ is hyperbolic.

From Lemma 5.2 and Proposition 5.3, we have

PROPOSITION 5.4. There is a unique skew Hermitian form on the $Z(\pi)$ module $H_{q-1}(K_{f_l})$ over $(Z_l(\pi), -)$.

Since $l \cdot H_{q-1}(K_{fl}) = 0$, we have the following corollary in view of the Remark of [5, p. 123].

COROLLARY 5.5. There is a unique skew Hermitian form

$$\Phi: H_{q-1}(K_{f_l}) \longrightarrow \operatorname{Hom}_{Z(\pi)}(H_{q-1}(K_{f_l}), Q(\pi)/Z(\pi))$$

$$\Phi(y)(x) = -\overline{\Phi(x)(y)}$$

Let A be the matrix given by Theorem 5.1. A induces a skew Hermitian form ϕ_A on $H_{q-1}(K_{f_l})$ by setting

$$\psi_A(y)(x) = \sum x_i A_{ij}^{-t} \bar{y}_j \mod Z(\pi)$$

where $x = (x_1, x_2, \dots, x_s), y = (y_1, y_2, \dots, y_s) \in F$.

COROLLARY 5.6. The skew Hermitian form ψ_A coincides with the linking number form on $H_{q-1}(K_{f_1})$.

Theorem 5.1 and Corollary 5.6 provide us a sufficient condition in Theorem 5.6 of [8], and we have

PROPOSITION 5.7. There exists a free smooth action of $Z_{p,q} \times Z_h$ on some homotopy sphere $\Sigma^{2q-1} \in \Theta_{2q-1}(\partial \pi)$.

6. Application of the generalized Kervaire invariant.

In [1], Browder defined the generalized Kervaire invariant. In particular, in the case that a "B-orientation" of 'Browder' is the orientation induced by a normal map, this invariant is well defined. And if a surgery obstruction of the normal map is the Kervaire invariant, these generalized Kervaire invariant and Kervaire invariant agree.

Let M be a smooth (or p. l.) manifold with $\pi_1(M) = Z_2$, $p: \tilde{M} \to M$ the double covering map and $f: M' \to M$ a normal map covered by $b: \nu_{M'} \to \nu_M$. For n=2s+1, form the manifold

$$M'(n) = (nM') \cup (-s\widetilde{M})$$

where $nM' = M' \cup \cdots \cup M'$, *n* times, $-s\tilde{M} = (-\tilde{M}) \cup \cdots \cup (-\tilde{M})$, *s* times, $-\tilde{M}$ being \tilde{M} with the opposite orientation. Then there is a normal map

$$nf: M'(n) \longrightarrow M$$

defined to be f on each copy of M' and p on each copy of $-\tilde{M}$, and covered by b on each $\nu_{M'}$ and by a fixed map d covering p on each $\nu_{\tilde{M}}$, where d is the inverse of $dp: \tau_{\tilde{M}} \to \tau_{M}$. Clearly nf has degree 1.

with

The Kervaire invariants of M'(n) have been computed by Browder in terms of the invariants of M (see [1, p. 212]). As an application of this result, we prove:

PROPOSITION 6.1. Let m be any integer ≥ 1 . Assume $h=2^{n}h'$ where n=0, 1or 2 and (h', pq)=1, and h' odd. If $\Sigma \in \Theta_{4m+1}$ admits a free $Z_{p,q} \times Z_{h}$ -action, then $\Sigma \# \Sigma_{0}$ admits a free $Z_{p,q} \times Z_{h}$ -action, where Σ_{0} generates $\Theta_{4m+1}(\partial \pi)$.

PROOF. Set $\pi = Z_{p,q}$ and $|\pi| =$ the order of π .

Case 1. n=0, h=h'=odd. Since the order of $\Theta_{4m+1}(\partial \pi)$ is at most 2, the universal cover of $\Sigma/\pi \times Z_h \# \Sigma_0$ is $\Sigma \# \Sigma_0$ which admits a free $\pi \times Z_h$ -action.

Case 2. n=1, h=2h' and h' odd. Let Z_2 be a subgroup of order 2 in $\pi \times Z_{2h'}$. First we construct a non zero surgery obstruction in $L_{4m+2}(Z_2, -) = Z_2$. We shall prove the following (see [3, p. 68]).

LEMMA 6.2. Let η (resp. $E(\eta)$) be the canonical line (resp. disk) bundle over Σ/Z_2 , so that $\partial E(\eta) = \Sigma$. Then there is a normal map $g: N \to E(\eta)$ which is a homotopy equivalence on the boundary $\partial N = \Sigma$ and $\theta(g)$ is not zero in $L_{4m+2}(Z_2, -) = Z_2$ (i.e., the obstruction to making g a homotopy equivalence rel. boundary is not zero).

PROOF OF LEMMA 6.2. Take $\Sigma/Z_2(5) = (5\Sigma/Z_2) \cup (-2\Sigma)$ and $5id = (5id) \cup (-2p)$. The normal map $5id : \Sigma/Z_2(5) \rightarrow \Sigma/Z_2$ induces a normal map

$$E(5id): E(5id*\eta) \longrightarrow E(\eta).$$

Here $E(5id^*\eta)$ is the disk bundle induced by 5*id*. The boundary $\partial E(5id^*\eta)$ is $5\Sigma \cup -4\Sigma$, and so connecting the components of $E(5id^*\eta)$ along the boundary we obtain a normal map

$$g: \overline{E(5id^*\eta)} \longrightarrow E(\eta)$$

so that $\partial E(5id^*\eta) = \Sigma$ and $g | \partial E(5id^*\eta)$ is a homotopy equivalence. Attaching

cone to the boundary of $\overline{E(5id^*\eta)}$, we have

$$\overline{E(5id^*\eta)} \cup (\operatorname{cone}) = (\Sigma(\Sigma/Z_2))(5)$$
 ,

where $\Sigma(\Sigma/Z_2)$ is the suspension of the (p. l.) manifold Σ/Z_2 . Similarly we have

$$E(\eta) \cup (\text{cone}) = \Sigma(\Sigma/Z_2)$$
.

Then g can be extended to a normal map

$$\bar{g}: (\Sigma(\Sigma/Z_2))(5) \longrightarrow \Sigma(\Sigma/Z_2).$$

Applying Theorem 4.1 and 4.8 of [1] to \bar{g} , we see that the surgery obstruction $\theta(\bar{g})$ is the Kervaire invariant $k((\Sigma(\Sigma/Z_2))(5))$, and $k((\Sigma(\Sigma/Z_2))(5))=1$ in $Z_2\cong$

 $L_{4m+2}(Z_2, -)$, therefore the obstruction $\theta(g)$ is not zero. This completes the proof of Lemma 6.2.

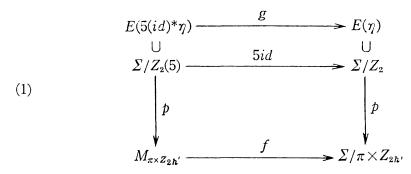
Form a manifold

$$M_{\pi \times Z_{2h'}} = (5\Sigma/\pi \times Z_{2h'}) \cup (-2\Sigma/\pi \times Z_{h'})$$
,

where $Z_{h'}$ is a subgroup of order h' in $Z_{2h'}$. There is a normal map

$$f{=}(5id){\cup}({-}2p)\colon M_{\pi{\times}Z_{2h'}}\longrightarrow \Sigma/\pi{\times}Z_{2h'}$$
 ,

where *id* is the identity map on $\Sigma/\pi \times Z_{2h'}$ and $p: \Sigma/\pi \times Z_{h'} \to \Sigma/\pi \times Z_{2h'}$ is the projection. The normal map $g: \overline{E(5id^*\eta)} \to E(\eta)$ in Lemma 6.2 is transverse regular to Σ/Z_2 and $g^{-1}(\Sigma/Z_2) = \Sigma/Z_2(5)$, $g \mid \Sigma/Z_2(5) = 5id$. We have a commutative diagram of normal maps



where $p: \Sigma/Z_2 \rightarrow \Sigma/\pi \times Z_{2h'}$ is the $h'|\pi|$ -fold covering map. By Theorem 12 of [9] (see also [10]), the surgery obstruction $\theta(f)$ is zero in $L_1(\pi \times Z_{2h'})$. Chasing the diagram (1), we have a normal cobordism $F: V \rightarrow \Sigma/Z_2 \times I$, $\partial_- V = \Sigma/Z_2(5)$, $F|\partial_- V = 5id$ and $\partial_+ V$ is an $h'|\pi|$ -fold cover of a manifold which is homotopy equivalent to $\Sigma/\pi \times Z_{2h'}$. By the normal cobordism extension property (see [3, IV 3.3]), there is a normal map

$$g': W \longrightarrow E(\eta)$$

normally cobordant to g, rel. boundary. g' is transverse regular to Σ/Z_2 , $g'^{-1}(\Sigma/Z_2) = \partial_+ V$, and $g' | \partial_+ V$ is a homotopy equivalence.

Let N be a normal bundle of $\partial_+ V$ in W, and put X=W-int N. Then we have a normal map $g'|X: X \to \Sigma \times I$ which is a homotopy equivalence on the boundary. Therefore X is a framed cobordism between Σ and the universal cover Σ' of $\partial_+ V$ which admits a free $\pi \times Z_{2h'}$ -action. Since $\theta(g') \neq 0$, the Kervaire obstruction of X is not zero in $Z_2 \cong L_{4m+2}(1)$. Hence $\Sigma' = \Sigma \# \Sigma_0$.

Case 3. n=2, h=4h' and h' odd. Form a manifold

$$M_{\pi \times Z_{4h'}} = (5\Sigma/\pi \times Z_{4h'}) \cup (-\Sigma/\pi \times Z_{h'})$$

and a normal map

$$f' = (5id) \cup (-p) : M_{\pi \times Z_{4h'}} \longrightarrow \Sigma/\pi \times Z_{4h'}$$

where $p: \Sigma/\pi \times Z_{h'} \to \Sigma/\pi \times Z_{4h'}$ is the projection. Then we have a commutative diagram of normal maps

where $p: \Sigma/\pi \times Z_{2h'} \to \Sigma/\pi \times Z_{4h'}$ is 2-fold covering map. The surgery obstruction $\theta(f')$ is zero in $L_{4m+1}(\pi \times Z_{4h'})$ by Theorem 12 of [9]. It follows similarly to the case 2 that $\Sigma \not\equiv \Sigma_0$ admits a free $\pi \times Z_{4h'}$ -action. This completes the proof of Proposition 6.1.

NOTE. In the case $n \ge 3$, the proof of proposition 6.1 fails because of the following reason. The obstruction $\theta(g)$ of a normal map g constructed from $((2^n+1)id, \Sigma/Z_2(2^n+1))$ as in the proof of Lemma 6.2 is zero for $n \ge 3$, since $k((\Sigma(\Sigma/Z_2)(2^n+1))=0.$

References

- W. Browder, Cobordism Invariants, The Kervaire invariant and fixed point free involutions, Trans. Amer. Math. Soc., 178 (1973), 193-225.
- [2] C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, 1962.
- [3] S. López de Medrano, Involutions on Manifolds, Springer, 1971.
- [4] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. of Math. Studies, 61, Princeton University Press, 1969.
- [5] T. Petrie, Free metacyclic group actions on homotopy spheres, Ann. of Math., 94 (1971), 108-124.
- [6] D. Rim, Modules over finite groups, Ann. of Math., 69 (1959), 700-712.
- [7] R. Swan, Induced representations and projective modules, Ann. of Math., 71 (1960), 552-578.
- [8] C.T.C. Wall, Surgery on non-simply connected manifolds, Ann. of Math., 84 (1966), 217-276.
- [9] C.T.C. Wall, Formulae for Surgery Obstructions, Topology 15 (1976), 189-210.
- [10] C. T. C. Wall, Formulae for Surgery Obstructions: Corrigendum Topology 16 (1977), 495-496.

Yoshinobu KAMISHIMA Department of Mathematics Faculty of Science Hokkaido University Sapporo 060 Japan