
J. Math. Soc. Japan
Vol. 31, No. 4, 1979
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By Chat-Yin HO

(Received Jan. 31, 1978)

1. Introduction

Let $P$ be a prime and let $G$ be a finite group which satisfies the following
condition.

$(TIp)$ : two different Sylow p-groups contain only the identity element in
common.

Suzuki [10] treated the case $p=2$ . When $p$ is an odd prime, it seems
quite difficult to describe all possibilities. Here we treat a restricted case
that $G$ posess a p-non-stable faithful representation. More precisely, we say
that $G$ is a $(Qp)$-group if $G$ satisfies the following condition:

$(Qp)$ : There exists a finite vector space $M$ over $GF(p)$ , the field with $P$

elements, such that $M$ is a faithful $GF(p)(G)$-module and some nontrivial
element of $G$ has minimal polynomial $(X-1)^{2}$ over $M$.

We remark that the above condition $(Qp)$ is always valid for $p=2$ when
$G$ is of even order. This can be seen by taking $M$ to be the group algebra
of $G$ over $GF(2)$ and let $G$ act on $M$ naturally. The main result of this paper
is the following theorem.

THEOREM 1. Let $p$ be an odd prime and let $G$ be a finite group satisfy
the conditions (TIp) and $(Qp)$ . Then one of the following holds:

(a) A Sylow p-group of $G$ is a normal subgroup.
(b) $G$ contains normal subgroups $G_{1}$ and $G_{2}$ such that

$G\geqq G_{1}>G_{2}\geqq 1$

where $G_{2}$ is the center of $G_{1}$ , both $G/G_{1}$ and $G_{2}$ are of order prime to $p$ and
$G_{1}/G_{2}$ is isomorphic to $L_{2}(p^{n})$ or $U_{3}(p^{n})$ for some positive integer $n$ .

(c) $p=3$ and $G$ contains normal subgroups $G_{1}$ and $G_{2}$ such that

$G\geqq G_{1}>G_{2}\geqq 1$

where $G_{2}$ is the maximal normal 2-group of $G_{1},$ $G/G_{1}$ has order prime to $p$ and
$G_{1}/G_{2}$ is isomorphic to the cyclic group of order 3 or $A_{5}$ .

Let $ K/\Omega$ be an algebraic function field with one variable of genus $g>1$
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over the algebraic closed field $\Omega$ . If $\Omega$ is the complex number or Char $(\Omega)$

$\nmid$ Aut $(K/\Omega)|$ then Aut $(K/\Omega)|\leqq 84(g-1)$ . Theorem 1 seems to have appli-
cation to find a bound for Aut $(K/\Omega)|$ in the case Char $(\Omega)|$ Aut $(K/\Omega)|$ . In
fact W. Henn suggested that in this case Aut $(K/\Omega)|\leqq g^{2}$ up to some ex-
ceptional case.

This work was suggested by Ch. Hering to whom the author would like
to express his gratitude.

2. Notation and Definition.

A group is quasi-simPle if it is perfect and the quotient over its center is
simple. For any group $H$, let $E(H)$ be the central product of all subnormal
quasi-simple subgroups of $H$. These subgroups are called the components of
$E(H)$ . The generalized Fitting subgroup of $H$ is denoted by $F^{*}(H)$ and is
defined by $F^{*}(H)=E(H)F(H)$ , where $F(H)$ is the Fitting subgroup of $H$.

All groups considered in this paper are of finite order. Most notations
are standard and can be found in [2]. We list some of them for the con-
venience of the reader.

$Z_{n}$ : the cyclic group of order $n$ .
$Z(H)$ : the center of the group $H$ .
$O_{p}(H)$ : the maximal normal $P$ -subgroup of $H$ for the prime $p$ .
$O_{p^{\prime}}(H)$ : the maximal normal subgroup of $H$ of order prime to $p$ .
$C_{H}(T)$ : the centralizer of the subset $T$ in $H$ .
\langle X, $ Y\rangle$ : subgroup generated by $X$ and $Y$ .
[X, $Y$]: $\langle x^{-1}y^{-1}xy|x\in X, y\in Y\rangle$ .
$X^{Y}$ : $\langle X^{y}|y\in Y\rangle$ .
$S(H)$ : the maximal solvable normal subgroup of $H$ .
$K\underline{\triangleleft}H$ : $K$ is a normal subset of $H$ .
$H^{(\infty)}$ : the terminal member of the derived series of $H$ .

3. Preliminary results.

3.1. LEMMA. Let $H$ be a group. Then $C_{H}(F^{*}(H))\leqq F(H)$ .
PROOF. [3, (2.2)].
The following theorem may be of independent interest.
3.2. THEOREM. Let $p$ be a prime and let $G$ satisfy the condition (TIp).
(1) Every subgroup of $G$ also satisfies (TIp).
(2) If $G$ is $p$-solvable, then one of the following holds:
$(2.a)$ A Sylow p-group of $G$ is normal.
$(2.b)$ A Sylow p-group of $G$ is cyclic.
$(2.c)$ $p=2$ and a Sylow 2-group of $G$ is a generalized quaternion.
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(3) If $ G=\langle g|g^{p}=1\rangle$ and $p||S(G)|$ , then one of the following holds:
(3.a) $G$ is a p-group.
(3.b) A Sylow p-group $P$ of $G$ has order $p,$ $G=PO_{p^{\prime}}(G)$ and $O_{p^{G}}(G)=[P$ ,

$O_{p^{\prime}}(G)]$ .
PROOF. (1) Let $H$ be a subgroup of $G$ . Let $Q_{1}$ and $Q_{2}$ be two Sylow

$p$-groups of $H$. Let $P_{1}$ and $P_{2}$ be two Sylow $P$-groups of $G$ such that $Q_{1}\leqq P_{1}$

and $Q_{2}\leqq P_{2}$ . If $Q_{1}\cap Q_{2}\neq 1$ , then $P_{1}\cap P_{2}\neq 1$ and so $P_{1}=P_{2}$ . Therefore $Q_{1}=$

$P_{1}\cap H=P_{2}\cap H=Q_{2}$ .
(2) If $O_{p}(G)\neq 1$ , then clearly (2.a) holds. Therefore we may assume

$O_{p}(G)=1$ . Applying induction on $|G|$ we may assume that $G$ is generated
by its $p$-elements. Suppose $X$ is an elementary abelian $p$ -subgroup of order
$p^{2}$ of $G$ . Let $P$ be a Sylow $P$-group of $G$ containing Xand let $N=O_{p^{r}}(G)$ . Let
$1\neq x\in X$ and let $n\in C_{N}(x)$ . Since $x\in P\cap P^{n},$ $P=P^{n}$ . Therefore $[n, X]\leqq$

$N\cap P=1$ and so $C_{N}(x)\leqq C_{N}(X)$ . By [4, Theorem 3.16 on p. 188] we have
$N=\prod_{1\neq x\in X}C_{N}(x)$ and so $N=C_{N}(X)$ . Thus $X\leqq P\cap P^{N}$ and so $P=P^{N}$ . Therefore

$[N, P]\leqq N\cap P=1$ . Since $G$ is generated by its $P$-elements, $N\leqq Z(G)$ . As $G$

is $P$-solvable, $N\leq=O_{p^{\prime}p}(G)$ . This implies $O_{p^{\prime}p}(G)=N\times O_{p}(G)$ . Hence $O_{p}(G)\neq 1$ ,
a contradiction. Therefore $G$ does not contain any non cyclic abelian p-group.
By [4, Theorem 4.10, p. 199] we see either (2.b) or (2.c) holds.

(3) If $O_{p}(G)\neq 1$ , then (3.a) holds. Therefore we may assume $O_{p}(G)=1$ .
Let $S=S(G)$ and let $N\leqq O_{p^{\prime}p}(S)$ such that $N/O_{p^{\prime}}(S)=\Omega_{1}(O_{p^{\prime}p}(S)/O_{p^{\prime}}(S))$ . Since
$O_{p}(S)=1,$ (1) and (2) imply $|N/O_{p^{\prime}}(S)|=p$ . Let $x$ be an element of order $P$

of $G$ . Suppose $x\not\in N$. Let $X$ be a Sylow $p$-group of $ N\langle x\rangle$ containing $x$ . Then
$X$ is elementary abelian of order $p^{2}$ . As in the proof of (2) we see that
[X, $O_{p^{\prime}}(G)$] $=1$ and so $[x, O_{p^{\prime}}(G)]=1$ . Since $x$ is arbitrary and $G$ is generated
by its elements of order $p,$ $O_{p^{\prime}}(G)\leqq Z(G)$ . Since $O_{p^{\prime}}(S)\leqq O_{p^{\prime}}(G),$ $O_{p},(S)\leqq Z(S)$ .
Therefore $N=O_{p^{\prime}}(S)\times O_{p}(N)$ and $|O_{p}(N)|=p$ . Since $O_{p}(N)\leqq O_{p}(G),$ $O_{p}(G)\neq 1$

which is a contradiction. Therefore $x\in N$. This implies $G\leqq N$ and so $G=N$.
Let $P$ be a Sylow $P$-group of $G$ and let $L=O_{p^{\prime}}(G)$ . Then $|P|=p$ and $G=PL$ .
By [4, Theorem 3.5, $P\cdot 180$] we have $L=C_{L}(P)[P, L]$ . Therefore $P[P, L]$ is
a normal subgroup of index prime to $p$ . Since $G$ is generated by its element
of order $p,$ $G=P[P, L]$ . By comparing orders we see that $L=[P, L]$ as
required.

4. Proof of Theorem 1.

In this section let $p$ be an odd prime and let $G$ be a group satisfy (TIp)

and $(Qp)$ for the vector space $M$. For any subspace $U$ of $M$ we write dim $U$

to mean the dimension of $U$ over $GF(P)$ .
Let $Q=$ {$g\in G|g\neq 1$ and $M(g-1)^{2}=0$}. For any $\sigma\in Q$ , we have $\sigma^{p}=1$ .
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Let $Q_{d}=\{\tau\in Q|\dim(M(\tau-1))=\min_{\sigma\in Q}\dim(M(\sigma-1))\}$ . For $\sigma\in Q_{ci}$ , let $ E(\sigma)=\{\tau$

$\in Q|C_{M}(\tau)=C_{M}(\sigma)$ and $M(\tau-1)=M(\sigma-1)$} $\cup\{1\}$ . Then $E(\sigma)$ is an elementary

abelian $p$-group [8, Lemma 2.2]. Let $\Sigma=$ { $E|E=E(\sigma)$ for some $\sigma\in Q_{cf}$ }.
4.1. LEMMA. Let $ E\in\Sigma$ and let $F=E^{g}$ for some $g$ . Suppose $E\neq F$. Set

$ S=\langle E, F\rangle$ .
(a) If $p\geqq 5$ and $S$ is not a P-grouP, then $S\cong SL(2, |E|)$ .
(b) If $p=3,$ $|E|>3$ and $S$ is not a 3-group, then $S\cong SL(2, |E|)$ .
(c) If $p=3,$ $|E|=3$, then $S$ is isomorphic to one of the following groups:

$Z_{3}\times Z_{3},3^{1+2},$ $SL(2,3),$ $SL(2,3)\times Z_{3},$ $SL(2,5)$ , where $3^{1+2}$ is the extra special 3-group
of order 27, $exPonent3$ .

PROOF. (a) [8, Theorem 2.6].

(b) [6, Theorem 4.2].

(c) [5, Theorem 4.3].

4.2. THEOREM. Let $ H=\langle\sigma|\sigma\in Q\rangle$ . Then bne of the following holds:
(a) $H$ is a p-group.
(b) $H$ is a quasi-simple group such that $Z(H)$ has order prjme to $P$ and

$H/Z(H)\cong L_{2}(p^{n})$ or $U_{3}(p^{n})$ for some positive integer $n$ .
(c) $p=3,$ $[H, O_{2}(H)]=O_{2}(H)$ and $H/O_{2}(H)\cong Z_{3}$ or $A_{5}$ .
PROOF. Since an element in $Q$ has order $p,$ $H$ is generated by its elements

of order $p$ . By Theorem 3.2.(1) we see that $H$ satisfies (TIp). If $O_{p}(H)\neq 1$ ,
then (a) holds, by Theorem 3.2.(3). Therefore we may assume $O_{p}(H)=1$ . We
use induction on $|H|+|M|$ in the rest of the proof. Let $ K=\langle\sigma|\sigma\in Q_{d}\rangle$ .
Then $K$ is a normal subgroup of $H$. Hence $O_{p}(K)=1$ . Suppose $K_{=}\leq H$. In-
duction implies that conclusion (b) or (c) holds when replace $H$ by $K$ Since
$K\underline{\triangleleft}H,$ $H$ induces only inner automorphisms of $K/Z(K)$ when case (b) holds
(or $K/O_{2}(K)$ when (c) holds) as $H$ satisPes (TIp). If $K/O_{2}(K)\cong Z_{3}$ , then as in
the proof of Theorem 3.2.(3) we see that $H=K$ which is impossible. Let
$C=C_{H}(K/Z(K))$ when (b) holds and let $C=C_{H}(K/O_{2}(K))$ when $K/O_{2}(K)\cong A_{5}$ .
Then $H=KC$ . Since $O_{p}(H)=1,$ $C$ is a $p^{\prime}$ -group. Since $H$ is generated by
elements of order $p,$ $H=K$ a contradiction. Therefore $ H=\langle\sigma|\sigma\in Q_{a}\rangle$ . Similarly
we have $H=E^{H}$ for any $ E\in\Sigma$ .

Case (i) $p\geqq 5$ or $p=3$ and there exists $ E\in\Sigma$ such that $|E|>3$ .
By 4.1. (a) we see that $O_{p^{\prime}}(H)\leqq Z(H)$ . If $E(H)=1$ , then $F^{*}(H)=F(H)$ .

Since $O_{p}(H)=1,$ $F(H)\leqq O_{p^{\prime}}(H)\leqq Z(H)$ . Hence $H\leqq C_{H}(F(H))=C_{H}(F^{*}(H))\leqq F(H)$

by 3.1. This is impossible as $H$ is generated by its elements of order $p$ .
Therefore $E(H)\neq 1$ . Theorem 3.2 implies that $E(H)$ is quasi-simple. Let
$ X\in\Sigma$ and let $Y=XE(H)$ . Since $F(H)\leqq Z(H),$ $C_{H}(E(H))\leqq F(H)$ . Since $O_{p}(H)=1$ ,
$X\not\leqq C_{H}(E(H))$ . Therefore $X\not\leqq O_{p}(Y)$ . Therefore there exists $g\in G$ such that
$ L=\langle X, X^{g}\rangle$ is not a $p$-group by [4, Theorem 8.2, p. 105]. Therefore $ L\cong$

$SL(2, |X|)$ by 4.1. Hence $X\leqq L=L^{(\infty)}\leqq Y^{(\infty)}\leqq E(H)$ . This shows that $H=E(H)$
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is quasi-simple. Since $H$ satisfies (TIp), we see that (b) holds by [7, Theorem 1].

Case (ii) $p=3$ and $|E|=3$ for all $ E\in\Sigma$ .
Let $ E\in\Sigma$ and let $F=E^{h}\neq E$ for some $h\in H$. Let $ S=\langle E, F\rangle$ . Since $H$

satisfies $(TIp),$ $S\not\cong SL(2,3)\times Z_{3}$ . Suppose $\langle E, F\rangle\cong 3^{1+2}$ . Let $X=[E, F]$ . Then
$ X\in\Sigma$ by [2, Theorem 1]. Let $Y\in\Sigma\prime such$ that \langle X, $ Y\rangle$ $\cong SL(2,3)$ and let
$ w\in\langle X, Y\rangle$ such that $X^{w}=Y$ and $w^{4}=1$ . By [5, Theorem 4.4] and a direct
calculation of matrices we see that $\langle E, E^{w}\rangle\cong Z_{3}\times Z_{3}$ and \langle X, $ Y\rangle$ normalizes
$\langle E, E^{w}\rangle$ . This contradicts to the fact that $H$ satisfies (TIp). Therefore
$S\neq 3^{1+2}$ . By 4.1 $S\cong Z_{3}\times Z_{3},$ $SL(2,3)$ or $SL(2,5)$ .

Suppose $3||S(H)|$ . Theorem 3.2.(3) implies that $H=O_{p},(H)P$ , where $P$ is a
Sylow 3-group of order 3. In particular the possibilities $Z_{3}\times Z_{3}$ and $SL(2,5)$

for $S$ cannot occur in this case. [1, Theorem 3.7] implies that $|H/O_{2}(H)|=3$

and (c) holds. Therefore we may assume that $3\nmid|S(H)|$ .
Let $ X\in\Sigma$ . Let $q$ be a prime such that $q\not\in\{2,3\}$ . Let $R$ be a q-group

normalized by $X$. Then $[R, X]=1$ by 4.1. This shows that $O_{2^{\prime}}(O_{3^{\prime}}(H))\leqq Z(H)$ .
Let $ X\in\Sigma$ and let $U$ be the subgroup of $H$ which stabilizes the chain of

subspaces: $0\leqq\langle M(x-1)|x\in X\rangle\leqq C_{M}(X)\leqq M$. Then $U$ has exponent $p$ and
$X\leqq Z(U)$ . Suppose $X\neq U$ . Then there exists an elementary subgroup $B$ of order
$p^{2}$ such that $X\leqq B$ . As in the poof of Theorem 3.2. (2) we see that $[O_{p^{\prime}}(H)$ ,
$B]=1$ and so $[O_{p^{\prime}}(H), X]=1$ . Since $X$ is arbitrary, $O_{p^{\prime}}(H)\leqq Z(H)$ . As in the
proof of (i) we see that $E(H)\neq 1$ and $E(H)$ is quasi-simple. Suppose $X\not\leqq E(H)$ .
Let $D=\{X^{g}|g\in E(H)\}$ and let $ K=\langle Z|Z\in D\rangle$ . Let $A,$ $B\in D$ . If $\langle A, B\rangle\cong SL(2,5)_{r}$

then $A\leqq\langle A, B\rangle=\langle A, B\rangle^{(\infty)}\leqq(XE(H))^{(\infty)}\leqq E(H)$ . This implies $X\leqq E(G)$ , a con-
tradiction. Therefore $\langle A, B\rangle$ is isomorphic to $Z_{3}\times Z_{3}$ , or $SL(2,3)$ . If $K$ is a
perfect group, $thenX\leqq K^{(\infty)}\leqq(XE(H))^{(\infty)}\leqq E(H)$ acontradiction. By [1], Kmust
be solvable. Therefore $[K, E(H)]$ is a normal solvable subgroup of $E(K)$ and
so $E(H)$ centralizes $K$. In particular $X\leqq C_{G}(E(H))=C_{G}(F^{*}(H))\leqq F(H)$ which
is impossible as $F(H)$ is a $p^{\prime}$ -group. Therefore $X\leqq E(H)$ . Since $X$ is arbitrary,
$H=E(H)$ is quasi-simple. By [7, Theorem 1] and condition (TIp) we see
that $H/Z(H)$ is isomorphic to $A_{5}$ or $U_{3}(3)$ . Therefore we may assume $U=X$.
Suppose there exists $ Y\in\Sigma$ such that \langle X, $ Y\rangle$ $\cong SL(2,5)$ . Then $H^{\prime}=H$. Let
$I_{l}(X)=$ { $i|i^{2}=1,$ $\dim M(i-1)=2d$ and there exists $ Z\in\Sigma$ such that $i\in\langle X,$ $ Z\rangle$ }.
Let $i,$ $j\in I_{l}(X)$ . Then $ij\in U$ by [5, Lemma 5.1 and Corollary 5.2]. Since
$U=X,$ $I_{l}(X)=\{l\}$ . Let $R(l)=$ { $ E|E\in\Sigma$ and $i\in I_{l}(E)$}. Let $\Sigma_{1}=\{X^{h}|h\in H\}$ .
Then $H$ is generated by the elements in $\Sigma_{1}$ . We claim $R(i)\geqq\Sigma_{1}$ . Suppose
$[Z, S]=1$ for all $S\in R(i)$ and all $Z\in\Sigma_{1}\cdot R(i)$ . Then $R(i)$ is $H$ invariant as
$ H=\langle\Sigma_{1}\rangle$ . Since $H$ is transitive on $\Sigma_{1},$ $R(i)\geqq\Sigma_{1}$ in this case. Hence we may
assume that there exist $S_{1}\in R(i)$ and $\langle z\rangle=Z\in\Sigma_{1}\backslash R(i)$ such that $[S_{1}, Z]\neq 1$ .
Since $\langle S_{1}, Z\rangle\not\cong 3^{1+2}$, so there is an involution $ j\in\langle S_{1}, Z\rangle$ . If $j\in I_{l}(S_{1})$ , then $j=i$

and so $i\in I_{l}(Z)$ . This implies $Z\in R(i)$ , a contradiction. Therefore $j\neq i$ . Hence
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$\dim M(j-1)\leqq 2d$ . Suppose $[Z, i]=1$ . $ThenC_{M}(\iota)andM(i-1)$ are Z-submodules.
Let $s\in S_{1}$ such that $s$ is conjugate to $z$ in $\langle S_{1}, Z\rangle$ . Since $S_{1}\in R(\iota)$, the
restriction of $S_{1}$ on $C_{M}(i)$ is the identity transformation. Hence $s^{-1}z$ and $z$

have the same restriction on $C_{M}(\iota)$ . However $(s^{-1}z)^{2}=j$ is an involution. This
shows that the restriction of $Z$ on $C_{M}(i)$ is also the identity transformation.
Since $[Z, i]=1,$ $i$ acts on $I_{l}(Z)=\{k\}$ by conjugation. Hence $[i, k]=1$ . There-
fore $M(i-1)$ and $C_{M}(i)$ are $\langle k\rangle$ -submodules. [5, Lemma 2.6] implies that $k$

induces $-1$ on $M(i-1)$ . By comparing dimension, we see that $k=i$ . This
implies $Z\in R(\iota)$ , a contradiction. Thus we may assume $[Z, i]\neq 1$ . Let $T\in R(\iota)$

such that $ i\in\langle S_{1}, T\rangle$ and $\langle S_{1}, T\rangle\cong SL(2,3)$ . If $[Z, T]=1$ , then $ i^{z}\in\langle(S_{1})^{z}, T^{z}\rangle$

$=\langle(S_{1})^{z}, T\rangle$ . Hence $i^{z}\in I_{l}(T)=\{i\}$ . This implies that $i^{z}=i$, which is impossible.

Therefore $[Z, T]\neq 1$ If $\langle Z, T\rangle\cong SL(2,5)$ , then [5, Lemma 4.6] implies that
$I_{l}(Z)=I_{l}(T)=\{i\}$ . Thus $Z\in R(\iota)$ , a contradiction. Therefore $\langle Z, T\rangle\cong SL(2,3)$ .
Similary we have $\langle T_{1}, Z\rangle\cong SL(2,3)$ for each $ T_{1}\in\Sigma_{1}\cap\langle S, T\rangle$ . Thus [9,

(1.1.1)] implies that $i$ is conjugate to $j$, a contradiction. Therefore $\Sigma_{1}\backslash R(i)$ is
empty and $R(i)\geqq\Sigma_{1}$ as required. Since $H$ is generated by elements of $\Sigma_{1},$ $i$

$\in Z(H)$ . Let $\overline{H}=H/O_{2}(H)Z(H)$ . Since $3\nmid|S(H)|$ and $O_{2^{\prime}}(O_{3^{\prime}}(H))\leqq Z(H),$ $O_{2}(\overline{H})$

$=Z(\overline{H})=1$ . By condition $(TIP)$ and [9, Satz] we see that $\overline{H}\cong A_{6}$ . Since $H^{\prime}=H$

and the Schur multiplier of $A_{5}$ has order 2, $H/O_{2}(H)\cong A_{5}$ as $Z(H)$ is a 3’-subgroup.
Thus we may assume that \langle X, $ Y\rangle$ $\neq SL(2,5)$ for all $ Y\in\Sigma$ . Therefore for

$ E\neq F\in\Sigma$ we have $\langle E, F\rangle\cong Z_{3}\times Z_{3}$ or $SL(2,3)$ . We can now appeal to [1] and
applying condition (TIp) to conclude the proof.

By using the condition (TIp), Theorem 1 is now a consequence of 4.2.
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