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1. Introduction

Let p be a prime and let G be a finite group which satisfies the following
condition.

(TIp): two different Sylow p-groups contain only the identity element in
common. '

Suzuki treated the case p=2. When p is an odd prime, it seems
quite difficult to describe all possibilities. Here we treat a restricted case
that G posess a p-non-stable faithful representation. More precisely, we say
that G is a (Qp)-group if G satisfies the following condition :

(Qp): There exists a finite vector space M over GF(p), the field with p
elements, such that M is a faithful GF(p)(G)-module and some nontrivial
element of G has minimal polynomial (X—1)% over M.

We remark that the above condition (Qp) is always valid for p=2 when
G is of even order. This can be seen by taking M to be the group algebra
of G over GF(2) and let G act on M naturally. The main result of this paper
is the following theorem.

THEOREM 1. Let p be an odd prime and let G be a finite group satisfy
the conditions (TI1p) and (Qp). Then one of the following holds:

(a) A Sylow p-group of G is a normal subgroup.

(b) G contains normal subgroups G, and G, such that

G=G,>G,z1

where G, is the center of G,, both G/G, and G, are of order prime to p and
G.1/G, is isomorphic to L,(p™) or U,(p™) for some positive integer n.
(¢) p=3 and G contains normal subgroups G, and G, such that

G=2G,>G,21

where G, is the maximal normal 2-group of G,, G/G, has order prime to p and
G.,/G, is isomorphic to the cyclic group of order 3 or As.
Let K/2 be an algebraic function field with one variable of genus g>1



670 C.-Y. Ho

over the algebraic closed field £2. If £ is the complex number or Char(Q)
Y |Aut (K/£2)| then |Aut (K/Q2)|<84(g—1). seems to have appli-
cation to find a bound for |Aut(K/2)| in the case Char(2)||Aut (K/2)|. In
fact W. Henn suggested that in this case |Aut(K/2)]<g? up to some ex-
ceptional case.

This work was suggested by Ch. Hering to whom the author would like
to express his gratitude.

2. Notation and Definition.

A group is quasi-simple if it is perfect and the quotient over its center is
simple. For any group H, let E(H) be the central product of all subnormal
quasi-simple subgroups of H. These subgroups are called the components of
E(H). The generalized Fitting subgroup of H is denoted by F*(H) and is
defined by F*(H)=E(H)F(H), where F(H) is the Fitting subgroup of H.

All groups considered in this paper are of finite order. Most notations
are standard and can be found in [2]. We list some of them for the con-
venience of the reader.

Z,: the cyclic group of order n.

Z(H): the center of the group H.

O,(H): the maximal normal p-subgroup of H for the prime p.

O, (H): the maximal normal subgroup of H of order prime to p.

Cx(T): the centralizer of the subset T in H.

<X, Y>: subgroup generated by X and Y.

[X,Y]: <x"'yxy|lxeX, yel).

XY: (Xv|yeY).

S(H): the maximal solvable normal subgroup of H.

K<JH: K is a normal subset of H.

H® : the terminal member of the derived series of H.

3. Preliminary results.

3.1. LEMMA. Let H be a group. Then Cu(F*(H)<F(H).

Proor. [3, (2.2)].

The following theorem may be of independent interest.

3.2. THEOREM. Let p be a prime and let G satisfy the condition (TIDp).
(1) Every subgroup of G also satisfies (TIp).

(2) If G is p-solvable, then one of the following holds:

(2.a) A Sylow p-group of G is normal.

(2.b) A Sylow p-group of G is cyclic.

(2.c) p=2 and a Sylow 2-group of G is a generalized quaternion.
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@B) If G=<g|g?=1) and p||S(G)|, then one of the following holds:

3.a) G is a p-group.

(3b) A Sylow p-group P of G has order p, G=PO,(G) and 0,(G)=[P,
0,(G)1.

ProoF. (1) Let H be a subgroup of G. Let @, and Q, be two Sylow
p-groups of H. Let P, and P, be two Sylow p-groups of G such that Q,<P,
and Q,=<P,. If Q,N\Q.#1, then P,N\P,#1 and so P,=P, Therefore Q,=
P, NH=P,N\H=Q,.

(2) If 0,G)+1, then clearly (2.a) holds. Therefore we may assume
0,(G)=1. Applying induction on |G| we may assume that G is generated
by its p-elements. Suppose X is an elementary abelian p-subgroup of order
p? of G. Let P be a Sylow p-group of G containing X and let N=0,(G). Let
1#x=X and let neCy(x). Since xePNP", P=P"* Therefore [n, X1
NN P=1 and so Cy(x)=Cx(X). By [4, Theorem 3.16 on p. 188] we have
N:#gXCN(x) and so N=Cx(X). Thus X<PNP" and so P=P¥. Therefore

[N, PJISNN\P=1. Since G is generated by its p-elements, NSZ(G). As G
is p-solvable, N=0O, ,(G). This implies O, ,(G)=NXO0,G). Hence O,(G)+1,
a contradiction. Therefore G does not contain any non cyclic abelian p-group.
By [4, Theorem 4.10, p. 199] we see either (2.b) or (2.c) holds.

3 If 0,(G)+#1, then (3.a) holds. Therefore we may assume O,(G)=1.
Let S=S(G) and let N<0,,(S) such that N/0,(S)=£2,(0,,(S)/0,(S)). Since
0,(5)=1, (1) and (2) imply [N/O,(S)|=p. Let x be an element of order p
of G. Suppose x<N. Let X be a Sylow p-group of N<{x> containing x. Then
X is elementary abelian of order p%. As in the proof of (2) we see that
[X, 0,(G)]=1 and so [x, O,(G)]=1. Since x is arbitrary and G is generated
by its elements of order p, O,(G)=<Z(G). Since 0,(S)=0,(G), 0,(S)<Z(S).
Therefore N=0,(S)XO0,(N) and |O4(N)|=p. Since O,(N)Z0,(G), 0,(G)+1
which is a contradiction. Therefore xN. This implies GEZN and so G=N\.
Let P be a Sylow p-group of G and let L=0,(G). Then |P|=p and G=PL.
By [4, Theorem 3.5, p. 180] we have L=C,(P)LP, L]. Therefore P[P, L] is
a normal subgroup of index prime to p. Since G is generated by its element
of order p, G=P[P, L]. By comparing orders we see that L=[P, L] as
required.

4. Proof of Theorem 1.

In this section let » be an odd prime and let G be a group satisfy (Tp)
and (Qp) for the vector space M. For any subspace U of M we write dim U
to mean the dimension of U over GF(p).

Let Q={g=G|g+#1 and M(g—1)’=0}. For any oc=Q, we have ¢?=1.



672 C.-Y. Ho

Let Qd::{feQIdim(M(z'—l)):gleiéldim(M(a—l))}. For o€Qq, let E(o)={r

€Q|Cu(t)=Cy(o) and M(z—1)=M(c—1)}\U{1}. Then E(¢) is an elementary
abelian p-group [8, Lemma 2.2]. Let Y={E|E=E(o) for some s Q,}.

4.1. LEMMA. Let E€X and let F=E% for some g. Suppose E+F. Set
S=<E, F>.

(@) If p=5 and S is not a p-group, then S=SL(2, | E|).

(b) If p=3, |E|>3 and S is not a 3-group, then S=SL(2, |El).

(¢) If p=3, |E|=3, then S is isomorphic to one of the following groups:
ZyXZs, 312, SL(2, 3), SL(2,3)X Z;, SL(2,5), where 3'** is the extra special 3-group
of order 27, exponent 3.

ProoOF. (a) [8, Theorem 2.6].

(b) [6, Theorem 4.2].

(¢) [5, Theorem 4.3].

4.2. THEOREM. Let H={o|oc=Q)>. Then one of the following holds:

(a) H is a p-group.

(b) H is a quasi-simple group such that Z(H) has order prime to p and
H/Z(H)= L,(p™) or U(p™) for some positive integer n.

(¢) p=3, [H, O,(H)]=04H) and H/O,(H)=Z, or As.

PrOOF. Since an element in @ has order p, H is generated by its elements
of order p. By Theorem 3.2.(1) we see that H satisfies (TIp). If O,(H)+#1,
then (a) holds, by Theorem 3.2.(3). Therefore we may assume O,(H)=1. We
use induction on |H|+|M| in the rest of the proof. Let K=<o|ocQy).
Then K is a normal subgroup of H. Hence O,(K)=1. Suppose K=H. In-
duction implies that conclusion (b) or (c) holds when replace H by K. Since
K<H, H induces only inner automorphisms of K/Z(K) when case (b) holds
(or K/O,(K) when (c) holds) as H satisfies (T/p). If K/O,(K)=Z, then as in
the proof of Theorem 3.2.3) we see that H=K which is impossible. Let
C=Cy(K/Z(K)) when (b) holds and let C=Cy(K/O,K)) when K/O,(K)= A,.
Then H=KC. Since O,(H)=1, C is a p’-group. Since H is generated by
elements of order p, H=K a contradiction. Therefore H=<{o|o<Q;>. Similarly
we have H=F¥ for any E<2.

Case (i) p=b5 or p=3 and there exists E< Y such that |E|>3.

By 4.1. (a) we see that O,(H)<Z(H). If E(H)=1, then F*(H)=F(H).
Since O,(H)=1, F(H)=0,(H)=Z(H). Hence H=Cy(F(H))=Cyx(F*H)<F(H)
by 3.1. This is impossible as H is generated by its elements of order p.
Therefore E(H)#1. Theorem 3.2 implies that FE(H) is quasi-simple. Let
XelX and let Y=XE(H). Since F(H)=Z(H), Cy(E(H))<F(H). Since O,(H)=1,
X£Cy(E(H)). Therefore X£0,(Y). Therefore there exists g&G such that
L=<X, X¢%) is not a p-group by [4, Theorem 8.2, p. 105]. Therefore L=
SL(2, | X|) by 41. Hence XS L=L<Y“<E(H). This shows that H=FE(H)
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is quasi-simple. Since H satisfies (T/p), we see that (b) holds by [7, Theorem 1].

Case (ii) p=3 and |E|=3 for all E€2.

Let E€X and let F=E"+#FE for some heH. Let S=(E, F>. Since H
satisfies (T1p), SESL(2, 3)XZ,. Suppose <E, F)=3'*2, Let X=[F, F]. Then
XeX by [2, Theorem 1]. Let YeJX ‘such that <X, Y>=SL(2, 3) and let
we<X, Y such that X*=Y and w*=1. By [5, Theorem 4.4] and a direct
calculation of matrices we see that <(E, E¥>=Z,XZ, and <X, Y) normalizes
(E, E*>. This contradicts to the fact that H satisfies (TIp). Therefore
S#£3*2, By 4.1 S=Z,XZ,, SL(2, 3) or SL(2, 5).

Suppose 3| |S(H)|. Theorem 3.2.(3) implies that H=0,,(H)P, where P isa
Sylow 3-group of order 3. In particular the possibilities Z,xZ, and SL(2, 5)
for S cannot occur in this case. [1, Theorem 3.7] implies that |H/O,(H)|=3
and (c) holds. Therefore we may assume that 3} | S(H)|.

Let Xe2X. Let ¢ be a prime such that ¢< {2,3}. Let R be a g-group
normalized by X. Then [R, X]=1 by 4.1. This shows that 0,(0,(H)<Z(H).

Let X2 and let U be the subgroup of H which stabilizes the chain of
subspaces: 0= M(x—D|x=eX>=Cy(X)=M. Then U has exponent p and
X=ZZ(U). Suppose X=+U. Then there exists an elementary subgroup B of order
p? such that X<B. As in the poof of Theorem 3.2. (2) we see that [0, (H),
BJ=1 and so [O,(H), X]=1. Since X is arbitrary, O,(H)=Z(H). As in the
proof of (i) we see that E(H)+1 and E(H) is quasi-simple. Suppose X% E(H).
Let D={X¢|ge E(H)} and let K=<Z|Z=D). Let A, BeD. 1f (A, B)=SL(, 5),
then A<<A, B)=<(A, B)®<(XE(H))*<E(H). This implies X< E(G), a con-
tradiction. Therefore (A, B) is isomorphic to Z,XZ,, or SL(2,3). If Kis a
- perfect group, then X< K <(XE(H))*><E(H) a contradiction. By [1], K must
be solvable. Therefore [K, E(H)] is a normal solvable subgroup of E(K) and
so E(H) centralizes K. In particular X=<Cs(E(H))=Cs(F*H)<F(H) which
is impossible as F(H) is a p’-group. Therefore X< E(H). Since X is arbitrary,
H=E(H) is quasi-simple. By [7, Theorem 1] and condition (TIp) we see
that H/Z(H) is isomorphic to A; or U,(3). Therefore we may assume U=JX.
Suppose there exists Y2 such that <X, Y)>=SL(2,5). Then H'=H. Let
I[,(XH)={]i*=1, dim M(:—1)=2d and there exists Z=23 such that 1e<X, Z)>}.
Let 1, jel,(X). Then i¢j=U by [5, Lemma 5.1 and Corollary 5.2]. Since
U=X, I,(X)={}. Let RO)={E|E<2 and il /(E). Let 2,={X"|heH}.
Then H is generated by the elements in 2,. We claim R(1)=2%,. Suppose
[Z, S1=1 for all S€R(:) and all Z€2X,-R(i). Then R(i) is H invariant as
H=<(XY>. Since H is transitive on 2;, R(1)=2, in this case. Hence we may
assume that there exist S,€R(i) and <(z)=7Z<2 \R() such that [S;, Z]#1.
Since {S,, Z)>#3'*% so there is an involution j=<{S,, Z>. If jI,/(S,), then j=1
and so :=I,(Z). This implies Z€ R(7), a contradiction. Therefore j#:. Hence
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dim M(j—1)=2d. Suppose [Z, i]=1. Then Cy() and M(i—1) are Z-submodules.
Let s=S; such that s is conjugate to z in <S,, Z). Since S,=R(:), the
restriction of S; on Cy(3) is the identity transformation. Hence s 'z and =z
have the same restriction on Cy(i). However (s7'z)?=j is an involution. This
shows that the restriction of Z on Cy(i) is also the identity transformation.
Since [Z, i]=1, 1 acts on [,(Z)={k} by conjugation. Hence [i, k2]=1. There-
fore M(i—1) and Cy(i) are <{k)>-submodules. [5, Lemma 2.6] implies that &
induces —1 on M(i—1). By comparing dimension, we see that k=i. This
implies Z<€ R(i), a contradiction. Thus we may assume [Z, i]#1. Let T<R(i)
such that i€<(S,, T) and <S;, T>=SL({2, 3). If [Z, T]=1, then *<<(S.)* T%
={(S,), T>. Hence i*<I,(T)={i}. This implies that i*=1, which is impossible.
Therefore [Z, T]+1" If <Z, T>=SL(2,5), then [5, Lemma 4.6] implies that
I,(Z)=I,(T)={i}. Thus Z=R(i), a contradiction. Therefore <Z, T>=SL(2, 3).
Similary we have <T,, Z>=SL(2,3) for each T,€X,N<S, T>. Thus [9,
(1.1.1)] implies that ¢ is conjugate to j, a contradiction. Therefore Y,\R(7) is
empty and R()=2, as required. Since H is generated by elements of 2, 1
eZ(H). Let H=H/O,(H)Z(H). Since 3} |S(H)| and 0,(0y(H)<Z(H), O,(H)
=Z(H)=1. By condition (TIp) and [9, Satz] we see that A=~ A,. Since H'=H
and the Schur multiplier of A, has order 2, H/O,(H)= A; as Z(H) is a 3/-subgroup.

Thus we may assume that <X, Y>%SL(2, 5) for all Y=2X. Therefore for
E+FeX we have {E, F)=Z,XZ, or SL(2,3). We can now appeal to and
applying condition (T'Ip) to conclude the proof.

By using the condition (T'Ip), is now a consequence of 4.2.
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