Homomorphisms of measure algebras on the unit circle

By Satoru IGARI and Yûichi KANJIN

(Received Dec. 1, 1977)

1. Introduction.

Let T be the unit circle. Let L(T) be the Lebesgue space and M(T) the set of all bounded regular Borel measures on T. M(T) is a commutative Banach algebra with the convolution product and the norm of total variation, and contains L(T) as a closed ideal. The object of this paper is to investigate the homomorphisms of M(T) which are different from the type given by W. Rudin [6].

W. Rudin characterized the homomorphisms of L(T) into M(T) in the following way. Let Ψ be a homomorphism of L(T) into M(T). Then for every integer *n* the mapping $f \to (\Psi f)^{(n)}$ defines a multiplicative linear functional on L(T), where $\hat{}$ denotes the Fourier-Stieltjes transform. Thus there exists a mapping ψ of Z into $Z \cup \{\infty\}$ such that $(\Psi f)^{(n)} = \hat{f}(\psi(n)), n \in Z$, where Z is the set of integers and ∞ means the trivial functional, that is, $\hat{f}(\infty) = 0$ for all f in L(T).

THEOREM A (W. Rudin [6], cf. [7; p. 95]). Let ψ be a mapping of Z into $Z \cup \{\infty\}$. The mapping ψ induces a homomorphism Ψ of L(T) into M(T) satisfying $(\Psi f)^{\hat{}} = \hat{f} \circ \psi$ if and only if

(i) the set $P = \{n; \psi(n) \neq \infty\}$ belongs to the smallest ring of subsets of Z containing all cosets in Z;

(ii) there exists a mapping ϕ of Z into Z and $q \in Z$ such that $\psi(n) = \phi(n)$ for $n \in P$ except possibly a finite number of n's and

 $\phi(n+q)+\phi(n-q)=2\phi(n)$ for all $n\in \mathbb{Z}$.

This theorem is extended by P. J. Cohen [3] to the homomorphisms of $L(G_1)$ into $M(G_2)$, where G_1 and G_2 are locally compact abelian groups. On the other hand J. Inoue [5] proved that P. J. Cohen's characterization holds good if we replace $L(G_1)$ by the smallest closed subalgebra of $M(G_1)$ containing all $L(G_1^{\tau})$, where G_1^{τ} denotes the group G_1 with a locally compact topological group topology τ stronger than the original one of G_1 or equal to that of G_1 .

Let Ψ be a homomorphism of L(T) into M(T). Then it is extended to a homomorphism of M(T) into M(T). In fact let ψ be the mapping of Z into $Z \cup \{\infty\}$ such that $(\Psi f)^{\hat{}} = \hat{f} \circ \psi$ for f in L(T) and define the mapping $\tilde{\Psi}$ of M(T) into M(T) by $(\tilde{\Psi}\mu)^{\hat{}}(n) = \hat{\mu}(\psi(n))$ if $\psi(n) \neq \infty$ and =0 otherwise. Then it is a homomorphism of M(T) into M(T) and $\tilde{\Psi} = \Psi$ on L(T) (see [6]). But the extension of the homomorphism Ψ is not unique. We shall show in §2 that there exists a non trivial homomorphism of M(T) into M(T) which vanishes on L(T) (cf. [4] and [7]).

In this paper we shall obtain a sufficient condition for a mapping Ψ of M(T) into M(T) to be a homomorphism. It coincides with the Rudin's conditions (i) and (ii) of Theorem A when we restrict the domain of mappings to L(T). We shall also prove that our condition on Ψ in Theorem 2 is necessary in a sense when it is applied to a certain class of L-subalgebras of M(T), which consist of singular measures (see Theorem 3). Our theorems enable us to treat homomorphisms of a subalgebra of M(T) into M(T) which is essentially different from the algebra considered by J. Inoue [5] (see Remark in § 3).

2. A sufficient condition.

DEFINITION. A subset N of M(T) is called an L-subalgebra if it has the following properties:

(i) N is a closed subspace.

(ii) $\mu * \nu \in N$ for every μ and ν in N, where * denotes the convolution of μ and ν .

(iii) $\mu \in N$ and $\nu \ll \mu$, that is, ν is absolutely continuous with respect to μ , imply $\nu \in N$.

We use the following representation of the maximal ideal space of an L-subalgebra.

DEFINITION. Let N be an L-subalgebra of M(T). A system $\psi = \{\psi_{\mu}; \mu \in N\}$ of functions is called a generalized character if

- (i) $\psi_{\mu} \in L^{\infty}(d \mid \mu \mid)$ and $\sup_{\mu} \mu$ -ess $\sup_{t} |\psi_{n}(t)| > 0$;
- (ii) $\psi_{\mu} = \phi_{\nu} \nu$ -a.e. if $\nu \ll \mu$;
- (iii) $\psi_{\mu*\nu}(s+t) = \psi_{\mu}(s)\psi_{\nu}(t)$ for $\mu \times \nu$ -a. a. (s, t).

Let $\Delta(N)$ be the set of non-trivial multiplicative linear functional on N. Then the set of generalized characters is identified with $\Delta(N)$ by the bijection θ ;

$$(\theta \psi)(\mathbf{v}) = \int_{\mathbf{r}} \phi_{\mathbf{v}}(t) d\mathbf{v}(t), \quad \phi = \{\phi_{\mu}\}, \quad \mathbf{v} \in N.$$

Thus we may use the notation $\mathcal{A}(N)$ for the set of generalized characters and denote $(\theta\phi)(\nu) = \hat{\nu}(\phi)$ without confusion.

For $\phi = \{\phi_{\mu}\}$ and $\psi = \{\psi_{\mu}\}$ in $\mathcal{A}(N)$ we define systems $\phi\psi$, $\bar{\phi}$ and $|\phi|$ by $(\phi\psi)_{\mu} = \phi_{\mu}\psi_{\mu}, \ (\bar{\phi})_{\mu} = \bar{\phi}_{\mu}$ and $|\phi|_{\mu} = |\phi_{\mu}|$, where these operations are defined pointwise in $L^{\infty}(d |\mu|)$ for each $\mu \in N$. These operations yield new elements of $\mathcal{A}(N)$. We denote the trivial linear functional by 0 (cf. Yu. A. Šreider [8]).

When N=L(T), the maximal ideal space of L(T) is identified with Z and embedded in $\Delta(M(T))$. We remark that if $\phi \in \Delta(N) - Z$, then $\hat{f}(\phi) = 0$ for all $f \in L(T)$ (cf. J. L. Taylor [9]).

DEFINITION. Let N be an L-subalgebra of M(T). A mapping $\psi(\cdot)$ of Z into $\Delta(N) \cup \{0\}$ is said to satisfy the condition (C), C > 0, if

$$\lambda_{\nu}(t, \theta) = \sum_{n=-\infty}^{\infty} \phi(n)_{\nu}(t) e^{in\theta}$$

is a Fourier-Stieltjes series in θ for ν -a. a. t and

$$u$$
-ess sup $\|\lambda_{\nu}(t, \cdot)\|_{M(T)} \leq C$ for all $\nu \in N$.

THEOREM 1. Let N be an L-subalgebra of $M(\mathbf{T})$. Then a mapping Ψ of N into $M(\mathbf{T})$ is a homomorphism if and only if there exists a mapping $\psi(\cdot)$ of \mathbf{Z} into $\Delta(N) \cup \{0\}$ and C > 0 such that

- (i) $(\Psi_{\nu})^{(n)} = \hat{\nu}(\phi(n))$ for every $n \in \mathbb{Z}$;
- (ii) $\{\phi(n)\}$ satisfies the condition (C).

PROOF. Let Ψ be a homomorphism of N into M(T). Then for every n in \mathbb{Z} the mapping $\nu \to (\Psi \nu)^{\circ}(n)$ defines a multiplicative linear functional. Thus there exists $\phi(n) \in \mathcal{A}(N) \cup \{0\}$ such that $(\Psi \nu)^{\circ}(n) = \hat{\nu}(\phi(n))$. Let $p(\theta) = \sum a_n e^{in\theta}$ be a polynomial. Then

$$\left| \int_{\mathbf{T}} \sum a_n \psi(n)_{\nu}(t) f(t) d\nu(t) \right| = \left| \sum a_n \Psi(f d\nu)^{\hat{}}(n) \right|$$
$$\leq \|p\|_{\infty} \|\Psi(f d\nu)\|_{\mathcal{M}(\mathbf{T})} \leq \|\Psi\|\|p\|_{\infty} \|\nu\|_{\mathcal{M}(\mathbf{T})}$$

for every $f \in L(d|\nu|)$ such that $\int |f|d|\nu| = 1$. Thus taking the supremum over f, we have

$$\nu$$
-ess sup $|\sum a_n \psi(n)_{\nu}(t)| \leq ||\Psi|| \|p\|_{\infty}$

for every polynomial p. Thus for ν -a.a. $t \sum \phi(n)_{\nu}(t)e^{in\theta}$ is a Fourier-Stieltjes series of a measure with norm $\leq ||\Psi||$ (cf. [7; p. 32]). Thus $\phi(\cdot)$ satisfies the condition $(||\Psi||)$.

From the above argument the if part of the theorem is obvious.

DEFINITION. Let N be an L-subalgebra of $M(\mathbf{T})$ and $\psi(\cdot)$ be a mapping of \mathbf{Z} into $\Delta(N) \cup \{0\}$. Suppose that there exist

(i) positive integers l and m, and a set $R = \{n_{m+1}, n_{m+2}, \dots, n_l\}$ of l-m integers;

(ii) $\phi_i \in \Delta(N) \cup \{0\} \ (j=1, 2, \dots, l);$

(iii) $\pi_j \in \mathcal{A}(N) \cup \{0\}$ $(j=1, 2, \dots, m)$ such that $|\pi_j|^2 = |\pi_j|$;

(iv) mappings $\rho_j(\cdot)$ of Z into $\Delta(N) \cup \{0\}$ $(j=1, 2, \dots, m)$ and a positive constant C>0 such that $\rho_j(\cdot)$ satisfies the condition (C) for each j and $\rho_j(n) = |\rho_j(n)|$ for $j=1, 2, \dots, m$ and $n \in Z$; and that ψ has the following expression

$$\phi(n)_{\nu}(t) = \sum_{j=1}^{m} \pi_{j\nu}(t)^{k} \phi_{j\nu}(t) \rho_{j}(n)_{\nu}(t) C_{m\mathbf{z}+j}(n) \quad (\nu \in N)$$

for $n \in R$ and $\psi(n) = \phi_j$ for $n = n_j \in R$, where $k = \lfloor n/m \rfloor$ denotes the integral part of n/m and C_E the characteristic function of the set E.

Then we call ϕ an almost piecewise affine mapping from \mathbb{Z} into $\mathcal{\Delta}(N) \cup \{0\}$ or simply an almost piecewise affine mapping. Furthermore, if $\rho_j(n) = \{1\}$, the constant systems, we call ϕ a picewise affine mapping from \mathbb{Z} into $\mathcal{\Delta}(N) \cup \{0\}$ or simply a piecewise affine mapping.

We remark that the definition of the piecewise affine mappings given here is essentially same to the Rudin's one in [7] when N=L(T) and the conditions (i) and (ii) on ψ in Theorem A imply that ψ is a piecewise affine mapping from Z into $\Delta(L(T)) \cup \{0\}$.

THEOREM 2. Let N be an L-subalgebra of $M(\mathbf{T})$. If a mapping $\psi(\cdot)$ of \mathbf{Z} into $\Delta(N) \cup \{0\}$ is almost piecewise affine, then the mapping Ψ defined by

$$(\Psi_{\nu})^{(n)} = \hat{\nu}(\phi(n)) \qquad (n \in \mathbb{Z})$$

is a homomorphism of N into $M(\mathbf{T})$.

REMARK. If a mapping $\psi(\cdot)$ of Z into $\Delta(N) \cup \{0\}$ satisfies

$$u$$
-ess sup { $\sum_{n=-\infty}^{\infty} |\psi(n)_{\nu}(t)|^2$ }^{1/2} $\leq C$ for all $\nu \in N$,

then the series $\sum \phi(n)_{\nu}(t)e^{in\theta}$ is a Fourier series with norm $\leq C$ for every $\nu \in N$ and ν -a. a. t by the Riesz-Fischer theorem. Thus it satisfies the condition (C). Therefore our theorem may not be relevant in this case.

PROOF. Assume that $\phi(\cdot)$ is an almost piecewise affine mapping and use the notations in Definition. By Theorem 1 it suffices to prove that $\phi(\cdot)$ satisfies the condition (C') for some positive constant C'. We many assume that the set R is empty, since a change of finite number of $\phi(n)$'s does not affect our conclusion.

 $\{C_{m\mathbf{z}+j}(n): n \in \mathbf{Z}\}\$ and $\{\pi_{j\nu}(t)^k: k \in \mathbf{Z}\}(j=1, 2, \dots, m)\$ are the sequences of Fourier-Stieltjes coefficients of measures with norms ≤ 1 for all $\nu \in N$ and ν -a. a. t. Thus by a simple computation, $\{\pi_{j\nu}(t)^{\lfloor n/m \rfloor}C_{m\mathbf{z}+j}(n): n \in \mathbf{Z}\}\$ is the sequence of Fourier-Stieltjes coefficients of a measure with norm ≤ 1 . Thus $\psi(\cdot)$ satisfies the condition (C') with C'=mC.

There exist non-trivial homomorphisms of M(T), which vanish on L(T) (see W. Rudin [7; p. 78] and R.E. Edwards [4; p. 80]). Here we shall construct such a homomorphism of a different type. We remark also that our method is applied to get the examples cited above.

Let π , ρ and ϕ be elements of $\Delta(M(T))$. Assume $|\pi|^2 = |\pi|$ and $\rho = |\rho|$. Put $\phi(n) = \pi^n \rho^{(n)} \phi$. Then $\phi(\cdot)$ satisfies the condition (C) with C=1. Thus the mapping Ψ defined by (i) in Theorem 1 is a homomorphism of M(T) into M(T).

Let μ be a measure in M(T) such that every Fourier-Stieltjes coefficient is real, that is, μ is hermitian and such that

$$\{\xi_{\mu}(t); \xi = \{\xi_{\nu}\} \in \Delta(M(T))\} = \{ae^{int}; a \in C, |a| \leq 1, n \in Z\}$$

(cf. for example G. Brown [1]). Let 0 < r < 1 and t_0 be a real number such that t_0 divided by 2π is irrational. Choose generalized characters π , ρ and ϕ such that $\pi_{\mu} = e^{it_0}$, $\rho_{\mu} = r$ and $\phi_{\mu} = i$.

Then the homomorphism Ψ defined by $\psi(n) = \pi^n \rho^{|n|} \phi$ has the property that Ψ maps the singular hermitian measure μ to the absolutely continuous measure $\Psi(\mu)$ whose Fourier-Stieltjes coefficients are not real. On the other hand Ψ vanishes on L(T). In fact $\psi(n) \in \mathcal{A}(M(T)) - \mathbb{Z}$. Thus $\hat{f}(\psi(n)) = 0$ for all f in L(T) and n in \mathbb{Z} (cf., for example, [9; p. 187]).

3. Homomorphisms of $N(\mu)$ into M(T).

Let N be an L-subalgebra of $M(\mathbf{T})$ and Ψ be a homomorphism of N into $M(\mathbf{T})$. Let ϕ be the mapping of \mathbf{Z} into $\Delta(N) \cup \{0\}$ defined by $(\Psi\nu)^{\hat{}}(n) = \hat{\nu}(\phi(n))$ for all ν in N and n in \mathbf{Z} . If $N = L(\mathbf{T})$, then $\Delta(N)$ is identified with $\{e^{int}; n \in \mathbf{Z}\}$. Thus if Ψ is a homomorphism of $L(\mathbf{T})$ into $M(\mathbf{T})$, then it induces a (almost) piecewise affine mapping of \mathbf{Z} into $\Delta(L(\mathbf{T})) \cup \{0\}$ by Theorem A.

In this section we restrict our attention to a class of *L*-subalgebras which consist of singular measures and are defined later. We shall show in Theorem 3 that the converse of Theorem 2 is true in a sense, that is, the mapping ϕ of \mathbf{Z} into $\Delta(N) \cup \{0\}$ is piecewise affine under a condition for such an *L*-subalgebra *N*.

For a measure μ in M(T), $N(\mu)$ will denote the smallest L-subalgebra which contains μ . We use the following properties of $\Delta(N(\mu))$.

LOCALIZATION LEMMA (cf. G. Brown and W. Moran [2]). For $\mu \in M(T)$, $\Delta(N(\mu))$ is identified with

$$S(\mu) = \{ \xi_{\mu} ; \xi = \{ \xi_{\nu} \} \in \Delta(N(\mu)) \}.$$

Let ξ , ϕ and χ be elements in $\mathcal{L}(N(\mu))$. If ξ_{μ} , ϕ_{μ} , $\chi_{\mu} \in S(\mu)$ and $\xi_{\mu} = \phi_{\mu} \chi_{\mu}$, then $\xi = \phi \chi$ by the localization lemma. We remark also that if μ is a measure such that μ^{n} ($n=1, 2, \cdots$) are mutually singular and $c \in S(\mu)$ is a constant function, then $\{c_{\nu}\} \in \mathcal{A}(N(\mu))$ is defined by

$$c_{\nu}=c^n$$
 μ^n -a.e.

Now we specify the measure μ as follows. Let $\{a_n; n \ge 1\}$ be a sequence of integers such that $a_n \ge 2$. Let $d_n = 2\pi \prod_{r=1}^n a_r^{-1}$ and define the Bernoulli convolution product

$$\mu = \overset{\infty}{\underset{n=1}{*}} \frac{1}{2} [\delta(0) + \delta(d_n)]$$
 ,

where $\delta(a)$ is the Dirac measure concentrated on $\{a\}$. We remark that the infinite product of convolution converges in the weak*-topology and it defines a positive measure with norm 1.

Denote by B' the class of the measures as is obtained above with $a_n > 2$ for infinitely many n. The measures in B' are continuous and singular. Furthermore μ^n , $n=1, 2, \cdots$, are mutually singular (cf. [2]).

For $\mu = \overset{\infty}{\underset{n=1}{\ast}} \frac{1}{2} [\delta(0) + \delta(d_n)]$ in B' let D be the subgroup of T generated by $\{d_n; n=1, 2, \cdots\}$ with the discrete topology. Put

$$\mu_r = \underset{n=r+1}{\overset{\infty}{\ast}} \frac{1}{2} [\delta(0) + \delta(d_n)]$$

and

$$D_r = \left\{ \sum_{n=1}^r \varepsilon_n d_n ; \varepsilon_n = 0 \text{ or } 1 \right\}.$$

We recall the following properties of the measures in B'.

THEOREM B ([2]). Let $\mu = \frac{\infty}{n=1} \frac{1}{2} [\delta(0) + \delta(d_n)]$ be a measure in **B**'. Then we have

(i) for every $\chi_{\mu} \in S(\mu)$ and $n=1, 2, \dots$, there exists a unique element $\gamma(\chi_{\mu})$ in \hat{D} , the dual group of D, such that

(1)
$$\chi_{\mu}(d+t) = \beta(d)\chi_{\mu}(t)$$
 for μ_n -a.a. t and $d \in D_n$

where $\beta = \gamma(\chi_{\mu})$,

(ii) the mapping γ of $S(\mu)$ to \hat{D} defined by (1) is a continuous semigroup homomorphism, and

(iii) if $\beta \in Image$ of γ , then $\gamma^{-1}(\beta) = \{af; a \in C, 0 < |a| \leq 1\}$, where f is a member of $S(\mu)$ with constant unit modulus which is a pointwise limit point of the sequence $\{\sum_{d \in D_n} \beta(d)C_n(d)\}, C_n(d)$ being the characteristic function of the interval $\lceil d, d+d_n \rangle$.

THEOREM 3. Let μ be a measure in **B**'. Let Ψ be a homomorphism of $N(\mu)$ into $M(\mathbf{T})$ and $\psi(\cdot)$ be the mapping of \mathbf{Z} into $\Delta(N(\mu)) \cup \{0\}$ defined by Ψ .

Suppose that $|\psi(n)|^2 = |\psi(n)|$ for all n. Then the mapping $\psi(\cdot)$ is piecewise affine.

PROOF. By Theorem B (iii) $|\psi_{\mu}(n)| = 1 \mu$ -a.e. or 0. Put $P = \{n \in \mathbb{Z}; |\psi_{\mu}(n)| = 1\}$, and $\beta(n) = \gamma(\psi_{\mu}(n))$ for $n \in P$ and = the unit of \hat{D} otherwise, where γ is the mapping given by Theorem B. The first step of our proof is to show that the mapping $n \to \beta(n)$ of \mathbb{Z} into \hat{D} defines a homomorphism of L(D) into $M(\mathbb{T})$.

By Theorem 1

(2)
$$\lambda(\nu ; t, \theta) = \sum_{n=-\infty}^{\infty} \psi(n)_{\nu}(t) e^{in\theta}$$

is a Fourier-Stieltjes series for ν -a.a. t and $\|\lambda(\nu; t, \cdot)\|_{M(T)} \leq \|\Psi\|$ for every $\nu \in N(\mu)$. Now put $\nu = \nu_1 * \nu_2 * \cdots * \nu_k$, where $\nu_j \geq 0$ and $\nu_j \in N(\mu)$ $(j=1, 2, \dots, k)$. Then, by (2)

(3)
$$\lambda(\mathbf{v}; t_1+t_2+\cdots+t_k, \theta) = \sum_{n=-\infty}^{\infty} \psi(n)_{\mathbf{v}}(t_1+t_2+\cdots+t_k)e^{in\theta}$$

is the Fourier-Stieltjes series of a measure with norm $\leq ||\Psi||$ for $\nu_1 \times \nu_2 \times \cdots \times \nu_k$ a. a. (t_1, t_2, \cdots, t_k) .

Let r be a positive integer. For k elements d^1 , d^2 , \cdots , d^k in D_r put

$$\nu_j = \delta(d^j) * \mu_r \quad (j=1, 2, \cdots, k)$$

Then $\nu_j \ll \mu$. Thus $\nu_j \in N(\mu)$. By the property of the generalized characters and Theorem B, we have

$$\phi(n)_{\mu}(d^{j}+t_{j}) = \beta(n)(d^{j}) \phi(n)_{\mu}(t_{j}) \qquad \mu_{r}\text{-a. e. in } t_{j}$$

for every $n \in \mathbb{Z}$ and $j=1, 2, \dots, k$. Thus by (3), the multiplicative property of the generalized characters and Theorem B,

(4)
$$\sum_{n=-\infty}^{\infty} \left[\prod_{j=1}^{k} \beta(n)(d^{j}) \prod_{j=1}^{k} \psi(n)_{\mu}(t_{j}) \right] e^{in\theta}$$

is the Fourier-Stieltjes series of a measure with norm $\leq ||\Psi||$ for $\mu_r \times \mu_r \times \cdots \times \mu_r$ a. a. (t_1, t_2, \dots, t_k) .

By the same way for k convolution products $\mu_r^k = \mu_r * \cdots * \mu_r$ we have

(5)
$$\lambda(\mu_r^k; t_1 + t_2 + \dots + t_k, \theta) = \sum_{n=-\infty}^{\infty} [\prod_{j=1}^k \psi(n)_{\mu}(t_j)] e^{in\theta}$$

and $\|\lambda(\mu_r^k; t_1+t_2+\cdots+t_k, \cdot)\|_{M(T)} \leq \|\Psi\|$ for $\mu_r \times \mu_r \times \cdots \times \mu_r$ -a. a. (t_1, t_2, \cdots, t_k) . Since $|\psi(n)_{\mu}(t)| = 1$ or 0 by our assumption, the composition of the series (4) and the series of $\overline{\lambda}(\mu_r^k; t_1+t_2+\cdots+t_k, -\theta)$ S. IGARI and Y. KANJIN

(6)
$$\sum_{n=-\infty}^{\infty} \left[\prod_{j=1}^{k} \beta(n)(d^{j}) \right] C_{P}(n) e^{in\theta}$$

is the Fourier-Stieltjes series of a measure with norm $\leq ||\Psi||^2$.

Since $d_i + (a_1a_2 \cdots a_i - 1) \equiv 0 \mod 2\pi$,

$$D = \{\sum_{i=1}^{\infty} n_i d_i; n_i \in \mathbb{Z}, n_i \ge 0 \text{ and } n_i = 0 \text{ except a finite number of } i's\}$$

Thus by (6), $\sum \beta(n)(d)e^{in\theta}$ is the Fourier-Stieltjes series of a measure with norm $\leq ||\Psi||^2$ for every d in D. Thus the mapping

$$\Phi f(\theta) = \sum_{n=-\infty}^{\infty} \left[\sum_{d \in D} f(d) \beta(n)(d) \right] C_P(n) e^{in\theta} \quad \text{for} \quad f \in L(D)$$

defines a homomorphism of L(D) to M(T). Thus by P. J. Cohen's theorem [3], *P* belongs to the coset ring of *Z* and the mapping $n \to \beta(n)$ of *Z* to \hat{D} is piecewise affine. Thus there exist a positive integer *m*, a finite subset *R* $= \{n_{m+1}, n_{m+2}, \dots, n_l\}$ of *Z* and $\zeta_j, \eta_j \in \hat{D}$ $(j=1, 2, \dots, m)$ such that

(7)
$$\beta(n) = \sum_{j=1}^{m} \zeta_j^k \eta_j C_{m\mathbf{z}+j}(n)$$

for $n \in P-R$ with $k = \lfloor n/m \rfloor$ and $(P-R) \cup F$ is periodic with the period m for some finite set F.

To complete the proof we pull back the relation (7) to another relation involving $\{\phi(n)\}$. For each j in $[(P-R) \cup F] \cap \{1, 2, \dots, m\}$ choose π_j and ϕ_j in $\Delta(N(\mu))$ such that $\gamma(\pi_j) = \zeta_j, \gamma(\phi_j) = \eta_j$ and $|\pi_j| = 1, |\phi_j| = 1$. Then by Theorem B (iii) there exist unitary constants c_n such that

(8)
$$\phi_{\mu}(n) = c_n \sum_{j=1}^m \pi_{j\mu}^k \phi_{j\mu} C_{m\mathbf{z}+j}(n)$$

for $n \in P-R$ with $k = \lfloor n/m \rfloor$. For $j \in \lfloor (P-R) \cup F \rfloor$, $1 \leq j \leq m$, let ϕ_j be the zero system, that is, the trivial functional. Then (8) holds for $n \in \mathbb{Z}-R$.

Put $a_n = c_n$ for $n \in P - R$ and =1 for $n \in P - R$. Let $\phi_j = \phi(n)$ for $n = n_j \in R$. Then we have

(9)
$$\psi_{\mu}(n) = \sum_{j=1}^{m} \pi_{j\mu}^{k} a_{n} \phi_{j\mu} C_{mz+j}(n)$$

for $n \in R$ with $k = \lfloor n/m \rfloor$ and $\psi_{\mu}(n) = \phi_{j\mu}$ for $n = n_j \in R$.

We denote by $\alpha(n)$ the generalized character of $\Delta(N(\mu))$ such that $\alpha_{\mu}(n) = a_n$. The final step of the proof is to show that $\{\alpha(n)\}$ is expressed in the form

(10)
$$\alpha(n) = \sum_{j=1}^{m'} \pi_j^{\prime k} \phi_j^{\prime} C_{m' z+j}(n)$$

outside a finite set R', where m' is a positive integer, $k = \lfloor n/m' \rfloor$ and π'_j , $\phi'_j \in \Delta(N(\mu))$, $j=1, 2, \dots, m'$. Then our theorem follows from (9) and (10) replacing m by mm' and R by $R \cup R'$. Furthermore, π_j and ϕ_j are replaced by the generalized characters of the form $\pi_i^p \pi'_{i'}^{p'}$ and $\phi_i^q \phi'_{i'}^{q'}$ respectively.

Put $\psi'(n) = \overline{\psi(n)}$ for $n \in R$ and

$$\psi'(n) = \sum_{j=1}^{m} \bar{\pi}_{j}^{k} \bar{\phi}_{j} C_{mZ+j}(n)$$

for $n \in R$ with $k = \lfloor n/m \rfloor$. Then by Theorem 2 $\{\psi'(n)\}$ defines a homomorphism. We have $\psi(n)\psi'(n) = \alpha(n)$ for all *n* except a finite number of *n*'s, so that $\{\alpha(n)\}$ defines a homomorphism in the obvious way. Let c > 0 be the norm of that homomorphism. Then $\|\sum \alpha_{\nu}(n)e^{in\theta}\|_{\mathcal{M}(T)} \leq c$ for every $\nu = \mu^k$, k > 0. As we have mentioned in the section 2, $\alpha_{\nu}(n) = a_n^k$ for $\nu = \mu^k$, k > 0 and $|\alpha_{\nu}(n)| = 1$. Thus

$$\|\sum a_n^k e^{in\theta}\|_{M(T)} \leq c$$

for all $k \in \mathbb{Z}$. This implies, by the theorem in [7; p. 93], that the mapping $n \to a_n$ of \mathbb{Z} to T is piecewise affine. Thus we get (10). Thus our proof is complete.

REMARK. Let N be the smallest closed subalgebra of M(T) which contains all $L(T^{\tau})$, where T^{τ} is the group T with a locally compact topological group topology τ stronger than the original one or equal to that of T. Since the discrete topology and the natural one are only such topologies, N=L(T)+ $L(T^{d})$, where d is the discrete topology on T. Thus N contains no continuous singular measures. On the other hand the algebras $N(\mu)$ in Theorem 3 consist of continuous singular measures.

References

- G. Brown, Riesz products and generalized characters, Proc. London Math. Soc.,
 (3) 30 (1975), 209-238.
- [2] G. Brown and W. Moran, Bernoulli measure algebras, Acta Math., 132 (1974), 77-109.
- [3] P.J. Cohen, On homomorphisms of group algebras, Amer. J. Math., 82 (1960), 213-226.
- [4] R.E. Edwards, Fourier Series, vol. 2, Holt, Rinehart and Winston, Inc., New York, 1967.
- [5] J. Inoue, Some closed subalgebras of measure algebras and a generalization of P. J. Cohen's theorem, J. Math. Soc. Japan, 23 (1971), 278-294.
- [6] W. Rudin, The automorphisms and the endomorphisms of the group algebra of the unit circle, Acta Math., 95 (1956), 39-55.
- [7] W. Rudin, Fourier Analysis on Groups, Interscience Publ., New York, 1962.
- [8] Yu. A. Šreider, The structure of maximal ideals in rings of measures with convolution, Mat. Sb., 27 (1950), 297-318, Amer. Math. Soc. Transl., (1) 8 (1962),

365-391.

[9] J.L. Taylor, Inverses, logarithms, and idempotents in M(G), Rocky mountain J. Math., 2 (1972), 183-206.

Satoru IGARI

Yûichi KANJIN

Mathematical Institute Tôhoku University Sendai 980 Japan Mathematical Institute Tôhoku University Sendai 980 Japan