Homomorphisms of measure algebras on the unit circle

By Satoru Igari and Yûichi Kanjin

(Received Dec. 1, 1977)

1. Introduction.

Let \boldsymbol{T} be the unit circle. Let $L(\boldsymbol{T})$ be the Lebesgue space and $M(\boldsymbol{T})$ the set of all bounded regular Borel measures on $\boldsymbol{T} . \quad M(\boldsymbol{T})$ is a commutative Banach algebra with the convolution product and the norm of total variation, and contains $L(\boldsymbol{T})$ as a closed ideal. The object of this paper is to investigate the homomorphisms of $M(\boldsymbol{T})$ which are different from the type given by W . Rudin [6].
W. Rudin characterized the homomorphisms of $L(\boldsymbol{T})$ into $M(\boldsymbol{T})$ in the following way. Let Ψ be a homomorphism of $L(\boldsymbol{T})$ into $M(\boldsymbol{T})$. Then for every integer n the mapping $f \rightarrow(\Psi f)^{\wedge}(n)$ defines a multiplicative linear functional on $L(\boldsymbol{T})$, where ${ }^{\text {^ denotes the Fourier-Stieltjes transform. Thus there }}$ exists a mapping ψ of \boldsymbol{Z} into $\boldsymbol{Z} \cup\{\infty\}$ such that $(\Psi f)^{\wedge}(n)=\hat{f}(\psi(n)), n \in \boldsymbol{Z}$, where \boldsymbol{Z} is the set of integers and ∞ means the trivial functional, that is, $\hat{f}(\infty)=0$ for all f in $L(\boldsymbol{T})$.

Theorem A (W. Rudin [6], cf. [7; p. 95]). Let ψ be a mapping of \boldsymbol{Z} into $\boldsymbol{Z} \cup\{\infty\}$. The mapping ψ induces a homomorphism Ψ of $L(\boldsymbol{T})$ into $M(\boldsymbol{T})$ satisfying $(\Psi f)^{\wedge}=\hat{f} \circ \psi$ if and only if
(i) the set $P=\{n ; \psi(n) \neq \infty\}$ belongs to the smallest ring of subsets of \boldsymbol{Z} containing all cosets in \boldsymbol{Z};
(ii) there exists a mapping ϕ of \boldsymbol{Z} into \boldsymbol{Z} and $q \in \boldsymbol{Z}$ such that $\psi(n)=\phi(n)$ for $n \in P$ except possibly a finite number of n 's and

$$
\phi(n+q)+\phi(n-q)=2 \phi(n) \quad \text { for all } \quad n \in \boldsymbol{Z}
$$

This theorem is extended by P.J. Cohen [3] to the homomorphisms of $L\left(G_{1}\right)$ into $M\left(G_{2}\right)$, where G_{1} and G_{2} are locally compact abelian groups. On the other hand J. Inoue [5] proved that P. J. Cohen's characterization holds good if we replace $L\left(G_{1}\right)$ by the smallest closed subalgebra of $M\left(G_{1}\right)$ containing all $L\left(G_{1}^{\tau}\right)$, where G_{1}^{τ} denotes the group G_{1} with a locally compact topological group topology τ stronger than the original one of G_{1} or equal to that of G_{1}.

Let Ψ be a homomorphism of $L(\boldsymbol{T})$ into $M(\boldsymbol{T})$. Then it is extended to a homomorphism of $M(\boldsymbol{T})$ into $M(\boldsymbol{T})$. In fact let ψ be the mapping of \boldsymbol{Z} into $\boldsymbol{Z} \cup\{\infty\}$ such that $(\Psi f)^{\wedge}=\hat{f} \circ \phi$ for f in $L(\boldsymbol{T})$ and define the mapping $\tilde{\Psi}$ of $M(\boldsymbol{T})$ into $M(\boldsymbol{T})$ by $(\tilde{\Psi} \mu)^{\wedge}(n)=\hat{\mu}(\psi(n))$ if $\psi(n) \neq \infty$ and $=0$ otherwise. Then it is a homomorphism of $M(\boldsymbol{T})$ into $M(\boldsymbol{T})$ and $\tilde{\Psi}=\Psi$ on $L(\boldsymbol{T})$ (see [6]). But the extension of the homomorphism Ψ is not unique. We shall show in $\S 2$ that there exists a non trivial homomorphism of $M(\boldsymbol{T})$ into $M(\boldsymbol{T})$ which vanishes on $L(\boldsymbol{T})$ (cf. [4] and [7]).

In this paper we shall obtain a sufficient condition for a mapping Ψ of $M(\boldsymbol{T})$ into $M(\boldsymbol{T})$ to be a homomorphism. It coincides with the Rudin's conditions (i) and (ii) of Theorem A when we restrict the domain of mappings to $L(\boldsymbol{T})$. We shall also prove that our condition on Ψ in Theorem 2 is necessary in a sense when it is applied to a certain class of L-subalgebras of $M(\boldsymbol{T})$, which consist of singular measures (see Theorem 3). Our theorems enable us to treat homomorphisms of a subalgebra of $M(\boldsymbol{T})$ into $M(\boldsymbol{T})$ which is essentially different from the algebra considered by J. Inoue [5] (see Remark in § 3).

2. A sufficient condition.

Definition. A subset N of $M(\boldsymbol{T})$ is called an L-subalgebra if it has the following properties:
(i) N is a closed subspace.
(ii) $\mu * \nu \in N$ for every μ and ν in N, where $*$ denotes the convolution of μ and ν.
(iii) $\mu \in N$ and $\nu \ll \mu$, that is, ν is absolutely continuous with respect to μ, imply $\nu \in N$.

We use the following representation of the maximal ideal space of an L subalgebra.

Definition. Let N be an L-subalgebra of $M(\boldsymbol{T})$. A system $\psi=\left\{\psi_{\mu} ; \mu \in N\right\}$ of functions is called a generalized character if
(i) $\psi_{\mu} \in L^{\infty}(d|\mu|)$ and $\sup _{\mu} \mu$-ess $\sup _{t} \omega_{\prime}^{\prime}(t) \mid>0$;
(ii) $\psi_{\mu}=\psi_{\nu} \nu$-a. e. if $\nu \ll \mu$;
(iii) $\psi_{\mu *_{\nu}}(s+t)=\psi_{\mu}(s) \psi_{\nu}(t)$ for $\mu \times \nu-$ a. a. (s, t).

Let $\Delta(N)$ be the set of non-trivial multiplicative linear functional on N. Then the set of generalized characters is identified with $\Delta(N)$ by the bijection θ;

$$
(\theta \psi)(\nu)=\int_{\boldsymbol{T}} \psi_{\nu}(t) d \nu(t), \quad \psi=\left\{\psi_{\mu}\right\}, \quad \nu \in N .
$$

Thus we may use the notation $\Delta(N)$ for the set of generalized characters and denote $(\theta \psi)(\nu)=\hat{\nu}(\psi)$ without confusion.

For $\phi=\left\{\phi_{\mu}\right\}$ and $\psi=\left\{\psi_{\mu}\right\}$ in $\Delta(N)$ we define systems $\phi \psi, \bar{\phi}$ and $|\phi|$ by $(\phi \psi)_{\mu}=\phi_{\mu} \psi_{\mu}$, $(\bar{\phi})_{\mu}=\bar{\phi}_{\mu}$ and $|\phi|_{\mu}=\left|\phi_{\mu}\right|$, where these operations are defined pointwise in $L^{\infty}(d|\mu|)$ for each $\mu \in N$. These operations yield new elements of $\Delta(N)$. We denote the trivial linear functional by 0 (cf. Yu. A. Šreider [8]).

When $N=L(\boldsymbol{T})$, the maximal ideal space of $L(\boldsymbol{T})$ is identified with \boldsymbol{Z} and embedded in $\Delta(M(\boldsymbol{T})$). We remark that if $\psi \in \Delta(N)-\boldsymbol{Z}$, then $\hat{f}(\psi)=0$ for all $f \in L(\boldsymbol{T})$ (cf. J. L. Taylor [9]).

Definition. Let N be an L-subalgebra of $M(\boldsymbol{T})$. A mapping $\psi(\cdot)$ of \boldsymbol{Z} into $\Delta(N) \cup\{0\}$ is said to satisfy the condition (C), $C>0$, if

$$
\lambda_{\nu}(t, \theta)=\sum_{n=-\infty}^{\infty} \psi(n)_{\nu}(t) e^{i n \theta}
$$

is a Fourier-Stieltjes series in θ for $\nu-\mathrm{a} . \mathrm{a} . t$ and

$$
\nu \text {-ess } \sup _{t}\left\|\lambda_{\nu}(t, \cdot)\right\|_{M(T)} \leqq C \quad \text { for all } \quad \nu \in N .
$$

Theorem 1. Let N be an L-subalgebra of $M(\boldsymbol{T})$. Then a mapping Ψ of N into $M(\boldsymbol{T})$ is a homomorphism if and only if there exists a mapping $\psi(\cdot)$ of \boldsymbol{Z} into $\Delta(N) \cup\{0\}$ and $C>0$ such that
(i) $\left(\Psi_{\nu}\right)^{\wedge}(n)=\hat{\nu}(\psi(n)) \quad$ for every $n \in \boldsymbol{Z}$;
(ii) $\{\psi(n)\}$ satisfies the condition (C).

Proof. Let Ψ be a homomorphism of N into $M(\boldsymbol{T})$. Then for every n in \boldsymbol{Z} the mapping $\nu \rightarrow(\Psi \nu)^{\wedge}(n)$ defines a multiplicative linear functional. Thus there exists $\psi(n) \in \Delta(N) \cup\{0\}$ such that $\left(\Psi^{\prime} \nu\right)^{\wedge}(n)=\hat{\mathcal{L}}(\psi(n))$. Let $p(\theta)=\Sigma a_{n} e^{i n \theta}$ be a polynomial. Then

$$
\begin{gathered}
\left|\int_{\boldsymbol{T}} \sum a_{n} \psi(n)_{\nu}(t) f(t) d \nu(t)\right|=\left|\Sigma a_{n} \Psi(f d \nu)^{\wedge}(n)\right| \\
\leqq\|p\|_{\infty}\|\Psi(f d \nu)\|_{M(\boldsymbol{T})} \leqq\|\Psi\|\|p\|_{\infty}\|\nu\|_{M(\boldsymbol{T})}
\end{gathered}
$$

for every $f \in L(d|\nu|)$ such that $\int|f| d|\nu|=1$. Thus taking the supremum over f, we have

$$
\nu \text {-ess } \sup \left|\sum a_{n} \psi(n)_{\nu}(t)\right| \leqq\|\Psi\|\|p\|_{\infty}
$$

for every polynomial p. Thus for ν-a. a. $t \Sigma \psi(n)_{\nu}(t) e^{i n \theta}$ is a Fourier-Stieltjes series of a measure with norm $\leqq\|\Psi\|$ (cf. [7; p. 32]). Thus $\psi(\cdot)$ satisfies the condition (\| $\|\|$).

From the above argument the if part of the theorem is obvious.
Definition. Let N be an L-subalgebra of $M(\boldsymbol{T})$ and $\psi(\cdot)$ be a mapping of \boldsymbol{Z} into $\Delta(N) \cup\{0\}$. Suppose that there exist
(i) positive integers l and m, and a set $R=\left\{n_{m+1}, n_{m+2}, \cdots, n_{l}\right\}$ of $l-m$ integers ;
(ii) $\phi_{j} \in \Delta(N) \cup\{0\} \quad(j=1,2, \cdots, l)$;
(iii) $\quad \pi_{j} \in \Delta(N) \cup\{0\}(j=1,2, \cdots, m)$ such that $\left|\pi_{j}\right|^{2}=\left|\pi_{j}\right|$;
(iv) mappings $\rho_{j}(\cdot)$ of \boldsymbol{Z} into $\Delta(N) \cup\{0\}(j=1,2, \cdots, m)$ and a positive constant $C>0$ such that $\rho_{j}(\cdot)$ satisfies the condition (C) for each j and $\rho_{j}(n)$ $=\left|\rho_{j}(n)\right|$ for $j=1,2, \cdots, m$ and $n \in \boldsymbol{Z}$; and that ψ has the following expression

$$
\phi(n)_{\nu}(t)=\sum_{j=1}^{m} \pi_{j \nu}(t)^{k} \phi_{j \nu}(t) \rho_{j}(n)_{\nu}(t) C_{m \boldsymbol{Z}+j}(n) \quad(\nu \in N)
$$

for $n \notin R$ and $\psi(n)=\phi_{j}$ for $n=n_{j} \in R$, where $k=[n / m]$ denotes the integral part of n / m and C_{E} the characteristic function of the set E.

Then we call ψ an almost piecewise affine mapping from \boldsymbol{Z} into $\Delta(N) \cup\{0\}$ or simply an almost piecewise affine mapping. Furthermore, if $\rho_{j}(n)=\{1\}$, the constant systems, we call ψ a picewise affine mapping from \boldsymbol{Z} into $\Delta(N) \cup\{0\}$ or simply a piecewise affine mapping.

We remark that the definition of the piecewise affine mappings given here is essentially same to the Rudin's one in [7] when $N=L(\boldsymbol{T})$ and the conditions (i) and (ii) on ϕ in Theorem A imply that ψ is a piecewise affine mapping from \boldsymbol{Z} into $\boldsymbol{\Delta}(L(\boldsymbol{T})) \cup\{0\}$.

THEOREM 2. Let N be an L-subalgebra of $M(\boldsymbol{T})$. If a mapping $\psi(\cdot)$ of \boldsymbol{Z} into $\Delta(N) \cup\{0\}$ is almost piecewise affine, then the mapping Ψ defined by

$$
\left(\Psi^{\top} \nu\right)^{\wedge}(n)=\hat{\nu}(\phi(n)) \quad(n \in \boldsymbol{Z})
$$

is a homomorphism of N into $M(\boldsymbol{T})$.
REMARK. If a mapping $\psi(\cdot)$ of \boldsymbol{Z} into $\Delta(N) \cup\{0\}$ satisfies

$$
\nu-\text { ess }_{t} \sup \left\{\sum_{n=-\infty}^{\infty}\left|\psi(n)_{\nu}(t)\right|^{2}\right\}^{1 / 2} \leqq C \quad \text { for all } \quad \nu \in N,
$$

then the series $\Sigma \psi(n)_{\nu}(t) e^{i n \theta}$ is a Fourier series with norm $\leqq C$ for every $\nu \in N$ and $\nu-a$. a. t by the Riesz-Fischer theorem. Thus it satisfies the condition (C). Therefore our theorem may not be relevant in this case.

Proof. Assume that $\psi(\cdot)$ is an almost piecewise affine mapping and use the notations in Definition. By Theorem 1 it suffices to prove that $\psi(\cdot)$ satisfies the condition (C^{\prime}) for some positive constant C^{\prime}. We many assume that the set R is empty, since a change of finite number of $\psi(n)$'s does not affect our conclusion.
$\left\{C_{m Z+j}(n): n \in Z\right\}$ and $\left\{\pi_{j \nu}(t)^{k}: k \in Z\right\}(j=1,2, \cdots, m)$ are the sequences of Fourier-Stieltjes coefficients of measures with norms $\leqq 1$ for all $\nu \in N$ and $\nu-a . a$. t. Thus by a simple computation, $\left\{\pi_{j \nu}(t)^{[n / m]} C_{m \boldsymbol{Z}+j}(n): n \in \boldsymbol{Z}\right\}$ is the sequence of Fourier-Stieltjes coefficients of a measure with norm $\leqq 1$. Thus $\phi(\cdot)$ satisfies the condition $\left(C^{\prime}\right)$ with $C^{\prime}=m C$.

There exist non-trivial homomorphisms of $M(\boldsymbol{T})$, which vanish on $L(\boldsymbol{T})$ (see W. Rudin [7; p. 78] and R.E. Edwards [4; p. 80]). Here we shall construct such a homomorphism of a different type. We remark also that our method is applied to get the examples cited above.

Let π, ρ and ϕ be elements of $\Delta(M(\boldsymbol{T}))$. Assume $|\pi|^{2}=|\pi|$ and $\rho=|\rho|$. Put $\psi(n)=\pi^{n} \rho^{|n|} \phi$. Then $\psi(\cdot)$ satisfies the condition (C) with $C=1$. Thus the mapping Ψ defined by (i) in Theorem 1 is a homomorphism of $M(\boldsymbol{T})$ into $M(\boldsymbol{T})$.

Let μ be a measure in $M(\boldsymbol{T})$ such that every Fourier-Stieltjes coefficient is real, that is, μ is hermitian and such that

$$
\left\{\xi_{\mu}(t) ; \xi=\left\{\xi_{\nu}\right\} \in \Delta(M(\boldsymbol{T}))\right\}=\left\{a e^{i n t} ; a \in \boldsymbol{C},|a| \leqq 1, n \in \boldsymbol{Z}\right\}
$$

(cf. for example G. Brown [1]). Let $0<r<1$ and t_{0} be a real number such that t_{0} divided by 2π is irrational. Choose generalized characters π, ρ and ϕ such that $\pi_{\mu}=e^{i t_{0}}, \rho_{\mu}=r$ and $\phi_{\mu}=i$.

Then the homomorphism Ψ defined by $\psi(n)=\pi^{n} \rho^{|n|} \phi$ has the property that Ψ maps the singular hermitian measure μ to the absolutely continuous measure $\Psi(\mu)$ whose Fourier-Stieltjes coefficients are not real. On the other hand Ψ vanishes on $L(\boldsymbol{T})$. In fact $\psi(n) \in \Delta(M(\boldsymbol{T}))-\boldsymbol{Z}$. Thus $\hat{f}(\psi(n))=0$ for all f in $L(\boldsymbol{T})$ and n in \boldsymbol{Z} (cf., for example, [9; p. 187]).

3. Homomorphisms of $N(\mu)$ into $M(T)$.

Let N be an L-subalgebra of $M(\boldsymbol{T})$ and Ψ be a homomorphism of N into $M(\boldsymbol{T})$. Let ψ be the mapping of \boldsymbol{Z} into $\Delta(N) \cup\{0\}$ defined by $\left(\Psi^{\prime} \nu\right)^{\wedge}(n)=\hat{\nu}(\psi(n))$ for all ν in N and n in \boldsymbol{Z}. If $N=L(\boldsymbol{T})$, then $\Delta(N)$ is identified with $\left\{e^{i n t} ; n\right.$ $\in \boldsymbol{Z}\}$. Thus if Ψ is a homomorphism of $L(\boldsymbol{T})$ into $M(\boldsymbol{T})$, then it induces a (almost) piecewise affine mapping of \boldsymbol{Z} into $\Delta(L(\boldsymbol{T})) \cup\{0\}$ by Theorem A.

In this section we restrict our attention to a class of L-subalgebras which consist of singular measures and are defined later. We shall show in Theorem 3 that the converse of Theorem 2 is true in a sense, that is, the mapping ψ of \boldsymbol{Z} into $\Delta(N) \cup\{0\}$ is piecewise affine under a condition for such an L subalgebra N.

For a measure μ in $M(\boldsymbol{T}), N(\mu)$ will denote the smallest L-subalgebra which contains μ. We use the following properties of $\Delta(N(\mu))$.

Localization Lemma (cf. G. Brown and W. Moran [2]). For $\mu \in M(\boldsymbol{T})$, $\Delta(N(\mu))$ is identified with

$$
S(\mu)=\left\{\xi_{\mu} ; \xi=\left\{\xi_{\nu}\right\} \in \Delta(N(\mu))\right\} .
$$

Let ξ, ϕ and χ be elements in $\Delta(N(\mu))$. If $\xi_{\mu}, \phi_{\mu}, \chi_{\mu} \in S(\mu)$ and $\xi_{\mu}=\phi_{\mu} \chi_{\mu}$, then $\xi=\phi \chi$ by the localization lemma. We remark also that if μ is a measure such that $\mu^{n}(n=1,2, \cdots)$ are mutually singular and $c \in S(\mu)$ is a constant func-
tion, then $\left\{c_{\nu}\right\} \in \Delta(N(\mu))$ is defined by

$$
c_{\nu}=c^{n} \quad \mu^{n}-\mathrm{a} . \mathrm{e} .
$$

Now we specify the measure μ as follows. Let $\left\{a_{n} ; n \geqq 1\right\}$ be a sequence of integers such that $a_{n} \geqq 2$. Let $d_{n}=2 \pi \prod_{r=1}^{n} a_{r}^{-1}$ and define the Bernoulli convolution product

$$
\mu=\underset{n=1}{\infty} \frac{1}{2}\left[\delta(0)+\delta\left(d_{n}\right)\right],
$$

where $\delta(a)$ is the Dirac measure concentrated on $\{a\}$. We remark that the infinite product of convolution converges in the weak*-topology and it defines a positive measure with norm 1 .

Denote by \boldsymbol{B}^{\prime} the class of the measures as is obtained above with $a_{n}>2$ for infinitely many n. The measures in \boldsymbol{B}^{\prime} are continuous and singular. Furthermore $\mu^{n}, n=1,2, \cdots$, are mutually singular (cf. [2]).

For $\mu=\underset{n=1}{\infty} \underset{n=1}{\infty} \frac{1}{2}\left[\delta(0)+\delta\left(d_{n}\right)\right]$ in \boldsymbol{B}^{\prime} let D be the subgroup of \boldsymbol{T} generated by $\left\{d_{n} ; n=1,2, \cdots\right\}$ with the discrete topology. Put

$$
\mu_{r}=\underset{n=r+1}{\infty} \frac{1}{2}\left[\delta(0)+\delta\left(d_{n}\right)\right]
$$

and

$$
D_{r}=\left\{\sum_{n=1}^{r} \varepsilon_{n} d_{n} ; \varepsilon_{n}=0 \text { or } 1\right\} .
$$

We recall the following properties of the measures in \boldsymbol{B}^{\prime}.
ThEOREM B ([2]). Let $\mu=\underset{n=1}{\infty} \frac{1}{2}\left[\delta(0)+\delta\left(d_{n}\right)\right]$ be a measure in \boldsymbol{B}^{\prime}. Then we have
(i) for every $\chi_{\mu} \in S(\mu)$ and $n=1,2, \cdots$, there exists a unique element $\gamma\left(\chi_{\mu}\right)$ in \hat{D}, the dual group of D, such that

$$
\begin{equation*}
\chi_{\mu}(d+t)=\beta(d) \chi_{\mu}(t) \quad \text { for } \quad \mu_{n} \text {-a. a. } t \quad \text { and } \quad d \in D_{n} \tag{1}
\end{equation*}
$$

where $\beta=\gamma\left(\chi_{\mu}\right)$,
(ii) the mapping γ of $S(\mu)$ to \hat{D} defined by (1) is a continuous semigroup homomorphism, and
(iii) if $\beta \in$ Image of γ, then $\gamma^{-1}(\beta)=\{a f ; a \in \boldsymbol{C}, 0<|a| \leqq 1\}$, where f is a member of $S(\mu)$ with constant unit modulus which is a pointwise limit point of the sequence $\left\{\sum_{d \in D_{n}} \beta(d) C_{n}(d)\right\}, C_{n}(d)$ being the characteristic function of the interval $\left[d, d+d_{n}\right)$.

THEOREM 3. Let μ be a measure in \boldsymbol{B}^{\prime}. Let Ψ be a homomorphism of $N(\mu)$ into $M(\boldsymbol{T})$ and $\psi(\cdot)$ be the mapping of \boldsymbol{Z} into $\Delta(N(\mu)) \cup\{0\}$ defined by Ψ.

Suppose that $|\psi(n)|^{2}=|\psi(n)|$ for all n. Then the mapping $\psi(\cdot)$ is piecewise affine.

Proof. By Theorem B (iii) $\left|\psi_{\mu}(n)\right|=1 \mu$-a. e. or 0 . Put $P=\left\{n \in \boldsymbol{Z} ;\left|\psi_{\mu}(n)\right|\right.$ $=1\}$, and $\beta(n)=\gamma\left(\psi_{\mu}(n)\right)$ for $n \in P$ and $=$ the unit of \hat{D} otherwise, where γ is the mapping given by Theorem B . The first step of our proof is to show that the mapping $n \rightarrow \beta(n)$ of \boldsymbol{Z} into \hat{D} defines a homomorphism of $L(D)$ into $M(\boldsymbol{T})$.

By Theorem 1

$$
\begin{equation*}
\lambda(\nu ; t, \theta)=\sum_{n=-\infty}^{\infty} \psi(n)_{\nu}(t) e^{i n \theta} \tag{2}
\end{equation*}
$$

is a Fourier-Stieltjes series for ν-a. a. t and $\|\lambda(\nu ; t, \cdot)\|_{M(T)} \leqq\|\Psi\|$ for every $\nu \in N(\mu)$. Now put $\nu=\nu_{1} * \nu_{2} * \cdots * \nu_{k}$, where $\nu_{j} \geqq 0$ and $\nu_{j} \in N(\mu)(j=1,2, \cdots, k)$. Then, by (2)

$$
\begin{equation*}
\lambda\left(\nu ; t_{1}+t_{2}+\cdots+t_{k}, \theta\right)=\sum_{n=-\infty}^{\infty} \psi(n)_{\nu}\left(t_{1}+t_{2}+\cdots+t_{k}\right) e^{i n \theta} \tag{3}
\end{equation*}
$$

is the Fourier-Stieltjes series of a measure with norm $\leqq\|\Psi\|$ for $\nu_{1} \times \nu_{2} \times \cdots \times \nu_{k^{-}}$ a. a. $\left(t_{1}, t_{2}, \cdots, t_{k}\right)$.

Let r be a positive integer. For k elements $d^{1}, d^{2}, \cdots, d^{k}$ in D_{r} put

$$
\nu_{j}=\delta\left(d^{j}\right) * \mu_{r} \quad(j=1,2, \cdots, k) .
$$

Then $\nu_{j} \ll \mu$. Thus $\nu_{j} \in N(\mu)$. By the property of the generalized characters and Theorem B, we have

$$
\psi(n)_{\mu}\left(d^{j}+t_{j}\right)=\beta(n)\left(d^{j}\right) \psi(n)_{\mu}\left(t_{j}\right) \quad \mu_{r} \text {-a. e. in } t_{j}
$$

for every $n \in \boldsymbol{Z}$ and $j=1,2, \cdots, k$. Thus by (3), the multiplicative property of the generalized characters and Theorem B,

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\left[\prod_{j=1}^{k} \beta(n)\left(d^{j}\right) \prod_{j=1}^{k} \psi(n)_{\mu}\left(t_{j}\right)\right] e^{i n \theta} \tag{4}
\end{equation*}
$$

is the Fourier-Stieltjes series of a measure with norm $\leqq\|\Psi\|$ for $\mu_{r} \times \mu_{r} \times \cdots \times \mu_{r^{-}}$ a. a. $\left(t_{1}, t_{2}, \cdots, t_{k}\right)$.

By the same way for k convolution products $\mu_{r}^{b}=\mu_{r} * \cdots * \mu_{r}$ we have

$$
\begin{equation*}
\lambda\left(\mu_{r}^{k} ; t_{1}+t_{2}+\cdots+t_{k}, \theta\right)=\sum_{n=-\infty}^{\infty}\left[\prod_{j=1}^{k} \psi(n)_{\mu}\left(t_{j}\right)\right] e^{i n \theta} \tag{5}
\end{equation*}
$$

and $\left\|\lambda\left(\mu_{r}^{k} ; t_{1}+t_{2}+\cdots+t_{k}, \cdot\right)\right\|_{M(T)} \leqq\|\Psi\|$ for $\mu_{r} \times \mu_{r} \times \cdots \times \mu_{r}$-a. a. $\left(t_{1}, t_{2}, \cdots, t_{k}\right)$. Since $\left|\psi(n)_{\mu}(t)\right|=1$ or 0 by our assumption, the composition of the series (4) and the series of $\bar{\lambda}\left(\mu_{r}^{k} ; t_{1}+t_{2}+\cdots+t_{k},-\theta\right)$

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\left[\prod_{j=1}^{k} \beta(n)\left(d^{j}\right)\right] C_{P}(n) e^{i n \theta} \tag{6}
\end{equation*}
$$

is the Fourier-Stieltjes series of a measure with norm $\leqq\|\Psi\|^{2}$.
Since $d_{i}+\left(a_{1} a_{2} \cdots a_{i}-1\right) \equiv 0 \bmod 2 \pi$,

$$
D=\left\{\sum_{i=1}^{\infty} n_{i} d_{i} ; n_{i} \in \boldsymbol{Z}, n_{i} \geqq 0 \text { and } n_{i}=0 \text { except a finite number of } i \text { 's }\right\}
$$

Thus by (6), $\Sigma \beta(n)(d) e^{i n \theta}$ is the Fourier-Stieltjes series of a measure with norm $\leqq\|\Psi\|^{2}$ for every d in D. Thus the mapping

$$
\Phi f(\theta)=\sum_{n=-\infty}^{\infty}\left[\sum_{d \in D} f(d) \beta(n)(d)\right] C_{P}(n) e^{i n \theta} \quad \text { for } \quad f \in L(D)
$$

defines a homomorphism of $L(D)$ to $M(\boldsymbol{T})$. Thus by P. J. Cohen's theorem [3], P belongs to the coset ring of \boldsymbol{Z} and the mapping $n \rightarrow \beta(n)$ of \boldsymbol{Z} to \hat{D} is piecewise affine. Thus there exist a positive integer m, a finite subset R $=\left\{n_{m+1}, n_{m+2}, \cdots, n_{l}\right\}$ of \boldsymbol{Z} and $\zeta_{j}, \eta_{j} \in \hat{D}(j=1,2, \cdots, m)$ such that

$$
\begin{equation*}
\beta(n)=\sum_{j=1}^{m} \zeta_{j}^{k} \eta_{j} C_{m Z+j}(n) \tag{7}
\end{equation*}
$$

for $n \in P-R$ with $k=[n / m]$ and $(P-R) \cup F$ is periodic with the period m for some finite set F.

To complete the proof we pull back the relation (7) to another relation involving $\{\psi(n)\}$. For each j in $[(P-R) \cup F] \cap\{1,2, \cdots, m\}$ choose π_{j} and ϕ_{j} in $\Delta(N(\mu))$ such that $\gamma\left(\pi_{j}\right)=\zeta_{j}, \gamma\left(\phi_{j}\right)=\eta_{j}$ and $\left|\pi_{j}\right|=1,\left|\phi_{j}\right|=1$. Then by Theorem B (iii) there exist unitary constants c_{n} such that

$$
\begin{equation*}
\phi_{\mu}(n)=c_{n} \sum_{j=1}^{m} \pi_{j \mu}^{k} \phi_{j \mu} C_{m Z+j}(n) \tag{8}
\end{equation*}
$$

for $n \in P-R$ with $k=[n / m]$. For $j \notin[(P-R) \cup F], 1 \leqq j \leqq m$, let ϕ_{j} be the zero system, that is, the trivial functional. Then (8) holds for $n \in \boldsymbol{Z}-R$.

Put $a_{n}=c_{n}$ for $n \in P-R$ and $=1$ for $n \notin P-R$. Let $\phi_{j}=\psi(n)$ for $n=n_{j} \in R$. Then we have

$$
\begin{equation*}
\psi_{\mu}(n)=\sum_{j=1}^{m} \pi_{j \mu}^{k} a_{n} \phi_{j \mu} C_{m Z+j}(n) \tag{9}
\end{equation*}
$$

for $n \notin R$ with $k=[n / m]$ and $\psi_{\mu}(n)=\phi_{j \mu}$ for $n=n_{j} \in R$.
We denote by $\alpha(n)$ the generalized character of $\Delta(N(\mu))$ such that $\alpha_{\mu}(n)$ $=a_{n}$. The final step of the proof is to show that $\{\alpha(n)\}$ is expressed in the form

$$
\begin{equation*}
\alpha(n)=\sum_{j=1}^{m \prime} \pi_{j}^{\prime k} \phi_{j}^{\prime} C_{m^{\prime} Z+j}(n) \tag{10}
\end{equation*}
$$

outside a finite set R^{\prime}, where m^{\prime} is a positive integer, $k=\left[n / m^{\prime}\right]$ and $\pi_{j}^{\prime}, \phi_{j}^{\prime}$ $\in \Delta(N(\mu)), j=1,2, \cdots, m^{\prime}$. Then our theorem follows from (9) and (10) replacing m by $m m^{\prime}$ and R by $R \cup R^{\prime}$. Furthermore, π_{j} and ϕ_{j} are replaced by the generalized characters of the form $\pi_{2}^{p} \pi^{\prime p_{i}^{\prime}}$ and $\phi_{i}^{q} \phi^{\prime} q^{\prime}$ respectively.

Put $\psi^{\prime}(n)=\overline{\psi(n)}$ for $n \in R$ and

$$
\phi^{\prime}(n)=\sum_{j=1}^{m} \bar{\pi}_{j}^{k} \bar{\phi}_{j} C_{m z+j}(n)
$$

for $n \in R$ with $k=[n / m]$. Then by Theorem $2\left\{\psi^{\prime}(n)\right\}$ defines a homomorphism. We have $\psi(n) \psi^{\prime}(n)=\alpha(n)$ for all n except a finite number of n 's, so that $\{\alpha(n)\}$ defines a homomorphism in the obvious way. Let $c>0$ be the norm of that homomorphism. Then $\left\|\Sigma \alpha_{\nu}(n) e^{i n \theta}\right\|_{M(T)} \leqq c$ for every $\nu=\mu^{k}, k>0$. As we have mentioned in the section $2, \alpha_{\nu}(n)=a_{n}{ }^{k}$ for $\nu=\mu^{k}, k>0$ and $\left|\alpha_{\nu}(n)\right|=1$. Thus

$$
\left\|\Sigma a_{n}^{k} e^{i n \theta}\right\|_{M(T)} \leqq c
$$

for all $k \in \boldsymbol{Z}$. This implies, by the theorem in [7; p. 93], that the mapping $n \rightarrow a_{n}$ of \boldsymbol{Z} to \boldsymbol{T} is piecewise affine. Thus we get (10), Thus our proof is complete.

Remark. Let N be the smallest closed subalgebra of $M(\boldsymbol{T})$ which contains all $L\left(\boldsymbol{T}^{\tau}\right)$, where \boldsymbol{T}^{τ} is the group \boldsymbol{T} with a locally compact topological group topology τ stronger than the original one or equal to that of \boldsymbol{T}. Since the discrete topology and the natural one are only such topologies, $N=L(\boldsymbol{T})+$ $L\left(\boldsymbol{T}^{d}\right)$, where d is the discrete topology on \boldsymbol{T}. Thus N contains no continuous singular measures. On the other hand the algebras $N(\mu)$ in Theorem 3 consist of continuous singular measures.

References

[1] G. Brown, Riesz products and generalized characters, Proc. London Math. Soc., (3) 30 (1975), 209-238.
[2] G. Brown and W. Moran, Bernoulli measure algebras, Acta Math., 132 (1974), 77-109.
[3] P. J. Cohen, On homomorphisms of group algebras, Amer. J. Math., 82 (1960), 213-226.
[4] R.E. Edwards, Fourier Series, vol. 2, Holt, Rinehart and Winston, Inc., New York, 1967.
[5] J. Inoue, Some closed subalgebras of measure algebras and a generalization of P. J. Cohen's theorem, J. Math. Soc. Japan, 23 (1971), 278-294.
[6] W. Rudin, The automorphisms and the endomorphisms of the group algebra of the unit circle, Acta Math., 95 (1956), 39-55.
[7] W. Rudin, Fourier Analysis on Groups, Interscience Publ., New York, 1962.
[8] Yu. A. Sreider, The structure of maximal ideals in rings of measures with convolution, Mat. Sb., 27 (1950), 297-318, Amer. Math. Soc. Transl., (1) 8 (1962),

365-391.
[.9] J. L. Taylor, Inverses, logarithms, and idempotents in $M(G)$, Rocky mountain J. Math., 2 (1972), 183-206.

Satoru IGARI	Yûichi KANJIN
Mathematical Institute	Mathematical Institute
Tôhoku University	Tôhoku University
Sendai 980	Sendai 980
Japan	Japan

