On relations between conformal mappings and isomorphisms of spaces of analytic functions on Riemann surfaces

By Yasushi MIYAHARA

(Received Dec. 2, 1977)

§1. Introduction.

Let \mathfrak{S} be the set consisting of all compact bordered Riemann surfaces. For \overline{S} in \mathfrak{S} , we denote its interior and its border by S and ∂S , respectively. Let $p (\geq 0)$ be the genus of \overline{S} and $q (\geq 1)$ be the number of boundary components of \overline{S} . We set

$$N = 2p + q - 1$$
.

Furthermore we denote by A(S) the set of all functions which are analytic in S and continuous on \overline{S} . It forms a Banach algebra with the supremum norm

$$||f|| = \sup_{z \in S} |f(z)|.$$

For \overline{S} and $\overline{S'}$ in \mathfrak{S} , let L(A(S), A(S')) denote the set of all continuous invertible linear mappings of A(S) onto A(S'). It is shown by Rochberg [4] that L(A(S), A(S')) is nonvoid if S and S' are homeomorphic. We set

 $c(T) = ||T|| ||T^{-1}||$

for T in L(A(S), A(S')). We have always

 $c(T) \geq 1$,

and we can easily see that T/||T|| is an isometry if and only if c(T)=1. If T1=1, then

$$1 \leq ||T|| \leq c(T)$$
, $1 \leq ||T^{-1}|| \leq c(T)$.

Let z and z' be points of S and S', respectively. If there exist a positive number ε and an element T of L(A(S), A(S')) such that

$$|f(z) - (Tf)(z')| \leq \varepsilon \min(||f||, ||Tf||)$$

for all f in A(S), then we say that z and z' are ε -related with respect to T, or z and z' satisfy an ε -relation with respect to T.

The purpose of the present paper is to prove the following theorems:

THEOREM 1. For \overline{S} and $\overline{S'} \in \mathfrak{S}$, suppose that there exists a $T \in L(A(S), A(S'))$ which is an isometry and satisfies T1=1. Then there exists a conformal mapping w of S onto S' such that

 $Tf = f \circ w^{-1}$

for all f in A(S).

This result is not new. According to a result of Nagasawa [2; Theorem 3], a T satisfying the above assumption is an algebraic isomorphism. Then, as is well known, T induces a natural mapping of the maximal ideal space of \overline{S} onto that of $\overline{S'}$, which determines a conformal mapping w.

In §4, we shall give a more direct proof of Theorem 1.

THEOREM 2. If \overline{S} and $\overline{S'} \in \mathfrak{S}$ satisfy

 $\inf \{c(T) | T \in L(A(S), A(S'))\} = 1$,

then S and S' are conformally equivalent.

This result has been obtained by Rochberg [4]. In §5, we shall give an alternative proof by constructing a conformal mapping directly.

THEOREM 3. Let $\overline{S} \in \mathfrak{S}$ be such that $N=2p+q-1 \ge 2$. For every sufficiently small $\varepsilon > 0$ and every relatively compact subdomain D of S, there exists a constant d>1 having the following property:

If $T \in L(A(S), A(S))$ satisfies c(T) < d and T1=1, then there exists a unique conformal automorphism w of S such that, for every $z \in D$, z and w(z) are ε -related with respect to T.

To state the following theorem we need a notation: For a subdomain D of S and an analytic function f in D, we mean by $N_f(D)$ the set of zeros of f in D.

THEOREM 4. Let $S \in \mathfrak{S}$ be such that $N=2p+q-1 \ge 2$. Consider an arbitrary $f_0 \in A(S)$. For every sufficiently small $\varepsilon > 0$ and every relatively compact subdomain D of S such that f_0 does not vanish on the boundary of D, there exists a constant d>1 having the following property:

If $T \in L(A(S), A(S))$ satisfies c(T) < d and T1=1, then the number of zeros of f_0 in D is equal to that of Tf_0 in w(D), where w is the conformal automorphism of S determined by Theorem 3; and furthermore there exists a unique mapping θ of $N_{Tf_0}(w(D))$ onto $N_{f_0}(D)$ such that, for every $\zeta \in N_{Tf_0}(w(D)), \theta(\zeta)$ and ζ are ε -related with respect to T.

§2. The construction of the function ϕ_{ζ} .

For $\overline{S} \in \mathfrak{S}$, we denote its boundary components by $\Gamma_1, \dots, \Gamma_q$. Let $\alpha_1, \beta_1, \dots, \alpha_p, \beta_p$ be simple loops on S which are homologically independent modulo ∂S such that

$$lpha_i \cap lpha_j = \emptyset$$
 , $eta_i \cap eta_j = \emptyset$, $lpha_i \cap eta_j = \emptyset$

for $i \neq j$, and α_i intersects β_i at exactly one point. By removing $\alpha_1, \beta_1, \cdots$, α_p, β_p from S, we obtain a planar domain S_0 . If we set

$$\begin{aligned} \gamma_{2i-1} = \alpha_i, \quad \gamma_{2i} = \beta_i \quad (i=1, \cdots, p), \\ \gamma_{2p+j} = \Gamma_j \quad (j=1, \cdots, q-1), \end{aligned}$$

 $\gamma_1, \dots, \gamma_N$ form a canonical homology basis of \overline{S} . By Ahlfors [1], there exists a basis $\omega_1, \dots, \omega_N$ of the space of analytic Schottky differentials satisfying

$$\int_{r_i} \omega_j = \delta_{ij} \quad (i, j=1, \cdots, N).$$

For ζ in S we denote by $G_{\zeta}(z)$ the Green function on \overline{S} with pole at ζ . For each j $(j=1, \dots, N)$ and every point ζ in $S-\gamma_j$ we set

(1)
$$\pi_j(\zeta) = \int_{\gamma_j} * dG_{\zeta}.$$

Evidently, $\pi_j(\zeta)$ is a continuous function of ζ on $S-\gamma_j$. If ζ is a point of γ_j $(1 \le j \le 2p)$, it defines two distinct accessible boundary points ζ_1 and ζ_2 of $S-\gamma_j$. Let C_1 be a curve in $S-\gamma_j$ which ends at ζ and defines ζ_1 . If we modify γ_j in a parametric disk about ζ by making a detour along a circular arc which does not meet C_1 , then another loop γ'_j is obtained. Let $\pi_j(\zeta_1)$ denote the value obtained by using γ'_j in place of γ_j in (1). Similarly, we can also define $\pi_j(\zeta_2)$. Clearly,

(2)
$$\pi_j(\zeta_2) - \pi_j(\zeta_1) = \pm 2\pi.$$

Furthermore, $\pi_j(\zeta)$ is continuous on the set S_0^* obtained by adding to $S_0=S-\bigcup_{j=1}^{2p} \gamma_j$ all accessible boundary points which are defined by points of $\bigcup_{j=1}^{2p} \gamma_j$. We note that a natural topology can be defined on S_0^* .

Now we fix a point z_0 in S_0 . For each point ζ in $S_0^* - \{z_0\}$ we define a function

(3)
$$f_{\zeta}(z) = \exp\left[-\int_{z_0}^{z} (dG_{\zeta} + i*dG - i\sum_{j=1}^{N} \pi_j(\zeta)\omega_j)\right].$$

For a fixed ζ , $f_{\zeta}(z)$ is single-valued and analytic on \overline{S} , consequently, it is in A(S). Moreover, $f_{\zeta}(z)$ is continuous on $S_0^* - \{z_0\}$ with respect to ζ for a fixed z in \overline{S} . We choose another point \tilde{z}_0 ($\neq z_0$) in S_0 and denote by $\tilde{f}_{\zeta}(z)$ the function defined by using \tilde{z}_0 in place of z_0 in (3). Then, there exists the limit

$$g(z) = \lim_{\zeta \to z_0} \tilde{f}_{z_0}(\zeta) f_{\zeta}(z)$$

for each z in \overline{S} , and g is an analytic function on \overline{S} . Now we set

$$\phi_{\zeta}(z) = \begin{cases} \tilde{f}_{z_0}(\zeta) f_{\zeta}(z) & \text{for } \zeta \neq z_0 \\ g(z) & \text{for } \zeta = z_0 . \end{cases}$$

The function $\phi_{\zeta}(z)$ has the following properties.

(i) For a fixed ζ in S_0^* , ϕ_{ζ} is analytic on \overline{S} , consequently, it is in A(S). Moreover, for a fixed z in \overline{S} , $\phi_{\zeta}(z)$ is continuous on S_0^* with respect to ζ .

(ii) For each ζ in S_0^* , ζ is a simple zero of ϕ_{ζ} , and it is the only zero of ϕ_{ζ} .

(iii) For every compact subset K^* of S_0^* there is a constant m (>1) such that

$$(4) \qquad \qquad \frac{1}{m} \leq |\phi_{\zeta}(z)| \leq m$$

for all z on ∂S and all ζ in K^* .

(iv) For each
$$\zeta_0$$
 in S_0^*
(5)
$$\lim_{\zeta \to \zeta_0} \|\phi_{\zeta} - \phi_{\zeta_0}\| = 0.$$

(v) If a point ζ on γ_j defines two distinct accessible boundary points ζ_1 and ζ_2 of S_0 , (2) implies that

(6) $\phi_{\zeta_2}(z) = g_j(z)\phi_{\zeta_1}(z)$ or $\phi_{\zeta_2}(z) = g_j(z)^{-1}\phi_{\zeta_1}(z)$, where g_j is a function in A(S) defined by

$$g_j(z) = \exp\left(2\pi i \int_{z_0}^z \omega_j\right).$$

If ζ defines four distinct accessible boundary points ζ_1 , ζ_2 , ζ_3 and ζ_4 of S_0 , we obtain, for example, the following relations;

$$\phi_{\zeta_2}(z) = g_{2j-1}(z)\phi_{\zeta_1}(z), \quad \phi_{\zeta_3}(z) = g_{2j}(z)\phi_{\zeta_1}(z),$$

$$\phi_{\zeta_4}(z) = g_{2j-1}(z)g_{2j}(z)\phi_{\zeta_1}(z).$$

§3. Lemmas.

The following lemmas are due to Rochberg [3], [4] and [5].

LEMMA 1. For \overline{S} , $\overline{S'} \in \mathfrak{S}$ and for every $\varepsilon > 0$, there exists a constant d > 1 such that

$$\|T(fg) - (Tf)(Tg)\| \leq \varepsilon \|f\| \|g\|$$

for all $T \in L(A(S), A(S'))$ with c(T) < d and T1=1 and for all $f, g \in A(S)$ (cf. [3]).

LEMMA 2. For every $\varepsilon > 0$, there exists a constant d > 1 having the following property:

For \overline{S} , $\overline{S'} \in \mathfrak{S}$ and every $T \in L(A(S), A(S'))$ with c(T) < d and T1=1, there exists a homeomorphism h of ∂S onto $\partial S'$ such that

$$|f(z) - (Tf)(h(z))| \leq \varepsilon \|f\|$$

for all z on ∂S and all $f \in A(S)$ (cf. [3], [5]).

377

LEMMA 3. If \overline{S} and $\overline{S'} \in \mathfrak{S}$ satisfy

$$\inf \{c(T) \mid T \in L(A(S), A(S'))\} = 1$$
,

then there exists a sequence $\{T_n\}$ in L(A(S), A(S')) such that $c(T_n) \rightarrow 1$ and $T_n 1 = 1$ (cf. [3]).

LEMMA 4. Under the same assumption of Lemma 3, there exist a subsequence $\{T_{n_j}\}$ of $\{T_n\}$, an analytic mapping τ of S' into S and an analytic mapping σ of S into S' such that

$$\lim_{i \to \infty} (T_{n_j} f)(w) = f(\tau(w))$$

uniformly on every compact subset of S' for all $f \in A(S)$, and

$$\lim_{i\to\infty} (T_{n_j}^{-1}g)(z) = g(\sigma(z))$$

uniformly on every compact subset of S for all $g \in A(S')$ (cf. [4], [5]).

Let D be a relatively compact subdomain of S. If $\overline{D} \cap (\bigcup_{j=1}^{2p} \gamma_j)$ is nonvoid, we denote by D^* the set obtained by adding to $\overline{D} - \bigcup_{j=1}^{2p} \gamma_j$ all accessible boundary points which are defined by points of $\overline{D} \cap (\bigcup_{j=1}^{2p} \gamma_j)$. The set D^* is a subset of S_0^* . If $\overline{D} \cap (\bigcup_{j=1}^{2p} \gamma_j)$ is void, D^* is equal to \overline{D} .

LEMMA 5. Let \overline{S} be an element of \mathfrak{S} . For every $\varepsilon > 0$ and every relatively compact subdomain D of S, there exists a constant d > 1 having the following property:

For $\overline{S'} \in \mathfrak{S}$ and $T \in L(A(S), A(S'))$ with c(T) < d and T1 = 1, there exists a continuous mapping w_T of D^* into S' such that, for every $\zeta \in D^*$, ζ and $w_T(\zeta)$ are ε -related with respect to T (cf. [5]).

PROOF. By property (iii) there is a constant m>1 for D^* such that (4) holds for all z on ∂S and all ζ in D^* . We set $\varepsilon_1=1/(2m^2)$. By Lemma 2 there is a constant $d_1>1$ as follows. If $c(T)< d_1$, there exists a homeomorphism h of ∂S onto $\partial S'$ such that

$$|\phi_{\zeta}(z) - (T\phi_{\zeta})(h(z))| \leq \varepsilon_1 \|\phi_{\zeta}\|$$

for all z on ∂S and all ζ in D^* . Combining (4) and the above inequality it follows that

$$|(T\phi_{\zeta})(h(z))| > \frac{1}{2m}$$

for all z on ∂S and all ζ in D^* . Hence the change of argument of $T\phi_{\zeta}$ around $\partial S'$ is equal to the change of argument of ϕ_{ζ} around ∂S . Therefore, by the argument principle, $T\phi_{\zeta}$ has the same number of zeros as ϕ_{ζ} , that is, exactly one. We denote this zero by $w_T(\zeta)$. It follows from (5) that the mapping

 $w_T(\zeta)$ of D^* into S' is continuous. Furthermore, using Lemma 1, we can show by the same argument as Proof of Proposition 1 in [5] that if c(T) is sufficiently close to 1, ζ in D^* and $w_T(\zeta)$ are ε -related with respect to T.

§4. Proof of Theorem 1.

Let $\{S_n\}$ be an exhaustion of S. Since T is an isometry by assumption, c(T)=1. Consequently, by Lemma 5 there exists a continuous mapping $w_T^{(n)}$ of S_n^* into S' for each n such that every point ζ in S_n^* and $w_T^{(n)}(\zeta)$ satisfy an ε -relation with respect to T for every $\varepsilon > 0$. By the definition of $w_T^{(n)}$, $w_T^{(n)}$ $=w_T^{(n+1)}=\cdots=w_T^{(n+k)}=\cdots$ in S_n^* . Thus we obtain a continuous mapping w_T of S_0^* into S' such that

$$|f(\boldsymbol{\zeta}) - (Tf)(w_T(\boldsymbol{\zeta}))| \leq \varepsilon \|f\|$$

for all ζ in S_0^* and all f in A(S). Since $\varepsilon > 0$ is arbitrary, we have a relation

(7)
$$(Tf)(w_T(\zeta)) = f(\zeta)$$

for every ζ in S_0^* and every f in A(S). If a point ζ on $\bigcup_{j=1}^{2p} \gamma_j$ defines two distinct accessible boundary points ζ_1 and ζ_2 of S_0^* , it follows from (7) that

$$g(w_T(\zeta_1)) = g(w_T(\zeta_2))$$

for all g in A(S'). Hence

$$w_T(\zeta_1) = w_T(\zeta_2)$$
,

for A(S') separates points on S'. If a ζ on $\bigcup_{j=1}^{2p} \gamma_j$ defines four distinct accessible boundary points $\zeta_1, \zeta_2, \zeta_3$ and ζ_4 of S_0 , we similarly obtain

$$w_T(\zeta_1) = w_T(\zeta_2) = w_T(\zeta_3) = w_T(\zeta_4).$$

Therefore w_T is a continuous mapping of S into S', and (7) holds for all ζ in S and all f in A(S).

On the other hand, since $c(T^{-1})=1$, we can use the same method as above to T^{-1} . Hence we obtain a continuous mapping w_{T-1} of S' into S such that

(8)
$$(T^{-1}g)(w_{T^{-1}}(\zeta')) = g(\zeta')$$

for all ζ' in S' and all g in A(S').

Now, for each fixed ζ in S we set $\zeta' = w_T(\zeta)$. If we set $f = T^{-1}\phi_{\zeta'}$ in (7),

$$(T^{-1}\phi_{\zeta'})(\zeta) = \phi_{\zeta'}(\zeta') = 0$$
.

Since $T^{-1}\phi_{\zeta'}$ has the only zero $w_{T^{-1}}(\zeta')$,

$$w_{T-1}(\zeta') = \zeta$$

Thus

$$w_{T-1}(w_T(\zeta)) = \zeta$$

for all ζ in S. Similarly, it follows from (8) that

 $w_T(w_{T-1}(\zeta')) = \zeta'$

for all ζ' in S'. Therefore $w = w_T$ is a homeomorphism of S onto S' and w^{-1} $=w_{T-1}$. We know by (7) that $w=w_T$ is conformal and

$$Tf = f \circ w^{-1}$$

for all f in A(S).

§ 5. Proof of Theorem 2.

1. By Lemmas 3 and 4 there exists a sequence $\{T_i\}$ in L(A(S), A(S'))with

(9)
$$\lim_{t \to \infty} c(T_j) = 1, \quad T_j = 1,$$

and there exist an analytic mapping τ of S' into S and an analytic mapping σ of S into S' such that

(10)
$$\lim_{j \to \infty} (T_j f)(w) = f(\tau(w))$$

uniformly on every compact subset of S' for all f in A(S), and

(11)
$$\lim_{j \to \infty} (T_j^{-1}g)(z) = g(\sigma(z))$$

uniformly on every compact subset of S for all g in A(S').

Let $\{S_n\}$ be an exhaustion of S and $\{\varepsilon_n\}$ be a sequence of positive numbers which tends to zero. In Lemma 5 we set $\varepsilon = \varepsilon_n$ and $D = S_n$ for each *n*, and we denote the corresponding constant by d_n (>1). By (9), $c(T_{j_n}) < d_n$ for a sufficiently large j_n . We may assume $j_n < j_{n+1}$. By Lemma 5 there exists a continuous mapping $w_{T_{j_n}}$ of S_n^* into S' for each n such that ζ and $w_{T_{j_n}}(\zeta)$ are ε_n -related with respect to T_{j_n} for all ζ in S_n^* . For simplicity, we shall use the notation T_n in place of T_{j_n} . By ε_n -relation

(12)
$$|f(\zeta) - (T_n f)(w_{T_n}(\zeta))| \leq \varepsilon_n ||f||$$

for all ζ in S_n^* and all f in A(S).

2. Now we take distances $d(\cdot, \cdot)$ and $d'(\cdot, \cdot)$ on S_0^* and \overline{S}' , respectively, which induce the original topologies of S_0^* and \bar{S}' , respectively. We shall verify that for every compact subset K^* of S_0^* the mappings w_{T_n} for sufficiently large n are equicontinuous on K^* . For this purpose we show that the set of the zeros $w_{T_n}(\zeta)$ of $T_n\phi_{\zeta}$ for all n and all ζ in K^* is apart from $\partial S'$. If it were not, then there is a sequence $\{\zeta_n\}$ in K^* such as $\{w_{T_n}(\zeta_n)\}$ has an

accumulating point z'_0 on $\partial S'$. By choosing a subsequence if necessary, we may assume that $\zeta_n \to \zeta_0$ for some ζ_0 on K^* and $w_{T_n}(\zeta_n) \to z'_0$. Let g be a nonconstant function in A(S') satisfying |g|=1 on $\partial S'$. (This is a so-called inner function.) By ε_n -relation

$$|(T_n^{-1}g)(\zeta_n) - g(w_{T_n}(\zeta_n))| \leq \varepsilon_n$$
 ,

consequently,

$$|g(w_{Tn}(\zeta_n))| \leq |(T_n^{-1}g)(\zeta_n)| + \varepsilon_n$$

for all n. Hence it follows from (11) that

 $1 = |g(z_0)| \le |g(\sigma(\zeta_0))| < 1$.

This is a contradiction.

So, there is a domain D' whose boundary consists of a finite number of analytic closed curves such that

$$w_{T_n}(K^*) \subset D' \subset \overline{D}' \subset S'$$

for all n. If we apply the residue theorem to every function ϕ in A(S), then

$$\psi(w_{T_n}(\zeta)) = \frac{1}{2\pi i} \int_{\partial D'} \phi(z') \frac{(T_n \phi_{\zeta})'(z')}{(T_n \phi_{\zeta})(z')} dz'$$

for all n and all ζ in K^* . Hence, using (5) we can show that if an $\varepsilon > 0$ is given there is a $\delta > 0$ such that

(13)
$$|\psi(w_{T_n}(\zeta_1)) - \psi(w_{T_n}(\zeta_2))| < \varepsilon$$

for all ζ_1 and ζ_2 in K^* with $d(\zeta_1, \zeta_2) < \delta$ and for all n.

The above implies that if an $\varepsilon > 0$ is given there is a $\delta > 0$ such as

$$d'(w_{T_n}(\zeta_1), w_{T_n}(\zeta_2)) < \varepsilon$$

for all ζ_1 and ζ_2 in K^* with $d(\zeta_1, \zeta_2) < \delta$ and for all *n*. If it were not, then there are an $\varepsilon > 0$ and points ζ_{1n} , ζ_{2n} in K^* with $d(\zeta_{1n}, \zeta_{2n}) \rightarrow 0$ such that

$$d'(w_{T_n}(\zeta_{1n}), w_{T_n}(\zeta_{2n})) \geq \varepsilon$$
.

We may assume that $\zeta_{1n} \rightarrow \zeta_0$, $\zeta_{2n} \rightarrow \zeta_0$ for some ζ_0 in K^* , $w_{T_n}(\zeta_{1n}) \rightarrow w_1$ for some w_1 in S' and $w_{T_n}(\zeta_{2n}) \rightarrow w_2$ for some w_2 in S'. The above inequality implies $d'(w_1, w_2) \ge \varepsilon > 0$. Hence $w_1 \ne w_2$. Since the space A(S') separates points on S', there is a function ϕ in A(S') such as

$$\psi(w_1) \neq \psi(w_2).$$

If an $\varepsilon > 0$ is given, it follows from (13) that

$$|\psi(w_{T_n}(\zeta_{1n})) - \psi(w_{T_n}(\zeta_{2n}))| < \varepsilon$$

for sufficiently large n. Letting n go to infinity, we obtain

381

$$|\psi(w_1)-\psi(w_2)|\leq \varepsilon$$
.

Since $\varepsilon > 0$ is arbitrary, we have

$$\psi(w_1) = \psi(w_2).$$

This is a contradiction. Thus the mappings w_{T_n} are equicontinuous on K^* . From this and the fact that $\{w_{T_n}(\zeta)\}$ has a limit point in S' for every ζ , we conclude that $\{w_{T_n}(\zeta)\}$ is a normal family.

3. By choosing a subsequence if necessary, we may assume that there is a continuous mapping w of S_0^* into S' such that

(14)
$$\lim_{n \to \infty} w_{T_n}(\zeta) = w(\zeta)$$

uniformly on every compact subset of S_0^* . In order to show that the mapping $w(\zeta)$ can be defined on S and it is continuous on S, we must show that it assumes the same value at distinct accessible boundary points of S_0^* defined by each point ζ on $\bigcup_{j=1}^{2p} \gamma_j$. Suppose that a point ζ on γ_j defines two distinct boundary points ζ_1 and ζ_2 . By (6) and Lemma 1, if an $\varepsilon > 0$ is given, we have

(15)
$$\|T_{n}\phi_{\zeta_{2}} - (T_{n}g_{j})(T_{n}\phi_{\zeta_{1}})\| = \|T_{n}(g_{j}\phi_{\zeta_{1}}) - (T_{n}g_{j})(T_{n}\phi_{\zeta_{1}})\|$$
$$\leq \varepsilon \|g_{j}\| \|\phi_{\zeta_{1}}\|$$

for all sufficiently large *n*. We know from (10) that the sequences $\{T_n\phi_{\zeta_2}\}$ and $\{(T_ng_j)(T_n\phi_{\zeta_1})\}$ converge uniformly on every compact subset of S'. By (15) they have the same limit function

$$h = \lim_{n \to \infty} T_n \phi_{\zeta_2} = \lim_{n \to \infty} (T_n g_j) (T_n \phi_{\zeta_1}).$$

By (12) and (14) we have

$$h(w(\zeta)) = \phi_{\zeta_2}(\zeta)$$

for all ζ in S_0^* . Consequently, neither h nor w is a constant.

Now $T_n\phi_{\zeta_2}$ has the only zero $w_{T_n}(\zeta_2)$. Since g_j has no zeros, by the same argument as the proof of Lemma 5 we can see that T_ng_j also has no zeros for all sufficiently large *n*. Hence $(T_ng_j)(T_n\phi_{\zeta_1})$ has the only zero $w_{T_n}(\zeta_1)$ for all sufficiently large *n*. By Hurwitz' theorem, *h* has only one zero, and the zeros of $T_n\phi_{\zeta_2}$ and $(T_ng_j)(T_n\phi_{\zeta_1})$ converge to it as $n\to\infty$. Therefore

$$\lim_{n\to\infty} w_{T_n}(\zeta_1) = \lim_{n\to\infty} w_{T_n}(\zeta_2) ,$$

that is,

$$w(\zeta_1) = w(\zeta_2)$$
.

If a point ζ on γ_j defines four distinct accessible boundary points $\zeta_1, \zeta_2, \zeta_3$ and

 ζ_4 of S_0 , we can similarly show that

$$w(\zeta_1) = w(\zeta_2) = w(\zeta_3) = w(\zeta_4).$$

Thus w is a continuous mapping of S into S'.

4. Let p' be the genus of \overline{S}' and q' be the number of its boundary components. We set N'=2p'+q'-1 and denote by $\gamma'_1, \dots, \gamma'_N$, the canonical homology basis of \overline{S}' as before mentioned. We set $S'_0=S'-\bigcup_{j=1}^{2p'}\gamma'_j$ and denote by $(S'_0)^*$ the set obtained by adding to S'_0 all accessible boundary points which are defined by points of $\bigcup_{j=1}^{2p'}\gamma'_j$.

Since $c(T_j^{-1}) = c(T_j)$, (9) implies that

$$\lim_{j \to \infty} c(T_j^{-1}) = 1, \quad T_j^{-1} 1 = 1.$$

Let $\{S'_n\}$ be an exhaustion of S'. By the same argument as before there exists a continuous mapping $w_{T_n^{-1}}$ of $(S'_n)^*$ into S for each n such that

(16)
$$\lim_{n \to \infty} w_{T_n^{-1}}(\zeta') = w'(\zeta')$$

uniformly on every compact subset of $(S'_0)^*$, where w' is a continuous mapping of S' into S, and moreover ζ' and $w_{T_n^{-1}}(\zeta')$ are ε_n -related with respect to T_n^{-1} for all ζ' in $(S'_0)^*$. It follows from ε_n -relation that

(17)
$$|(T_n f)(\zeta') - f(w_{T_n}(\zeta'))| \leq \varepsilon_n ||f|$$

for all ζ' in $(S'_n)^*$ and all f in A(S).

5. Now we set $\zeta' = w(\zeta)$ for each fixed ζ in S. If n is sufficiently large, ζ is in S_n and ζ' is in S'_n . Then, for every f in A(S)

(18)
$$|f(\zeta) - f(w'(\zeta'))|$$

$$\leq |f(\zeta) - (T_n f)(w_{T_n}(\zeta))| + |(T_n f)(w_{T_n}(\zeta)) - (T_n f)(w(\zeta))|$$

$$+ |(T_n f)(\zeta') - f(w_{T_n^{-1}}(\zeta'))| + |f(w_{T_n^{-1}}(\zeta')) - f(w'(\zeta'))| .$$

By (12), (17) and (16), the first term, the third term and the last term of the right side of (18) converge to 0 as $n \rightarrow \infty$. The functions $T_n f$ are equicontinuous on every compact subset of S', for they are uniformly bounded on S'. Hence, by (14) the second term of the right side of (18) converges to 0 as $n \rightarrow \infty$. Thus it follows from (18) that

$$f(w'(\zeta'))=f(\zeta)$$
.

If we set $f=\phi_{\zeta}$ particularly, we obtain

$$\phi_{\zeta}(w'(\zeta')) = \phi_{\zeta}(\zeta) = 0.$$

Since ζ is the only zero of ϕ_{ζ} , we have

Thus

$$w'(w(\zeta)) = \zeta$$

 $w'(\zeta') = \zeta$.

for all ζ in S. We also obtain by the same argument as above

$$w(w'(\zeta')) = \zeta'$$

for all ζ' in S'. Therefore w is a homeomorphism of S onto S'.

By (10) a sequence $\{T_n f\}$ converges uniformly on every compact subset of S' for every f in A(S). We set

$$g = \lim_{n \to \infty} T_n f,$$

where g is an analytic function on S'. It follows from (12) that

(19)
$$g(w(\zeta)) = f(\zeta)$$

for all ζ in S. If f is not a constant, g is not one. Since f and g are analytic, (19) implies that $w(\zeta)$ is analytic on S. Therefore w is a conformal mapping of S onto S'.

§6. Proof of Theorem 3.

Since $N \ge 2$, there are only a finite number of conformal automorphisms of S. We denote them by w_1, \dots, w_M . For every relatively compact subdomain D of S and for every $\varepsilon > 0$, we want to show the existence of a d > 1 such that if c(T) < d and T1=1, then

$$|f(z) - (Tf)(w_j(z))| \leq \varepsilon \min(||f||, ||Tf||)$$

for a certain j $(1 \le j \le M)$, for all f in A(S) and for all z in D. If it is not true, then for some relatively compact subdomain D of S and for some $\varepsilon > 0$ there is a sequence d_n (>1) which converges to 1 as follows. For each n there is a T_n in L(A(S), A(S)) with $c(T_n) < d_n$ and $T_n 1 = 1$ such that for each j $(1 \le j \le M)$ there are an f_{jn} in A(S) and a z_{jn} in D satisfying

(20)
$$|f_{jn}(z_{jn}) - (T_n f_{jn})(w_j(z_{jn}))| > \varepsilon ||f_{jn}||$$

or

(21)
$$|f_{jn}(z_{jn}) - (T_n f_{jn})(w_j(z_{jn}))| > \varepsilon ||T_n f_{jn}||.$$

Since $c(T_n) \rightarrow 1$ and $T_n 1=1$, we can use the same arguments as the proof of Theorem 2. Hence, by choosing a subsequence if necessary, we may assume that for a certain j $(1 \le j \le M)$

(22)
$$\lim_{n \to \infty} w_{T_n}(z) = w_j(z)$$

uniformly on every compact subset of S_0^* , where w_{T_n} is the mapping in Lemma 5. By using Lemma 5, we may simultaneously assume that

(23)
$$|f_{jn}(z_{jn}) - (T_n f_{jn})(w_{T_n}(z_{jn}))| \leq \frac{\varepsilon}{2} \min(||f_{jn}||, ||T_n f_{jn}||).$$

In addition, we may assume that with respect to the j we have selected, either (20) or (21) holds for every n. Furthermore, we may assume that $z_{jn} \rightarrow z_0$ as $n \rightarrow \infty$ for some z_0 in \overline{D} .

Since the functions $f_{jn}/||f_{jn}||$ and $(T_n f_{jn})/||f_{jn}||$ are uniformly bounded on S, we can assume that for certain analytic functions f_0 and g_0 on S

$$\lim_{n \to \infty} \frac{f_{jn}}{\|f_{jn}\|} = f_0, \quad \lim_{n \to \infty} \frac{T_n f_{jn}}{\|f_{jn}\|} = g_0$$

uniformly on every compact subset of S. If (20) holds for every n, then

$$\Big|\frac{f_{jn}(z_{jn})}{\|f_{jn}\|} - \frac{(T_n f_{jn})(w_j(z_{jn}))}{\|f_{jn}\|}\Big| > \varepsilon.$$

Letting n go to infinity, we obtain

$$|f_0(z_0) - g_0(w_j(z_0))| \ge \varepsilon$$
.

On the other hand, it follows from (22) and (23) that

$$|f_0(z_0) - g_0(w_j(z_0))| \leq \frac{\varepsilon}{2}$$
,

which is a contradiction. If (21) holds for every *n*, the similar argument yields a contradiction.

Finally we must prove the uniqueness of w for every sufficiently small $\varepsilon > 0$. If it is not true, there are positive sequence $\{\varepsilon_n\}$ with $\varepsilon_n \rightarrow 0$, a sequence $\{T_n\}$ in L(A(S), A(S)) and distinct conformal automorphisms w_j , w_k $(j \neq k)$ such that

(24)
$$|f(z) - (T_n f)(w_j(z))| \leq \varepsilon_n \min(||f||, ||T_n f||)$$

and

(25)
$$|f(z) - (T_n f)(w_k(z))| \le \varepsilon_n \min(||f||, ||T_n f||)$$

for all f in A(S) and all z in D. We choose a point z_1 in D such that

$$w_j(z_1) \neq w_k(z_1)$$
.

It follows from (24) and (25) that

$$|f(w_{j}(z_{1})) - f(w_{k}(z_{1}))|$$

$$\leq |f(w_{j}(z_{1})) - (T_{n}^{-1}f)(z_{1})| + |f(w_{k}(z_{1})) - (T_{n}^{-1}f)(z_{1})|$$

$$\leq 2\varepsilon_{n} ||f||$$

for all f in A(S). Hence

$$f(w_j(z_1)) = f(w_k(z_1))$$

for all f in A(S). This is a contradiction, for the space A(S) separates points on S. Thus the uniqueness has been proved.

§7. Proof of Theorem 4.

1. Let D be a relatively compact subdomain of S. We may assume that the boundary C of D consists of a finite number of contours and f_0 does not vanish on C. Let m be the minimum of $|f_0|$ on C. For every ε with $0 < \varepsilon < m$, we set

$$\varepsilon_1 = \min\left(\frac{\varepsilon}{2}, \frac{\varepsilon}{2\|f_0\|}\right).$$

By Theorem 3 there is a constant $d_1>1$ as follows. If a T in L(A(S), A(S)) satisfies $c(T) < d_1$ and T1=1, then there is a unique automorphism w of S such that

(26)
$$|f(z) - (Tf)(w(z))| \leq \varepsilon_1 \min(||f||, ||Tf||)$$
$$\leq \frac{\varepsilon}{2} \min(||f||, ||Tf||)$$

for all f in A(S) and all z in \overline{D} . Particularly,

(27)
$$|f_0(z) - (Tf_0)(w(z))| \leq \varepsilon_1 ||f_0|| < \varepsilon$$
$$< m \leq |f_0(z)|$$

for all z on C. Hence, by the theorem of Rouché, $f_0(z)$ and $(Tf_0)(w(z))$ have the same number of zeros in D.

2. Now we take a distance $d(\cdot, \cdot)$ on S which induces the original topology of S. All functions f/||f|| and f/||Tf|| for $f \in A(S)$ and for T with $c(T) < d_1$ are equicontinuous on D, consequently, if $\delta > 0$ is sufficiently small and $c(T) < d_1$, then

(28)
$$|f(z_1) - f(z_2)| \leq \frac{\varepsilon}{2} \min(||f||, ||Tf||)$$

for all z_1 , z_2 in D with $d(z_1, z_2) < \delta$ and for all f in A(S).

3. Let a_1, \dots, a_l be the elements of $N_{f_0}(D)$. We may assume that the neighborhoods $U_{\delta}(a_j) = \{z | d(z, a_j) < \delta\}$ $(j=1, \dots, l)$ are contained in D and mutually disjoint. We want to show that for every sufficiently small $\varepsilon > 0$ there is a d > 1 such that, if c(T) < d and w is the conformal automorphism corresponding to T in the sense of Theorem 3, then for every ζ in $N_{Tf_0}(w(D))$, $w^{-1}(\zeta)$ is contained in $U_{\delta}(a_j)$ for some j with $1 \leq j \leq l$. If it is not true, then there are

a positive sequence $\{\varepsilon_n\}$ with $\varepsilon_n \to 0$, a sequence $\{T_n\}$ in L(A(S), A(S)) satisfying $c(T_n) \to 1$ and $T_n 1=1$, and a point ζ_n in $N_{T_n f_0}(w(D))$, where w is a fixed conformal automorphism corresponding to T_n in the sense of Theorem 3 such that $w^{-1}(\zeta_n)$ is not in $U_{\delta}(a_j)$ for every n and every j with $1 \leq j \leq l$. Since we may use (27) for $\varepsilon = \varepsilon_n$ and $T = T_n$, we obtain

(29)
$$|f_0(z) - (T_n f_0)(w(z))| < \varepsilon_n$$

for all z in D. Hence

 $|f_0(w^{-1}(\zeta_n))|\!<\!arepsilon_n$,

consequently,

$$\lim_{n\to\infty}f_0(w^{-1}(\zeta_n))=0.$$

We may assume that $\zeta_n \to \zeta_0$ for some ζ_0 in S. Then, $f_0(w^{-1}(\zeta_0))=0$, so, $w^{-1}(\zeta_0)=a_j$ for some j with $1 \leq j \leq l$. Hence

$$\lim_{n\to\infty} w^{-1}(\zeta_n) = a_j$$

which is a contradiction.

4. In the previous section we have shown that for every ζ in $N_{Tf_0}(w(D))$ there is an a_j in $N_{f_0}(D)$ whose δ -neighborhood contains $w^{-1}(\zeta)$ if $\varepsilon > 0$ is sufficiently small and c(T) is sufficiently close to 1. Then, it follows from (26) and (28) that if c(T) is sufficiently close to 1 and T1=1,

$$|f(a_j) - (Tf)(\zeta)|$$

$$\leq |f(a_j) - f(w^{-1}(\zeta))| + |f(w^{-1}(\zeta)) - (Tf)(\zeta)|$$

$$\leq \varepsilon \min(||f||, ||Tf||)$$

for all f in A(S). Namely, a_j and ζ are ε -related with respect to T. Thus, if $\varepsilon > 0$ is sufficiently small and c(T) is sufficiently close to 1, we can define a mapping θ of $N_{Tf_0}(w(D))$ into $N_{f_0}(D)$ by setting, for every ζ in $N_{Tf_0}(w(D))$, $\theta(\zeta) = a_j$. Observe that $\theta(\zeta)$ and ζ are ε -related with respect to T.

5. Next, we shall prove that θ is characterized as the mapping of $N_{Tf_0}(w(D))$ into $N_{f_0}(D)$ such that $\theta(\zeta)$ and ζ are ε -related with respect to T. We may show that if $\varepsilon > 0$ is sufficiently small and c(T) is sufficiently close to 1, then a point a_j in $N_{f_0}(D)$ is uniquely determined for a given ζ in $N_{Tf_0}(w(D))$ by the condition that a_j and ζ are ε -related with respect to T. If it were not, then there are a positive sequence $\{\varepsilon_n\}$ with $\varepsilon_n \to 0$, a sequence $\{T_n\}$ with $c(T_n) \to 1$, distinct points a_j , a_k in $N_{f_0}(D)$ $(j \neq k)$ and a point ζ_n in $N_{T_nf_0}(w(D))$, where w is a fixed conformal automorphism corresponding to T_n , such that a_j and ζ_n , a_k and ζ_n are ε_n -related with respect to T_n . Hence

$$\begin{aligned} &|f(a_j) - f(a_k)| \\ &\leq |f(a_j) - (T_n f)(\zeta_n)| + |f(a_k) - (T_n f)(\zeta_n)| \\ &\leq 2\varepsilon_n \|f\| \end{aligned}$$

for all f in A(S). Therefore

$$f(a_j) = f(a_k)$$

for all f in A(S), which is a contradiction.

6. Let $\varepsilon > 0$ be a sufficiently small number. We denote by D_0 the union of w(D) for all conformal automorphisms w of S. It is a relatively compact subdomain of S. Since all functions (Tf)/||f|| and (Tf)/||Tf|| for $f \in A(S)$ and for T with c(T) close to 1 are equicontinuous on D_0 , we can choose a $\delta > 0$ such that

(30)
$$|(Tf)(z_1) - (Tf)(z_2)| \leq \frac{\varepsilon}{2} \min(||f||, ||Tf||)$$

for all z_1 , z_2 in D_0 with $d(z_1, z_2) < \delta$, for all f in A(S) and for all T with c(T) sufficiently close to 1.

7. To continue, we need the following proposition:

For every sufficiently small $\varepsilon > 0$, there exists a d > 1 such that, if c(T) < dand T1=1, then there exists a point $\zeta \in N_{Tf_0}(w(D))$ whose δ -neighborhood contains w(a), where a is an arbitrary point of $N_{f_0}(D)$ and w is the conformal automorphism of S corresponding to T in the sense of Theorem 3.

Suppose that this proposition does not hold. Then there are a positive sequence $\{\varepsilon_n\}$ with $\varepsilon_n \to 0$ and a sequence $\{T_n\}$ in L(A(S), A(S)) with $c(T_n) \to 1$ and $T_n 1=1$ satisfying the following property; there is a conformal automorphism w of S independent of n such that (29) is satisfied and w(a) is not in $U_{\delta}(\zeta)$ for any ζ in $N_{T_n f_0}(w(D))$. It follows from (29) that

$$|(T_n f_0)(w(a))| < \varepsilon_n$$
 ,

consequently

(31)
$$\lim_{n \to \infty} (T_n f_0)(w(a)) = 0.$$

We may assume that $\{T_n f_0\}$ converges uniformly on every compact subset of S. We set

 $g_0 = \lim_{n \to \infty} T_n f_0$

The inequality (29) implies that

$$f_0(z) = g_0(w(z))$$

in D. Hence the zeros of g_0 in w(D) are

$$\zeta_j = w(a_j) \quad (j=1, \cdots, l).$$

If we choose a sufficiently small δ_1 with $0 < \delta_1 < \delta/2$, the neighborhoods $U_{\delta_1}(\zeta_j)$ $(j=1, \dots, l)$ are contained in w(D) and mutually disjoint. There is a constant $\eta > 0$ such that

 $|g_0(z)| > \eta$

for all z in $w(D) - \bigcup_{j=1}^{l} U_{\delta_1}(\zeta_j)$. Since the convergence in (32) is uniform on w(D),

 $|(T_n f_0)(z)| > \eta$

for all z in $w(D) - \bigcup_{j=1}^{l} U_{\delta_1}(\zeta_j)$ and for all sufficiently large *n*. By Hurwitz' theorem, each $U_{\delta_1}(\zeta_j)$ contains a point ζ in $N_{T_nf_0}(w(D))$ if *n* is sufficiently large. Then, $\delta > 2\delta_1$ implies $U_{\delta}(\zeta) \supset U_{\delta_1}(\zeta_j)$. Hence w(a) is not in $U_{\delta_1}(\zeta_j)$ $(j=1, \dots, l)$, for w(a) is not in $U_{\delta}(\zeta)$ for any ζ in $N_{T_nf_0}(w(D))$. Therefore we can conclude that

 $|(T_n f_0)(w(a))| > \eta$

for all sufficiently large n. This contradicts (31).

8. Now, let us prove that the mapping θ is onto. Let *a* be an arbitrary point in $N_{f_0}(D)$. For every sufficiently small $\varepsilon > 0$, we take a *T* with *T*1=1 and c(T) sufficiently close to 1 so that (26) and (30) are satisfied, and so that there exists the ζ satisfying the proposition in the previous section. Then we have

$$|f(a) - (Tf)(\zeta)| \le |f(a) - (Tf)(w(a))| + |(Tf)(w(a)) - (Tf)(\zeta)| \le \varepsilon \min(||f||, ||Tf||)$$

for all f in A(S). Namely, a and ζ are ε -related with respect to T. Remember that $\theta(\zeta)$ is characterized by the condition that $\theta(\zeta)$ and ζ are ε -related with respect to T. Hence $a=\theta(\zeta)$, that is, the mapping θ is onto. Thus the proof has been completed.

References

- [1] L.V. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-134.
- [2] M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Ködai Math. Sem. Rep., 11 (1959), 182-188.
- [3] R. Rochberg, Almost isometries of Banach spaces and moduli of planar domains, Pacific J. Math., 49 (1973), 445-466.
- [4] R. Rochberg, Almost isometries of Banach spaces and moduli of Riemann surfaces, Duke Math. J., 40 (1973), 41-52.

[5] R. Rochberg, Almost isometries of Banach spaces and moduli of Riemann surfaces
 II, Duke Math. J., 42 (1975), 167-182.

Yasushi MIYAHARA

Department of Mathematics Science University of Tokyo Wakamiya, Shinjuku-ku Tokyo, Japan