On relations between conformal mappings and isomorphisms of spaces of analytic functions on Riemann surfaces

By Yasushi MIYAHARA

(Received Dec. 2, 1977)

§ 1. Introduction.

Let \mathbb{S} be the set consisting of all compact bordered Riemann surfaces. For \bar{S} in \mathbb{S}, we denote its interior and its border by S and ∂S, respectively. Let $p(\geqq 0)$ be the genus of \bar{S} and $q(\geqq 1)$ be the number of boundary components of \bar{S}. We set

$$
N=2 p+q-1 .
$$

Furthermore we denote by $A(S)$ the set of all functions which are analytic in S and continuous on \bar{S}. It forms a Banach algebra with the supremum norm

$$
\|f\|=\sup _{z \in S}|f(z)| .
$$

For \bar{S} and \bar{S}^{\prime} in \subseteq, let $L\left(A(S), A\left(S^{\prime}\right)\right)$ denote the set of all continuous invertible linear mappings of $A(S)$ onto $A\left(S^{\prime}\right)$. It is shown by Rochberg [4] that $L\left(A(S), A\left(S^{\prime}\right)\right)$ is nonvoid if S and S^{\prime} are homeomorphic. We set

$$
c(T)=\|T\|\left\|T^{-1}\right\|
$$

for T in $L\left(A(S), A\left(S^{\prime}\right)\right)$. We have always

$$
c(T) \geqq 1,
$$

and we can easily see that $T /\|T\|$ is an isometry if and only if $c(T)=1$. If $T 1=1$, then

$$
1 \leqq\|T\| \leqq c(T), \quad 1 \leqq\left\|T^{-1}\right\| \leqq c(T) .
$$

Let z and z^{\prime} be points of S and S^{\prime}, respectively. If there exist a positive number ε and an element T of $L\left(A(S), A\left(S^{\prime}\right)\right)$ such that

$$
\left|f(z)-(T f)\left(z^{\prime}\right)\right| \leqq \varepsilon \min (\|f\|,\|T f\|)
$$

for all f in $A(S)$, then we say that z and z^{\prime} are ε-related with respect to T, or z and z^{\prime} satisfy an ε-relation with respect to T.

The purpose of the present paper is to prove the following theorems:

Theorem 1. For \bar{S} and $\bar{S}^{\prime} \in \mathbb{S}$, suppose that there exists a $T \in L\left(A(S), A\left(S^{\prime}\right)\right)$ which is an isometry and satisfies $T 1=1$. Then there exists a conformal mapping w of S onto S^{\prime} such that

$$
T f=f_{\circ} w^{-1}
$$

for all f in $A(S)$.
This result is not new. According to a result of Nagasawa [2; Theorem 3], a T satisfying the above assumption is an algebraic isomorphism. Then, as is well known, T induces a natural mapping of the maximal ideal space of \bar{S} onto that of \bar{S}^{\prime}, which determines a conformal mapping w.

In §4, we shall give a more direct proof of Theorem 1.
Theorem 2. If \bar{S} and $\bar{S}^{\prime} \in \subseteq$ satisfy

$$
\inf \left\{c(T) \mid T \in L\left(A(S), A\left(S^{\prime}\right)\right)\right\}=1
$$

then S and S^{\prime} are conformally equivalent.
This result has been obtained by Rochberg [4]. In §5, we shall give an alternative proof by constructing a conformal mapping directly.

Theorem 3. Let $\bar{S} \in \subseteq$ be such that $N=2 p+q-1 \geqq 2$. For every sufficiently small $\varepsilon>0$ and every relatively compact subdomain D of S, there exists a constant $d>1$ having the following property:

If $T \in L(A(S), A(S))$ satisfies $c(T)<d$ and $T 1=1$, then there exists a unique conformal automorphism w of S such that, for every $z \in D, z$ and $w(z)$ are ε-related with respect to T.

To state the following theorem we need a notation: For a subdomain D of S and an analytic function f in D, we mean by $N_{f}(D)$ the set of zeros of f in D.

Theorem 4. Let $\bar{S} \in \mathbb{S}$ be such that $N=2 p+q-1 \geqq 2$. Consider an arbitrary $f_{0} \in A(S)$. For every sufficiently small $\varepsilon>0$ and every relatively compact subdomain D of S such that f_{0} does not vanish on the boundary of D, there exists a constant $d>1$ having the following property:

If $T \in L(A(S), A(S))$ satisfies $c(T)<d$ and $T 1=1$, then the number of zeros of f_{0} in D is equal to that of $T f_{0}$ in $w(D)$, where w is the conformal automorphism of S determined by Theorem 3; and furthermore there exists a unique mapping θ of $N_{T f_{0}}(w(D))$ onto $N_{f_{0}}(D)$ such that, for every $\zeta \in N_{T f_{0}}(w(D)), \theta(\zeta)$ and ζ are ε-related with respect to T.

§2. The construction of the function ϕ_{ζ}.

For $\bar{S} \in \mathbb{S}$, we denote its boundary components by $\Gamma_{1}, \cdots, \Gamma_{q}$. Let α_{1}, β_{1}, $\cdots, \alpha_{p}, \beta_{p}$ be simple loops on S which are homologically independent modulo ∂S such that

$$
\alpha_{i} \cap \alpha_{j}=\emptyset, \quad \beta_{i} \cap \beta_{j}=\emptyset, \quad \alpha_{i} \cap \beta_{j}=\emptyset
$$

for $i \neq j$, and α_{i} intersects β_{i} at exactly one point. By removing $\alpha_{1}, \beta_{1}, \cdots$, α_{p}, β_{p} from S, we obtain a planar domain S_{0}. If we set

$$
\begin{aligned}
& \gamma_{2 i-1}=\alpha_{i}, \quad \gamma_{2 i}=\beta_{i} \quad(i=1, \cdots, p), \\
& \gamma_{2 p+j}=\Gamma_{j} \quad(j=1, \cdots, q-1),
\end{aligned}
$$

$\gamma_{1}, \cdots, \gamma_{N}$ form a canonical homology basis of \bar{S}. By Ahlfors [1], there exists a basis $\omega_{1}, \cdots, \omega_{N}$ of the space of analytic Schottky differentials satisfying

$$
\int_{\gamma_{i}} \omega_{j}=\delta_{i j} \quad(i, j=1, \cdots, N) .
$$

For ζ in S we denote by $G_{\zeta}(z)$ the Green function on \bar{S} with pole at ζ. For each $j(j=1, \cdots, N)$ and every point ζ in $S-\gamma_{j}$ we set

$$
\begin{equation*}
\pi_{j}(\zeta)=\int_{\gamma_{j}} * d G_{\zeta} \tag{1}
\end{equation*}
$$

Evidently, $\pi_{j}(\zeta)$ is a continuous function of ζ on $S-\gamma_{j}$. If ζ is a point of γ_{j} ($1 \leqq j \leqq 2 p$), it defines two distinct accessible boundary points ζ_{1} and ζ_{2} of $S-\gamma_{j}$. Let C_{1} be a curve in $S-\gamma_{j}$ which ends at ζ and defines ζ_{1}. If we modify γ_{j} in a parametric disk about ζ by making a detour along a circular arc which does not meet C_{1}, then another loop γ_{j}^{\prime} is obtained. Let $\pi_{j}\left(\zeta_{1}\right)$ denote the value obtained by using γ_{j}^{\prime} in place of γ_{j} in (1). Similarly, we can also define $\pi_{j}\left(\zeta_{2}\right)$. Clearly,

$$
\begin{equation*}
\pi_{j}\left(\zeta_{2}\right)-\pi_{j}\left(\zeta_{1}\right)= \pm 2 \pi \tag{2}
\end{equation*}
$$

Furthermore, $\pi_{j}(\zeta)$ is continuous on the set S_{0}^{*} obtained by adding to $S_{0}=S-$ $\bigcup_{j=1}^{2 p} \gamma_{j}$ all accessible boundary points which are defined by points of $\bigcup_{j=1}^{2 p} \gamma_{j}$. We note that a natural topology can be defined on S_{0}^{*}.

Now we fix a point z_{0} in S_{0}. For each point ζ in $S_{0}^{*}-\left\{z_{0}\right\}$ we define a function

$$
\begin{equation*}
f_{\zeta}(z)=\exp \left[-\int_{z_{0}}^{z}\left(d G_{\zeta}+i * d G-i \sum_{j=1}^{N} \pi_{j}(\zeta) \omega_{j}\right)\right] . \tag{3}
\end{equation*}
$$

For a fixed $\zeta, f_{5}(z)$ is single-valued and analytic on \bar{S}, consequently, it is in $A(S)$. Moreover, $f_{5}(z)$ is continuous on $S_{0}^{*}-\left\{z_{0}\right\}$ with respect to ζ for a fixed z in \bar{S}. We choose another point $\tilde{z}_{0}\left(\neq z_{0}\right)$ in S_{0} and denote by $\tilde{f}_{5}(z)$ the function defined by using \tilde{z}_{0} in place of z_{0} in (3). Then, there exists the limit

$$
g(z)=\lim _{\zeta \rightarrow z_{0}} \tilde{f}_{z_{0}}(\zeta) f_{\zeta}(z)
$$

for each z in \bar{S}, and g is an analytic function on \bar{S}. Now we set

$$
\phi_{\zeta}(z)= \begin{cases}\tilde{f}_{z_{0}}(\zeta) f_{\zeta}(z) & \text { for } \zeta \neq z_{0} \\ g(z) & \text { for } \zeta=z_{0} .\end{cases}
$$

The function $\phi_{\zeta}(z)$ has the following properties.
(i) For a fixed ζ in S_{0}^{*}, ϕ_{ζ} is analytic on \bar{S}, consequently, it is in $A(S)$. Moreover, for a fixed z in $\bar{S}, \phi_{\zeta}(z)$ is continuous on S_{0}^{*} with respect to ζ.
(ii) For each ζ in S_{0}^{*}, ζ is a simple zero of ϕ_{ζ}, and it is the only zero of ϕ_{ζ}.
(iii) For every compact subset K^{*} of S_{0}^{*} there is a constant $m(>1)$ such that

$$
\begin{equation*}
\frac{1}{m} \leqq\left|\phi_{\zeta}(z)\right| \leqq m \tag{4}
\end{equation*}
$$

for all z on ∂S and all ζ in K^{*}.
(iv) For each ζ_{0} in S_{0}^{*}
(5)

$$
\lim _{\zeta \rightarrow \zeta_{0}}\left\|\phi_{\zeta}-\phi_{5_{0}}\right\|=0 .
$$

(v) If a point ζ on γ_{j} defines two distinct accessible boundary points ζ_{1} and ζ_{2} of S_{0}, (2) implies that
(6)

$$
\phi_{\zeta_{2}}(z)=g_{j}(z) \phi_{\zeta_{1}}(z) \quad \text { or } \quad \phi_{\zeta_{2}}(z)=g_{j}(z)^{-1} \phi_{\zeta_{1}}(z),
$$

where g_{j} is a function in $A(S)$ defined by

$$
g_{j}(z)=\exp \left(2 \pi i \int_{z_{0}}^{z} \omega_{j}\right) .
$$

If ζ defines four distinct accessible boundary points $\zeta_{1}, \zeta_{2}, \zeta_{3}$ and ζ_{4} of S_{0}, we obtain, for example, the following relations;

$$
\begin{aligned}
& \phi_{\zeta_{2}}(z)=g_{2 j-1}(z) \phi_{\zeta_{1}}(z), \quad \phi_{\zeta_{3}}(z)=g_{2 j}(z) \phi_{\zeta_{1}}(z), \\
& \phi_{\zeta_{4}}(z)=g_{2 j-1}(z) g_{2 j}(z) \phi_{\zeta_{1}}(z) .
\end{aligned}
$$

§ 3. Lemmas.

The following lemmas are due to Rochberg [3], [4] and [5].
Lemma 1. For $\bar{S}, \bar{S}^{\prime} \in \subseteq$ and for every $\varepsilon>0$, there exists a constant $d>1$ such that

$$
\|T(f g)-(T f)(T g)\| \leqq \varepsilon\|f\|\|g\|
$$

for all $T \in L\left(A(S), A\left(S^{\prime}\right)\right.$) with $c(T)<d$ and $T 1=1$ and for all $f, g \in A(S)$ (cf. [3]).

Lemma 2. For every $\varepsilon>0$, there exists a constant $d>1$ having the following property:

For $\bar{S}, \bar{S}^{\prime} \in \mathbb{S}$ and every $T \in L\left(A(S), A\left(S^{\prime}\right)\right)$ with $c(T)<d$ and $T 1=1$, there exists a homeomorphism h of ∂S onto ∂S^{\prime} such that

$$
|f(z)-(T f)(h(z))| \leqq \varepsilon\|f\|
$$

for all z on ∂S and all $f \in A(S)$ (cf. [3], [5]).

Lemma 3. If \bar{S} and $\bar{S}^{\prime} \in \mathbb{S}$ satisfy

$$
\inf \left\{c(T) \mid T \in L\left(A(S), A\left(S^{\prime}\right)\right)\right\}=1
$$

then there exists a sequence $\left\{T_{n}\right\}$ in $L\left(A(S), A\left(S^{\prime}\right)\right)$ such that $c\left(T_{n}\right) \rightarrow 1$ and $T_{n} 1=1$ (cf. [3]).

Lemma 4. Under the same assumption of Lemma 3, there exist a subsequence $\left\{T_{n_{j}}\right\}$ of $\left\{T_{n}\right\}$, an analytic mapping τ of S^{\prime} into S and an analytic mapping σ of S into S^{\prime} such that

$$
\lim _{j \rightarrow \infty}\left(T_{n_{j}} f\right)(w)=f(\tau(w))
$$

uniformly on every compact subset of S^{\prime} for all $f \in A(S)$, and

$$
\lim _{j \rightarrow \infty}\left(T_{n_{j}}^{-1} g\right)(z)=g(\sigma(z))
$$

uniformly on every compact subset of S for all $g \in A\left(S^{\prime}\right)$ (cf. [4], [5]).
Let D be a relatively compact subdomain of S. If $\bar{D} \cap\left(\sum_{j=1}^{2 p} \gamma_{j}\right)$ is nonvoid, we denote by D^{*} the set obtained by adding to $\bar{D}-\int_{j=1}^{2 p} \gamma_{j}$ all accessible boundary points which are defined by points of $\bar{D} \cap\left(\bigcup_{j=1}^{2 p} \gamma_{j}\right)$. The set D^{*} is a subset of S_{0}^{*}. If $\bar{D} \cap\left({ }_{j=1}^{2 p} \gamma_{j}\right)$ is void, D^{*} is equal to \bar{D}.

Lemma 5. Let \bar{S} be an element of \mathfrak{S}. For every $\varepsilon>0$ and every relatively compact subdomain D of S, there exists a constant $d>1$ having the following property:

For $\bar{S}^{\prime} \in \mathbb{S}$ and $T \in L\left(A(S), A\left(S^{\prime}\right)\right)$ with $c(T)<d$ and $T 1=1$, there exists a continuous mapping w_{T} of D^{*} into S^{\prime} such that, for every $\zeta \in D^{*}$, ζ and $w_{T}(\zeta)$ are ε-related with respect to T (cf. [5]).

Proof. By property (iii) there is a constant $m>1$ for D^{*} such that (4) holds for all z on ∂S and all ζ in D^{*}. We set $\varepsilon_{1}=1 /\left(2 m^{2}\right)$. By Lemma 2 there is a constant $d_{1}>1$ as follows. If $c(T)<d_{1}$, there exists a homeomorphism h of ∂S onto ∂S^{\prime} such that

$$
\left|\phi_{\zeta}(z)-\left(T \phi_{\zeta}\right)(h(z))\right| \leqq \varepsilon_{1}\left\|\phi_{\zeta}\right\|
$$

for all z on ∂S and all ζ in D^{*}. Combining (4) and the above inequality it follows that

$$
\left|\left(T \phi_{\zeta}\right)(h(z))\right|>\frac{1}{2 m}
$$

for all z on ∂S and all ζ in D^{*}. Hence the change of argument of $T \phi_{\zeta}$ around ∂S^{\prime} is equal to the change of argument of ϕ_{ζ} around ∂S. Therefore, by the argument principle, $T \phi_{\zeta}$ has the same number of zeros as ϕ_{ζ}, that is, exactly one. We denote this zero by $w_{T}(\zeta)$. It follows from (5) that the mapping
$w_{T}(\zeta)$ of D^{*} into S^{\prime} is continuous. Furthermore, using Lemma 1, we can show by the same argument as Proof of Proposition 1 in [5] that if $c(T)$ is sufficiently close to $1, \zeta$ in D^{*} and $w_{T}(\zeta)$ are ε-related with respect to T.

§4. Proof of Theorem 1.

Let $\left\{S_{n}\right\}_{2}$ be an exhaustion of S. Since T is an isometry by assumption, $c(T)=1$. Consequently, by Lemma 5 there exists a continuous mapping $w_{T}^{(n)}$ of S_{n}^{*} into S^{\prime} for each n such that every point ζ in S_{n}^{*} and $w_{T}^{(n)}(\zeta)$ satisfy an ε-relation ${ }^{\text {with }}$ respect to T for every $\varepsilon>0$. By the definition of $w_{T}^{(n)}$, $w_{T}^{(n)}$ $=w_{T}^{(n+1)}=\cdots=w_{T}^{(n+k)}=\cdots$ in S_{n}^{*}. Thus we obtain a continuous mapping w_{T} of S_{0}^{*} into S^{\prime} such that

$$
\left|f(\zeta)-(T f)\left(w_{T}(\zeta)\right)\right| \leqq \varepsilon\|f\|
$$

for all ζ in S_{0}^{*} and all f in $A(S)$. Since $\varepsilon>0$ is arbitrary, we have a relation

$$
\begin{equation*}
(T f)\left(w_{T}(\zeta)\right)=f(\zeta) \tag{7}
\end{equation*}
$$

 tinct accessible boundary points ζ_{1} and ζ_{2} of S_{0}^{*}, it follows from (7) that

$$
g\left(w_{T}\left(\zeta_{1}\right)\right)=g\left(w_{T}\left(\zeta_{2}\right)\right)
$$

for all g in $A\left(S^{\prime}\right)$. Hence

$$
w_{T}\left(\zeta_{1}\right)=w_{T}\left(\zeta_{2}\right),
$$

for $A\left(S^{\prime}\right)$ separates points on S^{\prime}. If a ζ on $\bigcup_{j=1}^{2 p} \gamma_{j}$ defines four distinct accessible boundary points $\zeta_{1}, \zeta_{2}, \zeta_{3}$ and ζ_{4} of S_{0}, we similarly obtain

$$
w_{T}\left(\zeta_{1}\right)=w_{T}\left(\zeta_{2}\right)=w_{T}\left(\zeta_{3}\right)=w_{T}\left(\zeta_{4}\right) .
$$

Therefore w_{T} is a continuous mapping of S into S^{\prime}, and (7) holds for all ζ in S and all f in $A(S)$.

On the other hand, since $c\left(T^{-1}\right)=1$, we can use the same method as above to T^{-1}. Hence we obtain a continuous mapping $w_{T^{-1}}$ of S^{\prime} into S such that

$$
\begin{equation*}
\left(T^{-1} g\right)\left(w_{T-1}\left(\zeta^{\prime}\right)\right)=g\left(\zeta^{\prime}\right) \tag{8}
\end{equation*}
$$

for all ζ^{\prime} in S^{\prime} and all g in $A\left(S^{\prime}\right)$.
Now, for each fixed ζ in S we set $\zeta^{\prime}=w_{T}(\zeta)$. If we set $f=T^{-1} \phi_{\zeta^{\prime}}$ in (7),

$$
\left(T^{-1} \phi_{\zeta^{\prime}}\right)(\zeta)=\phi_{\zeta^{\prime}}\left(\zeta^{\prime}\right)=0 .
$$

Since $T^{-1} \phi_{\xi^{\prime}}$ has the only zero $w_{T-1}\left(\zeta^{\prime}\right)$,

$$
w_{T-1}\left(\zeta^{\prime}\right)=\zeta .
$$

Thus

$$
w_{T-1}\left(w_{T}(\zeta)\right)=\zeta
$$

for all ζ in S. Similarly, it follows from (8) that

$$
w_{T}\left(w_{T^{-1}}\left(\zeta^{\prime}\right)\right)=\zeta^{\prime}
$$

for all ζ^{\prime} in S^{\prime}. Therefore $w=w_{T}$ is a homeomorphism of S onto S^{\prime} and w^{-1} $=w_{T-1}$. We know by (7) that $w=w_{T}$ is conformal and

$$
T f=f \circ w^{-1}
$$

for all f in $A(S)$.

§5. Proof of Theorem 2.

1. By Lemmas 3 and 4 there exists a sequence $\left\{T_{j}\right\}$ in $L\left(A(S), A\left(S^{\prime}\right)\right)$ with

$$
\begin{equation*}
\lim _{j \rightarrow \infty} c\left(T_{j}\right)=1, \quad T_{j} 1=1 \tag{9}
\end{equation*}
$$

and there exist an analytic mapping τ of S^{\prime} into S and an analytic mapping σ of S into S^{\prime} such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left(T_{j} f\right)(w)=f(\tau(w)) \tag{10}
\end{equation*}
$$

uniformly on every compact subset of S^{\prime} for all f in $A(S)$, and

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left(T_{j}^{-1} g\right)(z)=g(\sigma(z)) \tag{11}
\end{equation*}
$$

uniformly on every compact subset of S for all g in $A\left(S^{\prime}\right)$.
Let $\left\{S_{n}\right\}$ be an exhaustion of S and $\left\{\varepsilon_{n}\right\}$ be a sequence of positive numbers which tends to zero. In Lemma 5 we set $\varepsilon=\varepsilon_{n}$ and $D=S_{n}$ for each n, and we denote the corresponding constant by $d_{n}(>1)$. By (9), $c\left(T_{j_{n}}\right)<d_{n}$ for a sufficiently large j_{n}. We may assume $j_{n}<j_{n+1}$. By Lemma 5 there exists a continuous mapping $w_{T_{j}}$ of S_{n}^{*} into S^{\prime} for each n such that ζ and $w_{T_{j}}(\zeta)$ are ε_{n}-related with respect to $T_{j_{n}}$ for all ζ in S_{n}^{*}. For simplicity, we shall use the notation T_{n} in place of $T_{j_{n}}$. By ε_{n}-relation

$$
\begin{equation*}
\left|f(\zeta)-\left(T_{n} f\right)\left(w_{T_{n}}(\zeta)\right)\right| \leqq \varepsilon_{n}\|f\| \tag{12}
\end{equation*}
$$

for all ζ in S_{n}^{*} and all f in $A(S)$.
2. Now we take distances $d(\cdot, \cdot)$ and $d^{\prime}(\cdot, \cdot)$ on S_{0}^{*} and \bar{S}^{\prime}, respectively, which induce the original topologies of S_{0}^{*} and \bar{S}^{\prime}, respectively. We shall verify that for every compact subset K^{*} of S_{0}^{*} the mappings $w_{T_{n}}$ for sufficiently large n are equicontinuous on K^{*}. For this purpose we show that the set of the zeros $w_{T_{n}}(\zeta)$ of $T_{n} \phi_{\zeta}$ for all n and all ζ in K^{*} is apart from ∂S^{\prime}. If it were not, then there is a sequence $\left\{\zeta_{n}\right\}$ in K^{*} such as $\left\{w_{r_{n}}\left(\zeta_{n}\right)\right\}$ has an
accumulating point z_{0}^{\prime} on ∂S^{\prime}. By choosing a subsequence if necessary, we may assume that $\zeta_{n} \rightarrow \zeta_{0}$ for some ζ_{0} on K^{*} and $w_{T_{n}}\left(\zeta_{n}\right) \rightarrow z_{0}^{\prime}$. Let g be a nonconstant function in $A\left(S^{\prime}\right)$ satisfying $|g|=1$ on ∂S^{\prime}. (This is a so-called inner function.) By ε_{n}-relation

$$
\left|\left(T_{n}^{-1} g\right)\left(\zeta_{n}\right)-g\left(w_{T_{n}}\left(\zeta_{n}\right)\right)\right| \leqq \varepsilon_{n}
$$

consequently,

$$
\left|g\left(w_{T n}\left(\zeta_{n}\right)\right)\right| \leqq\left|\left(T_{n}^{-1} g\right)\left(\zeta_{n}\right)\right|+\varepsilon_{n}
$$

for all n. Hence it follows from (11) that

$$
1=\left|g\left(z_{0}^{\prime}\right)\right| \leqq\left|g\left(\sigma\left(\zeta_{0}\right)\right)\right|<1
$$

This is a contradiction.
So, there is a domain D^{\prime} whose boundary consists of a finite number of analytic closed curves such that

$$
w_{r_{n}}\left(K^{*}\right) \subset D^{\prime} \subset \bar{D}^{\prime} \subset S^{\prime}
$$

for all n. If we apply the residue theorem to every function ψ in $A(S)$, then

$$
\psi\left(w_{T_{n}}(\zeta)\right)=\frac{1}{2 \pi i} \int_{\partial D^{\prime}} \psi\left(z^{\prime}\right) \frac{\left(T_{n} \phi_{\zeta}\right)^{\prime}\left(z^{\prime}\right)}{\left(T_{n} \phi_{\zeta}\right)\left(z^{\prime}\right)} d z^{\prime}
$$

for all n and all ζ in K^{*}. Hence, using (5) we can show that if an $\varepsilon>0$ is given there is a $\delta>0$ such that

$$
\begin{equation*}
\left|\psi\left(w_{T_{n}}\left(\zeta_{1}\right)\right)-\psi\left(w_{T_{n}}\left(\zeta_{2}\right)\right)\right|<\varepsilon \tag{13}
\end{equation*}
$$

for all ζ_{1} and ζ_{2} in K^{*} with $d\left(\zeta_{1}, \zeta_{2}\right)<\delta$ and for all n.
The above implies that if an $\varepsilon>0$ is given there is a $\delta>0$ such as

$$
d^{\prime}\left(w_{T_{n}}\left(\zeta_{1}\right), w_{T_{n}}\left(\zeta_{2}\right)\right)<\varepsilon
$$

for all ζ_{1} and ζ_{2} in K^{*} with $d\left(\zeta_{1}, \zeta_{2}\right)<\delta$ and for all n. If it were not, then there are an $\varepsilon>0$ and points $\zeta_{1 n}, \zeta_{2 n}$ in K^{*} with $d\left(\zeta_{1 n}, \zeta_{2 n}\right) \rightarrow 0$ such that

$$
d^{\prime}\left(w_{T_{n}}\left(\zeta_{1 n}\right), w_{T_{n}}\left(\zeta_{2 n}\right)\right) \geqq \varepsilon .
$$

We may assume that $\zeta_{1 n} \rightarrow \zeta_{0}, \zeta_{2 n} \rightarrow \zeta_{0}$ for some ζ_{0} in $K^{*}, w_{T_{n}}\left(\zeta_{1 n}\right) \rightarrow w_{1}$ for some w_{1} in S^{\prime} and $w_{r_{n}}\left(\zeta_{2 n}\right) \rightarrow w_{2}$ for some w_{2} in S^{\prime}. The above inequality implies $d^{\prime}\left(w_{1}, w_{2}\right) \geqq \varepsilon>0$. Hence $w_{1} \neq w_{2}$. Since the space $A\left(S^{\prime}\right)$ separates points on S^{\prime}, there is a function ψ in $A\left(S^{\prime}\right)$ such as

$$
\psi\left(w_{1}\right) \neq \psi\left(w_{2}\right) .
$$

If an $\varepsilon>0$ is given, it follows from (13) that

$$
\left|\psi\left(w_{T_{n}}\left(\zeta_{1 n}\right)\right)-\psi\left(w_{T_{n}}\left(\zeta_{2 n}\right)\right)\right|<\varepsilon
$$

for sufficiently large n. Letting n go to infinity, we obtain

$$
\left|\psi\left(w_{1}\right)-\psi\left(w_{2}\right)\right| \leqq \varepsilon .
$$

Since $\varepsilon>0$ is arbitrary, we have

$$
\psi\left(w_{1}\right)=\psi\left(w_{2}\right) .
$$

This is a contradiction. Thus the mappings $w_{T_{n}}$ are equicontinuous on K^{*}. From this and the fact that $\left\{w_{T_{n}}(\zeta)\right\}$ has a limit point in S^{\prime} for every ζ, we conclude that $\left\{w_{T_{n}}(\zeta)\right\}$ is a normal family.
3. By choosing a subsequence if necessary, we may assume that there is a continuous mapping w of S_{0}^{*} into S^{\prime} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} w_{T_{n}}(\zeta)=w(\zeta) \tag{14}
\end{equation*}
$$

uniformly on every compact subset of S_{0}^{*}. In order to show that the mapping $w(\zeta)$ can be defined on S and it is continuous on S, we must show that it assumes the same value at distinct accessible boundary points of S_{0}^{*} defined
 boundary points ζ_{1} and ζ_{2}. By (6) and Lemma 1, if an $\varepsilon>0$ is given, we have

$$
\begin{align*}
\left\|T_{n} \phi_{\zeta_{2}}-\left(T_{n} g_{j}\right)\left(T_{n} \phi_{\zeta_{1}}\right)\right\| & =\left\|T_{n}\left(g_{j} \phi_{\zeta_{1}}\right)-\left(T_{n} g_{j}\right)\left(T_{n} \phi_{\zeta_{1}}\right)\right\| \tag{15}\\
& \leqq \varepsilon\left\|g_{j}\right\|\left\|\phi_{\zeta_{1}}\right\|
\end{align*}
$$

for all sufficiently large n. We know from (10) that the sequences $\left\{T_{n} \phi_{5_{2}}\right\}$ and $\left\{\left(T_{n} g_{j}\right)\left(T_{n} \phi_{\zeta_{1}}\right)\right\}$ converge uniformly on every compact subset of S^{\prime}. By (15) they have the same limit function

$$
h=\lim _{n \rightarrow \infty} T_{n} \phi_{\zeta_{2}}=\lim _{n \rightarrow \infty}\left(T_{n} g_{j}\right)\left(T_{n} \phi_{\zeta_{1}}\right) .
$$

By (12) and (14) we have

$$
h(w(\zeta))=\phi_{5_{2}}(\zeta)
$$

for all ζ in S_{0}^{*}. Consequently, neither h nor w is a constant.
Now $T_{n} \phi_{\zeta_{2}}$ has the only zero $w_{T_{n}}\left(\zeta_{2}\right)$. Since g_{j} has no zeros, by the same argument as the proof of Lemma 5 we can see that $T_{n} g_{j}$ also has no zeros for all sufficiently large n. Hence $\left(T_{n} g_{j}\right)\left(T_{n} \phi_{\zeta_{1}}\right)$ has the only zero $w_{T_{n}}\left(\zeta_{1}\right)$ for all sufficiently large n. By Hurwitz' theorem, h has only one zero, and the zeros of $T_{n} \phi_{\xi_{2}}$ and ($\left.T_{n} g_{j}\right)\left(T_{n} \phi_{\zeta_{1}}\right)$ converge to it as $n \rightarrow \infty$. Therefore

$$
\lim _{n \rightarrow \infty} w_{T_{n}}\left(\zeta_{1}\right)=\lim _{n \rightarrow \infty} w_{T_{n}}\left(\zeta_{2}\right),
$$

that is,

$$
w\left(\zeta_{1}\right)=w\left(\zeta_{2}\right) .
$$

If a point ζ on γ_{j} defines four distinct accessible boundary points $\zeta_{1}, \zeta_{2}, \zeta_{3}$ and
ζ_{4} of S_{0}, we can similarly show that

$$
w\left(\zeta_{1}\right)=w\left(\zeta_{2}\right)=w\left(\zeta_{3}\right)=w\left(\zeta_{4}\right) .
$$

Thus w is a continuous mapping of S into S^{\prime}.
4. Let p^{\prime} be the genus of \bar{S}^{\prime} and q^{\prime} be the number of its boundary components. We set $N^{\prime}=2 p^{\prime}+q^{\prime}-1$ and denote by $\gamma_{1}^{\prime}, \cdots, \gamma_{N}^{\prime}$, the canonical homology basis of \bar{S}^{\prime} as before mentioned. We set $S_{0}^{\prime}=S^{\prime}-\int_{j=1}^{2 p^{\prime}} \gamma_{j}^{\prime}$ and denote by $\left(S_{0}^{\prime}\right) *$ the set obtained by adding to S_{0}^{\prime} all accessible boundary points which are defined by points of $\sum_{j=1}^{2 p^{\prime}} \gamma_{j}^{\prime}$.

Since $c\left(T_{j}^{-1}\right)=c\left(T_{j}\right),(9)$ implies that

$$
\lim _{j \rightarrow \infty} c\left(T_{j}^{-1}\right)=1, \quad T_{j}^{-1} 1=1 .
$$

Let $\left\{S_{n}^{\prime}\right\}$ be an exhaustion of S^{\prime}. By the same argument as before there exists a continuous mapping $w_{T_{n}^{-1}}$ of $\left(S_{n}^{\prime}\right)^{*}$ into S for each n such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} w_{r_{n}^{-1}}\left(\zeta^{\prime}\right)=w^{\prime}\left(\zeta^{\prime}\right) \tag{16}
\end{equation*}
$$

uniformly on every compact subset of $\left(S_{0}^{\prime}\right)^{*}$, where w^{\prime} is a continuous mapping of S^{\prime} into S, and moreover ζ^{\prime} and $w_{T_{n}^{-1}\left(\zeta^{\prime}\right)}$ are ε_{n}-related with respect to T_{n}^{-1} for all ζ^{\prime} in $\left(S_{0}^{\prime}\right)^{*}$. It follows from ε_{n}-relation that

$$
\begin{equation*}
\left|\left(T_{n} f\right)\left(\zeta^{\prime}\right)-f\left(w_{n}^{-1}\left(\zeta^{\prime}\right)\right)\right| \leqq \varepsilon_{n}\|f\| \tag{17}
\end{equation*}
$$

for all ζ^{\prime} in $\left(S_{n}^{\prime}\right)^{*}$ and all f in $A(S)$.
5. Now we set $\zeta^{\prime}=w(\zeta)$ for each fixed ζ in S. If n is sufficiently large, ζ is in S_{n} and ζ^{\prime} is in S_{n}^{\prime}. Then, for every f in $A(S)$

$$
\begin{align*}
& \left|f(\zeta)-f\left(w^{\prime}\left(\zeta^{\prime}\right)\right)\right| \tag{18}\\
& \leqq\left|f(\zeta)-\left(T_{n} f\right)\left(w_{T_{n}}(\zeta)\right)\right|+\left|\left(T_{n} f\right)\left(w_{T_{n}}(\zeta)\right)-\left(T_{n} f\right)(w(\zeta))\right| \\
& \quad+\left|\left(T_{n} f\right)\left(\zeta^{\prime}\right)-f\left(w_{T_{n}^{-1}}\left(\zeta^{\prime}\right)\right)\right|+\left|f\left(w_{T_{n}^{-1}}\left(\zeta^{\prime}\right)\right)-f\left(w^{\prime}\left(\zeta^{\prime}\right)\right)\right| .
\end{align*}
$$

By (12), (17) and (16), the first term, the third term and the last term of the right side of (18) converge to 0 as $n \rightarrow \infty$. The functions $T_{n} f$ are equicontinuous on every compact subset of S^{\prime}, for they are uniformly bounded on S^{\prime}. Hence, by (14) the second term of the right side of (18) converges to 0 as $n \rightarrow \infty$. Thus it follows from (18) that

$$
f\left(w^{\prime}\left(\zeta^{\prime}\right)\right)=f\left(\zeta^{\prime}\right) .
$$

If we set $f=\phi_{\zeta}$ particularly, we obtain

$$
\phi_{\zeta}\left(w^{\prime}\left(\zeta^{\prime}\right)\right)=\phi_{\zeta}(\zeta)=0 .
$$

Since ζ is the only zero of ϕ_{ζ}, we have

$$
w^{\prime}\left(\zeta^{\prime}\right)=\zeta .
$$

Thus

$$
w^{\prime}(w(\zeta))=\zeta
$$

for all ζ in S. We also obtain by the same argument as above

$$
w\left(w^{\prime}\left(\zeta^{\prime}\right)\right)=\zeta^{\prime}
$$

for all ζ^{\prime} in S^{\prime}. Therefore w is a homeomorphism of S onto S^{\prime}.
By (10) a sequence $\left\{T_{n} f\right\}$ converges uniformly on every compact subset of S^{\prime} for every f in $A(S)$. We set

$$
g=\lim _{n \rightarrow \infty} T_{n} f,
$$

where g is an analytic function on S^{\prime}. It follows from (12) that

$$
\begin{equation*}
g(w(\zeta))=f(\zeta) \tag{19}
\end{equation*}
$$

for all ζ in S. If f is not a constant, g is not one. Since f and g are analytic, (19) implies that $w(\zeta)$ is analytic on S. Therefore w is a conformal mapping of S onto S^{\prime}.

§6. Proof of Theorem 3.

Since $N \geqq 2$, there are only a finite number of conformal automorphisms of S. We denote them by w_{1}, \cdots, w_{M}. For every relatively compact subdomain D of S and for every $\varepsilon>0$, we want to show the existence of a $d>1$ such that if $c(T)<d$ and $T 1=1$, then

$$
\left|f(z)-(T f)\left(w_{j}(z)\right)\right| \leqq \varepsilon \min (\|f\|,\|T f\|)
$$

for a certain $j(1 \leqq j \leqq M)$, for all f in $A(S)$ and for all z in D. If it is not true, then for some relatively compact subdomain D of S and for some $\varepsilon>0$ there is a sequence $d_{n}(>1)$ which converges to 1 as follows. For each n there is a T_{n} in $L\left(A(S), A(S)\right.$) with $c\left(T_{n}\right)<d_{n}$ and $T_{n} 1=1$ such that for each j ($1 \leqq j \leqq M$) there are an $f_{j n}$ in $A(S)$ and a $z_{j n}$ in D satisfying

$$
\begin{equation*}
\left|f_{j n}\left(z_{j n}\right)-\left(T_{n} f_{j n}\right)\left(w_{j}\left(z_{j n}\right)\right)\right|>\varepsilon\left\|f_{j n}\right\| \tag{20}
\end{equation*}
$$

or
(21)

$$
\left|f_{j n}\left(z_{j n}\right)-\left(T_{n} f_{j n}\right)\left(w_{j}\left(z_{j n}\right)\right)\right|>\varepsilon\left\|T_{n} f_{j n}\right\| .
$$

Since $c\left(T_{n}\right) \rightarrow 1$ and $T_{n} 1=1$, we can use the same arguments as the proof of Theorem 2. Hence, by choosing a subsequence if necessary, we may assume that for a certain $j(1 \leqq j \leqq M)$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} w_{T_{n}}(z)=w_{j}(z) \tag{22}
\end{equation*}
$$

uniformly on every compact subset of S_{0}^{*}, where $w_{T_{n}}$ is the mapping in Lemma 5. By using Lemma 5, we may simultaneously assume that

$$
\begin{equation*}
\left|f_{j n}\left(z_{j n}\right)-\left(T_{n} f_{j n}\right)\left(w_{T_{n}}\left(z_{j n}\right)\right)\right| \leqq \frac{\varepsilon}{2} \min \left(\left\|f_{j n}\right\|,\left\|T_{n} f_{j n}\right\|\right) \tag{23}
\end{equation*}
$$

In addition, we may assume that with respect to the j we have selected, either (20) or (21) holds for every n. Furthermore, we may assume that $z_{j n} \rightarrow z_{0}$ as $n \rightarrow \infty$ for some z_{0} in \bar{D}.

Since the functions $f_{j n} /\left\|f_{j n}\right\|$ and $\left(T_{n} f_{j n}\right) /\left\|f_{j n}\right\|$ are uniformly bounded on S, we can assume that for certain analytic functions f_{0} and g_{0} on S

$$
\lim _{n \rightarrow \infty} \frac{f_{j n}}{\left\|f_{j n}\right\|}=f_{0}, \quad \lim _{n \rightarrow \infty} \frac{T_{n} f_{j n}}{\left\|f_{j n}\right\|}=g_{0}
$$

uniformly on every compact subset of S. If (20) holds for every n, then

$$
\left|\frac{f_{j n}\left(z_{j n}\right)}{\left\|f_{j n}\right\|}-\frac{\left(T_{n} f_{j n}\right)\left(w_{j}\left(z_{j n}\right)\right)}{\left\|f_{j n}\right\|}\right|>\varepsilon .
$$

Letting n go to infinity, we obtain

$$
\left|f_{0}\left(z_{0}\right)-g_{0}\left(w_{j}\left(z_{0}\right)\right)\right| \geqq \varepsilon .
$$

On the other hand, it follows from (22) and (23) that

$$
\left|f_{0}\left(z_{0}\right)-g_{0}\left(w_{j}\left(z_{0}\right)\right)\right| \leqq \frac{\varepsilon}{2},
$$

which is a contradiction. If (21) holds for every n, the similar argument yields a contradiction.

Finally we must prove the uniqueness of w for every sufficiently small $\varepsilon>0$. If it is not true, there are positive sequence $\left\{\varepsilon_{n}\right\}$ with $\varepsilon_{n} \rightarrow 0$, a sequence $\left\{T_{n}\right\}$ in $L(A(S), A(S))$ and distinct conformal automorphisms $w_{j}, w_{k}(j \neq k)$ such that

$$
\begin{equation*}
\left|f(z)-\left(T_{n} f\right)\left(w_{j}(z)\right)\right| \leqq \varepsilon_{n} \min \left(\|f\|,\left\|T_{n} f\right\|\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f(z)-\left(T_{n} f\right)\left(w_{k}(z)\right)\right| \leqq \varepsilon_{n} \min \left(\|f\|,\left\|T_{n} f\right\|\right) \tag{25}
\end{equation*}
$$

for all f in $A(S)$ and all z in D. We choose a point z_{1} in D such ${ }_{\mathbf{i}}$ that

$$
w_{j}\left(z_{1}\right) \neq w_{k}\left(z_{1}\right) .
$$

It follows from (24) and (25) that

$$
\begin{aligned}
& \left|f\left(w_{j}\left(z_{1}\right)\right)-f\left(w_{k}\left(z_{1}\right)\right)\right| \\
& \leqq\left|f\left(w_{j}\left(z_{1}\right)\right)-\left(T_{n}^{-1} f\right)\left(z_{1}\right)\right|+\left|f\left(w_{k}\left(z_{1}\right)\right)-\left(T_{n}^{-1} f\right)\left(z_{1}\right)\right| \\
& \leqq 2 \varepsilon_{n}\|f\|
\end{aligned}
$$

for all f in $A(S)$. Hence

$$
f\left(w_{j}\left(z_{1}\right)\right)=f\left(w_{k}\left(z_{1}\right)\right)
$$

for all f in $A(S)$. This is a contradiction, for the space $A(S)$ separates points on S. Thus the uniqueness has been proved.

§ 7. Proof of Theorem 4.

1. Let D be a relatively compact subdomain of S. We may assume that the boundary C of D consists of a finite number of contours and f_{0} does not vanish on C. Let m be the minimum of $\left|f_{0}\right|$ on C. For every ε with $0<\varepsilon<m$, we set

$$
\varepsilon_{1}=\min \left(\frac{\varepsilon}{2}, \frac{\varepsilon}{2\left\|f_{0}\right\|}\right) .
$$

By Theorem 3 there is a constant $d_{1}>1$ as follows. If a T in $L(A(S), A(S))$ satisfies $c(T)<d_{1}$ and $T 1=1$, then there is a unique automorphism w of S such that

$$
\begin{align*}
|f(z)-(T f)(w(z))| & \leqq \varepsilon_{1} \min (\|f\|,\|T f\|) \\
& \leqq \frac{\varepsilon}{2} \min (\|f\|,\|T f\|)
\end{align*}
$$

for all f in $A(S)$ and all z in \bar{D}. Particularly,

$$
\begin{align*}
\left|f_{0}(z)-\left(T f_{0}\right)(w(z))\right| & \leqq \varepsilon_{1}\left\|f_{0}\right\|<\varepsilon \tag{2}\\
& <m \leqq\left|f_{0}(z)\right|
\end{align*}
$$

for all z on C. Hence, by the theorem of Rouché, $f_{0}(z)$ and $\left(T f_{0}\right)(w(z))$ have the same number of zeros in D.
2. Now we take a distance $d(\cdot, \cdot)$ on S which induces the original topology of S. All functions $f /\|f\|$ and $f /\|T f\|$ for $f \in A(S)$ and for T with $c(T)<d_{1}$ are equicontinuous on D, consequently, if $\delta>0$ is sufficiently small and $c(T)<d_{1}$, then

$$
\begin{equation*}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leqq \frac{\varepsilon}{2} \min (\|f\|,\|T f\|) \tag{28}
\end{equation*}
$$

for all z_{1}, z_{2} in D with $d\left(z_{1}, z_{2}\right)<\delta$ and for all f in $A(S)$.
3. Let a_{1}, \cdots, a_{l} be the elements of $N_{f_{0}}(D)$. We may assume that the neighborhoods $U_{\hat{o}}\left(a_{j}\right)=\left\{z \mid d\left(z, a_{j}\right)<\delta\right\}(j=1, \cdots, l)$ are contained in D and mutually disjoint. We want to show that for every sufficiently small $\varepsilon>0$ there is a $d>1$ such that, if $c(T)<d$ and w is the conformal automorphism corresponding to T in the sense of Theorem 3, then for every ζ in $N_{T f_{0}}(w(D)), w^{-1}(\zeta)$ is contained in $U_{\hat{o}}\left(a_{j}\right)$ for some j with $1 \leqq j \leqq l$. If it is not true, then there are
a positive sequence $\left\{\varepsilon_{n}\right\}$ with $\varepsilon_{n} \rightarrow 0$, a sequence $\left\{T_{n}\right\}$ in $L(A(S), A(S))$ satisfying $c\left(T_{n}\right) \rightarrow 1$ and $T_{n} 1=1$, and a point ζ_{n} in $N_{T_{n} f_{0}}(w(D))$, where w is a fixed conformal automorphism corresponding to T_{n} in the sense of Theorem 3 such that $w^{-1}\left(\zeta_{n}\right)$ is not in $U_{\delta}\left(a_{j}\right)$ for every n and every j with $1 \leqq j \leqq l$. Since we may use (27) for $\varepsilon=\varepsilon_{n}$ and $T=T_{n}$, we obtain

$$
\begin{equation*}
\left|f_{0}(z)-\left(T_{n} f_{0}\right)(w(z))\right|<\varepsilon_{n} \tag{29}
\end{equation*}
$$

for all z in D. Hence

$$
\left|f_{0}\left(w^{-1}\left(\zeta_{n}\right)\right)\right|<\varepsilon_{n},
$$

consequently,

$$
\lim _{n \rightarrow \infty} f_{0}\left(w^{-1}\left(\zeta_{n}\right)\right)=0
$$

We may assume that $\zeta_{n} \rightarrow \zeta_{0}$ for some ζ_{0} in S. Then, $f_{0}\left(w^{-1}\left(\zeta_{0}\right)\right)=0$, so, $w^{-1}\left(\zeta_{0}\right)$ $=a_{j}$ for some j with $1 \leqq j \leqq l$. Hence

$$
\lim _{n \rightarrow \infty} w^{-1}\left(\zeta_{n}\right)=a_{j},
$$

which is a contradiction.
4. In the previous section we have shown that for every ζ in $N_{T f_{0}}(w(D))$ there is an a_{j} in $N_{f_{0}}(D)$ whose δ-neighborhood contains $w^{-1}(\zeta)$ if $\varepsilon>0$ is sufficiently small and $c(T)$ is sufficiently close to 1 . Then, it follows from (26) and (28) that if $c(T)$ is sufficiently close to 1 and $T 1=1$,

$$
\begin{aligned}
& \left|f\left(a_{j}\right)-(T f)(\zeta)\right| \\
& \leqq\left|f\left(a_{j}\right)-f\left(w^{-1}(\zeta)\right)\right|+\left|f\left(w^{-1}(\zeta)\right)-(T f)(\zeta)\right| \\
& \leqq \varepsilon \min (\|f\|,\|T f\|)
\end{aligned}
$$

for all f in $A(S)$. Namely, a_{j} and ζ are ε-related with respect to T. Thus, if $\varepsilon>0$ is sufficiently small and $c(T)$ is sufficiently close to 1 , we can define a mapping θ of $N_{T f_{0}}(w(D))$ into $N_{f_{0}}(D)$ by setting, for every ζ in $N_{T f_{0}}(w(D))$, $\theta(\zeta)=a_{j}$. Observe that $\theta(\zeta)$ and ζ are ε-related with respect to T.
5. Next, we shall prove that θ is characterized as the mapping of $N_{T f_{0}}$ $(w(D))$ into $N_{f_{0}}(D)$ such that $\theta(\zeta)$ and ζ are ε-related with respect to T. We may show that if $\varepsilon>0$ is sufficiently small and $c(T)$ is sufficiently close to 1 , then a point a_{j} in $N_{f_{0}}(D)$ is uniquely determined for a given ζ in $N_{T f_{0}}(w(D))$ by the condition that a_{j} and ζ are ε-related with respect to T. If it were not, then there are a positive sequence $\left\{\varepsilon_{n}\right\}$ with $\varepsilon_{n} \rightarrow 0$, a sequence $\left\{T_{n}\right\}$ with $c\left(T_{n}\right) \rightarrow 1$, distinct points a_{j}, a_{k} in $N_{f_{0}}(D)(j \neq k)$ and a point ζ_{n} in $N_{T_{n} f_{0}}(w(D))$, where w is a fixed conformal automorphism corresponding to T_{n}, such that a_{j} and ζ_{n}, a_{k} and ζ_{n} are ε_{n}-related with respect to T_{n}. Hence

$$
\begin{aligned}
& \left|f\left(a_{j}\right)-f\left(a_{k}\right)\right| \\
& \leqq\left|f\left(a_{j}\right)-\left(T_{n} f\right)\left(\zeta_{n}\right)\right|+\left|f\left(a_{k}\right)-\left(T_{n} f\right)\left(\zeta_{n}\right)\right| \\
& \leqq 2 \varepsilon_{n}\|f\|
\end{aligned}
$$

for all f in $A(S)$. Therefore

$$
f\left(a_{j}\right)=f\left(a_{k}\right)
$$

for all f in $A(S)$, which is a contradiction.
6. Let $\varepsilon>0$ be a sufficiently small number. We denote by D_{0} the union of $w(D)$ for all conformal automorphisms w of S. It is a relatively compact subdomain of S. Since all functions $(T f) /\|f\|$ and $(T f) /\|T f\|$ for $f \in A(S)$ and for T with $c(T)$ close to 1 are equicontinuous on D_{0}, we can choose a $\delta>0$ such that

$$
\begin{equation*}
\left|(T f)\left(z_{1}\right)-(T f)\left(z_{2}\right)\right| \leqq \frac{\varepsilon}{2} \min (\|f\|,\|T f\|) \tag{30}
\end{equation*}
$$

for all z_{1}, z_{2} in D_{0} with $d\left(z_{1}, z_{2}\right)<\delta$, for all f in $A(S)$ and for all T with $c(T)$ sufficiently close to 1 .
7. To continue, we need the following proposition:

For every sufficiently small $\varepsilon>0$, there exists a $d>1$ such that, if $c(T)<d$ and $T 1=1$, then there exists a point $\zeta \in N_{T f_{0}}(w(D))$ whose δ-neighborhood contains $w(a)$, where a is an arbitrary point of $N_{f_{0}}(D)$ and w is the conformal automorphism of S corresponding to T in the sense of Theorem 3.

Suppose that this proposition does not hold. Then there are a positive sequence $\left\{\varepsilon_{n}\right\}$ with $\varepsilon_{n} \rightarrow 0$ and a sequence $\left\{T_{n}\right\}$ in $L\left(A(S), A(S)\right.$) with $c\left(T_{n}\right) \rightarrow 1$ and $T_{n} 1=1$ satisfying the following property ; there is a conformal automorphism w of S independent of n such that (29) is satisfied and $w(a)$ is not in $U_{\delta}(\zeta)$ for any ζ in $N_{T_{n} f_{0}}(w(D))$. It follows from (29) that

$$
\left|\left(T_{n} f_{0}\right)(w(a))\right|<\varepsilon_{n}
$$

consequently

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(T_{n} f_{0}\right)(w(a))=0 \tag{31}
\end{equation*}
$$

We may assume that $\left\{T_{n} f_{0}\right\}$ converges uniformly on every compact subset of S. We set

$$
\begin{equation*}
g_{0}=\lim _{n \rightarrow \infty} T_{n} f_{0} \tag{32}
\end{equation*}
$$

The inequality (29) implies that

$$
f_{0}(z)=g_{0}(w(z))
$$

in D. Hence the zeros of g_{0} in $w(D)$ are

$$
\zeta_{j}=w\left(a_{j}\right) \quad(j=1, \cdots, l) .
$$

If we choose a sufficiently small δ_{1} with $0<\delta_{1}<\delta / 2$, the neighborhoods $U_{\partial_{1}}\left(\zeta_{j}\right)$ ($j=1, \cdots, l$) are contained in $w(D)$ and mutually disjoint. There is a constant $\eta>0$ such that

$$
\left|g_{0}(z)\right|>\eta
$$

for all z in $w(D)-\bigcup_{j=1}^{l} U_{\hat{\partial}_{1}}\left(\zeta_{j}\right)$. Since the convergence in (32) is uniform on $w(D)$,

$$
\left|\left(T_{n} f_{0}\right)(z)\right|>\eta
$$

for all z in $w(D)-\bigcup_{j=1}^{l} U_{\delta_{1}}\left(\zeta_{j}\right)$ and for all sufficiently large n. By Hurwitz' theorem, each $U_{\hat{\sigma}_{1}}\left(\zeta_{j}\right)$ contains a point ζ in $N_{T_{n} f_{0}}(w(D))$ if n is sufficiently large. Then, $\delta>2 \delta_{1}$ implies $U_{\hat{\delta}}(\zeta) \supset U_{\delta_{1}}\left(\zeta_{j}\right)$. Hence $w(a)$ is not in $U_{\delta_{1}}\left(\zeta_{j}\right)(j=1, \cdots, l)$, for $w(a)$ is not in $U_{\hat{\sigma}}(\zeta)$ for any ζ in $N_{T_{n} f_{0}}(w(D))$. Therefore we can conclude that

$$
\left|\left(T_{n} f_{0}\right)(w(a))\right|>\eta
$$

for all sufficiently large n. This contradicts (31),
8. Now, let us prove that the mapping θ is onto. Let a be an arbitrary point in $N_{f_{0}}(D)$. For every sufficiently small $\varepsilon>0$, we take a T with $T 1=1$ and $c(T)$ sufficiently close to 1 so that (26) and (30) are satisfied, and so that there exists the ζ satisfying the proposition in the previous section. Then we have

$$
\begin{aligned}
& |f(a)-(T f)(\zeta)| \\
& \leqq|f(a)-(T f)(w(a))|+|(T f)(w(a))-(T f)(\zeta)| \\
& \leqq \varepsilon \min (\|f\|,\|T f\|)
\end{aligned}
$$

for all f in $A(S)$. Namely, a and ζ are ε-related with respect to T. Remember that $\theta(\zeta)$ is characterized by the condition that $\theta(\zeta)$ and ζ are ε-related with respect to T. Hence $a=\theta(\zeta)$, that is, the mapping θ is onto. Thus the proof has been completed.

References

[1] L.V. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-134.
[2] M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep., 11 (1959), 182-188.
[3] R. Rochberg, Almost isometries of Banach spaces and moduli of planar domains, Pacific J. Math., 49 (1973), 445-466.
[4] R. Rochberg, Almost isometries of Banach spaces and moduli of Riemann surfaces, Duke Math. J., 40 (1973), 41-52.
[5] R. Rochberg, Almost isometries of Banach spaces and moduli of Riemann surfaces II, Duke Math. J., 42 (1975), 167-182.

Yasushi Miyahara
Department of Mathematics
Science University of Tokyo
Wakamiya, Shinjuku-ku
Tokyo, Japan

