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It is well known that any compact Riemann surface can be represented by
a Schottky group. The so-called Schottky space, the set of all normalized
marked Schottky groups of genus $p$, has been investigated by many authors.
On the other hand, the concept of squeezing deformations of Riemann surfaces
is powerful to treat boundaries of spaces of Kleinian groups.

If a compact Riemann surface $S$ of genus $p$ is squeezed with respect to a
homotopically independent set $\{\alpha_{i}\}_{i=1}^{q}$ of loops on $S$, then there is a path in the
Schottky space of genus $p$ which tends to the boundary of the space. The aim
of this paper is to study squeezing deformations of Riemann surfaces by inves-
tigating the behavior of the path in the Schottky space.

In \S 1 we shall state the definition of squeezing deformations. Some useful
properties in the later discussions are proved in \S 2. In \S 4 we define the
Schottky space $S_{p}$ of genus $p$ and the boundary of $S_{p}$ , and classify the bound-
ary points of $S_{p}$ along the line due to Bers and Chuckrow. \S 5 is devoted to
prove the main Theorem 5.1 which asserts that, if a compact Riemann surface
of genus $P$ is squeezed with respect to a homotopically independent set $\{\alpha_{i}\}_{i=1}^{q}$

of A-cycles, then the path in $S_{p}$ corresponding to the deformation tends to a
cusp. We shall show another main Theorem 6.1 in \S 6 which states that, if a
compact Riemann surface of genus $p$ is squeezed with respect to a homotopically
independent set $\{\alpha_{i}\}_{i=1}^{q}$ of B-cycles, then the path in $S_{p}$ corresponding to the
deformation tends to a node.

The above theorems correspond to those in Abikoff [1] which concern with
squeezing deformations in the Teichm\"uller space of a finitely generated Fuchsian
groups of the first kind.

The author is indebted to Professors Oikawa, Kuroda and Taniguchi for
their suggestions and continual encouragement during his preparation of this
paper.

\S 1. The definition of squeezing deformations.

Let $\Gamma$ be a finitely or an infinitely generated Kleinian group acting on the
extended complex plane $\hat{C}$ and let $\Omega(\Gamma)$ be the region of discontinuity of $\Gamma$.
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Throughout this paper, a Kleinian group means a non-elementary Kleinian
group.

We denote by $\Delta$ a quasicomponent of $\Gamma$, that is, a (connected) domain con-
tained in $\Omega(\Gamma)$ and invariant under $\Gamma$ . Necessarily the boundary of $\Delta$ contains
at least three points. The quotient surface $ S=\Delta/\Gamma$ has a natural complex
structure so that the natural projection $\pi$ : $\Delta\rightarrow S$ is holomorphic.

Consider a set $\{\mu_{t}\}_{\iota\in \mathfrak{c}0.1)}$ of Beltrami differentials for $\Gamma$, that is, $\mu_{t}$ is a meas-
urable function with support in $\Omega(\Gamma)$ satisfying $\Vert\mu_{t}\Vert_{\infty}<1$ and $\mu_{t}(\gamma(z))\overline{\gamma^{\prime}(z})/\gamma^{\prime}(z)$

$=\mu(z)a$ . $e$ . for any $\gamma\in\Gamma$ . Then there exists a unique quasiconformal homeo-
morphism $F_{t}$ of $\hat{C}$ onto itself which satisfies

$\frac{\partial F_{t}(z)}{\partial\overline{z}}=\mu_{t}(z)\frac{\partial F_{t}(z)}{\partial_{Z}}$ on $\hat{C}$ and fixes $0,1$ and $\infty$ .

Clearly $F_{t}$ is compatible with $\Gamma$ and takes $\Gamma$ into a Kleinian group $\Gamma_{t}=F_{t^{\circ}}\Gamma\circ F_{t}^{-1}$ .
By setting $\hat{\mu}_{t}(w)=\mu_{t}(\hat{\pi}(w))\overline{\hat{\pi}^{\prime}(w})/\hat{\pi}^{\prime}(w)$ on the universal covering surface $U$

$=\{w:|w|<1\}$ of $\Delta$, where $\hat{\pi}$ : $ U\rightarrow\Delta$ is a natural projection, we see that there
exists a unique quasiconformal homeomorphism $\hat{F}_{t}$ of $U$ onto itself which

satisfies the equation $\frac{\partial\hat{F}_{t}(w)}{\partial\overline{w}}=\hat{\mu}_{t}(w)\frac{\partial F_{t}(w)}{\partial w}$ on $U$ and keeps the points $0$ and

1 invariant (Ahlfors-Bers [4]). Further, $\hat{F}_{t}$ is compatible with a Fuchsian model
$\hat{\Gamma}$ of $\Gamma$, which is the set of all M\"obius transformations satisfying $\hat{\pi}\circ\hat{\gamma}=\gamma\circ\pi$

for some $\gamma\in\Gamma$, and takes $\hat{\Gamma}$ into a Fuchsian model $\hat{\Gamma}_{t}=F_{t}\circ\hat{\Gamma}\circ\hat{F}_{c^{-1}}$ of $\Gamma_{t}$ .
Then there exists a quasiconformal homeomorphism $f_{t}$ of $S$ onto $S_{t}=\Delta_{t}/\Gamma_{t},$ $\Delta_{t}$

$=F_{t}(\Delta)$ , such that the following diagram

$F_{t}$

$U\rightarrow U_{t}=\{w:|w|<1\}$

it $\downarrow$

$F_{t}$

$\downarrow i$?
$\Delta\rightarrow\Delta_{t}=F_{t}(\Delta)$

$S=\Delta/\Gamma\pi\downarrow\rightarrow^{f_{t}}S_{t}=\Delta_{t}/\Gamma_{t}\downarrow\pi_{t}$

is commutative. Here the vertical arrows represent natural projections. For
$t\in[0,1)$ , we denote by $\hat{\rho}_{U_{t}}(w)|dw|,$ $\rho_{\Delta_{t}}(z)|dz|$ and $\rho_{s_{t}}(\zeta)|d\zeta|$ the Poincar\’e metrics
on $U_{t},$ $\Delta_{t}$ and $S_{t}$ , respectively.

For $t\in[0,1$ ) and for two points $P$ and $Q$ on the Riemann surface $S_{t}$ , we
denote by $d_{S_{t}}(P, Q)$ the non-Euclidean distance measured by the Poincar\’e metric
$\rho_{S_{t}}(\zeta)|d\zeta|$ on $S_{t}$ . For an analytic curve $\sigma$ on $S_{t}$ we denote by $l_{s_{t}}(\sigma)$ the non-
Euclidean length of $\sigma$ measured by $\rho_{S_{t}}(\zeta)|d\zeta|$ .

Let $\Delta^{\prime}$ be the domain obtained from $\Delta$ by deleting all the fixed points of
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elliptic elements in $\Gamma$ . Now let $\sigma$ be a loop on the subsurface $ S^{\prime}=\Delta^{\prime}/\Gamma$ of $S$

with a suitable initial and terminal point $P$. Letting $z_{0}\in\Delta^{\prime}$ be a point maPped
onto $P$ by $\pi$ : $\Delta\rightarrow S$, we can lift $\sigma$ to a curve $\tilde{\sigma}$ starting from $z_{0}$ . The end
point of $\tilde{\sigma}$ is $\gamma(z_{0})$ , where $\gamma\in\Gamma$ is uniquely determined by $\sigma$ and $z_{0}$ . The con-
jugacy class of $\gamma$ in $\Gamma$ depends only on $\sigma$ and we denote by $\tau(\sigma)$ the conjugacy
class. By the same manner as above, we determine a conjugacy class $\hat{\tau}(\sigma)$ in

$\hat{\Gamma}$ for $\sigma$ .
A set of oriented analytic simple curves $\alpha_{1},$ $\alpha_{2},$

$\cdots$ on $S^{\prime}$ is called homoto-
pically independent, if the following conditions are satisPed;

(i) $\alpha_{i}\cap\alpha_{j}=\emptyset,$ $i\neq j$ ,
(ii) every $\alpha_{i}$ bounds neither a disc nor a punctured disc on $S^{\prime}$ and
(iii) $\alpha_{i}$ and $(\alpha_{j})^{\pm 1}(i\neq j)$ are not freely homotopic.
Let $\{\alpha_{i}\}_{i=1}^{q}$ be a homotopically independent finite set of loops on $S^{\prime}$ . For

every $i$ we can find a doubly connected domain $E_{i}(\supset\alpha_{i})$ on $S^{\prime}$ surrounded by

simple loops such that $\overline{E}_{i}\cap\overline{E}_{j}=\emptyset,$ $i\neq j$, where $\overline{E}_{i}$ is the closure of $E_{i}$ .
Let $\{\mu_{t}\}_{c\in \mathfrak{c}0.1)}$ be a set of Beltrami differentials satisfying
(A) $\mu_{0}=0$,
(B) $\mu_{t}$ has the support in $\pi^{-1}(\bigcup_{i=1}^{q}E_{i})$,

(C) there exists a simple loop $\tilde{\alpha}_{i}$ in $E_{i}$ freely homotopic to $\alpha_{i}$ such that
$\lim_{t\rightarrow 1}l_{S_{t}}(f_{t}(\tilde{\alpha}_{i}))=0,$ $i=1,$ $\cdots$

$q$ ,

(D) $\mu_{t}$ converges to a measurable function $\mu$ almost everywhere such that,

for any compact subset $L$ of $S-\bigcup_{i=1}^{q}\tilde{\alpha}_{i},$ $|\mu(z)|<d_{L}<1$ for almost all $z\in\pi^{-1}(L)$ ,

where $d_{L}$ is a constant depending only on $L$ , and
(E) each component of $f_{t}(E_{i}-\tilde{\alpha}_{i})$ converges to a domain conformal to a

punctured disc, $i=1,$ $\cdots$ , $q$ .
Then we shall call the deformation of $S$ obtained by letting $t$ tend to 1 the

squeezing deformation of $S$ with respect to $\{\alpha_{i}\}_{i=1}^{q}$ .
We note that $\{\tilde{\alpha}_{i}\}_{i=1}^{q}$ is a homotopically independent set of loops. Our

definition of squeezing deformations is essentially same as the one introduced
by Bers [6] except a slight modification (D) and (E), in other word, on any

compact subset of $S-\bigcup_{i=1}^{q}\tilde{\alpha}_{i},$ $f_{t}$ is K-quasiconformal uniformly with respect to

the parameter $t\in[0,1$ ) of deformation. This fact plays an important role in
the proof of Theorem 5.1. We remark that neither $\{E_{i}\}_{i=1}^{q}$ nor $\{\tilde{\alpha}_{i}\}_{i=1}^{q}$ can
be determined uniquely by $\{\alpha_{i}\}_{i=1}^{q}$ , but this is not essential. Note that $f_{0}$ ,
$F_{0}$ and $F_{0}$ are the identity maps and that $\hat{\Gamma}_{0},$ $\Gamma_{0},$ $U_{0},$ $\Delta_{0}$ and $S_{0}$ coincide with
$\hat{\Gamma},$ $\Gamma,$ $U,$ $\Delta$ and $S$, respectively.

Now we shall show the existence of the squeezing deformation. For each
$i$, we can find a conformal homeomorphism $\phi_{i}$ of $E_{i}$ onto $D_{i}=\{\zeta_{i} : a_{i}^{2}<|\zeta_{i}|<1\}$ .
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We note that $\phi_{i}(\alpha_{i})$ is freely homotopic to a circle $d_{i}=\{\zeta_{i} : |\zeta_{i}|=a_{i}\}$ on $D_{i}$ and
the loop $\tilde{\alpha}_{i}=\phi_{i}^{-1}(d_{i})$ is in $E_{i}$ and is freely homotopic to $\alpha_{i}$ .

For $t\in[0,1$), consider a quasiconformal homeomorphism $f_{i.t}$ of $D_{i}$ onto the

annulus $D_{i,t}=\{\xi_{i}$ : $\frac{a_{i}^{2}(1-t)^{2}}{(1-a_{i}t)^{2}}<|\xi_{t}|<1\}$ :

$f_{i,t}(\zeta_{i})=\left\{\begin{array}{l}\frac{r_{i}-a_{i}t}{1-a_{i}t}e(\theta_{i}), a_{i}\leqq|\zeta_{i}|=r_{i}<1\\\frac{a_{i}r_{i}(1-t)^{2}}{(1-a_{i}t)(a_{i}-r_{i}t)}e(\theta_{i}), a_{t}^{2}<|\zeta_{i}|=r_{i}<a_{i},\end{array}\right.$

where $e(\theta)=\exp(\sqrt{-1}\theta)$ and $\zeta_{t}=r_{i}e(\theta_{i})$ . It should be noted that

$sup\{|\tilde{\mu}_{i,t}(\zeta_{i})| : t\in[0,1), a_{i}<b_{i}<|\zeta_{i}|<1\}<\frac{a_{i}}{2b_{i}-c_{i}}<1$ and

$sup\{|\rho_{i.t}(\zeta_{i})| : t\in[0,1), a_{i}^{2}<|\zeta_{i}|<c_{i}<a_{i}\}<\frac{c_{i}}{2a_{i}-c_{i}}<1$ ,

where $\rho_{i.t}(\zeta_{i})=\frac{\partial f_{i.t}(\zeta_{i})}{\partial\overline{\zeta}_{i}}/\frac{\partial f_{t.t}(\zeta_{i})}{\partial\zeta_{i}}$ .

Denoting by $\zeta$ a local parameter on $S$, we define the Beltrami differential $\tilde{\mu}_{t}$ as
follows:

$q$

$\tilde{\mu}_{t}(\zeta)=\left\{\begin{array}{ll}\tilde{\mu}_{i.t}(\phi_{i}(\zeta))\phi_{i}^{\prime}(\zeta)/\phi_{i}^{\prime}(\zeta) & on \bigcup_{i=1}E_{i},\\0 & elsewhere.\end{array}\right.$

Next we define the Beltrami differential $\mu_{t}$ for $\Gamma$ as follows:

$\mu_{t}(z)=\left\{\begin{array}{ll}\tilde{\mu}_{t}(\pi(z))\overline{\pi^{\prime}(z)}/\pi^{\prime}(z) & on \pi^{-1}(\bigcup_{i=1}^{q}E_{i}),\\0 & elsewhere.\end{array}\right.$

The set $\{\mu_{t}\}_{t\in \mathfrak{c}0,1)}$ gives the desired squeezing deformation. In fact, we see
obviously that $\{\mu_{t}\}_{\iota\in\zeta 0.1)}$ satisfies (A), (B), (D) and (E). We can also show that
$t\mu_{t}\}_{\iota\in \mathfrak{c}01)}$ satisfies (C) in a similar way to that of Bers [6].

\S 2. Properties of squeezing deformations.

First we shall prove the following.
LEMMA 2.1. Let $\Gamma$ be a function group with a quasicomp0nent $\Delta$ . Let

$\{\alpha_{i}\}f_{\Rightarrow 1}$ be a homotopically independent set of loops on $ S^{\prime}=\Delta^{\prime}/\Gamma$ . If $S$ is squeezed
with respect to $\{\alpha_{i}\}f=1$

’ then

$\lim_{t\rightarrow 1}$

$($trace $F_{t}\circ\gamma_{i}\circ F_{t}^{-1})^{2}=4$ for $\gamma_{i}\in\tau(\alpha_{i}),$ $i=1,$ $\cdots$ , $q$ .
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PROOF. We denote by $\rho_{\Delta^{*}}(z)|dz|$ the Poincar\’e metric on $\Delta^{*}=C-\{0,1\}$ .
Note that there exists a positive constant $M$ satisfying $\rho_{\Lambda^{*}}(z)>M$ for all
$z\in\{z:2\leqq|z|\leqq 4\}$ .

It suffices to prove the lemma in the case $q=1$ . We write $\tilde{\alpha}$ and $\gamma$ instead
of $\tilde{\alpha}_{1}$ and $\gamma_{1}$ , respectively, and set $\gamma_{t}=F_{t}\circ\gamma\circ F_{t}^{-1}$ for $t\in[0,1$ ). We may assume
that $\gamma_{t}$ is of the form $(a_{t}, 0j0, a_{t}^{-1})$ and that $\Delta_{t}$ does not contain the point
$z=1$ , because the square of the trace of a M\"obius transformation is invariant
under the conjugation.

Let $\Sigma_{t}$ be a path in $\Delta_{t}$ joining the repelling fixed point $0$ to the attracting
fixed point $\infty$ of $\gamma_{t}$ such that $\pi_{t}(\Sigma_{t})=f_{t}(\tilde{\alpha})$ . Let $z_{t}^{*}$ be a point on $\Sigma_{t}$ with $|z_{t}^{*}|$

$=3$ and let $\Sigma_{t}^{*}$ be the subarc of $\Sigma_{t}$ with end points $z_{t}^{*}$ and $\gamma_{t}(z_{t}^{*})$ . Clearly we
have

$l_{S_{t}}(f_{t}(\tilde{\alpha}))=\int_{\sim}f_{t}(a)\rho_{S_{t}}(\zeta_{t})|d\zeta_{t}|$

$=\int_{\Sigma_{t}}.\rho_{\Delta_{t}}(z_{t})|dz_{t}|\geqq\int_{\Sigma_{t}}.\rho_{\Delta^{*}}(z)|dz|$

$\geqq M\int_{\Sigma i}.|dz|$ ,

where $\Sigma_{t}^{n*}=\Sigma_{t}^{*}\cap\{z:2\leqq|z|\leqq 4\}$ . By the definition of squeezing deformation,

$\int_{\Sigma_{t}^{**}}|dz|$ must tend to zero as $t\rightarrow 1$ , or equivalently, $\gamma_{t}(z_{t}^{*})$ approaches to $z_{t}^{*}$ as
$t\rightarrow 1$ . This is the desired conclusion.

REMARK. Bers [6] proved Lemma 2.1 in the case where $\Gamma$ is a Fuchsian
group by using the method of extremal length. By using Bers’ argument, Sato
[23] also proved Lemma 2.1 in the case where $\Gamma$ is a Schottky group. We
can see that Bers’ argument is applicable for any Kleinian group.

The following important lemma is due to $J\emptyset rgensen[13]$ .
LEMMA 2.2. Let $g$ and $h$ be two Mobius transformations which generate a

Kleinian group
$\cdot$ Then the inequality

$|(traceg)^{2}-4|+|traceg\circ h\circ g^{-1}\circ h^{-1}-2|\geqq 1$

is satisfied.
By using this lemma, we prove the following
PROPOSITION 2.3. Let $\{\alpha_{i}\}f=1$ be a homoiopically independent set of loops on

$S^{\prime}$ . Let $\beta$ be a loop on $S^{\prime}$ which bounds neither a disc nor a Punctured disc such
that the intersection number of $\beta$ and some $\alpha_{i}$ is not zero. If $S$ is squeezed
with respect to $\{\alpha_{i}\}\theta=1$

’ then

$\lim_{t\rightarrow 1}l_{S_{t}}(f_{t}(\beta))=\infty$ .
PROOF. For brevity we consider only the case $q=1$ and we write $\tilde{\alpha}$ instead
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of $\tilde{\alpha}_{1}$ . Let $\hat{\gamma}\in\hat{\tau}(\alpha)$ and $\hat{\delta}\in\hat{\tau}(\beta)$ satisfy the condition that the axis of $\hat{\gamma}$ and that
of $\hat{\delta}$ have a common point. Denote by $\kappa_{1}(>1)$ and $\kappa_{2}(>1)$ the multipliers of $\hat{\gamma}$

and of $\hat{\delta}$ , respectively. Obviously we have

$l_{S_{t}}(f_{t}(\tilde{\alpha}))\geqq\log\kappa_{1}$

$=\log\frac{(trace\hat{\gamma}_{t})^{2}-2+((trace\hat{\gamma}_{t})^{2}((tracef_{t})^{2}-4))^{1/2}}{2}$

and

$l_{s_{t}}(f_{t}(\beta))\geqq\log\kappa_{2}$

$=\log\frac{(trace\hat{\delta}_{t})^{2}-2+((trace\hat{\delta}_{t})^{2}((trace\hat{\delta}_{t})^{2}-4))^{1/2}}{2}$ ,

where $\hat{\gamma}_{t}=\hat{F}_{t}\circ\hat{\gamma}\circ\hat{F}_{t}^{-1}$ and $\hat{\delta}_{t}=\hat{F}_{t}\circ\hat{\delta}\circ\hat{F}_{t}^{-1}$ . By the definition of squeezing deforma-
tion we see that $($trace $\hat{\gamma}_{t})^{2}$ tends to 4 as $t\rightarrow 1$ . To complete the proof of our
proposition, it suffices to show that $($trace $\hat{\delta}_{t})^{2}$ tends to infinity as $($trace $\hat{\gamma}_{t})^{2}\rightarrow 4$ .

Throughout the proof of our proposition, we assume that the Fuchsian model
$\hat{\Gamma}_{t}$ of $\Gamma_{t}$ acts on the upper half plane $H_{t}=$ { $w$ : Imw $>0$} and that $\hat{\gamma}_{t}$ is of the
form $(a_{t}, 0;0, a_{t}^{-1})(a_{t}>1)$ . We denote by $\xi_{t}$ and $\xi_{t}^{\prime}$ the attracting and the repel-
ling fixed points of $\hat{\delta}_{t}$ , respectively, and by $k_{t}^{2}(>1)$ the multiplier of $\hat{\delta}_{t}$ . Then

$\hat{\delta}_{t}$ is of the form

$\left(\begin{array}{ll}\frac{\xi_{t}k_{t}-\xi_{\iota^{\prime}}k_{t}^{1}}{\xi_{t}-\xi_{t}} & \frac{-\xi_{t}\xi_{t}^{\prime}k_{t}+\xi_{t}\xi_{c^{\prime}}k_{t}^{1}}{\xi_{t}-\xi_{t}^{\prime}}\\\frac{k_{t}-k_{t}^{-1}}{\xi_{t}-\xi_{t}’} & \frac{-\xi_{t}^{\prime}k_{t}+\xi_{t}k_{t}^{-1}}{\xi_{t}-\xi_{t}’}\end{array}\right)-$

.

As the axis of $\hat{\gamma}$ intersects that of $\hat{\delta}$ , we see that the axis of $\hat{\gamma}_{t}$ intersects that
of $\hat{\delta}_{t}$ . Hence $\xi_{t}\xi_{c^{\prime}}<0$ . So we may assume $\xi_{t}\xi_{\iota^{\prime}}=-1$ and we have

trace $\rho_{t}\circ\hat{\delta}_{t}\circ f_{t}^{-1}\circ\delta_{t}^{-1}=2-\frac{(k_{t}-k_{t}^{-1})^{2}(a_{t}-a_{t}^{-1})^{2}}{(\xi_{t}-\xi_{t})^{2}}$

and
$(\xi_{t}-\xi_{t}^{\prime})^{2}=\xi_{\iota^{2}}+2+\xi_{\iota^{\prime 2}}>2$ .

Therefore, we see

$|tracef_{t}\circ\delta_{t}\circ r_{c}^{-1}\circ\delta_{t}^{-1}-2|<\frac{1}{2}(a_{t}-a_{t}^{-1})^{2}(k_{t}-k_{t}^{-1})^{2}$ .

This inequality and Lemma 2.2 imply

$1-(a_{t}-a_{t}^{-1})^{2}<\frac{1}{2}(a_{t}-a_{t}^{-1})^{2}(k_{t}-k_{t}^{-1})^{2}$

Using our assumption, we see
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$\lim_{t\rightarrow 1}(a_{t}-a_{t}^{-1})^{2}=\lim_{t\rightarrow 1}$
$($trace $\hat{\gamma}_{t})^{2}-4|=0$ .

Hence we can conclude that $k_{t}$ tends to infinity as $t\rightarrow 1$ . Thus $($trace $\hat{\delta}_{t})^{z}$

$=(k_{t}+k_{t}^{-1})^{2}$ also tends to infinity as $t\rightarrow 1$ , which proves our assumption.
In the above proof, the condition $\lim_{t\rightarrow 1}l_{S_{\ell}}(f_{t}(\tilde{\alpha}))=0$ is essential rather than

the assumption that $S$ is squeezed with respect to $\alpha$ . Hence we can obtain
the following.

PROPOSITION 2.4. Let $\alpha$ and $\beta$ be simple loops on a Riemann surface $S$

such that the intersection number $\alpha$ and $\beta$ is not zero. Assume that both $\alpha$

and $\beta$ bound neither a disc nor a punctured disc. Let $\{f_{n}\}_{n=1}^{\infty}$ be a sequence of
quasiconformal homeomorPhisms of $S$ such that $l_{f_{n}(S)}(f_{n}(\alpha))$ tend to zero as
$ n\rightarrow\infty$ . Then $\lim_{n\rightarrow}l_{f_{n}(S)}(f_{n}(\beta))=\infty$ .

REMARK. Proposition 2.3 and Proposition 2.4 can be also obtained by a
theorem of Keen [14].

\S 3. Schottky spaces.

A Kleinian group $\Gamma$ is called a marked Schottky group of genus $P$ with
standard generators $\gamma_{1},$ $\cdots$ , $\gamma_{p}$ , if there exist $2p$ Jordan curves $C_{1},$ $C_{1}^{\prime},$ $\cdots$ , $C_{p},$ $C_{p}^{\prime}$

surrounding a $2P$ -ply connected domain $R$ such that $\gamma_{j}(R)\cap R=\emptyset$ and $\gamma_{j}(C_{j}^{\prime})=C_{j}$

for every $j$ . This marked Schottky group is denoted by $\Gamma=\langle\gamma_{1}, \cdots , \gamma_{p}\rangle$ . The
ordinary set $\Omega(\Gamma)$ of a Schottky group $\Gamma$ is connected. Maskit [17] proved
that a Kleinian group $\Gamma$ is a Schottky group if and only if $\Gamma$ is a finitely
generated free group and is purely loxodromic. From now on, we denote by
$\Gamma$ a Schottky group, and assume $p\geqq 2$ .

Let $\Gamma=\langle\gamma_{1}, \gamma_{p}\rangle$ be a marked Schottky group of genus $p$ . We denote
by $Q_{norm}(\Gamma)$ the set of all quasiconformal homeomorshisms of $\hat{C}$ onto itself being
compatible with $\Gamma$ which keep $0,1$ and $\infty$ invariant. The Schottky space $S_{p}(\Gamma)$

attached to $\Gamma$ is defined as the set

$S_{p}(\Gamma)=\{\langle F\circ\gamma_{1}\circ F^{-1}, F\circ\gamma_{p}\circ F^{-1}\rangle : F\in Q_{norm}(\Gamma)\}$ .
As is well known, for $F$ and $\tilde{F}(\neq F)$ belonging to $Q_{norm}(\Gamma)$, a marked Schottky
group $\langle F\circ\gamma_{1}\circ F^{-1}, \cdots , F\circ\gamma_{p}\circ F^{-1}\rangle$ may coincide with the marked Schottky group
$\langle\tilde{F}\circ\gamma_{1}\circ F-1\ldots , \tilde{F}\circ r_{p^{\circ F-1}}\rangle$ . We define that a sequence of M\"obius transforma-
tions $\{(a_{n}, b_{n} ; c_{n}, d_{n})\}_{n=1}^{\infty}$ converges to a M\"obius transformation $(a, b;c, d)$ as
$a_{n}\rightarrow a,$ $b_{n}\rightarrow b,$ $c_{n}\rightarrow c,$ $d_{n}\rightarrow d(n\rightarrow\infty)$ . We topologize $S_{p}(\Gamma)$ by requiring the
marked Schottky group $\langle F_{n}\circ\gamma_{1}\circ F_{n}^{-1}, \cdots , F_{n}\circ\gamma_{p}\circ F_{n}^{-1}\rangle$ converges to a marked
Schottky group $\langle g_{1}, \cdots , g_{p}\rangle$ , if, for every $j,$ $F_{n}\circ\gamma_{j}\circ F_{n}^{-1}$ converges to $g_{j}$ as
$ n\rightarrow\infty$ .

Let $\Gamma^{*}=\langle\gamma_{1}^{*}, \cdots , \gamma_{p}^{*}\rangle$ be another marked Schottky group of genus $p$ . Then
there exists a quasiconformal homeomorphism $F^{*}$ of $\hat{C}$ onto itself satisfying
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$\gamma_{j}^{*}=F^{*}\circ\gamma_{j}\circ(F^{*})^{-1},$ $j=1,$ $\cdots$ , $P$ (See Bers [9]). Hence the Schottky space $S_{p}(\Gamma^{*})$

attached to $\Gamma^{*}$ is homeomorphic to $S_{p}(\Gamma)$ . Therefore, in what follows, we fix
a marked Schottky group $\Gamma=\langle\gamma_{1}, \cdots , \gamma_{p}\rangle$ such that the attracting fixed points
of $\gamma_{1},$ $\gamma_{2}$ and $\gamma_{1}\circ\gamma_{2}$ are $0,1$ and $\infty$ , respectively. We write merely $S_{p}$ instead
of $S_{p}(\Gamma)$ and we call $S_{p}$ the Schottky space of genus $p$ .

Marden [17] defined the Schottky space $S_{p}^{1}$ of genus $P$ as follows:

$s_{p}^{1}=\{\langle F\circ\gamma_{1}\circ F^{-1}, F\circ\gamma_{p}\circ F^{-1}\rangle:F\in Q(\Gamma)\}$ ,

where $Q(\Gamma)$ is the set of all quasiconformal homeomorphism of $\hat{C}$ onto itself
being compatible with $\Gamma$ . Obviously we see that $S_{p}^{1}$ is a 3$P$-dimensional complex
manifold. Chuckrow [10] dePned the Schottky space $S_{p}^{2}$ as the quotient space
$ S_{p}^{1}/\sim$ , where $\sim$ is an equivalent relation defined in the following way: \langle $\gamma_{1},$ $\cdots$ ,
$\gamma_{p}\rangle\sim\langle\gamma_{1}^{*}, \cdots , \gamma_{p}^{*}\rangle$ if there exists a M\"obius transformation $h$ satisfying $\gamma_{j}^{*}$

$=h\circ\gamma_{J^{O}}h^{-1}$ for every $j$ . Hence we can see that $S_{p}^{2}$ is a $(3p-3)$-dimensional
complex manifold. Clearly, $S_{p}$ is homeomorphic to $S_{p}^{2}$ and is also $(3p-3)-$

dimensional complex manifold. In the later of this paper, we shall be concerned
with $S_{p}$ .

Let $\Psi$ be a homeomorphism of the set M\"ob of all M\"obius transformations
into the 3-dimensional complex projective space $P_{3}(C)$ transforming $(a, b;c, d)$

to $(a, b, c, d)$ . We denote by $X$ the set of all loxodromic transformations of
the form $(a, b;c, d),$ $c\neq 0$ . Denoting by $\overline{\Psi(\mathcal{L})}$ the closure of $\Psi(\mathcal{L})$ in $P_{3}(C)$ ,

we set $\xi(x)=\lim_{m\rightarrow\infty}\xi(x_{n})$ and $\xi^{\prime}(x)=\lim_{n\rightarrow\infty}\xi^{\prime}(x_{n})$ for $x\in\overline{\Psi(\mathcal{L}}$) $-\Psi(id)$, where $\{x_{n}\}_{n=1}^{\infty}$ is

a sequence of points in $\Psi(\mathcal{L})$ converging to $x$ and $\xi(x_{n})$ (resp. $\xi^{\prime}(x_{n})$) is the
attracting (resp. the repelling) fixed point of $\Psi^{-1}(x_{n})$ . We note that $\xi(x)$ and
$\xi^{\prime}(x)$ are well defined, because the fixed points of $\Psi^{-1}(x_{n})=(a_{n}, b_{n} ; c_{n}, d_{n})$ are
$(d_{n}-a_{n}\pm((a_{n}+d_{n})^{2}-4)^{1/2})c_{n}^{-1}=-4b_{n}(d_{n}-a_{n}\mp((a_{n}+d_{n})^{2}-4)^{1/2})^{-1}$ . Let $\Phi$ be the
homeomorphism of $S_{p}$ into the $P$-times product $P_{3}(C)^{p}$ of $P_{3}(C)$ transforming
$\langle g_{1}, g_{p}\rangle$ to $(\Psi(g_{1}), \cdots , \Psi(g_{p}))$ . We define the boundary $\partial S_{p}$ of $S_{p}$ as $\overline{\Phi(s_{p})}$

$-\Phi(S_{p})$ , where $\overline{\Phi(s_{p})}$ is the closure of $\Phi(S_{p})$ in $P_{3}(C)^{p}$ . Points in $\partial s_{p}$ are
classified as follows (See Bers [8] and Chuckrow [10]):

The boundary point $(x_{1}, \cdots , x_{p})$ of $S_{p}$ belongs to the category (I), if $\Psi^{-1}(x_{j})$

is a M\"obius transformation for all $j$ and if the group $G$ generated by $\Psi^{-1}(x_{1}),$ $\cdots$

$\Psi^{-1}(x_{p})$ contains a parabolic transformation. In this case, the point $(x_{1}, \cdots , x_{p})$

$\in\partial S_{p}$ is also called a cusp.
The boundary point $(x_{1}, \cdots , x_{p})$ of $S_{p}$ belongs to the category (II), if $\Psi^{-1}(x_{j})$

is a M\"obius transformation for all $j$ and if the group $G$ generated by $\Psi^{-1}(x_{1})$ ,
, $\Psi^{-1}(x_{p})$ does not contain a parabolic transformation.

The boundary point $(x_{1}, \cdots , x_{p})$ of $S_{p}$ belongs to the category (III), if the
following three conditions are satisfied:

(i) the set $J=\{j\in\{1, \cdots , p\} : x_{j}\not\in\Psi(M\text{"\""{o}"} b)\}$ is not empty,
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(ii) the set $\{\Phi^{-1}(x_{k}):k\in\{1, \cdots , p\}.-J\}$ of M\"obius transformations generates
a Schottky group of genus $p-$ (the number of elements of $J$ ), which may be
reduced to the trivial group consisting of only the identity, and

(iii) any two points in the set $\{\xi(x_{1}), \xi^{\prime}(x_{1}), \cdots , \xi(x_{p}), \xi^{\prime}(x_{p})\}$ are different
from each other. In this case the boundary point $(x_{1}, \cdots , x_{p})$ of $S_{p}$ is also
called a node.

The boundary point of $S_{p}$ belonging to none of (I), (II) and (III) belongs to
the category (IV).

Here we shall state some definitions. After Chuckrow [11], we call a
$g_{p},\tilde{g}_{1},\cdot\cdot,\tilde{g}_{r}andK1einian.groupGanextendedSchottkygroupwithstandardgenera.torsg_{1}withdefiningcurvesC_{1},C_{1},\cdots,C_{p},C_{p},\tilde{C}_{1},\tilde{C}_{1},\cdot\cdot,\tilde{C}_{r},\tilde{C}_{r}^{\prime},$

if
the following are satisfied:

(i) those curves are disjoint Jordan curves, except that, for every $k,\tilde{C}_{k}$

and $\tilde{C}_{k}^{\prime}$ have only one common point $\xi_{l}$ , and surround a $(2p+r)$-ply connected
domain $R$ such that

$g_{j}(R)\cap R=\tilde{g}_{k}(R)\cap R=\emptyset,$ $j=1$ , $\cdot$ .. , $p;k=1,$ $\cdots$ , $r$ ,

(ii) $g_{j}(C_{j}^{\prime})=C_{j},$ $j=1,$ $\cdots$ , $p$ , and $\tilde{g}_{k}(\tilde{C}_{k}^{\prime})=\tilde{C}_{k},$ $k=1,$ $\cdots$ , $r$ , and
(iii) $\tilde{g}_{k}$ is a parabolic transformation with the fixed point $\xi_{k}$ .
Clearly an extended Schottky group is a function group and does not con-

tain an elliptic transformation. Note that, if $r=0$ in the above definition of an
extended Schottky group $G$ , then $G$ is a Schottky group.

In general, a Kleinian group $G$ is called to be conformally extendable (Marden
[16]), if every type-preserving isomorphism between $G$ and some other group
$G^{*}$ induced by a conformal homeomorphism of the ordinary set of $G$ onto that
of $G^{*}$ is, in fact, induced by a M\"obius transformation.

A Keinian group $G$ is called to be geometrically finite, if it has a finite
sided Dirichlet fundamental polyhedra (see Marden [16] and Beardon-Maskit [5]).

The following is due to Beardon-Maskit [5], Marden [16] and Maskit [19].
(See also Maskit [20]).

LEMMA 3.1. Exteded Schottky grouPs are conformally extendable and geomet-
rically finite, and the limit sets of extended Schottky groups have zero area.

\S 4. Limits of M\"obius transformations.

For a loxodromic transformation $g$, a pair $(C, C^{\prime})$ of mutually disjoint Jordan
curves $C$ and C’ is called a pair of defining curves of $g$, if $g(C^{\prime})=C$ and $g(R)\cap R$

$=\emptyset$ for the doubly connected domain $R$ surrounded by $C$ and $C^{\prime}$ . For a para-
bolic transformation $g$, a pair $(C, C^{\prime})$ of Jordan curves $C$ and $C^{\prime}$ , which meet
only at the fixed point of $g$, is called a pair of defining curves of $g$ , if $g(C^{\prime})=C$

and $ g(R)\cap R=\emptyset$ for the simply connected domain $R$ surrounded by $C$ and $C^{\prime}$ .
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Clearly, for a parabolic or a loxodromic transformation $g$, a pair of defining
curves of $g$ exists but cannot be determined uniquely.

PROOF. The first assertion is obvious. To show the second assertion, set
$D=[C],$ $D’=[C^{\prime}],$ $E=[I(\gamma)]$ and $E=[I(\gamma^{-1})]$ . By a well known property of
isometric circles (see Ford [12], Theorem 17 at page 25) we have

Area $D+AreaD^{\prime}$

$=Area(D\cap E)+Area(D-E)+Area(D^{\prime}\cap E)+Area(D^{\prime}-E^{\prime})$

$\geqq Area(D\cap E)+AreaI(E^{\prime}-D^{\prime})+Area(D^{\prime}\cap E^{\prime})+Area(E-D)$

$=AreaE+AreaE^{\prime}$,

LEMMA 4.1. Let $\gamma=(a, b;c, d)(c\neq 0)$ be a loxodromic transformation and
let $(C, C^{\prime})$ be a pair of defining curves of $\gamma$ such that the domain surrounded
by $C$ and $C^{\prime}$ contains the point $\infty$ . Then $C$ separates the repelling fixed point
of $\gamma$ from $\infty$ and $C^{\prime}$ separates the attracting fixed point of $\gamma$ from $\infty$ . More-
over, if Area $X$ denotes the Euclidean area of a measurable set $X$ in $C$, if $[\Sigma]$

denotes the bounded domain surrounded by a closed Jordan curve $\Sigma$ on $C$, and
if $I(\gamma)$ is the isometric circle of $\gamma$ , then

Area $[C]+Area[C^{\prime}]\geqq Area[I(\gamma)]+Area[I(\gamma^{-1})]$ .

which is the required.
LEMMA 4.2. Let $\{\gamma_{n}\}_{n=1}^{\infty}$ be a sequence of loxodromic transformation satisfy-

ing the following conditions:
(i) $\gamma_{n}$ is of the form $(a_{n}, b_{n} ; c_{n}, d_{n})$ such that $a_{n}d_{n}-b_{n}c_{n}=1$ and $c_{n}\neq 0$,
(ii) there exist disjoint three points $z_{1},$ $z_{2}$ and $z_{3}$ in $C$ such that, for every

$i,$ $\gamma_{n}(z_{i})\rightarrow w_{i}$ as $ n\rightarrow\infty$ , where $w_{i}\neq w_{j}(i\neq j)$ ,
(iii) for an arbitrary $n$ , there exists a pair $(C_{n}, C_{n}^{\prime})$ of defining curves of

$\gamma_{n}$ such that $C_{n}$ and $C_{n}$ are contained in a closed disc $\{z:|z|\leqq M\}$ in $C$ and
such that $C_{n}$ and $C_{n}^{\prime}$ surround an unbounded domain, where $M$ is independent of
$n$, and

(iv) $\lim_{n\rightarrow\infty}a_{n},\lim_{n\rightarrow\infty}b_{n},\lim_{n\rightarrow\infty}c_{n}$ and $\lim_{n\rightarrow\infty}d_{n}$

exist in $\hat{C}$.
Then $\{\gamma_{n}\}_{n=1}^{\infty}$ converges to a Mobius transformation $g=(a, b;c, d)$ (ad–bc

$=1,$ $c\neq 0$) as $ n\rightarrow\infty$ .
PROOF. Assume $that^{-}c=\lim_{n\rightarrow\infty}c_{n}$ is infinity. Then the radius $|c_{n}|^{-1}$ of the

isometric circle $I(\gamma_{n})$ of $!\gamma_{n}r$ tends to zero as $ n\rightarrow\infty$ . Hence two points, for
instance, $z_{1}$ and $z_{2}$ among $z_{1},$ $z_{2}$ and $z_{3}$ , are in the exterior of $I(\gamma_{n})$ . So $\gamma_{n}(z_{1})$

and $\gamma_{n}(z_{2})$ are in the interior of the isometric circle $I(\gamma_{n}^{-1})$ of $\gamma_{n}^{-1}$ , whose radius
$|c_{n}|^{-1}$ tends to zero as $ n\rightarrow\infty$ . This implies $w_{1}=w_{2}$ , which contradicts (ii).
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Therefore, $c$ must be finite.
Next, assume $c=0$ . Then the Euclidean area $4\pi|c_{n}|^{-2}$ of $[I(\gamma_{n})]\cup[I(\gamma_{n}^{-1})]$

tends to infinity as $ n\rightarrow\infty$ . By Lemma 4. 1 we observe that Area $[C_{n}]$

$+Area[C_{n}^{\prime}]$ also tends to infinity, where Area $[C]$ denotes the Euclidean area
of the bounded domain surrounded by a Jordan curve $c$ . This contradicts our
assumption (iii). Thus $c$ must not be zero.

By (iii) we have $|a_{n}\cdot c_{n}^{-1}|=|\gamma_{n}(\infty)|\leqq M$ and $|d_{n}\cdot c_{n}^{-1}|=|\gamma_{n}^{-1}(\infty)|\leqq M,$ $n=1,2$ ,
$\ldots$ So we see that $a=\lim_{n\rightarrow\infty}a_{n}$ and $d=\lim_{n\rightarrow\infty}d_{n}$ are finite. Hence

$b=\lim_{n\rightarrow\infty}b_{n}=\lim_{n\infty}(a_{n}d_{n}-1)\cdot c_{n}^{-1}$

is also finite, and we complete the proof of our lemma.
For our study of limits of Schottky groups, the following result due to

Chuckrow [10] and $J\emptyset rgensen[13]$ is fundamental.
LEMMA 4.3. Let $\Gamma_{n}=\langle\gamma_{1,n}, \cdots , \gamma_{p.n}\rangle$ be a marked Schottky group, $n=1,2$ ,

$\ldots$ Assume that, for every $j,$ $\{\gamma_{j.n}\}_{n=1}^{\infty}$ converges to a Mobius transformation
$g_{j}$ as $ n\rightarrow\infty$ . Then none of $g_{1},$ $\cdots$ , $g_{p}$ is the identity.

Now we prove one more lemma.
LEMMA 4.4. Let $\{\gamma_{n}\}_{n=1}^{\infty}$ be a sequence of loxodromic transformations con-

verging to a parabOlic transformation $g$ . Let $(C_{n}, C_{n}^{\prime})$ be a pair of defining
curves of $\gamma_{n}$ such that $C_{n}$ and $C_{n}^{\prime}$ surround an unbounded domain. Assume the
existence of comPact sets $K$ and $\tilde{K}$ in $C$ satisfying the following conditions:

(i) the interior of $K$ contains $\tilde{K}$,
(ii) the boundary of $K$ is a Jordan curve $\Sigma$, and
(iii) $\tilde{K}$ contains $C_{n}$ and $C_{n}^{\prime}$ for every $n$ .

Then there exists a pair $(C, C^{\prime})$ of defining curves of $g$ such that $C$ and $C^{\prime}$

are contained in $K$.
PROOF. As $\gamma_{n}(z)$ is in $\tilde{K}$ for any $ z\in\Sigma$ and for any $n$ , we see that $g(z)$ is

in $\tilde{K}$ for any $ z\in\Sigma$ . Hence Jordan curves $\Sigma$ and $g(\Sigma)$ are disjoint each other.
Let $h$ be a M\"obius transformation such that $h\circ go$ $h^{-1}=(1,1;0,1)$ . We note
that the compact set $h(K)$ contains the point $\infty$ as its interior point and that
the boundary of $h(K)$ is the Jordan curve $h(\Sigma)$ . Let $z_{1}=x_{1}+\sqrt{-1}y_{1}$ be a point
on $h(\Sigma)$ satisfying $y_{1}\geqq y$ for any point $z=x+\sqrt{-1}y\in h(\Sigma)$ . If such a $z_{1}$ is not
uniquely determined, we cut away a sufficiently small piece of $K$ so that, for
the resulting compact set $K^{*}$ and the boundary Jordan curve $\Sigma^{*}$ of $K^{*}$ , there
exists a point $z_{1}^{*}=x_{1}^{*}+\sqrt{-1}y_{1}^{*}$ on $h(\Sigma^{*})$ satisfying $y_{1}^{*}>y$ for any $z=x+\sqrt{-1}y$

$\in h(\Sigma^{*})$ .
From now on, we write merely $z_{1},$ $y_{1},$ $h(K)$ and $h(\Sigma)$ instead of $z_{1}^{*},$ $y_{1}^{*}$ ,

$h(K^{*})$ and $h(\Sigma*)$ , respectively. Similarly, let $z_{2}=x_{2}+\sqrt{-1}y_{2}$ be the point on
$h(\Sigma)$ such that $y_{2}<y$ for any point $z=x+\sqrt{-1}y\in h(\Sigma)$ . Then $h(\Sigma)$ is divided
into two Jordan arcs by $z_{1}$ and $z_{2}$ . Take one of them containing the point
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$z_{3}=x_{3}+\sqrt{-1}y_{3}$ such that $x_{3}\leqq x$ for any $z=x+\sqrt{-1}y\in h(\Sigma)$ and denote it by $\sigma_{3}$ .
Let $\sigma_{1}=\{z=x+\sqrt{-1}y\in C:x=x_{1}, y\geqq y_{1}\}$ and $\sigma_{2}=\{z=x+\sqrt{-1}y\in C:x=x_{2}$ ,

$y\leqq y_{2}\}$ . Then $\sigma_{1},$ $\sigma_{2},$ $\sigma_{3}$ and the point $\infty$ make a Jordan curve $\sigma$ in $h(K)$ . Set
$\sigma=h\circ go$ $h^{-1}(\sigma^{\prime})$ .

Now we shall show that $\sigma$ and $\sigma^{\prime}$ have only one common point $\infty$ . Ob-
viously, $\sigma_{i}\cap h\circ go$ $h^{-1}(\sigma_{i})=\emptyset,$ $i=1,2$ . As $\sigma_{3}$ is contained in $h(\Sigma)$ , we see that
$h\circ g\circ h^{-1}(\sigma_{8})$ is contained in $h\circ g(\Sigma)$ . Moreover, $h(\Sigma)$ does not meet $h\circ g(\Sigma)$,
since $\Sigma$ does not meet $g(\Sigma)$ as stated already. Therefore, $\sigma_{3}$ and $h\circ go$ $h^{-1}(\sigma_{3})$

are disjoint each other. Finally, by the manner of choosing $z_{1}$ and $z_{2}$ , we have
$\sigma_{i}\cap h\circ g\circ h^{-1}(\sigma_{j})=\emptyset,$ $i\neq j$ . Set $C=h^{-1}(\sigma)$ and $C’=h^{-1}(\sigma^{\prime})$ . Then we can imme-
diately observe that $(C, C^{\prime})$ is the desired pair of defining curves of $g$ .

\S 5. Squeezing deformations with respect to $A$-cycles.

In this section, recalling notations and conventions stated in the previous
sections, we shall prove the following.

THEOREM 5.1. Let $\Gamma=\langle\gamma_{1}, \cdots , \gamma_{p}\rangle$ be a marked Schottky group of genus $P$

and let $\{\alpha_{i}\}f=1$ be a homotopically independent set of loops on $ S=\Omega(\Gamma)/\Gamma$ such
that $\tau(\alpha_{i})$ ($i=1,$ $\cdots$ , q) contains an element of standard generators of $\Gamma$ . If $S$

is squeezed with resPect to $\{\alpha_{i}\}f=1$

’ then the Point $P_{t}=(\Psi(F_{t}\circ\gamma_{1}\circ F_{t}^{-1}),$ $\cdots$

$\Psi(F_{t}\circ\gamma_{p}\circ F_{t}^{-1}))$ in $\Phi(S_{p})$ apprOaches to a cusp $Q=(x_{1}, \cdots , x_{p})$ and the group $G$

generated by $g_{1}=\Psi^{-1}(x_{1}),$ $\cdots$ , $g_{p}=\Psi^{-1}(x_{p})$ satisfies the following:

(i) if $\gamma_{j}\in\bigcup_{i=1}^{q}\tau(\alpha_{i})$ , then $g_{j}$ is parabolic and $G$ is an extended Schottky group,
(ii) $G$ is geometrically finite,
(iii) the limit set $\Lambda(G)$ of $G$ has area zero, and

(iv) $\Omega(G)/G$ represents a Riemann surface homeomorphic to $S-U\alpha_{i}i=1q$

REMARK. Every $\alpha_{l}$ is a so-called A-cycle.

Before proving Theorem 5.1, we mention that the set $\Omega_{\delta}=\Omega(\Gamma)-\pi^{-1}(\bigcup_{i=1}^{q}E_{i})$

is connected. Let $R$ be the fundamental domain for $\Gamma$ surrounded by $C_{1},$ $C_{1}^{\prime}$ ,
, $C_{p}$ and $C_{p}^{\prime}$, as we stated in \S 3. Let $\Sigma_{j}$ be a closed Jordan curve in $\Omega_{\delta\cap}R$

which separates $\{C_{j}, C_{j}\}$ from the set $(\bigcup_{k\neq j}(C_{k}\cup C_{k}^{\prime}))$ and satisfies $\Sigma_{j}\cap\Sigma_{k}=\emptyset$ ,

$j\neq k$ . By Lemma 3.1 it suffices to prove (i) and (iv) of Theorem 5.1.
LEMMA 5.2. Under the same assumptions as in Theorem 5.1, there exists a

sequence $\{(F_{t_{m}}\circ\gamma_{1}\circ F_{t_{m}}^{-1}, \cdots , F_{t_{m^{\circ}}}\gamma_{p}\circ F_{c_{m}}^{-1})\}_{m=1}^{\infty}$ in $\{P_{t}\}_{t\in\zeta 0.1)}\subset\Phi(S_{p})$ aPproaching to
a $cusPQ=(g_{1}, g_{p})$ , which satisfies (i) and (iv) in Theorem 5.1.

PROOF. We recall that $F_{t}$ is a quasiconformal homeomorphism of $\hat{C}$ onto
itself which leaves $0,1$ and $\infty$ fixed. Clearly the restriction $F_{t}^{\delta}$ of $F_{t}$ on $\Omega_{\delta}$ is
holomorphic and univalent. Since $F_{t}^{\delta}$ cannot take the values $0,1$ and $\infty$ , we
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see that $\{F_{t}^{\delta}\}_{t\in\zeta 0.1)}$ is a normal family. So we find a sequence $\{F_{t_{m}}^{\delta}\}_{m=1}^{\infty}$ in
$\{F_{t}^{\delta}\}_{t\in \mathfrak{c}0.1)}$ converging to a holomorphic function $\mathcal{F}^{\delta}$ locally uniformly in $\Omega_{\delta}$ .

By taking a subsequence, again denoted by $\{F_{t_{m}}\circ\gamma_{j}\circ F_{t_{m}}^{-1}\}_{m=1}^{\infty}$ , of $\{F_{t_{m}}\circ\gamma_{J^{O}}$

$F_{t_{m}}^{-1}\}_{m=1}^{\infty}$ and by noting Lemma 4.2, we see that $F_{t_{m}}\circ\gamma_{j}\circ F_{t_{m}}^{-1}$ tends to a M\"obius

transformation $g_{j}$ for every $j$ . By Lemma 2.1 and by Lemma 4.3, we see that

$g_{i}$ is parabolic for $i\in\hat{I}=\{j\in\{1, \cdots , p\} : \gamma_{j}\in\bigcup_{i\Leftarrow 1}^{q}\tau(\alpha_{i})\}$ .
As $\mathcal{F}^{\delta}$ is holomorphic and univalent on an open set containing $C_{j}\cup C_{j}^{\prime}$ for

$j\in\{1, \cdots , p\}-\hat{I}$, we see that $(C_{j}, C_{j}^{\prime})$ is a pair of defining curves of $g_{j}$ for $j$

$\in\{1, \cdots , p\}-\hat{I}$, where $C_{j}=\mathcal{F}^{\delta}(C_{j})$ and $C_{j}^{\prime}=\mathcal{F}^{\delta}(C_{j}^{\prime})$ . By Lemma 4.4, we can find
a pair $(C_{j}, C_{j}^{\prime})$ of defining curves of a parabolic transformation $g_{j}$ for every $j$

$\in\hat{I}$, such that, for any $j,$ $\mathcal{F}^{\delta}(\Sigma_{j})$ separates the set $\{C_{j}, C_{j}^{\prime}\}$ from the set
$U\{C_{k}, C_{k}^{\prime}\}$ . Thus we have the desired conclusion by a theorem of Maskit [19].
$k\neq j$

Next we shall define a mapping of $\Omega(\Gamma)-\pi^{-1}(\bigcup_{i=1}^{q}\tilde{\alpha}_{i})$ into $\hat{C}$, which is iden-

tical with $\mathcal{F}^{\delta}$ on $\Omega_{\delta}$ . Let $\delta_{i}^{k}$ be a doubly connected domain on $ S=\Omega(\Gamma)/\Gamma$ such

that $\delta_{i}^{k}$ contains $\tilde{\alpha}_{i}(k=1, 2, )$ and such that $\delta_{i}^{k}\supset\delta_{i}^{t}(k<l)$ and $\bigcap_{k=1}^{\infty}\delta_{i}^{k}=\tilde{\alpha}_{i}$ for

every $i$ . We may assume $\delta_{i}^{k}\cap\delta_{j}^{k}=\emptyset(i\neq j)$ for every $k$ . We put $\Omega_{\delta(k)}=\Omega(\Gamma)$

$-\pi^{-1}(U\delta_{i}^{k})i=1q$ and let $F_{t}^{\delta(h)}$ be the restriction of $F_{t}$ on $\Omega_{\delta(k)}$ for $t\in[0,1$). As

mentioned in \S 2, $F_{t}^{\delta(k)}$ is quasiconformal uniformly with respect to $t\in[0,1$)
for any $k$ . We denote by $K(k, t)$ the maximal dilatation of $F_{t}^{\delta(k)}$ in $\Omega_{\delta(k)}$ and
set $K_{k}=\sup_{t\in \mathfrak{c}0.1)}K(k, t)$ . Let $\{F_{\iota_{m}}^{\delta}\}_{m=1}^{\infty}$ be the sequence of holomorphic and uni-

valent functions converging to a holomorphic and univalent function $\mathcal{F}^{\delta}$ obtained
in the proof of Lemma 5.2. Let $\check{U}=\{w:|w|<1\}$ be the universal covering
surface of $\Omega_{\delta(1)}$ with the natural projection $\ddot{\pi}$ . Let $\check{F}_{m}$ be the quasiconformal
homeomorphism of $\check{U}$ onto $\check{U}$ keeping $0$ and 1 invariant and satisfying the

equation $\frac{\partial\check{F}_{m}(w)}{\partial\overline{w}}=\check{\mu}_{m}(w)\frac{\partial\check{F}_{m}(w)}{\partial w}$ , where $\check{\mu}_{m}(w)\overline{\check{\pi}(w)}/\check{\pi}^{\prime}(w)=\mu_{c_{m}}|\Omega_{\delta(1)}(z)$ .
Then clearly the following diagram

$\ddot{\pi}\downarrow\Omega_{\delta(1}\check{U}\rightarrow\check{U})^{\rightarrow F_{t_{m}}^{\delta(1)}(\Omega_{\delta(1\rangle})}F_{\iota_{m}}^{\delta(1)}\check{F}_{m}\downarrow\check{\pi}_{m}$

is commutative, where $\check{\pi}_{m}$ is the natural projection. In the similar way as in
the proof of Lemma 4.2, we can find a subseqence, denoted again $\{\check{\pi}_{m}\}_{m=1}^{\infty}$ , of

$\{\check{\pi}_{m}\}_{m=1}^{\infty}$ converging to a holomorphic function $\check{\pi}_{*}$ such that $\check{\pi}_{*}(U)$ is a (non-

empty) domain. By the definition of squeezing deformation $\frac{\partial\check{F}_{m}(w)}{\partial\overline{w}}/\frac{\partial\check{F}_{m}(w)}{\partial w}$
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converges to a measurable function $\check{\mu}$ with $\Vert\check{\mu}\Vert_{\infty}<d_{1}<1$ almost everywhere. So
the sequence $\{\check{F}_{m}\}_{m=1}^{\infty}$ converges to a $K_{1}$-quasiconformal homeomorphism $\check{\mathcal{F}}_{*}$

uniformly on $U$ (Ahlfors-Bers [4]). Therefore, $F_{t_{m}}^{\delta(1)}$ converges to $K_{1^{-}}quasicon-$

formal homeomorphism $\mathcal{F}^{\delta(1)}$ of $\Omega_{\delta(1)}$ as $ m\rightarrow\infty$ . Repeating this procedure, we
can construct a $K_{k}$ -quasiconformal homeomorphism $F^{\delta(k)}$ of $\Omega_{\delta(k)}$ . Obviously
$\mathcal{F}^{\delta(k)}=\mathcal{F}^{\delta(t)}$ on $\Omega_{\delta(k)}$ for $k<l$ . By setting $\mathcal{F}=\mathcal{F}^{\delta(k)}$ on $\Omega_{\delta(k)}$ for every $k$ , we

define a mapping of $\Omega(\Gamma)-\pi^{-1}$ ( $Ui=1q$ a i) into $\hat{C}$.
LEMMA 5.3. The mapping $\mathcal{F}$ constructed above is a homeomorphism of $\Omega(\Gamma)$

$-\pi^{-1}(U\tilde{\alpha}_{t})\ell=1q$ onto $\Omega(G)$ , where $G$ is the extended Schottky group obtained in

Lemma 5.2.
PROOF. For any $z_{1}$ and $z_{2}$ in $\Omega(\Gamma)-\pi^{-1}$ ( $\bigcup_{i=1}^{q}$ a $i$ ) there exists a number $k$

such that $z_{1}$ and $z_{2}$ are in $\Omega_{\delta(k)}$ . So $\mathcal{F}(z_{1})=\mathcal{F}^{\delta(k)}(z_{1})$ is not identical with $\mathcal{F}(z_{2})$

$=\mathcal{F}^{\delta(k)}(z_{2})$ . Recalling the construction of $\mathcal{F}$ , we see that $\mathcal{F}$ gives a local

homeomorphism of $\Omega(\Gamma)-\pi^{-1}(U\tilde{\alpha}_{i})l=1q$ so we observe that $\mathcal{F}$ is a homeomor-

phism of $\Omega(\Gamma)-\pi^{-1}(U\tilde{\alpha}_{i})i=1q$ into $\hat{C}$.

Consider a point $z\in\Omega(\Gamma)-\pi^{-1}$( $Ui=1q$ a $i$ ). Then there exists a number $k$ such

that $z\in\Omega_{\delta(k)}$ . Taking a neighborhood $V(\subset \mathcal{F}(\Omega_{\delta(k)}))$ of $\mathcal{F}(z)$ suitably and recall-
ing the construction of $\mathcal{F}$, we see that $\#$ { $g\in G$ : go $\mathcal{F}(z)\in V$ } $=\#\{\gamma\in\Gamma:\gamma(z)$

$\in \mathcal{F}^{-1}(V)\}$ , where $\# A$ denotes the number of elements in the set $A$ . Since
$z\in\Omega_{\delta(k)}\subset\Omega(\Gamma)$, we see $\#$ { $g\in G$ : go $\mathcal{F}(z)\in V$ } $=\#\{\gamma\in\Gamma:\gamma(z)\in \mathcal{F}^{-1}(V)\}<\infty$ . We

observe that $\mathcal{F}(z)$ is in $\Omega(G)$ and that $\mathcal{F}(\Omega(\Gamma)-\pi^{-1}(\bigcup_{i=1}^{q}\tilde{\alpha}_{i}))\subset\Omega(G)$ .
Now we will show $\mathcal{F}(\Omega(\Gamma)-\pi^{-1}(\bigcup_{i=1}^{q}\tilde{\alpha}_{i}))=\Omega(G)$ . We can regard the sequence

$\{\mathcal{F}^{\delta(k)}(\Omega_{\delta(k)})/G\}_{k=1}^{\infty}$ of Riemann surfaces as an increasing sequence with respect

to inclusion relation and can see that $\mathcal{F}(\Omega)(\Gamma)-\pi^{-1}(\bigcup_{i=1}^{q}\tilde{\alpha}_{i}))/G=\bigcup_{k=1}^{\infty}\mathcal{F}^{\delta(k)}(\Omega_{\delta(k)})/G$ is

a compact Riemann surface of genus $P-q$ with $2q$ points removed by the defini-
tion of squeezing deformation. From Lemma 5.2 we see that $\Omega(G)/G$ is also a

Riemann surface as stated above. Therefore, we see $\mathcal{F}(\Omega(\Gamma)-\pi^{-1}(\bigcup_{i=1}^{q}\alpha_{i}))=\Omega(G)$ .
Thus we have our lemma.

Now we stand at the place to complete the proof of Theorem 5.1. Let $G$

and $G_{*}$ be extended Schottky groups obtained in Lemma 5.2 as limits of some
sequences of points in $\{(F_{t}\circ\gamma_{1}\circ F_{t}^{-1}, \cdots , F_{t}\circ\gamma_{p}\circ F_{t}^{-1})\}_{t\in \mathfrak{c}(1.1)}\subset\Phi(S_{p})$ . Our final
task is to show that $G$ coincides with $G_{*}$ . Let $\mathcal{F}$ (resp. $\mathcal{F}_{\star}$ ) be the homeomor-

phism of $\Omega(\Gamma)-\pi^{-1}(U\tilde{\alpha}_{i})i=1q$ onto $\Omega(G)$ (resp. $\Omega(G_{*})$) obtained as stated above.
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Then $G$ coincides with $\mathcal{F}\circ\Gamma\circ \mathcal{F}^{-1}$ as a group acting on $\Omega(G)$ and $G_{*}$ is iden-
tical with $\mathcal{F}_{*}\circ\Gamma\circ \mathcal{F}_{*}^{-1}$ as a group acting on $\Omega(G_{*})$ . Hence $c_{*}$ is equal to
$\mathcal{F}_{*}\circ \mathcal{F}^{-1}\circ G\circ \mathcal{F}\circ \mathcal{F}_{*}^{-1}$ as a group acting on $\Omega(G_{*})$ . By calculating the Beltrami
coeficient, we see that $B=\mathcal{F}\circ \mathcal{F}_{*}^{-1}$ is holomorphic and univalent on $\Omega(G_{*})$ . By
Lemma 3.1, $B$ is a M\"obius transformation.

Let $\{\beta_{n}\}_{n=1}^{\infty}$ be the set of Jordan curves in $\Omega(G_{*})$ such that $\beta_{n}$ separates $0$

from 1 and $\infty$ and such that the Euclidean diameter of $\beta_{n}$ tends to zero as
$ k\rightarrow$ oo. The existence of $\{\beta_{n}\}_{n=1}^{\infty}$ is obvious, since $G_{*}$ is quasiconformally equi-
valent to an extended Schottky group preserving the uPper half plane. For
any $n$ we can find an integer $k$ such that $\mathcal{F}_{*}^{\delta(k)}(\Omega_{\delta(k)})$ contains $\beta_{n}$ and we see
that $B(\beta_{n})=\mathcal{F}^{\delta(k)}\circ(\mathcal{F}_{*}^{\delta(k)})^{-1}(\beta_{n})$ separates $0$ from 1 and $\infty$ . Since $B$ is a M\"obius

transformation, the Euclidean diameter of $B(\beta_{n})$ tends to zero as $ n\rightarrow\infty$ . Let
$z_{n}$ be a point on $\beta_{n}$ for every $n$ . Then the above fact shows

$|B(0)|=\lim_{n\rightarrow\infty}|B(z_{n})|\leqq\lim_{n=\infty}\sup_{w_{n}\in\beta_{n}}|B(w_{n})|=0$ ,

which means $B(O)=0$ . Similarly we observe that $B$ fixes 1 and $\infty$ , and hence
$B$ is the identity. Now we have $G=G_{*}$ and complete the proof of Theorem 5.1.

\S 6. Squeezing deformations with respect to $B$-cycles.

Let $\Gamma=\langle\gamma_{1}, \cdots , \gamma_{p}\rangle$ be a marked Schottky group of genus $P$ convented in
\S 4 and let $\{\alpha_{i}\}_{i=1}^{q}$ be a homotopically independent set of loops on $S=\Omega(\Gamma)/\Gamma$

such that, for every $i,$
$\alpha_{i}$ is freely homotopic to the projection of one of $C_{1},$ $C_{1}^{\prime}$ ,

... , $C_{p}$ and $C_{p}^{\prime}$ . We may assume $\pi(C_{1})=\alpha_{1}$ . Since the length $l_{F_{t}(\rho(\Gamma))}(F_{t}(C_{1}))$

of $F_{t}(C_{1})$ tends to zero, the Euclidean area of the bounded domain surrounded
by $F_{t}(C_{1})$ tends to zero as $t\rightarrow 1$ . The similar fact holds for $F_{t}(C_{t}^{\prime})$ . By Lemma
4.1, we can see that the radius of the isometric circle of $F_{t}\circ\gamma_{1}\circ F_{t}^{-1}$ tends to
zero as $t\rightarrow 1$ . By the same manner as in the proof of Theorem 5.1 we have
the following.

THEOREM 6.1. If $S$ is squeezed with respect to $\{\alpha_{i}\}f=\iota$

’ then the point
$(\Psi(F_{t}\circ\gamma_{1}\circ F_{t}^{-1}), \cdots , \Psi(F_{t}\circ\gamma_{p}\circ F_{t}^{-1}))$ in $\Phi(S_{p})$ aPproaches to a node $(x_{1}, \cdots , x_{p})$

$\in\partial S_{p}$ and $\Omega(H)/H-\pi_{H}(\xi(x_{1}), \xi^{\prime}(x_{1}),$ $\cdots$ , $\xi(x_{p}),$ $\xi^{\prime}(x_{p}))$ is homeomorphic to $S$

$-U\alpha_{i}i=1q$ where $H$ is the Schottky group generated by all Mobius transformations
among $\Psi^{-1}(x_{1}),$ $\cdots$ , $\Psi^{-1}(x_{p})$ and $\pi_{H}$ is the natural projection of $\Omega(H)$ to $\Omega(H)/H$,
respectively.

\S 7. Remarks.

Theorem 5.1 asserts that $\Omega(G)/G$ is homeomorphic to $\Omega(\Gamma)/\Gamma-\{\alpha_{i}\}_{i=1}^{q}$ . It
seems very natural. Theorem 6.1 seems also natural in the same sense. In
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general, let $\{\alpha_{i}\}^{q_{=1}}l$ any homotopically independent set of loops on $ S=\Omega(\Gamma)/\Gamma$ .
If $S$ is squeezed with respect to $\{\alpha_{i}\}_{i=1}^{q}$ , then we have a path $\{(F_{t}\circ\gamma_{1}\circ F_{t}^{-1},$ $\cdots$

$F_{t}\circ\gamma_{p}\circ F_{t}^{-1})_{t\in I0,1)}$ in $\Phi(S_{p})$ and there exists a sequence $\{t_{m}\}_{m=1}^{\infty}$ such that
$(F_{\iota_{m}}\circ\gamma_{1}\circ F_{\iota_{m}}^{-1}, \cdots , F_{t_{m}}\circ\gamma_{p}\circ F_{\iota_{m}}^{-1})$ approaches to a boundary point $Q=(x_{1}, \cdots , x_{p})$

of $S_{p}$ . Now, there is a question: What does $Q$ represent? From the view point
of Theorem 5.1 and Theorem 6.1, one might expect that $Q$ represents a union
of Riemann surfaces homeomorphic to $\Omega(\Gamma)/\Gamma-\{\alpha_{i}\}_{i=1}^{q}$ . But, as the following
example shows, there is a case where $Q$ does not represent a union of Riemann

surfaces homeomorphic to $\Omega(\Gamma)/\Gamma-\bigcup_{i=1}^{q}\alpha_{i}$ .
Let $\Gamma=\langle\gamma_{1}, \cdots , \gamma_{p}\rangle$ be the marked Schottky group convented in \S 4. Let

$C$ be a simple loop in $\Omega(\Gamma)$ which separates loops $C_{1},$ $C_{1}^{\prime}$ and the point $0$ from
loops $C_{2},$ $C_{2}’,$ $\cdots$ , $C_{p},$ $C_{p}^{\prime}$ and the points 1, $\infty$ . If $\Omega(\Gamma)/\Gamma$ is squeezed with
respect to $\pi(C)$ , then we have a path

$\{\Psi(F_{t}\circ\gamma_{1}\circ F_{t}^{-1}), \Psi(F_{t}\circ\gamma_{p}\circ F_{t}^{-1})\}_{t\in \mathfrak{c}0,1)}$ in $\Phi(S_{p})$ .
There exists a sequence $\{t_{m}\}_{m=1}^{\infty}$ in $[0,1$) such that $(F_{t_{m^{\circ}}}\gamma_{1}\circ F_{\iota_{m}}^{-1}, \cdots , F_{\iota_{m^{\circ}}}\gamma_{p}\circ F_{t_{m}}^{-1})$

approaches to a boundary point $Q\in\partial S_{p}$ . Since $F_{t_{m}}(C)$ shrinks to the point $0$,
we see that $F_{\iota_{m^{\circ}}}\gamma_{1}\circ F_{t_{m}}^{-1}$ cannot tend to a M\"obius transformation by Lemma 4.1
and that both the attracting and the repelling fixed points of $F_{\iota_{m^{\circ}}}\gamma_{1}\circ F_{t_{m}}^{-1}$ tend
to the point $0$ as $ m\rightarrow\infty$ . Therofore, $Q$ is neither a cusp nor a node. We
may say that $Q$ does not represent a union of Riemann surfaces homeomorphic
to $\Omega(\Gamma)/\Gamma-\pi(C)$ and represents only one part of $\Omega(\Gamma)/\Gamma-\pi(C)$ .
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