
J. Math. Soc. Japan
Vo1..31, No. 1, 1979

Generalized Hasse-Witt invariants and unramified Galois
extensions of an algebraic function field

By Hidenori KATSURADA

(Received June 5, 1977)
(Revised April 10, 1978)

Introduction.

In this paper, we give a certain generalization of the Hasse-Witt theory
(cf. [4]).

Let $K$ be an algebraic function field with an algebraically closed constant
field $k$ of characteristic $p>0$, and $g$ be its genus. Let $M$ be the maximum
unramified Galois extension of $K$. Let $\Delta_{g}$ be the group generated by $2g$

elements $u_{i},$ $v_{i}(i=1, \cdots, g)$ with the following fundamental relation:

$(u_{1}v_{1}u_{1}^{-1}v_{1}^{-1})$ ... $(u_{g}v_{g}u_{g}^{-1}v_{g}^{-1})=1$ .

Let $\overline{\Delta}_{g}$ be the completion of $\Delta_{g}$ with respect to subgroups of finite index.
Then, it is well known that there is a surjective homomorphism of $\overline{\Delta}_{g}$ onto
$Gal(M/K)$ , and that its kernel is contained in the intersection of kernels of
continuous homomorphism from $\overline{\Delta}_{g}$ to finite groups with order prime to $p$ .
(cf. [3]).

It is obvious that the structure of $Gal(M/K)$ (as an abstract group)
depends on $g$ and $p$ . We note that for any finite group $G$ with order prime
to $p$ , the number of unramified Galois extensions of $K$ whose Galois group is
isomorphic to $G$ is determined by $g$ . Moreover, it is well-known that the
structure of the Galois group of the maximal unramified abelian extension of
$K$ is determined by $g,$ $p$ , and the invariant $\gamma_{K}$ that was introduced by Hasse-
Witt (cf. [4]). Hence if $g=1$ , $Gal(M/K)$ is determined by $g,$ $p$ , and $\gamma_{K}$ .
But if $g\geqq 2$ , the structure of $Gal(_{1}M/K)$ is not determined only by $g$ , $p$

and $\gamma_{K}$ .
In \S 1, we define an unramified $D_{np^{m}}$-extension of $K$ as an unramified

Galois extension of $K$ whose Galois group is isomorphic to

$D_{np^{m}}=\langle\sigma,$ $\tau|\sigma^{p^{m}}=\tau^{n}=1,$ $\tau\sigma\tau^{-1}=\sigma^{i}$ , where $i$ is a primitive n-th

root of unity in $(Z/p^{m}Z)^{x}\rangle$ .
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In \S 2, we construct a certain invariant of $K$ depending on $n$ , and state
our main theorem. Let $\mathfrak{A}_{n}$ be the set of full representatives of divisor classes
of degree $0$ of $K$ whose orders are $n$ . Then the invariant is the set $\{\gamma_{A}\}_{A\in \mathfrak{A}_{n}}$ ,
where $\gamma_{A}$ is an integer which is determined by the class of $A$ . Then, our main
theorem gives the number of unramified $D_{np}$-extension of $K$ in terms of this
invariant (cf. [4]).

In \S 3, we give some lemmas and in \S 4, we prove the main theorem and
its corollaries.

In \S 5, we give some remarks which are mainly concerned with unramified
$D_{np^{m}}$ -extensions of $K$.

In \S 6, we give some examples. In particular, we give examples of algebraic
function fields which have the same $g,$ $p$ , and $\gamma_{K}$ but have different numbers
of unramiPed $D_{2p}$-extensions. Hence, our invariant is essentially new.

The author wishes his hearty thanks to Professor Y. Ihara who suggested
the author this problem. He wishes to express his hearty thanks to Professor
Y. Morita and Dr. Takayuki Oda for encouragements and careful readings.

\S 1. Preliminaries and notations.

We shall use the following notations.
$\#(A)$ : the cardinal of a set $A$ .
$(a, b)$ : the greatest common divisor of integers $a$ and $b$ .
Let $k$ be an algebraically closed field of positive characteristic $p$ . Let $K$ be

an algebraic function field over $k$, and $g$ be its genus. We assume that $g\geqq 2$ .
Let $L$ be a finite Galois extension of $K$. We denote by $[L : K]$ its degree
over $K$, and by $Gal(L/K)$ the Galois group.

Let $\mathfrak{z}$ be a prime divisor of $K$, and $\nu_{f}$ be the corresponding normalized
additive valuation of $K$. We denote by $K_{8}$ the completion of $K$ at $\mathfrak{z}$ , and put

$\mathfrak{Q}_{b}=\{a\in K_{b}|\nu_{\delta}(a)\geqq 0\}$ .
We denote by $K^{*}$ the multiplicative group $K-\{0\}$ , and by $K^{*n}$ the sub-

group of $K^{*}$ consisting of n-th powers of all elements of $K^{*}$ . We denote by
$K^{p}$ the image of $K$ under $P$-th power map. Finally, we denote by $F_{p}$ the field
with $P$ elements.

Let $G$ be a group, $N$ be a subgroup of $G$ , we put $ C_{G}(N)=\{\sigma\in G|\sigma\tau=\tau\sigma$

for all $\tau\in N$ }, the centralizer of $N$ in $G$ . We denote by

$\langle u_{1}, u_{2}, \cdots, u_{r}|f_{i}(u_{1}, u_{2}, \cdots, u_{r})=1 ; i=1,2, \cdots, s\rangle$

the group generated by $r$ elements $u_{1},$ $u_{2},$ $\cdots,$ $u_{r}$ and with a fundamental rela-
tions $f_{i}(u_{1}, u_{2}, \cdots, u_{r})=1$ .
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Let $L$ be an unramified abelian extension of $K$ of degree $n$ . We put

$\Delta_{L}=$ { $\theta\in L^{*}|\theta^{m}\in K^{*}$ for some integer $m\geqq 1$ },

and for each $\theta\in\Delta_{L}$ , we dePne an element $\chi_{\theta}$ of Hom $(Gal(L/K), k^{*})$ by

Xe: Gal $(L/K)\ni\sigma\rightarrow\theta^{-1}\theta^{\sigma}\in k^{*}$ .

Then it follows from the Kummer theory that the above homomorphism
$\Delta_{L}\ni\theta\rightarrow\&$ gives an isomorphism of $\Delta_{L}/K^{*}$ onto Hom $(Gal(L/K), k^{*})$ . Let $\mathfrak{D}_{0}$

be the group consisting of all divisors of $K$ of degree $0$ and let $\mathfrak{D}_{H}$ be the
subgroup of all principal divisors. We denote $A$ mod $\mathfrak{D}_{H}$ by $\overline{A}$ . For any
element $\theta$ of $\Delta_{L}$ , we associate an element $A_{\theta}$ of $\mathfrak{D}_{0}$ such tbat $A_{\theta}=(\theta)$ in $L$ .
This correspondence induces an injective homomorphism of $\Delta_{L}/K^{*}$ into $\mathfrak{D}_{0}/\mathfrak{D}_{H}$ .
We denote its image by $cl_{L/K}$ , and call it the divisor class group corresponding
to an extension $L$ over $K$.

We define the action of the operator $\mathfrak{p}$ on a subset of an extension field of
$K$ in the following manner:

$\mathfrak{p}(a)=a^{p}-a$ .

For any $Gal(L/K)$-submodule $A$ of $L$, we put $U_{A}=\cap(A\cap \mathfrak{p}K_{\partial})$ , and call an
element of $U_{A}$ an unramified element of $A$ . We note that, for any $\alpha\in L$,
$L(\alpha/\mathfrak{p})$ is unramified over $L$ if and only if $\alpha\in U_{L}$ , where $\alpha/\mathfrak{p}$ means a root of
the equation $\mathfrak{p}(X)=\alpha$ in the algebraic closure $\overline{L}$ of $L$ . If we have $pA\subset A$ ,

we denote by $W_{A}$ a quotient of a group $U_{A}$ by a subgroup $\mathfrak{p}A$ .
Let $\Omega(K/k)$ be the space of k-differentials of $K$, and for any divisor $A$ of

$K$, let
$\Omega(A)=$ {$\omega\in\Omega(K/k);\nu_{b}(\omega)\geqq\nu_{\mathfrak{z}}(A)$ for all primes $\mathfrak{z}$ of $K$ }.

Now the Cartier operator $C$ of $\Omega(K/k)$ is defined as follows. Let $X$ be an
element of $K$ which is not contained in $K^{p}$ . Then, for any element $\omega$ of
$\Omega(K/k),$ $\omega$ can be expressed uniquely as

$\omega=\sum_{i=0}^{p- 1}a_{i}^{p}x^{i}dx$ $(a_{i}\in K)$ .

Then, $C\omega=a_{p-1}dx$ .
This operator $C$ has the following properties:

(1) $C(\omega_{1}+\omega_{2})=C(\omega_{1})+C(\omega_{2})$ for $\omega_{1},$ $\omega_{2}\in\Omega(K/k)$

(2) $C(x^{p}\omega)=xC(\omega)$ for $x\in K$ and $\omega\in\Omega(K,/k^{\backslash }’$

(3) $C(dx)=0$

(4) $C(x^{-1}dx)=x^{-1}dx$
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(5) $\nu,$ $(C(\omega))>\nu_{i}(\omega)/p-1$ (cf. Cartier [1], [2]).

We denote by $L_{K}(A)$ the subspace of $K$ such that $\nu_{b}(x)\geqq-\nu_{b}(A)$ for all
prime divisors $\mathfrak{z}$ of $K$, and put $1(A)=\dim_{k}L_{K}(A)$ .

\S 2. Definition of invariants and the main theorem.

Let $A$ be an n-division point of $\overline{\mathfrak{D}_{0}}=\mathfrak{D}_{0}/\mathfrak{D}_{H}$ . Then, the dimension 1 of
$\Omega(A)$ is given by

$l=\{g-1g$
if $A\not\in \mathfrak{D}_{H}$ .
if $A\in \mathfrak{D}_{H}$

Now, we assume that $n$ divides $p-1$ . Let $\{\omega_{i}\}$ be a basis of $\Omega(A)$ , and
let $x$ be an element of $K$ such that $(x)=A^{p-1}$ . Then, it follows from the basic
properties of the Cartier operator that

$c\Omega(A^{p})\subset\Omega(A)$ .

Since $\{x\omega_{i}\}$ is a basis of $\Omega(A^{p})$ , there is a matrix $C_{A}=(c_{ij})$ of $M_{t}(k)$ such that

$C((x\omega_{k}))=C_{A}(\omega_{k})$ , that is, $C(x\omega_{k})=\sum c_{ki}\omega_{i}$ .

Let $\gamma_{A}$ be the rank of $C_{A}C_{A}^{(p)}$ $C_{A}^{(p^{l- 1})}$ , where $C_{A}^{(p^{k})}$ is the matrix $(c_{ij^{p^{k}}})$ .
We claim that this $\gamma_{A}$ does not depend on the choice of a basis of $\Omega(A)$

and a representative of a class of $A$ . To see this, let $\{\eta_{i}\}$ be another basis of
$\Omega(A)$ , and $C_{A}^{\prime}$ be the matrix such that

$C((x\eta_{k}))=C_{A}^{\prime}((\eta_{k}))$ .

Then, there is a regular matrix $S$ of $GL_{l}(k)$ such that

$(\eta_{k})=S(\omega_{k})$ .

Then, we have

$C(x\eta_{k})=C(S(x\omega_{k}))$ .
It follows from the basic Properties of Cartier operator (see \S 1) that

$c(S(x\omega_{k}))=S^{(1/p)}c((\chi_{\omega_{k}}))=S^{(1/p)}C_{A}(\omega_{k})=S^{(1/p)}C_{A}S^{-1}(\eta_{k})=C_{A}^{\prime}(\eta_{k})$ .

Hence, we have $C_{A}^{\prime}=S^{(1/p)}C_{A}S^{-1}$ . Therefore,

$C_{A}^{\prime}C_{A}^{\prime(p)}\cdots C_{A}^{\prime(p^{l-1})}=(S^{(1/p)}C_{A}S^{-1})(S^{(1/p)}C_{A}S^{-1})^{(p)}\cdots(S^{(1/p)}C_{A}S^{-1})^{(p^{l- 1})}$

$=S^{(1/p)}C_{A}C_{A}^{(p)}$ $C_{A}^{(p^{t- 1})}(S^{-1})^{(p^{l- 1})}$ .
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Since $S$ is regular,

rank $C_{A}^{\prime}C_{A}^{\prime(}p$
) $C^{\prime}1^{p^{t-1})}=rankC_{A}C_{A}^{(p)}$ $C_{A}^{(p^{t- 1})}$ .

Hence $\gamma_{A}$ does not depend on the choice of basis of $\Omega(A)$ .
Let $A_{1}$ be another representative of $A$ . Then, there exists a function $y$ of

$K$ such that $(y)A_{1}=A$ . Let $x_{1}$ be a function of $K$ such that $A_{1}^{p-1}=(x_{1})$ .
Then, $\{y\omega_{i}\}$ is a basis of $\Omega(A_{1})$ and $(x_{1})=(y^{p-1}x)$ . Hence,

$C((x_{1}y\omega_{k}))=C((y^{p}x\omega_{k}))=yC_{A}((\omega_{k}))=C_{A_{1}}((y\omega_{k}))$ .

We have $C_{A}=C_{A_{1}}$ , and $\gamma_{A}=\gamma_{A_{1}}$ . Hence, $\gamma_{A}$ does not depend on the choice of
representative of class $A$ . Terefore, $\gamma_{A}$ is uniquely determined by $\overline{A}$ . If we
call $\overline{\mathfrak{A}}_{n}$ the set of all n-division points of $\mathfrak{D}_{0}/\mathfrak{D}_{H}$ , the set $\{\gamma_{A}\}_{\overline{A}\in \mathfrak{U}_{n}}^{-}$ is an
invariant of $K$ (depending on $n$ ). Especially if $n=1$ , $\{\gamma_{A}\}_{\overline{A}\in\overline{\mathfrak{A}}_{n}}$ consists of one
element $\gamma_{K}$ , which was introduced by Hasse-Witt [4].

DEFINITION 1. A group $G$ is said to be $(m, n)$ tyPe if there exists abelian
groupsA of order $m$ and $H$ of order $n$ such that $G$ is a semi-direct product
of $H$ and $A$ , with $H$ as its normal subgroup.

DEFINITION 2. An unramified Galois extension of $K$ is said to be $(m, n)$

type if its Galois group is $(m, n)$ type. Especially, an unramified Galois exten-
sion of $K$ of $(n, p^{m})$ tyPe is said to be $D_{np^{m}}$ -tyPe if its Galois group is
isomorphic to

$D_{np^{m}}=\langle\sigma,$ $\tau|\sigma^{p^{m}}=\tau^{n}=1,$ $\tau\sigma\tau^{-1}=\sigma^{i}$ with $i$ a primitive n-th root of

unity mod $ p^{m}\rangle$ .

Then, we note that $n$ divides $p-1$ if $n$ is prime to $p$ .
Now, the main results of this paper can be stated as:
THEOREM. Let $K$ be an algebraic function field with an algebraically closed

constant field of positive characteristic $p$ , and let $g$ be its genus. We assume
that $g\geqq 2$ . Let $n$ be a positive integer such that $n$ divides $p-1$ . Then, the
number of unramified $D_{np}$-extensions of $K$ is equal to

$\sum_{A}(p^{\gamma_{A}}-1)/(p-1)$ ,

where A runs over full representatives of divisor classes of $K$ of order $n$ .
COROLLARY 1. Let $K$ be as in Theorem. Let $n$ be a positive integer prime

to $l$ . Then, the number of unramified Galois extensions of $K$ of $(n, p)$ type is
determined by $\{\gamma_{A}\}$ , where $\{A\}$ are full representatives of divisor classes of $K$

of degree $0$ whose orders divide $p-1$ and $n$ .
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COROLLARY 2. Let $K$ be as in Theorem. Let $L$ be an unramified abelian
extension of $K$ of exp0nent $p-1$ . Then, the Hasse-Witt invariant of $L$ is
equal to

$\sum_{A}\gamma_{A}$ ,

where A runs full representatives of divisor classes of $K$ of degree $0$ which
corresp0nd to $L$ over $K$.

COROLLARY 3. Let $K$ and $n$ be as in Theorem, and $m$ be a positive integer.
Then, the number of unramified $D_{np^{m}}$ -extensions of $K$ is equal to

$\sum_{A}\frac{p^{m\gamma_{A}}-p^{(m-1)\gamma_{A}}}{p^{m}-p^{m-1}}$ ,

where $\{A\}$ are as in Theorem.

\S 3. Some lemmas.

Let $K$ be an algebraic function field with an algebraically closed constant
field of characteristic $p$ , and $L$ be an unramified abelian extension of exponent
$p-1$ .

Let $W_{L}=\bigcap_{i}(\mathfrak{p}K_{\delta}\cap L)/\mathfrak{p}L=U_{L}/\mathfrak{p}L$ . Sinc\‘e $n$ divides $p-1,$ $p(\theta K)\in\theta K$ for
$\theta\in\Delta_{L}$ . Hence we can define a sub-module $W_{\theta K}$ of $W_{L}$ by

$W_{\theta K}=U_{\theta K}/\mathfrak{p}\theta K$ (cf. \S 1).

Let $A$ be a $Gal(L/K)$-module. Then we put for any element $\chi$ of
Hom $(Gal(L/K), F_{p}^{*})$ ,

$A^{\chi}=\{u\in A|u^{\sigma}=x(\sigma)u\}$ .

LEMMA 1. Let $L$ be an abelian extension of $K$ of exponent $p-1$ . Then,

$W_{L}\cong\bigoplus_{\overline{\theta}\in\Delta_{L}/K^{*}}W_{\theta K}$

and
$ W_{\theta K}=W_{L}^{\prime}\theta$

where &is an element of Hom $(Gal(L/K), F_{p}^{*})$ corresp0nding to $\theta$ (cf. \S 1).

PROOF. Let $u$ be an element of $U_{L}$ . Since $ L=\bigoplus_{\theta}\theta K=\bigoplus_{\theta}L^{\gamma_{\theta}}\cdot$ , $u$ can be

expressed as
$u=\sum_{\theta}a_{\theta}$ ,

where $ a_{\theta}\in\theta K=L^{\chi}\theta$ and the sum runs full representatives of $\Delta_{L}/K^{*}$ . Then for
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any element $\sigma$ of $Gal(L/K)$ ,

$u^{\sigma}=\sum_{\theta}\chi_{\theta}(\sigma)a_{\theta}$ .

We note that
$=n$ if $\theta\in K^{*}$ where $n=\# Gal(L/K)$ ,

$\sum_{\sigma\equiv Ga\iota(L/K)}\chi_{\theta}(\sigma)$

$=0$ if $\theta=\vee K^{\backslash }$ .
Hence $a_{\theta}$ can be expressed as

$a_{\theta}=\frac{1}{n}\sum_{\sigma\in Gal(L/K)}\chi_{\theta}(\sigma)^{-1}u^{\sigma}$,

that is, $a_{\theta}\in U_{\theta K}$ .
Since $L=\bigoplus_{\theta}\theta K$ and $n$ divides $p-1$ ,

$U_{L}=\bigoplus_{\theta}U_{\theta K}$ and $\mathfrak{p}L=\bigoplus_{\theta}\mathfrak{p}9K$ . Hence,

$W_{L}=U_{L}/\mathfrak{p}L=(6U_{\theta K})/(\bigoplus_{\theta\theta}\mathfrak{p}\theta K)\cong\bigoplus_{\theta}W_{\theta K}$ .

So the first assertion holds.
On the other hand, since $n$ divides $p-1,$ $W_{L}$ can be expressed as

$ W_{L}=\bigoplus_{\theta}W_{L}\theta$

and $W_{\theta K}cW_{L}^{\gamma_{\theta}}$ . Then the second assertion holds from these facts and the
first assertion. $q$ . $e$ . $d$ .

LEMMA 2. Let $K,$ $L$ be as in Lemma 1. Let $M$ be an unramified Galois
extension of $K$ of $(n, p)$ type containing L. (For the definition of $(n, p)$ type,
see \S 2). Then there is an element $\theta$ of $\Delta_{L}$ and a subgroup \langle a mod $\mathfrak{p}\theta K\rangle$ of $W_{\theta K}$

of order $p$ such that $M$ is generated over $L$ by an element $1/\mathfrak{p}(a)$ . Moreover
$\theta$ mod $K^{*}$ and the subgroup \langle a mod $\mathfrak{p}\theta K\rangle$ is uniquely determined by M. Conversely
for a subgroup \langle a mod $\mathfrak{p}\theta K\rangle$ of $W_{\theta K}$ of order $p,$ $L(1/D(a))$ is an unramified
Galois extension of $K$ of $(n, p)$ type containing $L$ .

PROOF. It follows from the Artin-Shreier theory that $M$ is an unramified
cyclic extension of $L$ of degree $p$ if and only if there exists a unique subgroup
\langle a mod $\mathfrak{p}L\rangle$ of $W_{L}$ of order $p$ such that $M=L(1/\mathfrak{p}(a))$ . Moreover, $M$ is a
Galois extension of $K$ if and only if for any $\sigma\in Gal(L/K)$ ,

$L(\frac{1}{\mathfrak{p}}$ (a) $)=L(\frac{1}{\mathfrak{p}}(a))$ .

It holds if and only if \langle a mod $\mathfrak{p}L\rangle$ $=$ \langle $a$ mod $\mathfrak{p}L\rangle$ . That is, \langle a mod $\mathfrak{p}L\rangle$ is a
Gal $(L/K)$-module. Hence there is an element $\chi$ of Hom $(Gal(L/K), F_{p}^{*})$ such
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that \langle a mod $\mathfrak{p}L\rangle$ $\subset W_{L}$ . It follows from the Kummer theory and Lemma 1 that
there exists an element $\theta$ of $\Delta_{L}$ such that $W_{L}=W_{\theta K}$ . Hence \langle a mod $\mathfrak{p}L\rangle$ $\subset W_{\theta K}$ .

Assume that \langle a mod $\mathfrak{p}L\rangle$ $\subset W_{\theta K}$ for $\theta^{\prime}$ of $\Delta_{L}$ . Then, it follows from
Lemma 1 that $W_{\theta K}\cap W_{\theta^{\prime}K}=0$ if $\theta\not\equiv\theta$ ‘ mod $K^{*}$ . Hence $\theta\equiv\theta^{\prime}$ mod $K^{*}$ .

Conversely, let \langle a mod $\mathfrak{p}L\rangle$ be a cyclic subgroup of $W_{\theta K}$ of order $p$ . Then
it is clearly a $Gal(L/K)$-module. Hence $L(1/\mathfrak{p}(a))$ is a Galois extension of $K$

of $(n, p)$ type containing L. $q$ . $e$ . $d$ .
COROLLARY. Let $K,$ $L$ be as in Lemma 2. Then there is $a$ one-to-one

corresp0ndence between the set of unramified extensions of $K$ of $(n, p)$ type
containing $L$ and the set

$\overline{\theta}\in\Delta_{L}/K^{*}U$

{subgroup of $W_{\theta K}$ of order $p$}.

PROOF. We Put

$U=$ {$unramified$ extensions of $(n,$ $p)$ type containing $L$ }

and

$S=\bigcup_{\overline{\theta}\in\Delta_{L}/K^{*}}$

{subgroups of $W_{\theta K}$ of order $p$ }.

It follows from Lemma 2 that for any element $M$ of $U$, there is an element
\langle a mod $\mathfrak{p}L\rangle$ of $S$ such that $M=L(1/\mathfrak{p}(a))$ , and that this \langle a mod $DL\rangle$ is uniquely
determined by $M$. Hence there is a mapping from $U$ into $S$ . Conversely for
any element \langle a mod $\mathfrak{p}L\rangle$ of $S,$ $L(1/\mathfrak{p}(a))$ is an unramified extension of $(n, p)$

type, that is, an element of $U$ . Moreover if $\langle a_{1}mod \mathfrak{p}L\rangle=\langle a_{2}mod \mathfrak{p}L\rangle$ ,
$L(1/\mathfrak{p}(a_{1}))=L(1/\mathfrak{p}(a_{2}))$ . Hence the above correspondence is one-to-one.

$q$ . $e$ . $d$ .
REMARK 1. Let $K,$ $L$ be as in Lemma 2. Let

$S_{\theta}=$ {$subgroups$ of $W_{\theta K}$ of order $p$ }.

It follows from Lemma 1 that $ S_{\theta}\cap S_{\theta^{\prime}}=\emptyset$ if \mbox{\boldmath $\theta$}$\mbox{\boldmath $\theta$}’ mod $K^{*}$ . Therefore it follows
from the corollary to Lemma 2 that the number of unramified extensions of $K$

of $(n, p)$ type containing $L$ is equal to

$\sum_{\overline{\theta}\in\Delta_{L}/K^{*}}\#S_{\theta}$
.

REMARK 2. Let $L=K(\theta)$ be an unramified cyclic extension of $K$ such that
$[L : K]$ divides $p-1$ . We put $n=[L;K]$ . Then it follows from Lemma 2
that an unramified Galois extension of $K$ of $(n, p)$ type containing $L$ is gen-
erated over by an element $1/\mathfrak{p}(a)$ , where \langle a mod $\mathfrak{p}L\rangle$ is an element of $S_{\theta^{i}}$ .
Then, $K(1/\mathfrak{p}(a))$ is an unramiPed $D_{n_{0}p}$-extension of $K$, where $n_{0}=[K(\theta^{i}) : K]$ .
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In fact if we put $v=1/\mathfrak{p}(a)$ , the conjugates of $v$ have the forms $\zeta^{f}(v+i)$ , with
$i\in F_{p}$ and $\zeta$ a primitive $n_{0^{-}}th$ root of unity. We define elements of $Gal(K(v)/K)$

as follows:
$\tau(v)=\zeta v$ , $\sigma(v)=v+1$ .

Then $\tau^{n}(v)=\sigma^{p}(v)=1$ , and $\tau\sigma\tau^{-1}(v)=v+\zeta^{-1}$ . Since $\zeta$ is a primitive $n_{0^{-}}th$ root
of unity and contained in $F_{p},$ $\langle\sigma, \tau\rangle\cong D_{n_{0}p}$ . On the other hand $\# Gal(K(v)/K)$

$=\# D_{n_{0}p}=n_{0}p$ . Hence $Gal(K(v)/K)\cong D_{n_{0}p}$ .
Therefore, $K(v)$ is an unramiPed $D_{n_{0}p}$-extension of $K$ if and only if

\langle a mod $\mathfrak{p}L\rangle$ is an element of $S_{\theta^{i}}$ , with $i$ an integer prime to $n$ . Therefore, the
number of unramified $D_{np}$-extensions of $K$ containing $L$ is equal to

$\sum_{(i,n)\Leftarrow 1}\#S_{\theta^{i}}$ .

\S 4. Proof of the Theorem.

Let $L=K(\theta)(\theta^{n}\in K)$ be an unramified cyclic extension of $K$ of degree $n$ .
We assume that $n$ divides $p-1$ . Let $A$ be a divisor of $K$ which corresponds
to $\theta$ as in \S 1. It follows from Remark 2 after Lemma 2 that there is one-to-
one correspondence between the set of unramified $D_{np}$-extensions of $K$ contain-
ing $L$ and the set $U$ $S_{(i)}$ , where $S_{(i)}$ is the set of subgroups of order $p$ as

$(i,n)=1$

defined in Remark 1 after Lemma 2. Therefore, the proof of Theorem can be
reduced to the fact
$(^{*})$ $p^{\gamma_{A}}=\# W_{\theta K}$ .

If $A\in \mathfrak{D}_{H}$ , this is nothing but the theory of Hasse-Witt [4]. Hence we assume
that $A\not\in \mathfrak{D}_{H}$ . In this case, we can prove $(^{*})$ using the method shown in
Hasse-Witt [4].

PROPOSITION 1. There are distinct primes $\mathfrak{G}_{1}$ , $\mathfrak{G}_{g-1}$ of $K$ such that
dim $k\Omega(A\mathfrak{G}_{1}\cdots \mathfrak{G}_{g-1})=0$, that is $l(A\mathfrak{G}_{1}\cdots \mathfrak{G}_{g-1})=0$ .

PROOF. Since dim $k\Omega(A)=g-1>0$ , there is a non-zero element $\omega_{1}$ of $\Omega(A)$ .
The zeroes of $\omega_{1}$ is finite, so there is a prime divisor of $K$ such that $\nu_{\mathfrak{G}_{1}}(\omega_{1})<$

$\nu_{\mathfrak{G}_{1}}(A\mathfrak{G}_{1})$ . Hence $\Omega(A)\supsetneqq\Omega(A\mathfrak{G}_{1})$ , so $\dim_{k}\Omega(A)-\dim_{k}\Omega(A\mathfrak{G}_{1})>0$ . On the
other hand,

dim $k\Omega(A\mathfrak{G}_{1})=g-2+1(A\mathfrak{G}_{1})$

and
$\dim_{k}\Omega(A)=g-1$ .

Since 1 $(A\mathfrak{G}_{1})\geqq 0$ , dim $k\Omega(A)-$ dim $k\Omega(A\mathfrak{G}_{1})\leqq 1$ . Hence dim $k\Omega(A\mathfrak{G}_{1})=g-2$ . Assume
that there are distinct $i$ primes $\mathfrak{G}_{1},$

$\cdots,$
$\mathfrak{G}_{i}$ of $K$ such that dim $k\Omega(A\mathfrak{G}_{1} \mathfrak{G}_{i})$

$=g-1-\iota$ . If $i=g-1$ , the assertion holds. If $i<g-1$ , then using the above
arguments, we can show that there is a prime divisor $\mathfrak{G}_{i+1}$ such that
dim $k(A\mathfrak{G}_{1}\cdots \mathfrak{G}_{i}\mathfrak{G}_{i+1})=g-2-i$ . By induction on $i$ , the assertion holds.
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Let us take a prime divisor $\mathfrak{G}_{i}^{\prime}$ of $L$ which is an extension of $\mathfrak{G}_{i}$ and take
a prime element $\pi_{i}$ with respect to $L_{\mathfrak{G}_{t^{J}}}$ . Since any prime divisor of $K$ is com-
pletely decomposed in $L,$ $K_{\mathfrak{G}_{i}}=L_{\mathfrak{G}_{i}^{\prime}}$ . Hence, we can take an element of $K_{\mathfrak{G}_{i}}$

(especially of $K$ ) as a prime element of $L_{\mathfrak{G}_{i}^{\prime}}$ . Since $\theta$ is contained in $K_{\partial}$ for all
prime divisors $\mathfrak{z}$ of $K$, there is an element $\xi$ of the adele ring $R_{K}$ of $K$ such
that $(\xi)_{l}=\theta$, where $(\xi)_{b}$ is the $\mathfrak{z}$-th component of $\xi$ . Hereafter, we shall denote
$\xi$ simply denote by $\theta$ . Let $r_{i}$ be an element of the adele ring $R_{K}$ such that

$(r_{i}),=0$ if $\mathfrak{z}\neq \mathfrak{G}_{i}$

$(r_{i})_{\partial}=1/\pi_{i}$ if $\mathfrak{z}=\mathfrak{G}_{i}$ .

PROPOSITION 2. There exists a matrix $B_{A}$ of $M_{g-1}(k)$ such that

$(r_{i}^{p})\equiv B_{A}(r_{i})$ $(mod \theta K+R_{K}(0))$ ,

where $R_{K}(0)=\{r\in R_{K}|\nu_{\mathfrak{z}}((r)_{\mathfrak{z}})\geqq 0\}$ .
PROOF. Since $l(A\mathfrak{G}_{1}\cdots \mathfrak{G}_{i}^{\nu}\cdots \mathfrak{G}_{g-1})=\nu+(g-2)-g+1=\nu-1$ , there is an

element $v_{i.\nu}$ of $K$ such that $\nu_{\mathfrak{G}_{i}^{\prime}}(\theta v_{i,\nu})=-\nu,$ $\nu_{\mathfrak{G}_{j}^{\prime}}(\theta v_{i,\nu})\geqq-1$ if $i\neq j$ , and $\nu_{\mathfrak{G}^{\prime}}(\theta v_{i.\nu})$

$\geqq 0$ is $\mathfrak{G}^{\prime}\neq \mathfrak{G}_{i}^{\prime},$
$\mathfrak{G}_{j}^{\prime}$ for any integer $\nu\geqq 2$ . Since $L_{\mathfrak{G}_{i}^{\prime}}=k((\pi_{i}))$ , we can express

$\theta v_{i,\nu}$ as
$\theta\nu_{i,\nu}=\sum_{t\geqq-\nu}c_{t}\pi_{i}^{t}$

where $c_{l}$ is an element of $k$ and $c_{-\nu}\neq 0$ . We can choose $\theta v_{i,v}$ so that $c_{-\nu}=1$ .
Then,

$\nu_{\mathfrak{G}i}(\theta v_{i.p}-(1/\pi_{i})^{p}-c_{-(}p- 1)\theta v_{i.p- 1})\geqq-(p-2)$

$\nu_{\mathfrak{G}_{j}^{\prime}}(\theta v_{i,p}-c_{-(P- 1)}\theta v_{i,p-1})\geqq-1$ if $i\neq j$ ,

$\nu_{\mathfrak{G}^{\prime}}(\theta v_{i.p}-c_{-(}p- 1)\theta v_{i,p- 1})\geqq 0$ if $\mathfrak{G}^{\prime}\neq \mathfrak{G}_{i}^{\prime}$ and $\mathfrak{G}_{j}^{\prime}$ .

Repeating this process, we can show that there are elements $v_{i}$ of $K$ and $b_{ij}$

of $k$ such that

$\nu_{\mathfrak{G}_{l}^{}}((1/\pi_{i})^{p}-\sum_{j=1}^{g-1}b_{ij}(1/\pi_{j})-\theta v_{i})\geqq 0$ ,

$\nu_{\mathfrak{G}^{\prime}}(\theta v_{i})\geqq 0$ if $\mathfrak{G}\neq \mathfrak{G}_{i}^{\prime}$ .

We put $B_{A}=(b_{ij})$ . Then, it follows from the above formulas that

$r^{p_{i}}-\sum_{j=1}^{g-1}b_{ij}r_{j}-\theta v_{i}\in R_{K}(0)$ . $q$ . $e$ . $d$ .
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Let $\{\mathfrak{G}_{i}\}_{i}$ be a divisor system that is defined in Proposition 1. Then,
we put

$L_{L}(\mathfrak{G}_{1}^{p}\cdots \mathfrak{G}_{g-1}^{p})=$ { $x\in L|\nu_{\mathfrak{G}}(x)\geqq-\nu_{\mathfrak{G}}(\mathfrak{G}_{1}^{p}\cdots \mathfrak{G}_{g-1}^{p})$ for any prime $\mathfrak{G}$ } of $L$

and

$V_{\theta K}=\bigcap_{j=1}^{g-1}(\theta K\cap \mathfrak{p}K_{\mathfrak{G}_{i}}\cap L_{L}(\mathfrak{G}_{1}^{p}\cdots \mathfrak{G}_{g-1}^{p}))$ .

Then in the following proposition, we shall consider the relation between $V_{\theta K}$

and $W_{\theta K}=\bigcap_{\iota}(\theta K\cap \mathfrak{p}K_{b})/\mathfrak{p}\theta K$.
PROPOSITION 3. $W_{\theta K}\cong V_{\theta K}$ .
PROOF. Let $u$ be an element of $V_{\theta K}$ . If $u$ is integral at a prime divisor

$\mathfrak{G}^{\prime}$ of $L$ , it follows from Hensel’s lemma and the fact that $k$ is algebraically
closed that $u$ is contained in $\mathfrak{p}\mathfrak{O}_{\mathfrak{G}^{\prime}}$ . Hence $u$ mod $\mathfrak{p}K\in W_{\theta K}$ . Conversely for
any unramified element $u$ of $\theta K$, we are going to prove that there exists an
element $\theta w$ of $V_{\theta K}$ such that $u\equiv\theta w(mod \mathfrak{p}\theta K)$ .

First take a $prime\mathfrak{G}^{\prime}$ of $L$ such that $\mathfrak{G}^{\prime}\neq \mathfrak{G}_{i}^{\prime}$ . If $\nu_{\mathfrak{G}}(u)\geqq 0,$ $u$ belongs to
$\mathfrak{Q}_{\mathfrak{G}^{\prime}}=\mathfrak{p}\mathfrak{Q}_{\mathfrak{G}^{\prime}}$ . Assume that $\nu_{\mathfrak{G}^{\prime}}(u)<0$ . Then there exists an integer $m$ such that
$\nu_{\mathfrak{G}^{\prime}}(u)=-Pm$ . Let $\mathfrak{G}$ be the restriction of $\mathfrak{G}^{\prime}$ to $K$. Since $l(A\mathfrak{G}_{1}\cdots \mathfrak{G}_{g-1}\mathfrak{G}^{m})$

$\geqq 1$ , there is an element $v^{\prime}$ of $K$ such that $\nu_{\mathfrak{G}^{\prime}}(\theta v^{\prime})=-m,$ $\nu_{\mathfrak{G}_{i}^{\prime}}(\theta v^{\prime})\geqq-1$ , and

Vot’ $(\theta v^{\prime})\geqq 0$ otherwise. Hence $\theta v^{\prime}$ can be expressed in $K_{\mathfrak{G}}$ as

$\theta v^{\prime}=\sum_{i\geqq-m}a_{i}\pi^{i}$ ,

where $\pi$ is a prime element of $K_{\mathfrak{G}}$ and $a_{i}\in k$ . Similarly $u$ can be expressed as
$u=\sum_{i\geqq-pm}b_{i}\pi^{i}$ , with $b_{i}\in k$ . Since $k$ is perfect field, there is an element $a$ of $k$

such that a $=b_{-pm}$ . We can choose $v^{\prime}$ so that $a_{-m}=a$ . Then

$\nu_{\mathfrak{G}^{\prime}}(u-\mathfrak{p}(\theta v^{\prime}))\geqq-p(m-1)$ , $(m\geqq 2)$ , $\nu_{\mathfrak{G}}\cdot(u-\mathfrak{p}(\theta v^{\prime}))\geqq\min(0, \nu_{\mathfrak{G}},(u))$

if $\mathfrak{G}$ “ is a prime of $L$ which is different from $\mathfrak{G}^{\prime}$ and $\mathfrak{G}_{i}^{\prime}$ . Repeating this
process, we can show that there is an element $v^{\prime}$ of $K$ such that

$\nu_{\mathfrak{G}^{\prime}}(u-\mathfrak{p}(\theta v^{\prime\prime}))\geqq 0$

for any prime divisor $\mathfrak{G}^{\prime}$ of $L$ which is different from $\mathfrak{G}_{i}^{\prime}$ . Since $ u\in\bigcap_{i=1}^{g-1}(\theta K\cap$

$\mathfrak{p}K_{\mathfrak{G}_{i}})$ , there is the set of integers $k_{i}$ such that $\nu_{\mathfrak{G}_{i}^{\prime}}(u)=-pk_{i}$ . Let $m$ be the
largest number of $k_{i}$ . Then the assertion holds if we have $m\leqq 1$ . Assume
that $m>1$ . Then since $l$ ( $ A\mathfrak{G}_{1}\ldots$ G8 $i$

$\mathfrak{G}_{g-1}$ ) $=k_{i}-1$ , for any integer $k_{i}$ such
that $k_{i}\geqq 2$ , there is an element $v_{k_{i}}$ of $K$ such that
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$\nu_{\mathfrak{G}_{i^{i}}}(\theta v_{k_{i}})=-k_{i}$

$\nu_{\mathfrak{G}_{j}^{}}(\theta v_{k_{i}})\geqq-1$ if $i\neq j$

$\nu_{\mathfrak{G}^{\prime}}(\theta v_{k_{i}})\geqq 0$ if $\mathfrak{G}^{\prime}$ is a prime divisor different from $\mathfrak{G}_{i}^{\prime}$ and $\mathfrak{G}_{j}^{\prime}$ .

We can express $u$ and $\theta v_{k_{i}}$ as

$u=\sum_{j\geqq-pk_{i}}b_{j}\pi^{f},$ $\theta v_{k_{i}}=\sum_{j\geq-k_{j}}$ a $j^{\pi^{j}}$

’

with $\pi$ a prime element of $K$. Then there is an element $a$ of $k$ such that $a^{p}$

$=b_{-pk_{i}}$ . We can take $u$ as $a_{-k_{i}}=a$ . Then,

$\nu_{\mathfrak{G}^{\prime}}(u-\mathfrak{p}(\theta v_{k_{i}}))\geqq-p(m-1)$ if $\mathfrak{G}^{\prime}=\mathfrak{G}_{i}^{\prime}$

$\geqq\min(-p, \nu_{\mathfrak{G}^{\prime}}(u))$ if $\mathfrak{G}^{\prime}\neq \mathfrak{G}_{j}^{\prime}$ $(i\neq j)$

$\geqq\min(0, \nu_{\mathfrak{G}^{\prime}}(u))$ if $\mathfrak{G}^{\prime}\neq \mathfrak{G}_{i}^{\prime},$ $\mathfrak{G}_{j}^{\prime}$ .

Repeating this process, we can show that there is an element $v$ of $K$ such that

$\nu_{\mathfrak{G}^{\prime}}(u-\mathfrak{p}(\theta v))\geqq-p$ if $\mathfrak{G}^{\prime}=\mathfrak{G}_{i}$ ,

$\geqq 0$ if $\mathfrak{G}^{\prime}\neq \mathfrak{G}_{i}$ .
That is, $u-\mathfrak{p}(\theta v)\in L_{L}(\mathfrak{G}_{1}^{p}\cdots \mathfrak{G}_{g-1}^{p})$ . Since $\theta^{p-1}\in K$, there is an element $w$ of
$K$ such that $\theta w=u-\mathfrak{p}(\theta v)$ . Then $w$ satisfies the required conditions.

We note that this fact implies that the homomorphism $f$ of $ V_{\theta K}=\bigcap_{i=1}^{g-1}(\theta K\cap$

$\mathfrak{p}K_{\mathfrak{G}_{i}})\cap L_{L}(\mathfrak{G}_{1}^{p} \mathfrak{G}_{g-1}^{p})$ into $W_{\theta K}=\bigcap_{\mathfrak{G}}(\theta K\cap K_{\mathfrak{G}})/\mathfrak{p}\theta K$ defined by

$f$ : $V_{\theta K}\rightarrow W_{\theta K}$

$(1i$ $1V$

$u$ $\rightarrow$ $u$ mod $\mathfrak{p}\theta K$

is a surjective homomorphism.
Finally, let $u$ be an element of $V_{\theta K}$ such that $u\equiv 0(mod \mathfrak{p}\theta K)$ . Then $u$ can

be expressed as $u=(\theta x)^{p}-\theta x$ with an element $x$ of $K$. Since $u\in L_{L}(\mathfrak{G}_{1}^{p}\cdots \mathfrak{G}_{g-1}^{p})$ ,
$\nu_{\mathfrak{G}_{i}}(\theta x)\geqq-\nu_{\mathfrak{G}_{i}^{}}(\mathfrak{G}_{i})$ , that is $\nu_{\mathfrak{G}_{i}}(x)\geqq-\nu_{\mathfrak{G}_{i}}(A\mathfrak{G}_{i})$ for any $1\leqq i\leqq g-1$ and $\nu_{\mathfrak{G}}(x)\geqq$

$-\nu_{\mathfrak{G}}(A)$ for any prime divisor different from $\mathfrak{G}_{i}$ . This implies $ x\in L_{K}(A\mathfrak{G}_{1}\cdots$

$\mathfrak{G}_{g- 1})$ .
On the other hand, it follows from the choice of $\mathfrak{G}_{i}$ that dim $ kLK(A\mathfrak{G}_{1}\ldots$

$\mathfrak{G}_{g-1})=0$ . Hence we have $x=0$ . This implies that $f$ is injective. $q$ . $e$ . $d$ .
We put

$R_{A}=\{(c_{i})\in k^{g- 1}|{}^{t}(c_{i}^{p})B_{A}={}^{t}(c_{i})\}$ .

This is an $F_{p}$-vector space of finite rank. Now we are going to calculate the
rank of $W_{\theta K}=\bigcap_{l}(\mathfrak{p}K_{\delta}\cap\theta K)/\mathfrak{p}\theta K$ in terms of $R_{A}$ .
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PROPOSITION 4. $V_{\theta K}\cong R_{A}$ .
PROOF. Let us take an element $u$ of $V_{\theta K}$ . Then there is an element $c_{i}$ of

$k$ such that
$\theta u=(c_{i}/\pi_{i})^{p}-c_{i}/\pi_{i}$

that is,

$\theta u\equiv{}^{t}(c^{p_{i}})(r_{l}^{p})-{}^{t}(c_{i})(r_{i})$

On the other hand, by Proposition 2,

$(r_{l}^{p})\equiv B_{A}(r_{i})$

$(mod \mathfrak{Q}_{\mathfrak{G}_{i}})$ ,

$(mod R_{K}(0))$ . (1)

$(mod R_{K}(0)+\theta K)$ .
That is, there is an element $v_{i}$ of $K$ such that

$(\theta v_{i})=(r^{p_{i}})-B_{A}(r_{i})$

Hence

${}^{t}(c_{i}^{p})(\theta v_{i})={}^{t}(c^{p_{i}})(r^{p_{i}})-{}^{t}(c^{p_{i}})B_{A}(r_{i})$

It follows from (1) and (3) that

$(mod R_{K}(0))$ . ( $ 2\rangle$

$(mod R_{K}(0))$ . ( $ 3\rangle$

$\theta(u-{}^{t}(c^{p_{l}})(v_{i}))={}^{t}(c_{i}^{p})B_{A}(r_{i})-{}^{t}(c_{i})(r_{i})\in L_{K}(A\mathfrak{G}_{1}\cdots \mathfrak{G}_{g-1})$ .

It follows from the choice of $\mathfrak{G}_{1},$

$\cdots,$
$\mathfrak{G}_{g-1}$ that

$u-{}^{t}(c_{i}^{p})(v_{i})=0$ .

Hence ${}^{t}(c_{i})(r_{i})-l(c^{p_{i}})B_{A}(r_{i})=0$ . Hence ${}^{t}(c_{i})-{}^{t}(c^{p_{i}})B_{A}=0$ , that is, ${}^{t}(c_{i})\in R_{A}$ . If
$u=0,{}^{t}(c_{i}^{p})(v_{i})=0$ . Hence we have ${}^{t}(c^{p_{i}})(\theta v_{i})=0$ . It follows from (2) that $\{\theta v_{i}\}$ is
linearly independent over $k$ . Hence we have $(c_{i})=0$ . Therefore we can dePne
a homomorphism $g$ of $V_{\theta K}$ into $R_{A}$ as follows:

$g.V_{\theta K}\theta uu)\rightarrow()\rightarrow R_{A}(\bigcup_{C_{i}}$

such that $u=(c^{p_{i}})(v_{i})$ .
We are going to show that this homomorphism is an isomorphism. Let ${}^{t}(c_{i}\rangle$

be an element of $R_{A}$ . Then,

${}^{t}(c^{p_{i}})(\theta v_{i})={}^{t}(c_{i}^{p})(r_{i}^{p})-{}^{t}(c^{p_{i}})B_{A}(r_{i})$ $(mod R_{K}(0))$

$={}^{t}(c^{p_{i}})(r^{p_{l}})-{}^{t}(c_{i})(r_{i})$ $(mod R_{K}(0))$ .

Hence $\theta u=\sum c^{p_{i}}\theta v_{i}\in V_{\theta K}$ . This implies that $g$ is surjective. Finally if $(c_{i})=0$ ,
then we have $u=0$ . This implies that $g$ is injective. Hence we have $R_{A}\cong W_{\theta K}$ .

$q$ . $e$ . $d$ .
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It follows from Satz 10 of Hasse-Witt [4] that

$rank_{F_{p}}R_{A}=\delta_{A}$ ,

where $\delta_{A}$ is the rank of $B_{A}B_{A}^{(p)}\cdots B_{A}^{(p^{l-1})}$ . Therefore the proof of Theorem is
completed if we have the following proposition.

PROPOSITION 5. $\delta_{A}=\gamma_{A}$ .
PROOF. We put

$R(A)=$ { $r\in R_{K}|\nu_{b}((r)_{8})\geqq-\nu_{\mathfrak{p}}(A)$ for any prime $\mathfrak{z}$ of $K$ }.

Let $r_{i}$ be elements of $R_{K}$ that are defined in Proposition 2. Assume that

$\sum_{i=1}^{g-1}c_{i}r_{i}/\theta\equiv 0$ $(mod R(A)+K)$ with elements $c_{i}$ of $k$ .

Let $v$ be an element of $K$ such that

$\sum_{i=1}^{g-1}c_{i}r_{i}/\theta\equiv v(R(A))$ for some $c_{i}$ of $k$ .

Then, $\nu_{\mathfrak{G}_{i}}(\theta v)\geqq-1$ for any prime divisor $\mathfrak{G}_{i}$ that is defined in Proposition 1.
Since 1 $(A\mathfrak{G}_{1}\cdots \mathfrak{G}_{g-1})=0$, we have $v=0$ . That is,

$\sum_{i=1}^{g-1}c_{i}r_{i}=0$ $(mod R_{K}(0))$ .

Therefore, we have $c_{i}=0$ for all $i$ . This implies that $\{r_{i}/\theta mod R(A)+K\}$ is
linearly independent over $k$. On the other hand, $\dim_{k}(R_{K}/(R(A)+K))=$

$\dim_{k}\Omega(A)=g-1$ . Hence

{ $ r_{i}/\theta$ mod $R(A)+K$} forms a basis of $R_{K}/(R(A)+K)$ .
Therefore, we can choose the dual basis $\omega_{1}$ , $\omega_{g-1}$ of $\Omega(A)$ such that

$(\omega_{t}, r_{i}/\theta)=\delta_{ij}$ ,

where $(\omega, \zeta)=\sum_{l}$ Res $\omega\zeta_{\mathfrak{z}}$ for any $\omega\in\Omega(K/k)$ and $\zeta\in R_{K}$ (cf. [7]). Here the
following formula holds for any $\omega\in\Omega(K/k)$ and $\zeta\in R_{K}$ ;

$(\omega, \zeta^{p})=(C\omega, \zeta)^{p}$ (cf. Lang [6]).

Let $B_{A}=(b_{ij})$ be as in Proposition 2. Then,

$b_{ji}=(\omega_{i}, \sum b_{jk}r_{k}/\theta)$ and $r_{j}^{p}\equiv\sum b_{jk}r_{k}$ $(mod R(A)+\theta K)$ .
Hence

$(\omega_{i}, \sum b_{jk}r_{k}/\theta)=(\omega_{i}, r_{j}^{p}/\theta)=(\omega_{i}, \theta^{p-1}(r_{j}/\theta)^{p})$

$=(\omega_{i}, x(r_{j}/\theta)^{p})=(x\omega_{i}, (r_{j}/\theta)^{p})=(C(x\omega_{i}), (r_{j}/\theta))^{p}$ .



Generalized Hasse-Witt invariants 115

Let $C_{A}=(c_{it})$ be as in \S 2. Then, $C(x\omega_{i})=\sum c_{it}\omega_{l}$ . Hence

$b_{ji}=(\sum c_{it}\omega_{t}, r_{j}/\theta)^{p}=c^{p_{ij}}$ .
Hence ${}^{t}C_{A}^{(p)}=B_{A}$ . Hence $\delta_{A}=\gamma_{A}$ . $q$ . $e$ . $d$ .

COROLLARY 1. Let $n$ is prime to $p$ . Let $K$ be an algebraic function field
with an algebraically closed constant field $k$ . Then the number of unramified
Galois extensions of $K$ of $(n, p)$ type is determined by $\{\gamma_{A}\}_{A}$ , where $\{A\}$ is a
complete set of representatives of divisor classes of degree $0$ whose orders divide
$p-1$ and $n$ .

PROOF. Let $L$ be an unramified abelian extension of $K$ of degree $n$ .
Then it is sufficient to prove that the number of unramified Galois extensions
of $K$ of $(n, p)$ type containing $L$ is determined by $\{\gamma_{A}\}_{A}$ .

Let $M$ be an unramified Galois extension of $K$ of $(n, p)$ type containing $L$ .
$G=Gal(M/K)=Gal(L/K)\cdot Gal(M/L)$ because $n$ is prime to $p$ . We put $A=$

$Gal(L/K)$ and $P=Gal(M/L)$ . Then, $\# A=n$ and $\# P=P$, and $P\triangleleft Gal(M/K)$ .
Let $L_{1}$ be the subPeld of $L$ which corresponds to the centralizer of $P$ in $G$ .
Then, $M$ is an abelian extension of $L_{1}$ . Hence there is a unique cyclic exten-
sion $M_{1}$ of $L_{1}$ of degree $p$ such that $M=M_{1}\cdot L$ . It is easy to say that
$Gal(M/M_{1})$ is a normal subgroup of $Gal(M/K)$ . Since $Gal(L_{1}/K)\cong G/C_{G}(P)$

is isomorphic to a subgroup of Aut $(P)=FP,$ $L_{1}$ is an unramified cyclic exten-
sion of degree dividing $p-1$ . We put $n_{1}=[L_{1} : K]$ .

Now we are going to prove that $Gal(M_{1}/K)$ is isomorphic to

$D_{n_{1}p}=\langle\sigma_{1},$ $\tau|\sigma_{1}^{p}=\tau_{1}^{n_{1}}=1$ and $\tau_{1}\sigma_{1}\tau_{1}^{-1}=\sigma_{1^{i}}$

with $i$ a primitive $n_{1^{-}}th$ root of unity mod $ p\rangle$ .
In fact, let $G_{1}=Gal(M_{1}/K)$ , $P_{1}=Gal(M_{1}/L_{1})$ , and $A_{1}=Gal(L_{1}/K)$ . It is
sufficient to show that $C_{G_{1}}(P_{1})$ is $P_{1}$ . Since $G_{1}\cong G/Gal(M/M_{1})$ , for any element
$\tau$ of $C_{G}(P),$ $\tau mod Gal(M/M_{1})$ belongs to $C_{G_{1}}(P_{1})$ . Conversely, let $\tau$ be an
element of $G$ such that $\tau$ mod $Gal(M/M_{1})$ belongs to $C_{G_{1}}(P_{1})$ . Then, $\tau\sigma\tau^{-1}\sigma^{-1}\in$

$Gal(M/M_{1})\cap P=\{1\}$ . Hence, $\tau$ is an element of $C_{G}(P)$ . Hence, $C_{G_{1}}(P_{1})=P_{1}$ .
It follows from the above consideration that any unramified Galois extension

of $K$ of $(n, p)$ type containing $L$ is a compositumn of $L$ and an unramified
$D_{np}$-extension of $K$. Conversely, let $L_{1}$ be the subPeld of $L$ whose Galois group
over $K$ is cyclic of order $n_{1}$ dividing $p-1$ . Let $M_{1}$ be an unramified $D_{n_{1}p^{-}}$

extension of $K$ containing $L_{1}$ . Then, $M=M_{1}\cdot L$ is a Galois extension of $K$ of
$(n, p)$ type containing $L$ . Moreover Gal $(M/L_{1})=C_{G}(P)$ , where $P=Gal(M/L),$ $G=$

$Gal(M/K)$ . In fact, let $L_{2}$ be the subfield of $L$ corresponding to $C_{G}(P)$ . We Put
$G_{1}=Gal(M_{1}/K)$ and $P_{1}=Gal(M_{1}/L_{1})$ . Since Gal $(M/L_{1})$ is abelian and $Gal(M/L_{2})$

is $C_{G}(P),$ $Gal(M/L_{2})\supset Gal(M/L_{1})$ . On the other hand, since $G_{1}=D_{np},$ $P_{1}=$

$C_{G_{1}}(P_{1})$ . That is, $P_{1}=Gal(M_{1}/L_{1})=Gal(M_{1}/L_{2})$ . Hence, $L_{2}=L_{1}$ .
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It follows from the above considerations that the number of unramified
Galois extensions of $K$ of $(n, p)$ type containing $L$ is determined by $\{\gamma_{A}\}$ where
$\{A\}$ is the set of divisors which satisPes the conditions stated in Corollary 1.

$q$ . $e$ . $d$ .
COROLLARY 2. Let $K$ be as in Theorem and let $L$ be an unramified abelian

extension of $K$ of exponent $p-1$ . Then, the Hasse-Witt invariant $\gamma_{L}$ of $L$ is
equal to $\sum_{A}\gamma_{A}$ , where A runs full representatives of divisor classes of degree $0$

which correspond to $L$ over $K$.
PROOF. It follows from Lemma 1 that

$W_{L}=\bigcap_{\int}(\mathfrak{p}K_{\mathfrak{z}}\cap L)/\mathfrak{p}L=\bigoplus_{\theta}W_{\theta K}$ ,

where the sum runs full representatives of $\Delta_{L}/K^{*}$ . On the other hand, it
follows from the proof of Theorem that the $F_{p}$-rank of $W_{\theta K}$ is $\gamma_{A}$ , where $A$ is
a representative class of $K$ corresponding to $\theta$ . Therefore

$\gamma_{L}=rank_{F_{p}}W_{L}=\sum_{A}\gamma_{A}$ . $q$ . $e$ . $d$ .

\S 5. Remarks and generalizations.

Now, we shall consider unramiPed Galois extensions of $K$ of $(n, p^{m})$ type.
We assume that $n$ divides $p-1$ and mainly consider unramified $D_{np^{m}}$-extensions
of $K$ (cf. Corollary 3 to Theorem).

First, we review the properties of Witt vectors. Let $R$ be a commutative
ring of characteristic $p$ . We denote by $W_{m}(R)$ the ring of Witt vectors of
length $m$ with components in $R$ (cf. [8]). Let $a=(a_{0}, a_{1}, \cdots, a_{m- 1}),$ $b=(b_{0},$ $b_{1}$ ,
$\ldots,$

$b_{m-1}$ ) be elements of $W_{m}(R)$ . Then, the r-th component of $a+b$ is ex-
pressed as

$(a+b)_{\gamma}=a_{r}+b_{r}+f_{\gamma}(a_{0}, a_{1}, \cdots, a_{r- 1}, b_{0}, b_{1}, \cdots, b_{r-1})$ ,

where $\beta_{\gamma}$ is an element of $F_{p}[X_{0}, X_{1}, \cdots, X_{r}, Y_{0}, Y_{1}, \cdots, Y_{r}]$ , and $f_{r}(0,0, \cdots, 0)$

$=0$ . Similarly, the r-th component of $a.b$ is also represented by such a
form.

(a) Let $\tilde{W}_{m}(R)=(a, 0, \cdots, 0)$ with $a\in R$ .
Then this forms a multiplicative semigroup. Especially, if $R^{*}$ is a unit group
of $R$ , there is an isomorphism of $R^{*}$ onto $W_{m}(R^{*})$ . We denote by $a$ an
element $(a, 0, \cdots, 0)$ of $\varpi_{m}(R)$ . We note that, for any element $b$ of $W_{m}(R)$ ,
$\tilde{a}$ . $b=$ ( $b_{0}a,$ $b_{1}$ a $p\ldots,$ $b_{m- 1}$ a $p^{m-1}$ ).
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(b) We define the Frobenius endomorphism $F:W_{m}(R)\rightarrow W_{m}(R)$ by

$F(a_{0}, a_{1}, \cdots, a_{m-1})=(a_{0}^{p}, ’’, \cdots, a_{m-1}^{p})$ .
We dePne $\mathfrak{p}$-operator by $\mathfrak{p}(a)=F(a)-a$ . We note that the Frobenius endomor-
phism is $Z/p^{m}Z$-linear, and therefore the operator $\mathfrak{p}$ is also $Z/p^{m}Z$-linear.

(c) We define the shift $V$ : $W_{m}(R)\rightarrow W_{m+1}(R)$ by

$V(a_{0}, a_{1}, \cdots, a_{m-1})=(0, a_{0}, a_{1}, \cdots, a_{m- 1})$ .
This is an additive operator.

(d) We define the restriction $R$ : $W_{m+1}(R)\rightarrow W_{m}(R)$ by

$R(a_{0}, a_{1}, \cdots, a_{m- 1})=(a_{0}, a_{1}, \cdots, a_{m-1})$ .
This is a ring homomorphism, and commutes with the Frobenius endomorphism.
Further, we have

R $VF=FRV=RFV=p$ .

The projective limit of the system $W_{m}(R)$ of rings witb respect to the
restriction is denoted by $W(R)$ . It is a ring of characteristic zero on which the
operators $F$ and $V$ are defined and satisfy the relation $FV=VF=p$ . If $R=k$ is
a perfect field of characteristic $p$ , then, $W(k)$ is a complete valuation ring with
the unique maximal ideal $pW(k)$ . If $k=F_{p}$ , this $W(k)$ is nothing but the ring
of $p$-adic integers and $W(k)/p^{m}W(k)\cong Z/p^{m}Z$.

(e) We note that if $a_{1},$ $a_{2},$ $\cdots,$ $a_{r}$ are elements of $R$ and if they are
linearly independent over $F_{p}$ , then, $\overline{a}_{1},\tilde{a}_{2},$ $\cdots,\tilde{a}_{\gamma}$ are linearly independent over
$Z/p^{m}Z$.

In fact, let $c_{1},$ $c_{2},$ $\cdots,$ $c_{r}$ be elements of $Z/p^{m}Z$ such that $c=\sum_{i}c_{i}\tilde{a}_{i}=0$ .
Then, the first component of $c$ has the form $\sum_{i}c_{i}^{(0)}a_{i}=0$, with $c_{i}^{(0)}\in F_{p}$ . Since
$\{a_{i}\}$ are linearly independent over $F_{p},$ $c_{i}^{(0)}=0$ for all $1\leqq i\leqq r$ . Assume that for
all $1\leqq i\leqq r$ , and $1\leqq j\leqq k-1$ , the j-th components $c_{l}^{(j)}$ of $c_{i}$ are zero. Then, tbe
k-th component of $c$ has the form

$\sum_{i}c_{i}^{(k)}$ a $p_{1}^{k}+h_{k}(c_{1}^{(0)}a_{1},$ $c_{2}^{(0)}a_{2},$
$\cdots,$

$c_{r}^{(0)}a_{\gamma},$ $\cdots$ ,

$c_{1}^{(k-1)}$ a $p_{1}^{k- 1}$ , $c_{2}^{(k-1)}$ a $p_{2}^{k- 1}\ldots,$ $c^{(k- 1)}$ a $rp^{k- 1}$ ).

Then, by the assumptions and the remark on the composition laws, $h_{\gamma}(O,$ $0,$ $\cdots$ ,
$0)=0$ , so $\sum c_{i}^{(k)}a_{i}^{p^{k}}=0$ . Since, $c_{i}^{(k)}$ are elements of $F_{p}$ , we have $\sum c_{\ell^{(k)}}a_{i}=0$ .
Since $\{a_{i}\}$ are linearly independent over $F_{p}$ , we have $c_{\iota}^{(k)}=0$ for all $1\leqq i\leqq r$ .
By induction on $k,$ $\{\tilde{a}_{i}\}$ are linearly independent over $Z/p^{m}Z$.

(f) Let $L$ be a field of characteristic $p$ . Let $a=(a_{0}, a_{1}, \cdots, a_{m-1})$ be an
element of $W_{m}(L)$ . We denote by $1/\mathfrak{p}(a)$ a root of the equation

$\mathfrak{v}(x)-a=0$ .
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Then, another root of the above equation is given by $a+c$ , where $c$ is an
element of $W_{m}(F_{p})=Z/p^{m}Z$ . Especially, if $a_{0}\not\in \mathfrak{p}L,$ $M=L(b_{0}, b_{1}, \cdots, b_{r})$ is a
cyclic extension of $L$ of degree $p^{m}$ , where $b_{0},$ $b_{1},$

$\cdots,$
$b_{m- 1}$ are the components

of $1/\mathfrak{p}(a)$ . Conversely, any cyclic extension of $L$ of degree $p^{m}$ is obtained as
above.

Now, let $L$ be an algebraic function field with an algebraically closed con-
stant field $k$, and $L_{\delta}$ be the completion of $L$ at 3. We put

$W_{m,L}=\bigcap_{\delta}(W_{m}(L)\cap \mathfrak{p}(W_{m}(L_{8}))/\mathfrak{p}W_{m}(L)$ .

If $n=1,$ $W_{m,L}$ coincides with the set $W_{L}$ defined in \S 1. It is well known that
$W_{m.L}$ is a $Z/p^{m}Z$-free module of rank $\gamma_{L}$ , where $\gamma_{L}$ is the Hasse-Witt invariant
of $L$ , and there is one to one correspondence between the set of unramified
cyclic extensions of $L$ of degree $p^{m}$ and the set of cyclic sub-modules of $W_{m,L}$

of order $p^{m}$ .
Let $K$ be an algebraic function field with an algebraically closed constant

field $k$ and let $g$ be its genus. Let $L$ be an unramified cyclic extension of $K$ of
degree $n$ . We assume that $n$ divides $p-1$ , and $L=K(\theta),$ $\theta^{n}\in K$.
Then, we put

$W_{m}(\theta K)=\{a=(a_{0}, a_{1}, \cdots, a_{m-1})\in W_{m}(L), a_{i}\in\theta K\}$ .

It follows from (a) that for any element $(b_{0}, b_{1}, \cdots, b_{m-1})$ of $W_{m}(K)$ , we have
$\theta b=(\theta b_{0}, \theta^{p}b_{1}, \cdots, \theta^{p^{m}-1}b_{m-1})$ . Since $n$ divides $p-1$ , we have $\theta^{p^{k}}$

‘

$1\in K$. Hence,

we have $\tilde{\theta}W_{m}(K)=W_{m}(\theta K)$ . Therefore, $W_{m}(\theta K)$ forms a subgroup of $W_{m}(L)$ .
Moreover, we have $F(W_{m}(\theta K))\subset W_{m}(\theta K)$ . Therefore, we can define a sub-
module $W_{m,\theta K}$ of $W_{m}L$ by

$W_{m,\theta K}=\bigcap_{l}(W_{m}(\theta K)\cap \mathfrak{p}W(K_{\mathfrak{z}}))/W_{m}(\theta K)$ .

We say an element $a$ of $\bigcap_{1}(W_{m}(A)\cap \mathfrak{p}W(K_{\delta}))$ an unramified element of $A$ for
any submodule $A$ of an unramified extension of $K$.

LEMMA 3. Let $K,$ $L$ be as above. Then, $W_{m,\theta^{i}K}$ is a free $Z/p^{m}Z$-module
of rank $\gamma_{A^{i}}$ , where $\gamma_{A^{i}}$ is the integer defined in \S 2. Moreover, we have

$W_{m,L}=\bigoplus_{i=0}^{n-1}W_{m,\theta^{i}K}$ .

PROOF. If $m=1$ , this is nothing but Lemma 1. Assume that $m>1$ . It
follows from the proof of Theorem that $W_{\theta^{i}K}$ is an $F_{p}$-vector space of rank $\gamma_{A^{i}}$ .
Hence, it follows from the above remark that $W_{m\theta^{i}K}$ contains a $Z/p^{m}Z$-free
module of rank $\gamma_{A^{i}}$ .
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In fact, let $a_{j}^{(i)}mod \mathfrak{p}\theta^{i}K$ be a basis of $W_{\theta^{i}K}$ . Then,

$\{(a^{(i)}, 0, \cdots, 0)mod \mathfrak{p}W_{m}(\theta^{i}K)\}1\leqq i\leq\gamma$ are linearly independent over $Z/p^{m}Z$.

Using the same arguments, we can show that

{ $(a_{j}^{(i)},$ $0,$ $0)$ mod $\mathfrak{p}W_{m}(L)$ } are linearly independent over $Z/p^{m}Z$.
$1\leqq j\leqq r,0\leq i\leqq n-1$

Hence we have
$\sum_{i\neq k}W_{m\theta k_{K}}\cap W_{m.\theta^{i}K}=0$ .

On the other hand, it follows from Corollary 2 to Theorem that $\gamma_{L}=\sum_{l=1}^{n-1}\gamma_{A^{i}}$ .
Hence, $W_{m.L}\cong\Sigma W_{m\theta i_{K}}$ , and $W_{m,\theta i_{K}}$ is a free $Z/p^{m}Z$ submodule of $W_{L}$ of
rank $\gamma_{A^{i}}$ . $q$ . $e$ . $d$ .

LEMMA 4. Let $K,$ $L$ be as above. Let $M$ be an unramified $D_{np^{m}}$ -extension
of $K$ containing L. There exists an integer $i$ prime to $n$ and a cyclic subgroup
$\langle amod \mathfrak{p}W_{m}(\theta^{i}K)\rangle$ of $W_{m,\theta i_{K}}$ of order $p^{m}$ such that $M$ is generated by the
comp0nents of $1/\mathfrak{p}(a)$ over K. This $i$ and the subgroup is uniquely determined
by M. Conversely, for such an $a$ , a field generated by the comp0nents of $1/\mathfrak{p}(a)$

over $K$ is a $D_{np^{m}}$ -extension of $K$ containing $L$ .
PROOF. This is easily proved using the above lemma and the same argu-

ments as in the proof of Lemma 2 and in Remark 2 after Lemma 2.
$q$ . $e$ . $d$ .

COROLLARY TO THEOREM. We assume that $n$ divides $p-1$ . Let $K$ be as in
Lemma 4. Then, the number of unramified $D_{np^{m}}$ -extensions of $K$ is

$\sum_{A}\frac{p^{m\gamma_{A}}-p^{(m-1)\gamma_{A}}}{p^{m}-p^{m-1}}$ ,

where the sum runs full representatives of divisor classes of $K$ of order $n$ .
PROOF. It follows from Lemma 4 that the number of unramified $D_{np^{m^{-}}}$

extensions of $K$ is equal to

$\sum_{(i,m)\neq 1}\#$ {subgroups of $W_{m,\theta^{i}K}$ of order $p^{m}$ }.

It follows from Lemma 3 that $W_{m.\theta^{i}K}$ is a $Z/p^{m}Z$ free module of rank $\gamma_{A^{i}}$ .
Hence the assersion holds.

REMARK. The above Lemmas 3 and 4 can be extended to the case when
$L$ is unramified abelian extension of $K$ of exponent $p-1$ . Moreover, using the
same arguments as in the proof of Corollary 1 to Theorem, we can show that
the number of unramified Galois extensions of $(n, p^{m})$ type is determined by
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$\{\gamma_{A}\}$ where $\{A\}$ are full representatives of divisor classes of $K$ of order dividing
$p-1$ and $n$ .

Next, we study unramified $D_{2p}$-extensions of $K$ with $ch(k)\neq p$ . Then, if
$ch(k)\neq 2$ , the number of unramified $D_{2p}$-extensions of $K$ is determined by $g$ and
its characteristic. Here, we shall show that if $ch(k)=2$ , the number of un-
ramified $D_{2p}$-extensions of $K$ is determined by $g$ and the Hasse-Witt in-
variant $\gamma_{K}$ .

PROPOSITION 6. Let $ch(k)=2$ . Then, the number of unramified $D_{2p^{-}}exten-$

sions of $K$ is equal to

$(2^{\gamma_{k}}-1)\cdot\frac{p^{2(g-1)}-1}{p-1}$ .

For the proof of the above proposition, let $L$ be an unramified quadratic
extension of $K$. Since the number of such extensions of $K$ is equal to $2^{\gamma_{k}}-1$ ,
it is sufficient to show that the number of unramified $D_{2p}$-extensions of $K$

containing $L$ is equal to $\frac{p^{(g-1)}-1}{p-1}$

We denote $(L^{*}\cap K_{\mathfrak{z}}^{p})/L^{*p}$ simply by $V_{L}$ . We note that $V_{L}$ is an $F_{p}$-module
of rank 2 $(2g-1)$ and that it can be regarded as a $Gal(L/K)$ module by the
natural action of Gal $(L/K)$ on $L$ . Then, Proposition is proved if the following
two propositions hold. They are easily to proved using the same method
showed in Lemmas 1 and 2.

LEMMA 5. Let $K$, $L$ be as above. Then, $V_{L}=V_{K}\oplus V_{1}$ , where $V_{1}=$

{ $\overline{a}\in V_{L}|\overline{a}^{-}=\overline{a}^{-1}$ for nontrivial automorphism $\tau$ of $L$ over $K$ }.

LEMMA 6. Let $K,$ $L$ be as in Lemma 5. Then, let $M$ be an unramified
$D_{2p}$-extension of $K$ containing L. Then there exists a subgroup $\langle\overline{a}\rangle$ of $V_{1}$ of
order $p$ such that $M$ is generated over $K$ by $\psi\overline{a}$ . Conversely for such an
element of $V_{1},$ $K(\Psi\overline{a})$ is an unramified $D_{2p}$-extension of $K$ containing $L$ .

\S 6. Examples.

EXAMPLE 1. Let $K$ be an algebraic function field with an algebraically
closed constant field $k$ of genus 2. We shall consider the number of unramified
$D_{2p}$-extensions of $K$. We assume that the characteristic $p=3$ . We often
identify an algebraic function field $K$ with the birational equivalent class of
complete nonsingular model $C_{K}$ of $K$.

There exists six Weierstrass points $\{P_{i}\}$ of $K$. Then, $K$ can be expressed

as $K=k(x, y)$ with $y^{2}=\prod_{i=1}^{5}(x-a_{t})$ . We may assume that $a_{4}=0,$ $a_{5}=1,$ $a_{i}\neq a_{j}$
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if $i\neq j$ , and $(x-a_{i})=(P_{i}/P_{6})^{2}$ for $i=1,$ 2, 5. The basis of $\Omega_{K}$ of the space
of differentials of the first kind is given by

$\{dx/y, x^{-1}dx/y\}$ .

The full representatives of 2 division points of $\mathfrak{G}_{0}/\mathfrak{G}_{H}$ are

$\{P_{i}/P_{6} {}_{t=1}P_{i}P_{j}/P_{6i}^{2}j\}$

and
$\Omega(P_{i}/P_{6})=\{(x-a_{i})dx/y\}$ , $\Omega(P_{i}P_{j}/P_{6}^{2})=\{(x-a_{i})(x-a_{j})dx/y\}$ .

Hence, the Hasse-Witt matrix of $K$ is given by

$\left\{\begin{array}{ll}-(a_{1}a_{2}a_{3}+a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{1}), & 1\\a_{1}aa & -(1+a_{1}+a_{2}+a)\end{array}\right\}$

.

Let $C_{A}$ be the matrix defined in \S 2 for any 2-division point $\overline{A}$ . Then,

$C_{P_{i}jP_{6}}^{(p)}=the$ coefficient of $X^{2}$ in $\prod_{k\neq i}(X-a_{k})$

$C_{P_{i}Pj/P_{6}^{2}}^{(p)}=the$ coefficient of $X^{2}$ in $\prod_{k\neq ij},(X-a_{k})$ .

Let $d$ be a function of $k$ such that

$d(a)=1$ if $a$ is non zero,

$d(a)=0$ if $a$ is zero.

Let $N_{K}$ be the number of unramified $D_{2p}$-extension of $K$. Then,

$N_{K}=\sum_{i=1}^{5}d(C_{P_{i}/P_{6}})+\sum_{i\neq 1}d(C_{P_{i}P_{j}/P_{6}^{2}})$ .

That is, the number of unramified $S_{3}$-extensions of $K$ is equal to

$\sum_{i=1}^{8}d(a_{i}+1)+\sum_{l\neq j\leqq 3}d(1+a_{i}+a_{j})+\sum_{i\neq j\leqq 3}d(a_{\ell}+a_{j})+d(a_{1}+a_{2^{-}}\vdash a_{3})$

$+\sum_{i\neq j\leqq 3}d$ ( $a_{i}$ a $!+a_{i}+a_{j}$) $+d(a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{1})$

$+d(a_{1}a_{2}+a_{2}a_{3}+a_{3}a_{1}+a_{1}+a_{2}+a_{3})$ .
Let

$\mathfrak{M}_{2}=\{birationally$
equivalent classes of

$algebraic\}$ .
curves with genus 2
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Then, $\mathfrak{M}_{2}$ has the structure of 3 dimensional algebraic variety.

We put

$N_{i}=$ {$equivalent$ classes of $C_{K}$ such that $N_{K}\leqq 15-i$ }.

We put

$v_{1}=1+\sum_{i=1}^{8}a_{i}$ , $v_{2}=\sum_{i\neq j\leqq 3}a_{i}a_{j}+\sum_{l\Leftarrow 1}^{3}$ a $i$ ,

$v_{3}=a_{1}a_{2}a_{3}+\sum_{t=1}^{3}a_{i}$ , $v_{4}=a_{1}a_{2}a_{3}$ .

Moreover we put

$J_{2}=-v_{4}+v_{1}v_{3}$ ,

$J_{4}=-v_{1}v_{3}v_{4}-v_{2}^{2}v_{4}-v_{1}^{2}v_{2}v_{4}-v_{1}^{2}v_{3}^{2}+v_{1}v_{2}^{2}v_{3}$ ,

$J_{6}=-(-v_{4}^{3}-v_{1}v_{3}v_{4}^{2}+v_{2}^{2}v_{4}^{2}+v_{2}v_{3}^{2}v_{4}-v_{3}^{4}+v_{1}^{2}v_{2}v_{4}^{2}+v_{1}^{2}v_{3}^{2}v_{4}+v_{1}v^{\frac{Q}{2}}v_{3}v_{4}$

$+v_{1}^{3}v_{2}v_{3}v_{4}-v_{1}^{2}v_{2}^{3}v_{4}+v_{1}v_{2}v_{3}^{3}-v_{\iota}^{2}v_{2}^{2}v_{3}^{2}-v_{1}v_{2}^{4}v_{3}-v_{2}^{6}-v_{2}^{4}v_{4}-v_{2}^{3}v_{3}^{2}-v_{1}^{4}v_{4}^{2})$ ,

$J_{10}=\prod_{i\neq j}(a_{i}-a_{j})^{2}\prod_{i=1}^{8}(a_{i}-1)^{2}$ .

Then it follows from the result of Igusa [5] that $\mathfrak{M}_{2}$ is a subvariety of $A^{8}$ and
its coordinate ring is equal to

$k4^{-}61’ 2\left\{\begin{array}{lllll} & J_{2}^{5}J_{10}^{1}, & J_{2}^{3}J_{4}J_{10}^{1}, & J_{2}^{2}J_{4}J_{10}^{1}, & J_{2}^{2}J_{6}J_{10^{1}}\\J & JJ_{0}^{-1} & J_{6}^{3}JJ_{10}^{-2} & J_{4}^{5}J_{10}^{-2} & J_{6}^{5}J_{10}^{-3}\end{array}\right\}$ .

Then, it follows from the above fact that $N_{i}$ is an algebraic set of $\mathfrak{M}_{2}$ .
Especially, $N_{1}$ consists of 7 algebraic surfaces. $N_{2}$ consists of 12 rational curves.
$N_{3}$ consists of 4 points.

In the following we show the above varieties and their parameter types.
That is, in the following table, we denote by $(a_{1}, a_{2}, a_{3})$ the variety consists
of birationally equivalent classes of curves defined by $y^{2}=x(x-1)(x-a_{1})(x-a_{2})$

$(x-a_{3})$ . That is, we obtain the coordinate ring of a subvariety of $(a_{1}, a_{2}, a_{3})$

type by substituting $a_{1},$ $a_{2},$ $a_{3}$ in $*$ . In the following table $\xi$ is a root of the
following equation $X^{2}+X-1=0$ . This is an 8-th root of unity.

Let $C_{K}$ be the curve defined by $y^{2}=x(x^{2}-1)(x-a)(x-b)$ . Then, the
Hasse-Witt invariant of $C_{K}$ is always 2, but $N_{K}$ varies as $a$ and $b$ varies.
This means that Grothendieck’s fundamental group of $C_{K}$ is not determined
only by $g,$ $p$ , and $\gamma_{K}$ .
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Table

type of parameter Hasse-Witt invariant
$N_{1}$

$S_{1}$ $-1,$ $a,$
$b$ 2

$S_{2}$ $a,$ $-1-a,$ $b$ 2
$S_{3}$ $a,$ $-a,$ $b$ 2
$S_{4}$ $a,$ $b,$ $-a-b$ 1, 2
$S_{5}$

$a,$ $b,$ $-b/(1+b)$

$S_{6}$
$a,$ $b,$ $(-ab-a-b)/(1+a+b)$ 2

$S_{7}$ $a,$ $b,$ $-ab/(a+b)$

$N_{2}$

$C_{1}=S_{1}\cap S_{2}$ $-1,$ $a,$ $-1-a$ 2
$C_{2}=S_{1}\cap S_{3}$ $-1,$ $a,$ $-a$ 2
$C_{3}=S_{1}\cap S_{4}$ $-1,$ $a,$ $-a+1$ 2
$C_{4}=S_{1}\cap S_{5}$ $-1,$ $a,$ $-a/(1+a)$ 2
$C_{5}=S_{1}\cap S_{6}$ $-1,$ $a,$ $1/a$ 2
$C_{6}=S_{1}\cap S_{7}$ $-1,$ $a,$ $a/(a-1)$ 2
$C_{7}=S_{2}\cap S_{3}$ $a,$ $-1-a,$ $-a$ 2
$C_{8}=S_{2}\cap S_{\overline{o}}$ $a,$ $-1-a,$ $-a/(1+a)$ 2
$C_{9}=S_{2}\cap S_{7}$ $a,$ $-1-a,$ $-a(1+a)$ 2

$C_{10}=S_{3}\cap S_{5}$ $a,$ $-a,$ $a/(a-1)$ 2
$C_{11}=S_{3}\cap S_{6}$ $a,$ $-a,$ $a^{2}$ 2
$C_{12}=S_{4}\cap S_{5}$ $a,$ $-a/(1+a),$ $-a^{2}/(1+a)$ 2

$N_{3}$

$S_{1}\cap S_{2}\cap S_{7}$ $-1,$ $\xi,$ $-1-\xi$ 2
$S_{1}\cap S_{3}\cap S_{6}$ $-1,$ $\xi^{2},$ $-\xi^{2}$ 2
$S_{1}\cap S_{4}\cap S_{5}$ $-1,$ $\xi-1,$ $-\xi$ 2
$S_{2}\cap S_{3}\cap S_{5}$ $\xi,$ $-1+\xi,$ $-\xi$ 2

EXAMPLE 2. We shall consider the relation between $\{\gamma_{A^{i}}\}$ . Let $K$ be an
algebraic function field with an algebraically closed constant field $k$ of characte-
ristic $p$ and let $g$ be its genus. Let $\overline{A}$ be an $n$ division point of $\mathfrak{G}_{0}/\mathfrak{G}_{H}$ .
If $i$ is prime to $n,$

$\langle\overline{A}^{i}\rangle=\langle\overline{A}\rangle$ . Then, it is natural to ask whether $\gamma_{A^{i}}=\gamma_{A}$ or
not. We shall give some examples for this question.
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First, let $K=k(x, y)$ such that $y^{3}=x^{5}-1$ . We assume $ch(k)=11$ . Then, we
have $g=4$ and there are prime divisors $P_{01},$ $P_{02},$ $P_{03},$ $P$ such that $(x)=$

$P_{01}P_{02}P_{03}/P^{3}$ and $(y+\zeta^{i})=P_{th}^{5}/P^{5}$ , where $\zeta$ is a primitive cubic root of unity.
We put $A=P_{03}/P$ . Then, we have

$\Omega(A)=\{(y+1)dx/y^{2}, xdx/y^{2}, x^{2}dx/y^{2}\}$

$\Omega(A^{3})=\{(y+1)dx/y^{2}, x^{3}dx/y^{2}, (y+1)xdx/y^{2}\}$

$\Omega(A^{4})=\{(y+1)dx/y^{2}, (y+1)^{2}dx/y^{2}, (y+1)xdx/y^{2}\}$

$\Omega(A^{2})=\{(y+1)dx/y^{2}, x^{2}dx/y^{2}, (y+1)xdx/y^{2}\}$ .

Moreover, we have $((y+1)^{2k})=A^{10k}$ . Hence, we have

$c\left(\begin{array}{llll}(y & +1)(y & +1)d & x/y\\ & (y & +1)^{2}xd & X/y^{2}\\ & (y & +1)^{2} & x^{2}dx/y^{2}\end{array}\right)=(300$ $040-00J\left(\begin{array}{l}(y+1)dx/y^{2}\\xdx/y^{2}\\x^{2}dy/y^{2}\end{array}\right)$

.

Hence we have $\gamma_{A}=3$ . Similarly, we have $\gamma_{A^{2}}=\gamma_{A^{3}}=\gamma_{A^{4}}=3$ .
Next, let $K=k(x, y)$ such that $y^{3}=x(x^{2}-1)(x-i)$ , where $i$ is a primitive

12-th root of unity and let $ch(k)=7$ . Then, there are divisors $P_{0},$ $P_{1},$ $P_{-1},$ $P_{i}$

such that $(y)=P_{0}P_{1}P_{-1}P_{i}/P^{4}$ and $(x-i)=P_{i}^{3}/P^{3}$ . We put $A=P_{i}/P$. Then,
we have

$\Omega(A)=\{dx/y, (x-i)dx/y^{2}\}$

$\Omega(A^{2})=\{(x-i)dx/y^{2}, (x-i)^{2}dx/y^{2}\}$

and $((x-i)^{2})=A^{6}$ .
Then,

$c\left(\begin{array}{l}(x-i)dx/y\\(x-i)^{2}(x-i)dx/y^{2}\end{array}\right)=\left(\begin{array}{ll}0 & 0\\0 & 4\end{array}\right)\left(\begin{array}{l}dx/y\\(x-i)dx/y^{2}\end{array}\right)$

.

Hence, we have $\gamma_{A}=1$ . Similarly,

$c\left(\begin{array}{l}(x-i)(x-i)dx/y\\(x-i)^{2}(x-i)^{2}dx/y^{2}\end{array}\right)=($ $i+4\sqrt[7]{i}-4$ $01$ ) $\left(\begin{array}{l}(x-i)dx/y\\(x-i)^{2}dx/y^{2}\end{array}\right)$

.

Hence, we have $\gamma_{A^{2}}=2$ .
It follows from the above two examples that in general $\gamma_{A}\neq\gamma_{A^{i}}$ . But we

don’t know which relation exists between them.



Generalized Hasse-Witt invariants 125

References

[1] M. P. Cartier, Une nouvell op\’eration sur les formes diff\’erentielles, C. R. Acad.
Sci. Paris, 244 (1957), 426-428.

[2] M. P. Cartier, Questions de rationalit\’es des diviseures en g\’eom\’etrie alg\’ebrique,
Bull. Soc. Math. France, 86 (1958), 177-251.

[3] A. Grothendieck, S. G. A., 1960-61, Expos\’e X.
[4] H. Hasse and E. Witt, Zyklische unverzweigte Erweiterungsk\"orper von Primzahl

Grade $p$ \"uber einem algebraischen Funktionenk\"orpern der Charakteristik $p$ ,
Monatsh. Math. Phys., 43 (1936), 477-492.

[5] J. Igusa, Arithmetic variety of moduli for genus two, Ann. of Math., 72 (1960),

612-649.
[6] S. Lang, Elliptic functions, Addison-Wesly.
[7] J.-P. Serre, Groupe alg\’ebrique et corps de classes, Hermann, Paris.
[8] E. Witt, Zyklische K\"orper und Algebren der Charakteristik $p$ vom Grade $p^{m}$ ,

J. Reine Angew. Math., 176 (1936), 126-140.

Hidenori KATSURADA
Department of Mathematics
Faculty of Science
Hokkaido University
SaPporo, Japan


	Introduction.
	\S 1. Preliminaries and ...
	\S 2. Definition of invariants ...
	THEOREM. Let ...

	\S 3. Some lemmas.
	\S 4. Proof of the Theorem.
	\S 5. Remarks and generalizations.
	\S 6. Examples.
	References

