A generalized Lüroth Theorem for curves

By T. T. MOH and W. J. Heinzer*

(Received May 25, 1977)
(Revised April 17, 1978)

Let k be a field. The famous "Lüroth Theorem" asserts that if R is a field with $k \subset R \cong k(X)$, then $R=k(Y)$, a simple transcendental extension of k. [5, p. 198]. As was proved by Igusa [2], [3], Lüroth's Theorem can be generalized to say that if X_{1}, \cdots, X_{n} are algebraically independent over k and R is a field of transcendence degree one over k such that $k \subset R \cong k\left(X_{1}, \cdots, X_{n}\right)$, then $R=k(Y)$, a simple transcendental extension of k. Related results for the case when R has transcendence degree >1 over k are given by Zariski [6], Swan [4], and Clemens-Griffiths [1].

These striking results naturally motivate the search for similar phenomena or generalization. For this purpose we use the following notation. If R is a function field of one variable over k, then the degree of irrationality of R over $k, \operatorname{irr}(R)=\min \{[R: k(x)]: x \in R\}$. The classical Lüroth Theorem can then be stated: if $R \subseteq S$ are function fields of one variable over k and $\operatorname{irr}(S)=1$, then $\operatorname{irr}(R)=1$. In this form, Lüroth's Theorem naturally calls for the study of the pair of numbers $(\operatorname{irr}(S), \operatorname{irr}(R))$ for the case $\operatorname{irr}(S)>1$. Our result is the following.

Theorem. Let $R \subseteq S$ be function fields of one variable over a field k. For any $x \in S$, let y denote the norm of x with respect to R. If y is not algebraic over k, then $[S: k(x)] \geqq[R: k(y)]$. In particular, if k is an infinite field, then the degree of irrationality of $R, \operatorname{irr}(R) \leqq \operatorname{irr}(S)$, the degree of irrationality of S.

Proof. We first consider the case when S is separable over R. Let T be a normal closure of S over R, and let G be the Galois group of T over R. We recall that if H is the subgroup of G fixing S and $G=g_{1} H \cup \cdots \cup g_{m} H$ is a coset decomposition of G with respect to H, then $y=\prod_{i=1}^{m} g_{i}(x)$ is the norm of $x[7, \mathrm{p} .91]$. Note that $m=[S: R]$. Since $[T: k(x)]=\left[T: k\left(g_{i}(x)\right)\right]$ is equal to the degree of the polar divisor of x or $g_{i}(x)$ in T, and since the

[^0]degree of the polar divisors of a product is less than or equal to the sum of the degrees of the polar divisors of the factors, we have
\[

$$
\begin{aligned}
& m[T: k(x)] \geqq[T: k(y)] . \text { Thus } \\
& m[T: S][S: k(x)] \geqq[T: R][R: k(y)], \text { and since } \\
& m[T: S]=[T: R], \text { we have }[S: k(x)] \geqq[R: k(y)]
\end{aligned}
$$
\]

in the separable case.
In the general case, let S^{\prime} be the separable closure of R in S, and let $p^{e}=\left[S: S^{\prime}\right]$. Then for $x \in S, x^{p^{e}}=x^{\prime}$ is the norm of x in S^{\prime} and $[S: k(x)]=$ $\left[S^{\prime}: k\left(x^{\prime}\right)\right]$. If y is the norm of x with respect to S / R, then y is also the norm of x^{\prime} with respect to S^{\prime} / R. It follows from the separable case that $[S: k(x)] \geqq[R: k(y)]$.

For k infinite, and $x \in S$ such that $[S: k(x)]=\operatorname{irr}(S)$, we show the existence of an element c of k such that the norm of $x-c$ with respect to R is transcendental over k; thus establishing $\operatorname{irr}(S) \geqq \operatorname{irr}(R)$. Let $f(x)$ be the field equation for x with respect to S over R, then the norm of $x-c$ for $c \in k$ is $\pm f(c)$. By the Lagrange interpolation formula $f(c)$ can not be algebraic over k for more than $[S: R]$ elements c, for otherwise x would be algebraic over k.

References

[1] C. Clemens and P. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math., 95, No. 2 (1972), 281-356.
[2] J. Igusa, On a theorem of Lüroth, Mem. Univ. Kyoto, 26 (1950-51), 251-253.
[3] M. Nagata, A theorem on valuation rings and its application, Nagoya Math. J., 29 (1967), 85-91.
[4] R. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math., 7 (1969), 148-158.
[5] B.L. Van der Waerden, Modern Algebra, Frederick Ungar, New York, 1953.
[6] O. Zariski, On Castelnuovo's criterion of rationality, $p_{a}=p_{2}=0$ of an algebraic surface, Illinois J. Math., 2, 1958.
[7] O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Van Nustrand, Princeton, NJ, 1958.

T. T. MOH
Division of Mathematics
Purdue University
West Lafayette, Indiana
U.S. A.

W. J. Heinzer
Division of Mathematics
Purdue University
West Lafayette, Indiana
U.S. A.

[^0]: * Both authors were supported partially by NSF.

 The authors wish to thank the referee for his suggestion that simplified and improved this article.

