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Let $k$ be a field. The famous ”L\"uroth Theorem” asserts that if $R$ is a
field with $k\subset R\subseteqq k(X)$ , then $R=k(Y)$ , a simple transcendental extension
of $k$ . [$5$ , p. 198]. As was proved by Igusa [2], [3], L\"uroth’s Theorem can be
generalized to say that if $X_{1},$

$\cdots,$
$X_{n}$ are algebraically independent over $k$ and

$R$ is a field of transcendence degree one over $k$ such that $k\subset R\subseteqq k(X_{1}, \cdots, X_{n})$ ,
then $R=k(Y)$ , a simple transcendental extension of $k$ . Related results for the
case when $R$ has transcendence degree $>1$ over $k$ are given by Zariski [6],

Swan [4], and Clemens-Griffiths [1].

These striking results naturally motivate the search for similar phenomena
or generalization. For this purpose we use the following notation. If $R$ is a
function field of one variable over $k$, then the degree of irrationality of $R$ over
$k$, irr $(R)=\min\{[R : k(x)] : x\in R\}$ . The classical L\"uroth Theorem can then be
stated: if $R\subseteqq S$ are function fields of one variable over $k$ and irr $(S)=1$ , then
irr $(R)=1$ . In this form, L\"uroth’s Theorem naturally calls for the study of the
pair of numbers (irr (S), irr $(R)$ ) for the case irr $(S)>1$ . Our result is the
following.

THEOREM. Let $R\subseteqq S$ be function fields of one variable over a field $k$ . For
any $x\in S$, let $y$ denote the norm of $x$ with respect to R. If $y$ is nqt algebraic
over $k$ , then $[S : k(x)]\geqq[R : k(y)]$ . In Particular, if $k$ is an infinite field,
then the degree of irrationality of $R$ , irr $(R)\leqq irr(S)$ , the degree of irrationality
of $S$ .

PROOF. We first consider the case when $S$ is separable over $R$ . Let $T$ be
a normal closure of $S$ over $R$ , and let $G$ be the Galois group of $T$ over $R$ .
We recall that if $H$ is the subgroup of $G$ fixing $S$ and $ G=g_{1}H\cup$ $Ug_{m}H$ is
a coset decomposition of $G$ with respect to $H$, then $y=\prod_{i=1}^{m}g_{i}(x)$ is the norm
of $x$ [ $7$, p. 91]. Note that $m=[S : R]$ . Since $[T;k(x)]=[T : k(g_{i}(x))]$ is
equal to the degree of the polar divisor of $x$ or $g_{i}(x)$ in $T$, and since the
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degree of the polar divisors of a product is less than or equal to the sum of
the degrees of the polar divisors of the factors, we have

$m[T:k(x)]\geqq[T:k(y)]$ . Thus

$m[T:S][S:k(x)]\geqq[T:R][R:k(y)]$ , and since

$m[T:S]=[T:R]$ , we have $[S:k(x)]\geqq[R:k(y)]$

in the separable case.
In the general case, let $S^{\prime}$ be the separable closure of $R$ in $S$ , and let

$p^{e}=[S:S^{\prime}]$ . Then for $x\in S,$ $x^{p^{e}}=x^{\prime}$ is the norm of $x$ in $S^{\prime}$ and $[S:k(x)]=$

$[S^{\prime} : k(x^{\prime})]$ . If $y$ is the norm of $x$ with respect to $S/R$ , then $y$ is also the
norm of $x^{\prime}$ with respect to $S^{\prime}/R$ . It follows from the separable case that
$[S:k(x)]\geqq[R:k(y)]$ .

For $k$ infinite, and $x\in S$ such that $[S:k(x)]=irr(S)$ , we show the existence
of an element $c$ of $k$ such that the norm of $x-c$ with respect to $R$ is trans-
cendental over $k$ ; thus establishing irr $(S)\geqq irr(R)$ . Let $f(x)$ be the field
equation for $x$ with respect to $S$ over $R$ , then the norm of $x-c$ for $c\in k$ is
$\pm f(c)$ . By the Lagrange interpolation formula $f(c)$ can not be algebraic over
$k$ for more than $[S:R]$ elements $c$ , for otherwise $x$ would be algebraic
over $k$ .
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