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Introduction.

Let X be a primitive Dirichlet character with conductor f,, and L(s, X) be
the Dirichlet L series associated with X. For any prime number p, we denote
by L,(s,X) the p-adic L function introduced by Kubota and Leopoldt [I].
We fix an embedding ¢ of the algebraic closure Q(CC) into Q, once for all.

By this ¢, we identify any formal power series ioanX"eQ[[X]] c CL[X]1]

(resp. any number a<=@Q) with n%z(an)X"er[[X]] (resp. ((a)=Q,). We
assume that all the Dirichlet characters we consider are primitive.

In this paper, firstly, we present a formula for the values of L,(s, X) at
positive integers. To simplify the description of the main result, we assume
that p is an odd prime number (for the case of p=2, see A of this
paper) and that fy is neither 1 nor p. For a fixed prime number p, let @ be
the Dirichlet character defined by w(x)=x mod p for xeZ. We set ¥,=X-w™’
and

() T4 X —
B, jy=—p% Zamlog (14 o /ij))er[[X]J,
) W e L X ¢
(viz. 5 20w 80"t (@ v=rmry) )

for j=0,1, 2, -+, p—2,
where f;; and 7(X;) denote the conductor of X; and the Gaussian sum of

Iy,
Xj(: Z)ij(t)exp(Zn\/——lt/fzj)) respectively. Further we denote by S the
t=1

formal integral operator acting on a certain subspace @y of formal power
series with coefficients in a finite extesion field K of @,, given by
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R n 5 < Qn n+1
S nE:OanX nZ‘:o 71+1X )

We also denote by (1+.X) ' the operator on the space Qg, given by

oo (SR (o)

0

Then we put
Biij-tp-nn (X, 1)=(So(1+X)™)®~ P/ (B(X, j))

for each rational integer n with (p—1)n—j=0. The following result may be
regarded as an answer to the question raised by Iwasawa ([2] p.61) “It is an
interesting open problem to find similar expressions for the values L,(n, X)
nzZ.n

THEOREM. Notations being as above, we obtain;
. 1 )
Lp(l—]+(p_1) n, X):; 4?_4 Bl+j—(p—1)n(§_1: 7)

where the summation with respect to & 1is over all p-th roots of wunity. (Each
power series Biij-p-1a(X, J) converges at X=E&—1 under the p-adic topology.)

We note that the value of L,(1—j—(p—1)n, X)) for any j+(p—1)n=0
with neZ is also given by

. N, 1 .
(1), Lp(l_]_(p_l) n, X)=—B14j+-1x(0, ]H——j; ; Biijr-na(E—1, 7)),
where we put
. d j+{p-Dn .
Biijrp-1a (X, ]):<(1+X)?X) B(X, j).

The value of (I) is equal to (Bep-vyn+jz,/((p—1)n+j))(pP 0mH 1 2:(p)—1),
(see e.g. [2]). We also give a formula for L,(n, X) when fy is equal to 1 or p,
(viz. [Theoreml B). Lemma 4 and [Proposition 1] play important roles in the
proof of the above theorems. It should be mentioned that a “real analogue”
of Theorems A and B is available (see in §1).

Secondly we study the p-adic interpolated function L,(s) of Dirichlet
series

(H->1 L(S): i vee E A<m1, Mo, -, mi)

mi=t mg= (Got @y Myt A Mot -+ +agmy)’

(a(]’ ay, aiEZ’ Ay, Ay, (11,>0)
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where /4 is a periodic function of Z‘® with respect to each variable m; and
takes its values in the field Q. We apply our results in §1 on the p-adic I’
transform to the series of the above type. Then we obtain a formula
C) for L,(1). It is also possible to obtain an expression for L,(n)
where n is a rational integer with (p—1)|[(n—1) as in § 1. We omit arguments,
(which were given in [6]), on the meromorphy (or holomorphy) of the above
L,(s) and on p-adic analytic interpolations of some arithmetical zeta functions
as our investigations on the values at rational integers are carried out with-
out them,

The author wishes to express his gratitude to Professor Kenkichi Iwasawa
for his book to which he owes very much and to his teacher Professor
Takuro Shintani for carefully reading the manuscript and making valuable
suggestions for its improvement. This paper is an extraction from a part of
the author’s master’s thesis presented in January 1976 at the University of
Tokyo.

REMARK 0. K. Shiratani and J. Diamond investigated the above problem
of Iwasawa independently of us. After submitting this paper, we received their
preprints Shiratani and Diamond [8]. Diamond’s expressions for L,(n, X)
are different from both Shiratani’s and ours. Shiratani’s approach is ingeneous
and not the same as ours. He treats only Dirichlet L functions. But his
expressions for L,(n, X) are similar to ours. Our method is applicable to any
p-adic function expressed by Leopoldt's p-adic ['-transform. Furthermore we
show analogy between L(n, X) and L,(n, X).

Y. Morita constructed p-adic analytic analogues for I’ function and series
of the above (II) type in the case i=1 in Morita [4]. We generalized his
method to the case of any integer ¢ in Hatada [6]. K. Shiratani also investi-
gated this problem in the case i=1 in Shiratani [15]. These are also discussed
under a certain condition in P. Cassou-Nogués [7], (see Remark 4 below).

Notations.

Z : rational integers. IV: positive rational integers. @ : rational numbers.
R : real numbers. C: complex numbers. Let p be a rational prime. @,: p-adic
numbers. Z,: the ring of integers in @,. Z,: the group of p-adic units in Z,.
2, algebraic closure @, of Q,. |:|: the p-adic absolute value on 2, nor-
malized so that |p|=p"". V: the group {x=@Q,|x?"'=1} for p=3, {£leQ,}
for p=2. ¢=p when p=3 and ¢g=4 when p=2. e=p—1 when p=3 and e¢=2
when p=2. Then Z,=VX(14¢9Z,); and a=w(a)<a) where w(a) (resp. <a))
denotes the projection of ¢ on V (resp. on 1+¢Z,). We set w(a)=0 for a
with (a, p)#1.
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§1. On the Dirichlet L series.

Let K be a finite extension of @, in £,, and Cx be the set of all continu-
ous functions Z, — K. Then Cx has a structure of commutative Banach algebra
with the norm ||fll=m2x |f(s)l. Let Qx denote the set of all formal power

s P

series A(X):gan)(", in K[[X]] such that |a,n!|—0 as n— +oo. For
each A=(Qg, put [IAHQKziglgln!an]. Then @Qx becomes a Banach algebra
over K with the norm |-|¢,. The ring of polynomials K[X] is contained in
Qx as an everywhere dense subalgebra of @Qx. Note that log(l+X)=
ZyXZy— Z,

(x, s) —¢(x,s)

o

nz=:l L_;;)ZX”EQK. We denote by ¢ the continuous map
defined as follows.
o (x, s)=0 if xepZ,
={x)¢ it xeZ,, p=3

=x* if xeZ;, p=2.

For each integer n=0, let 7,(s)= i(—l)’“(?) ¢ (i, s), s€sZ,. Then, as is

well known there exists a unique bounded linear map [ . Qx — Cx such that
I'(X™")=r, for all non negative integer n. It satisfies |I'(A)llcx=IIAllqx for
all A=Qg, and I'((1+X)*)(s)=¢(n, s) for all n=0. For A=Qk, put A(e*—1)

= +Z°3° 0, (A) % Then for each non negative integer n, 0, : Qx — K, A—0d,(A)
n=0 .

defines a K linear map with [0,(A)|=|[Allg,. We denote by 4 the K linear

dX

<||Alq, holds for all A in Qg. For details see [2]. The case i=1 of the
following Lemma 1| is already given in Iwasawa §5).

LEMMA 1. For A€Qx, s€2Z,, ic N, we have

+co + oo
transform Qg — Qg ; defined by > a,X*— ElnanX"'l. Note that
n=0 n=

(1), ro(+X)-25) " (6= lim duyeea(4),

where n, is any sequence of non negative integers such that eln,, and such that
ny — +co, |s—n| —0, as k— +co. (Since the integers n=0 with e|n are
everywhere dense in 2Z,, such a sequence always exists for any given s in
2Z,.)
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Proor. For a non negative integer m, put A,(X)=(14+X)". Then

hm Onpri-1(Ap)= lim m™e*i-l=ypmp " lkhm mrhk=m i'lklim On,(An)=m* 1 ¢(m, s),
k->+oo 400 -»4-00

by - §5 in Iwasawa [2]. On the other hand,
To((14+X)-5) (4w 0) () =To (+X)-2) " tm 1+ Xm0

=L (m* 7 An (X)) ($)=m* [ (An (X)) ()=m* ¢ (m, ).

Hence  1im Guyeims (An)= I’o((l-{-X) ) (An)(s) for all m=0. Thus (1) is

proved for all polynomials in K[X]. Now given any A(X) in Qx and any
¢>0, there exists B(X) in K[X] such that |[A—Blq,<e. As Qg is a Banach

algebra, it is easy to see that ’ FO((I—l-X)—d%? i—l(A)HC =|Alqg for any A€ Qx.
K

Then ‘ro((1+X)%)"“(A)—ro((HX)#‘l—)i”

‘Fo (1+X)-" ) (A— B)“ <[ A—Bllg  <e.

10ngti-1(A)=0n,45-1(B)p=10n41-1(A—B)|, =1 A— B g <e.
Since the formula holds for B, it also holds for A4;

Note that (14X)1= g(-l)’X‘EQ[[X]]mQK, for any finite extension
K of @,. We denote by S the map:

400

ntl
n=0 n+1 X

KILX]]— K[[X]], Za Xn

LEMMA 2.

(i) (Se(1+X)71) (1)—~(10g(l+X))L

for all leZ.=the set of non negative integers.

(i) (So(+X) Y (An(X)=—r An ()= (8 s Gog (14X))P),

for all (I, m)e N? where A,(X)=(1+X)"., N={1, 2, 3, ---}=the set of natural
numbers.
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Proor. We prove by induction on /. ,
(i) When [=0, the formula is trivial
Tl—(log(l—kX))‘ for some [eZ

We assume (So(1+X)1)'(1)=
expression.

Let So(1+X)! operate on both sides of this
Then we have

(So(14+ X)) (=(So (1+ X)) (- log (14 X))

(log (1+X) 1
go i (log(1+X))ldX—3

-trtl etdt
(l+1>, g (log (I+X))H.
X 14+ X)™ 1
(ii) When [=1 (So(H—X)‘l)(/lm(X)):S0 a+4+X)m 1dX:(—i_;nL ot
Assume that for some [€ N,

(S0 (L X)) (A (X))= 7 4, (0= ('S

=0 ﬁnllz—T(logm—X))k),
Then, (So(1+X)™)H ((1+X)™)

-1 S 1 -1 | k
(8o (X)) (An (X)) = E, =y S (+2X) (log (1+X))*)
1 a4X)m 1N e 1oex 1 (log (14 X))k
)~ Ee L )
m=t (1 X)m—

i -t-ree dog (L+X))*

Bl

The following lemma is a generalization of [Lemma 1l
N

LEMMA 3. For A=Qgk, s€2Z,, i€ N, we have
[I0o(So(1+X) ") (A)1(s)=lim §,,-:(A)

where the limit is taken over any sequence of integers as described in Lemma 1
PrOOF. For A,(X)=(14+X)"=1, lim d,,-;(4,(X))=lim 0"*~*=(
other hand,

On the
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I (S0 (14 X)) (A (X))(S=T (- (log (1+X))) () Lemma 2
=T (og (14 X)) () =~ lim 3, ((log(1L+X)))  (emmaTl

=+ 1im 5, ((log (1+X)))=0.

For A, (X)=(1+X)™ (m=1), kligp ﬁnk-i(Am(X))zklim 5nk—i((l+X)m):k1irP mrE
- 400 - 400 ->4o00
=m~tlim m**=m *¢(m, s). On the other hand,

koo

I'o(So(14+ X)) (A, (X)) (s)

=1 (S An 0= (8, s (08 A+ X)) (9
= T (A (X)) () —(lkz o T (og (14X))9)(9)

=m~¢(m, 9 (2, fromer lim 3a,(log (1+X))M)

=m ¢ (m, s).

Hence klir+n Onp-i (A (X))=I"0(So(1+ X)) (A (X))(s) for all m=0. The for-
mula of the lemma is proved for all polynomials in K[ X]. It is easy to see
that the operator S:Qx— Qx is norm preserving and that [(1+X) o,

( l)lX‘

-—1. Thus

170 (So(1+X)™ ) (Alle e ZN(So1+X) ) (Dllo g = Allex
for all A=Qg. The proof of the remaining part is similar to that of Lemma I,
namely, for A€Qx and BeK[X], [[I'o(So(14+X)) ' (A—B)llcx=IA—Bllgg
and [0, ;(A—B)|=|A—Blog.
With the notation ((1+X)’Zi%—>—i:(SO(H—X)“)” for i N=natural num-
bers, we conclude from Lemma 1 and Lemma 3 that

1im 3,04 (A)= Fo((l—l—X) ----- ) (A)(s) for AeQx, s€2Z,, icZ,

where the limit is taken over any sequence of integers as described in

Lemma Tl



14 K. HAaTADA

d \¢ )
REMARK 1. ((IJFX)W) AcQy for A€Qx and ieZ.

LEMMA 4. For A€Qk, s€2Z,, mcZ, we have
rs(1+0-5) " (D=L A)(s+em).
dX
ProOOF. We have shown that
lim & (A):Fo((1+X)L)em(A)(S) ........................ (2)
£t nptem dX ’

where the limit is taken over any sequence of integers as described in Lemma 1l
On the other hand,

n—sin Q, ——> n-+tem — s+em in Q,.
equivalent

eln (—=> el(nt+tem).
equivalent

n—+% in R (=) n+em — +oo in R.
equivalent

Note that if s€2Z,, s+eme2Z,.
Hence, 131311 Omprem (AV=T (A)(sF-em). oveeeerreeervosiniiiiuinnns (3)

follows from (2) and (3).

Let L(s,X) be the Dirichlet series with a primitive character X whose
conductor is fy. We denote by X, (for any /=Z) the primitive character X-o™%.
We fix an embedding of the field @ : Q — 2,.

PROPOSITION 1. For any j€{0,1, -, e—1} and any s<(0,;+2Z,)\{0},
kgﬂ L(1—ng, X) in £, exists, where the limit is taken over amy sequence of
integers ny, k=0, such that n,=0, n,=jmode and such that n, — +0co, |s—n4|
—0, as k— +oo. 4y,; is Kronecker's delta. We write kl_gll L(1l—n,, H)=
L,(1=s, %, j).

PrROOF. Put L,(s, X-w’) for L,(s,X, j). For any natural number =,
Ly(1—n, X)=1-%-0 0™ ™(p) p" N L(1—n, X- &’ 0 ™)=1—X,_;(p) p* ) L(1—n,
Xn-j)Z——(1-—Xn_j(p)p"‘1)B”ﬂ;”"’—. Using liIP p"=0, we get for any s=Z,\{0},

kliin L(1—up, Xup-)=Ly(1—s, A_;) where the limit is taken over any sequence

of integers u,, k=0 such that u,=0, u,— +oo, |s—u,|—0 as k— oo,
In particular L,(1-—s, X_j):klifrn L(1—ng, X) for any se(0, ;+2Z,)\{0}.
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It follows from that L,(s, %, j) is continued to the open set

{se€2,] Is|,<p@-2/@bYy if p=3, {se,| [s|;<2} if p=2 as a meromorphic
function with no poles (when X_; is non trivial character) or with only one
simple pole at s=1 (when X=«’) (Theorem 2, p.29 in[2]), and that L,(s,%;, j)
=L,(s, X) for any j. Now let p be any rational prime. We use the following

notations.
- Ty
szj:eXp (2 V—l/fzj), T(Xj):nzlxj(m)c"flxj;
Try X
B(X, )=z (t)/fe) X, 1;(m)log (I+ 1—5—)

Txj

for je{0, 1, -, e—1},

Buosoon(X, D=(So(1+X) )" 4B(X, j)  for ne(neZlen—jz0},
. d \ents . .
Biusren (X, N=(04+X)—5)" B(X,j)  for ne{neZlentjz0}.

THEOREM A. Assume fy is neither 1 nor p. Then

(i) Ly(A—j+en, 0)=p" T Bij-en€—1,j)  Sfor ne{neZlen—j=0}.

.. . . 1 .
(ii) L,(1—j—en, X)=—B11+j+ea (0, 7))+ > ; Biijren(E—1, )

Jor ne{neZ|jt+en=0}.

Here & ranges over all p-th roots of unity.

ProOF. We fix a finite extension K of @, in £, which contains all { 1%
and X;(a), for a=Z and j={0, 1, ---, e—1}. We have assumed f;#1, p so that
ij;tl, p for all j. Now we fix any j. The following fact is well known.

1 if fxpednfzl,
|1—c,1p:{ o
pETII it f= g, rz,
. X Feo 1 X n
erefore, the formal power series log(1+ 1“szjk) #\‘:‘1( 1) " 1—szj)

is an element of Qg if (k f;,)=1. From this fact we know that B(X, ;) is
also an element of Q.
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Now
Bx =t Bx y= B H gL
aX fzj (k,;:;>=l ’ X+1#C’]£Xj
Thus,
Iy,
L Bwwe
tetB’ (et*—1, j)=te* ST ZnZ:)OBn,x,- o

where B,y; is a generalized Bernoulli number introduced by Leopoldt. Set
DI:(log(1+X))(1+X)JLX. The above calculation shows that d,(D,B(X, 7))

=Buy=—nL(1—n,X;) for all n=1. It is known that 0,(D;B(X, j))=
nd,(B(X, 7)). Hence, (*) né,(B(X, j))=—nL(l—n, X;) for all n=1. We take
the limit of (*) over a sequence of integers as described in [Proposition 1|

limnd, (B (X, j))=slimde_p.;(B(X, 7))

d \i ) :
=sTo((1+X) =% ) (B(X, Ps—j),  (Cemmal).
dX
On the other hand,
lim—nL(l—n, X)=—sL,(1—s, X;, ) =—sL,(1—s, X).

If s+0, this implies
d Vi - :
ro(A+X)J5%) (B, i) (s=p=—Ly(1=s,%) for 0538, ,427,.

However, the same holds also at s=0 if 0<d, ;+2Z, because both sides are
continuous functions of s&4é,;+2Z,. Next we apply for A=

(<1+X>7d)-{-)"3(x, 7). Then, Fo((1+X)C;LX)m”(B (X, ))(sy)

s€0,,;+2Z,. Then we get the following :

d \em+i : : d \i : :
Fo(+X)75) " (B, (s =To((14+ X)) B, D) (s—j+em)
=—L,(1—s—em, X) for all s€4, ;4+2Z,, all meZ.
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In particular, I (B jren (X, 1))(0)=—L,(1—j—em, X). It follows from

for all meZ. --@). Since Bisen(0, )=0 if jtem=0, we obtain
Theorem Al We note that the convergence of the series in the right hand
side of (4) in 2, is guaranteed by lemma 5 of §5 in Iwasawa [2].

REMARK 2. The previously known expression for L,(1—n,X) is given by
L,(1—n, X)=—1—=X,(p) p™~ 1) n for all ne N and all f,€N. (See Theorem 2
in §3 in [2]).

Now we are going to derive a formula for L,(m, X) which is valid for
any Dirichlet character X. Let N be any natural number such that (N, pf)=1.
We put

) z'(XJ) X
Cx, == z = b@log(1+ =5 i,
for j{0, 1, ---, e—1}, where A ranges over all N-th roots of unity in 2, except

1. We also set Cyajoen(X, /)=(So(14+X))em~iC(X, j)= ((1+X) C(X, 7).

ax)
THEOREM B. Notations being as above,

(1) A=V Ly =+ en, D= =5 B Cornepus @=L, 1)

for ne{neZlen—j=0} and ;={0,1, -, e—1}.
(ii) A—=X;(N)N**")YL,(1—j—en, X)

— +en ventry Biren
= — (1L (NN (12, () preeneh) =220

) 1 .
= Cen+j+1 (0, ]) _‘; % Cen+j+1 -1, _7)

for ne{neZ|j+en>0} and je{0,1, -, e—1}.

Here & ranges over all p-th roots of wunity. Especially, when fy, is 1 or p,
take such N as Nmodq is a generator of the multiplicative group (Z/qZ)*
where either g=p or q=4 (for p=2).
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Proor. We fix a finite extension K of @, in £, which contains all 2,
Cij and X(a), for a=Z and j={0, 1, ---, e—1}. For a fixed j, we have (see
p.56 of Iwasawa [2]) 70, (C(X, j))=0,(D,C(X, N)=&;(N)N*—1)B,.;; for all
non negative integers n. Hence (**) nd,(C(X, j))=—n¥;(N)N*—1)L(1—n, X;)
for neN. Applying the same argument in the proof of A, we have
for s€o,.;+2Z,,

To((14+X)-5) (€O, D) ===, (NI NKNY ) Ly (=5, %, J) i p=3,
ro(0+30 -5 Y€, DG=D=0—1,(NNI L5 1, j) i p=2.
We put A=((1+X)-2) ¥, ) in Then we get

ro(a+2) )" e, psy=To(a+X)-5) CX, 9)(sitem)

for s,€2Z,, meZ. Hence for s, ;+2Z, and mcZ,

Fo((1+X>%(—)em”c<X, D (s—)=(1—2,(NYN*=¢m) L, (1— s—em, %;, j)
if p=2,
To((4+)- 5 )™ €K, ) (s ==, (VNN Ly(1—s5—em, 1, )
if p=3.
In particular, 1" (Cemsji1 (X, 1))0)=A—X;(N)N™*)L,(1—j—em, X)
= Comasr O, j)-%gcmw(sq, 7), for all meZ. Since Comssrr(0, )=0 if

. ) o Bemaiixs . )
< — — (1. jtem-1y_Te€mtj. L5
em+j=0, and L,(1—j—em, X) 1-=%;(p) p ) emtj if em+7>0,
heorem| B follows.

Leopoldt calculated L, (1, %) applying his method of I" transform, which is
introduced in Iwasawa [2]. His result is that for a non principal Dirichlet
character X,

—1

AT T00)]

(zae-10)

N0

Ty
£ ) Z 1 (@log, (1-L7p),
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with the p-adic log function of which domain is expanded by Iwasawa to the
whole 2} (see p.61 [2]). In [2], it says that if we compare this formula for
L(1,%);

z(X)

L, 0)=— 7,

Z 7 (a)log (1—C7y)

we find a remarkable similarity between these two. The assertions of Theorems
A and B for the values of L,(n,X), n=2, are not so strong as the above
Leopoldt’s formula for L,(1, X) because & remains in the final expressions for
L,(n,%), n=2. In the case of Leopoldt, the p-adic log function log, is a

group homomorphism: £, — £,, the expression Zlogp<l+ 3 Cil ) is equal

>> and we can expel E from this expression. But

to log, (H(1+ 1—c7,
Biijen(X, j) or CH]_en(X, j) for en—j=1 does not consist of homomorphisms.

Now we fix a character X whose conductor f, is neither 1 nor p. For
simplicity, let {; denote szj and let f; denote fy;. We define the double
sequence {b,}, for [=2 and k=1, inductively as follows. (i) 6;®=-—1, b,®
=—1. (ii) b, =0 if k> (i) b, P=—b,D, b, P=—p,D-2ph, p, D=
—2b, P —=3b, P, e, b= —([—1)b;_ P —1b,D, b,V =(—1)1b,D.

COROLLARY OF THEOREM A. Notations being as above,

Ly(1—j—em, X)=—1—=X;(p) p’*™ ") e::iiijj

f; .
= SN TOC) (em+5) _ 1 __1 ......
- LG {<1 oy ¥ ey ots)

for any m=1 and j={0, 1, ---, e—1}.
PrOOF. The above sequence satisfies the following.

,i_ g _:)g__ — O a O] a* bil)al
(+3)-75) o (14+ 52, )=bi 41— " ey T T @

for /=2 and any a=K such that a¢+0. If we replace X by Xe’ in (5), we get
the following expression.

—1
(1=L3,r

+

- prn B o % 3 0

1731 fy b(WX(k)C {

27

1
P F (- Ck)f}

for all N=2. Here X is any Dirichlet character such that f,#1, p.
The following proposition is a “real-analogue” of Theorems A and B.
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PROPOSITION 2. Let L(s,X) be a Dirichlet L series associated with a non
principal character X, which takes values in C for all s€C. Then L(k, X)=G,(0)
X
for all k=1, where G,(X)=|" 1407 Giy 41, for 122, and

GI<X>:—TJEX> 7 (m)log (—L7 X+1—C70).

Here —1=X=0 and log is defined on {s=C|Re s>0} such that log 1=0.

PrOOF. For Y&C such that |V]o<1, put F(X)= % X(n)Y", where X=
Y—1. Then SO SFX)dy=3 = X(”) Since % is nonprincipal, it follows
from Abel’s []

X (n)

lim S ~F(X)dY $EY_ra,».
Y-1-0
On the other hand,
f
m-1
1 p(ye # Srmyer 0
Yir—1  fi &= Y=
Hence,
r 1 ™ 4y
SO y PO dx=—"¢ 2/<k>5 =23
_— f}") >% 7.6 log (L7t X+1-L75).
Therefore,
5 XA("EY’Z:GI(X) for —1=X<O0.
n=1 7
Hence,
fij_(?;ly =G,(X) for —1=X<0 and k=1
n=1 N

Abel’s implies that,

G.(0)= 11m G, (X)—

b3} x(’” =Lk, 7),

for any keN={1, 2, 3, ---}.
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’

We observe that the operator S and the map “f»—»—;Zf(S-—l)” in the p-adic
s

X
case correspond respectively to the operator S ( )dX and themap “f— f(0)”
-1
in the ordinary case, and that the multiplication by (14+X)™! is common to
both the cases.
§ 2.
In this section we study Dirichlet series given by the following :

(H) L(S): +2°° 'i_"“ aee io A(ml,- Mo, 7’}’11;)

mi=0 nig=0  mi=0 (@ptaimy+ - +a;my)’

(ao, ay, =+, a:€Z, a,, -+, a;>0)

where A is a function of Z‘ with suitable periods which takes values in the
field of algebraic numbers. Our main interest is the application of Leopoldt’s
I' transform to the series of the above type. The function L(s) can be con-
tinued meromorphically to the whole complex plane with at most simple poles
at s=1, 2, ---, 7. And the value L(1—n) for any n=N is in the field generated
by A(ZX --- XZ) over Q. Let p be any fixed prime number, and j be any
integer such that 0=<j<e—1. Then there uniquely exists a p-adic meromor-
phic function L,(s, j) defined on the open set {s€£2,| [s|,<p@ »/?~D} if p=3,
{seQ,| |s|,<2} if p=2, at most with simple poles at s=1, 2, ---, 7, such that
L,(1-s, j)zklirgo L(1—ny), for any s<(d,.;+2Z,)\{0, —1, —2, ---, 1—1i}, where
the limit is taken over any sequence of integers as described in [Proposition 1
The proof of the above which is based on Morita [4] and is given in my
master’s thesis [6]. But the above statement is not necessary for the argu-
ment below if we only replace “holomorphic’’ by “continuous’” in the sentence
(C,) of C.

We put L,(s)=L,(s,0). We denote by s(m, ) for any (m, ) NXN, the
Stirling number defined by

m ! (ﬁ):){(x-n e (X—m D)= Lﬁ s(m, DXL,

The next lemma is easily proved by induction on m.

LEMMA 5. For A(UX)eK[[X]], meN,

e"”[(%)mA(X)](e‘——l):(é s(m, z)(—gt— ) Acet-1).
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For every non negative integer m, let’s denote by D, the map:

m m( 4\
Qx —> Qu, A—> (1+X)" (log (1+X)" ()" 4.
LEMMA 6. For A€Qgk, meN, s€2Z,, we have

Fo((1+X)_ddY m_loDm(A)(S):(S+7n—1)(3+771—2) X eee

X (s+l)s(;ZZ)l s(m, l)Fo((H-X)—JLX)l-I(A))(s).

PRrROOF.

[0 (A) (et —=[ (X (log (1 X)) " A e~

— gmtym e-mt(é s(m, 1)(%—)3 A(et—1)

=(& stm () ) (Ere07)

tn+m

+

5 (3 s0m, Donen()

n=0

n! ’

Therefore, for any n=0,

Snsm (D (A)=(n4m) (1t m—=1) = (n+1) 3 5(m, D3nr(A).

Then we take the limit of this equation over any sequence of integers as des-
cribed in substituting n, for n-+1, and apply Lemma 1. Lemma 6
follows.

We assume that A(m,, m,, .-, m;) has periods f,, f,, -, f; with respect
to each variable m,, m,, -+, m;.

PROPOSITION 3.

i EIL+’£—1
L(1l—n)=(—1) DD - (i D) for neN.
l. 1 . .
IES}?(L(S)G’S):(—‘]_) +kEi_kF:k)‘!Ek‘—_—lﬁ‘ fO?’ B with 1=5k=1.

Here we put

my, My, ==+, M;)e*° T T 3 .
My=0 Tg=0  mg=0 e ’ a=1 (e%wful--1) 237" pn
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We omit the proof of this proposition.
In the remainings of this paper we consider the Dirichlet series given by
the following :

2 > & = Xy (my) o (mg) - Xy (m o) GACE8 -
L(s)=— . 1 1~ g1%g3 gj
(S) m%l 'm.;:l nél n]'ZZI (a+b1 7’}’Ll+ b +b ml‘*‘cl 7l1+ +CJ ])S

where 2, X,, ---, X; are any multiplicative characters with conductors fi,
fa, -+, fi respectively, each {,, is primitive g,-th root of unity. We put k=i ;.
For the above L(s), the equation given in is

. 2 Xl(ml)eb”"” i tC eyt
at U ml— gueu S ,_li__
(E blflt 1 )(1:!;[1 Cguecut__l> mE:OEm 7’)’1.'

Let K:Qp(xl; ) Xi; Cblfly ) Cbifi: Cclgl,' ) Cngj)° If each fl and each 8u is
neither 1 nor p, it is not hard to see that the following formal power series
in K[[X]] is an element of Q.

2 Xl (ml) Ybl(ml 1

R<X):Ya+bl+m+bi~i(z1j e )@Ix Ciiu;u_l1 )

where we put Y=1+X.
We set G(X)=S*""(R (X)) where S is the formal integral operator such that

% +o0
7Z 7l+1
anoanX nzo n+l X

and Gm<X):((1+X)7dX)””G<X) for meZ.

THEOREM C. If each f, and each g, is neither 1 nor p,

(C) L,(s) is holomorphic everywhere on 2Z,.

C) Ly (1)———( D 3 2 sk, m)Gn—1),

m=1 &
where & ranges over all p-th roots of unity.
Proor. It follows from that

Onin-1 D (G)=(—1D*n(n+1) - (n+k—1)L{A—n) for all neN.

Then we take the limit of this equation over any sequence of integers as des-
cribed in substituting n, for n. Apply Lemma 1 and
We get



24 K. HaTaDA

S(sH+1) X v X (s4k—1) lé sk, DI (GY(s)

=(—=1*s(s+1) X -« X(s+k—1)L,(1—5)

for se2Z,.
By continuity we obtain

Lp(l—-s):(—l)"éls(k, DL(G)(s) for s=2Z,.

In particular Lp(l):(—l)ké) s(k, DI'(G,)(0). We note that G,(0)=0 for l=
{1, 2, -, k}.

We give a few examples of [Theorem . They show some similarity
between L(1) and L,(1).

ExaMpPLE 1. On the Dirichlet series L(s)= i /%;, where
n=1
2t/ —1a
C-exp(—;;—) and (a, f)=1.
Case L,(1) L(1)
1
fx1p > log,(£?—1)— log,({—1)
. —log (1-§)
L,(s) has a simple pole at s=1 with
=p residue ——1—.
L,(s)=C,(s) has a simple pole at {(s) has a simple pole
=1 s=1 with residue (1———11;). at s=1 with residue 1.

EXAMPLE 2. On the Dirichlet series L(s)= §, —«M—, where a, be N,
a=1 (a+bn)’
X is a Dirichlet character with conductor f which is neither 1 nor p. We put
2r+/—1
n:exp(——w——b 7 )
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T 4 2w

Lp(l):_ bf k=1 x=1

{az_] pRHID@-1=D 5 (1 ])
i=o i+1

‘l‘ 77a(lz+j‘at:) 10gp (1_0k+f.z)}

()

T B BI040 log, (L),

1 z=1

E:

where we put d(p, i+1)=0 if p|(i+1), 1 if p f(i+1).

b {a~1 77(k+far) (a-1-1)

aCk+fx> — -k-fx\
& irl T log (1—7 >JL'

L()=—

ExaMPLE 3. On the Dirichlet series
== L m)X,(n)

m=1 n=1 (m—i—n)s ’

where X,, X,, are Dirichlet characters with conductors f,, f, respectively which
are neither 1 nor p. '

(3.1) In case that f,=7f,.

()T (Ay) 5 Xi(my) Xy (mz)

L= 8 Cn—tm

x {er tog, (T3 =Lt log, (1—C3)

—Cprlog, (1 -3 + C log, A—7)},

where {x}={(m,, my)|l=m,=f,, ISm,=f,, CrrsECpet.

TET) 5 Bl Bt frm10g (1-C7m0—L72 log 1L},

L= 2 En—cm

(3.2) In case f,=f,=f

(X)) T (Xy) [

L,(D)= 72

s
=0

—

1
+10g, (1=C7) 5 log, (1=C7™)
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z1(7’”1) Zz(mz)
PR R A L mi 10 l_Cn“
{igmigmzr (L7 (Cf g, (1=

1 1
— L7 0g, (1=LPm)—Lptlog, (1=L7)+ -7 log, (1= |

L= =EEL] & 7.0m 2,0 (log (1-17) — =)

oy (my) T, (my)
tgminz PO

=m

(G log (L) Ly log (1—C77) |

REMARK 3. We can get the expressions of L,(l+en) for neZ using

REMARK 4. P. Cassou-Nogués constructed the p-adic meromorphic function
L,(s,(1—17) mode) for the series of type given in §2 of this paper, in the
case that A(-)=1 and every qa;(1=j=1) is an algebraic integer smaller than 1,
independently of us. (See Cassou-Nogués [7]). In [7] there are other examples
of p-adic functions. In our [6], we showed that L,(s,j) (0=j=<e—1) is
meromorphic for any series of type where a,, a,, a,, ---, a; are arbitrary
positive algebraic (over @) p-adic integers. This is a generalization of the
p-adic analogue for the Hurwits L function in Y. Morita [4]. Y. Morita
investigated a p-adic analogue for the Hurwits Lerch L function in Morita

and [10].
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