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Introduction.

In [9] Roquette gives a decomposition of 1 in $R_{\lambda}(G)$ into a sum of primitive
idempotents, where $G$ is a finite group and $R_{\lambda}(G)$ denotes the character ring
of $G$ with coefficients in $\mathfrak{p}$-adic integers $\lambda$ . On the other hand, Serre [10] has
shown that the prime spectrum $Spec(R(G))$ of the character ring $R(G)$ is
connected with respect to the Zariski topology, that is, $R(G)$ has no non-trivial
idempotent.

This paper aims at extending these results to the case where the coefficient
ring $\lambda$ is a Dedekind domain in the complex number field. It is shown in the
section 3 that if every non-zero prime ideal contains a prime number, then it
is necessary and sufficient for Spec $(R_{\lambda}(G))$ to be connected that no prime
divisor of the order of $G$ is a unit in $\lambda$ (Corollary 1 to Proposition 6). From
this result a characterization of finite p-groups is given in Theorem 3. In
particular, $G$ is a p-group if and only if $Spec(R_{\lambda}(G))$ is connected when $\lambda$ is
a discrete valuation ring in which $p$ is a non-unit.

The main step in the proofs of these results is to find special zero-divisors
of $R_{\lambda}(G)$ (Theorem 2), and this is done by using the ideas of [9] and [11].

These zero-divisors are also used to prove a converse of some result due to
Atiyah [1].

The above results contain the corresponding results for a finite abelian
group ring, since in this case the group ring is isomorphic to the character ring.
Swan [13, Corollary 8. 1] has shown that the group ring $\lambda[G]$ has no non-trivial
idempotent if $\lambda$ is a Dedekind domain of characteristic $0$ and no prime divisor of
the order of $G$ is a unit in $\lambda$ . If $G$ is abelian, then it follows from Proposition
5 that $G$ is a p-group if $R(G)$ is Hausdorff with respect to the augmentation
topology (see \S 3. 1). This is a special case of Sinha [12, Corollary].

The section 1 of this paper deals with the prime ideals of $R_{\lambda}(G)$ for an
arbitrary ring $\lambda$ contained in the complex number field. As an analogue of
[6, \S 2, h) and $i)$ ], Proposition 1 gives a necessary and sufficient condition for
$R_{\lambda}(G)$ to be a local ring. Moreover some zero-divisors of $R_{\lambda}(G)$ are constructed
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and applied to an isomorphism problem of character rings (Theorem 1 and
Proposition 3). The section 2 contains the proofs of Theorem 2 and Brauer’s
theorem on induced characters.

1. Prime ideals of $R_{\lambda}(G)$ .

Let $G$ be a finite group of order $|G|$ , and let $R(G)$ be its character ring
(for character rings we refer to [1, \S 6] and [10, \S \S 9-11]). For a subring
$\lambda$ (with identity) of the complex number field $C$ we define the ring

$R_{\lambda}(G)=\lambda\bigotimes_{Z}R(G)$ ,

where $Z$ denotes the ring of rational integers. This is a commutative $\lambda$ -algebra
and its identity is the principal character $1_{G}$ of $G$ . The elements of $R_{\lambda}(G)$ are
$\lambda$ -linear combinations of the complex irreducible characters $\chi$ of $G$ , and the $x’ s$

form a free basis of $R_{\lambda}(G)$ as a $\lambda$-module.
We denote by $A$ the subring of $C$ generated by all $|G|$ -th roots of unity

over $\lambda$ . Then $R_{\lambda}(G)$ is regarded as a subring of the ring $A^{G}$ of all A-valued
functions on $G$ . The ring $\lambda$ can be embedded in $R_{\lambda}(G)$ by $\lambda\cdot 1_{G}$ . Thus we have
inclusions

$\lambda\subseteqq R_{\lambda}(G)\subseteqq A^{G}$ .

We note that $A^{G}$ is integral over $R_{\lambda}(G)$ , since $A$ is integral over $\lambda$ .
Therefore every prime ideal of $R_{\lambda}(G)$ is the contraction of some prime ideal
of $A^{G}$ [$2$ , Theorem 5. 10]. In other words, it is of the form

$P_{\mathfrak{p}x}=\{f\in R_{\lambda}(G)|f(x)\in \mathfrak{p}\}$

for some $x\in G$ and some prime ideal $\mathfrak{p}$ of $A$ . In particular, the minimal prime
ideals $P_{0,x}$ are obtained by putting $\mathfrak{p}=0$ . Since $ f(e)\in\lambda$ for $f\in R_{\lambda}(G)$ , we have
$P_{\mathfrak{p},e}=P_{n,e}$ where $\mathfrak{m}=\mathfrak{p}\cap\lambda$ and $e$ denotes the identity of $G$ .

For a prime number $P$ every element $x$ of $G$ is uniquely expressed as
$x=x_{p}\cdot y$ , where $x_{p}$ and $y$ commute, the order of $x_{p}$ is prime to $p$ , and the
order of $y$ is a power of $p$ . We call $x_{p}$ the $P$ -regular factor of $x$ .

LEMMA 1. If $p\in \mathfrak{p}$ , then for any $f\in R_{\lambda}(G)$

$f(x)\equiv f(x_{p})$ $mod \mathfrak{p}$ .

PROOF. See the proof of [1, Lemma (6. 3)].

If $G$ is a p-group and $\lambda$ is a (Noetherian) local ring with maximal ideal $\mathfrak{m}$

such that the residue field $\lambda/\mathfrak{m}$ has characteristic $p$ , then it follows from
Lemma 1 that $R_{\lambda}(G)$ is a (Noetherian) iocal ring (cf. [8, \S 2]). We can also
prove the converse.
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PROPOSITION 1. SuPpose $G\neq\{e\}$ . If $R_{\lambda}(G)$ is a (Noetherian) local ring,
then $G$ is a $P$-group and $\lambda$ is a (Noetherian) local ring whose residue field has
characteristic $p$ .

PROOF. Using an augmentation $\epsilon$ : $ R_{\lambda}(G)\rightarrow\lambda$ defined by $\epsilon(f)=f(e)$ , we
observe that $\lambda$ is a (Noetherian) local ring. Let $\mathfrak{m}$ be the maximal ideal of $\lambda$ .
Then $P_{\mathfrak{n})e}=\epsilon^{-1}(\mathfrak{m})$ is a unique maximal ideal of $R_{\lambda}(G)$ . From the assumption
$G\neq\{e\}$ the character $r_{G}$ afforded by the regular representation of $G$ is a non-
unit in $R_{\lambda}(G)$ , hence $r_{G}\in P_{\mathfrak{m}e}$ . Since $r_{G}(e)=|G|$ , it follows that $\mathfrak{m}\cap Z=pZ$ for
some prime number $P$ dividing $|G|$ .

To prove that $G$ is a $P$ -group, let $P$ be a Sylow p-subgroup of $G$ . If $f$ is
the character of $G$ induced from the principal character $1_{P}$ of $P$, then $f\not\in P_{\mathfrak{m}e}$ ,
hence $f$ is a unit in $R_{\lambda}(G)$ and therefore $f(x)\neq 0$ for all $x\in G$ . Consequently
every element of $G$ has for its order a power of $p$ .

Now let $K$ and $L$ denote the quotient fields of $\lambda$ and $A$ , respectively.
Then $L$ is a finite normal extension of $K$, and each automorphism $\sigma$ of the
Galois group $Gal(L/K)$ is given by

$\sigma(w)=w^{t}$

for all $|G|$ -th roots $w$ of unity, where $t$ is an integer prime to $|G|$ . We denote
by $\Gamma_{K}$ the image of the homomorphism from Gal $(L/K)$ into the group of units
of $Z/|G|Z$, and by $\sigma_{t}$ the automorphism of $Gal(L/K)$ corresponding to $t$

modlGl in $\Gamma_{K}$ . For simplicity we shall write $t$ instead of $tmod |G|$ .
Two elements $x,$ $y$ of $G$ are said to be K-conjugate (notation:

$x_{K}\sim y$
) if $x^{t}$ ,

$y$ are conjugate in $G$ for some $t\in\Gamma_{K}$ . By a K-class function we mean a
function $f$ on $G$ such that $f(x)=f(y)$ if

$x_{K}\sim y$ .
LEMMA 2. Every function $f\in R_{\lambda}(G)$ satisfies the equations

$\sigma_{t}(f(x))=f(x^{t})$ ,

where $x\in G$ and $t\in\Gamma_{K}$ . If $\lambda$ is integrally closed, then $R_{\lambda}(G)$ contains all
$\lambda$-valued K-class functions of $R_{A}(G)(=A\ovalbox{\tt\small REJECT} R_{\lambda}(G))$ .

PROOF. See [10, Theorem 26].

We shall frequently use the following orthogonality relations:

$\sum_{\chi}\chi(x^{-1})\chi(y)=\{|Z(x)|0$

if $x$ and $y$ are conjugate,

otherwise,

where $Z(x)$ is the centralizer of $x$ in $G$ .
THEOREM 1. If $\lambda$ is integrally closed, then for each $x\in G$ there exists a

function $\xi_{x}$ of $R_{\lambda}(G)$ such that $\xi_{x}(y)\neq 0$ if $x_{K}\sim y$
; otherwise $\xi_{x}(y)=0$ .



740 S. KONDO

PROOF. For each $\chi$, define $a_{\chi}\in A$ by

$a_{\chi}=\sum_{t\in 1_{K}^{\mathfrak{l}}}\chi(x^{-t})$ .

Then Lemma 2 implies that $\sigma_{t}(a_{\chi})=a_{\chi}$ for all $t\in\Gamma_{K}$, hence $ a_{\chi}\in A\cap K=\lambda$ , since
$\lambda$ is integrally closed. If we set

$\xi_{x}=\sum_{\chi}a_{\chi}x$,

then $\xi_{x}\in R_{\lambda}(G)$ , and the result follows from the above orthogonality relations.
It is clear that $\xi_{x}\not\in P_{0,x}$ , but $\xi_{x}\in P_{0,y}$ if $x,$ $y$ are not K-conjugate. There-

fore $P_{0,x}\neq P_{0,y}$ . On the other hand, if $x_{K}\sim y$
, then $P_{0,x}=P_{0,y}$ by Lemma 2.

Thus we obtain a generalization of [7, Theorem 1] as follows:

PROPOSITION 2. If $\lambda$ is integrally closed, then the number of the minimal
prime ideals of $R_{\lambda}(G)$ is equal to the number of the K-conjugate classes of $G$ .

As another application of Theorem 1 we consider an isomorphism problem
of character rings. Let $\alpha$ ; $G\rightarrow G^{\prime}$ be a homomorphism of groups. Then we
have a canonical ring-homomorphism $\alpha^{*};$ $R_{\lambda}(G^{\prime})\rightarrow R_{\lambda}(G)$ defined by $\alpha^{*}(f)=f\circ\alpha$ .
It is easy to see that $\alpha^{*}$ is injective if $\alpha$ is surjective.

PROPOSITION 3. If $\alpha^{*}$ is an isomorphism, then so is $\alpha$ .
PROOF. Choose elements $f_{\chi}\in R_{\lambda}(G^{\prime})$ so that $\alpha^{*}(f_{\chi})=x$ . If $ x\in Ker\alpha$, then

$\chi(x)=x(e)$ for all $\chi$, hence $x=e$ by the orthogonality relations.
Suppose a is not surjective. Then there exists $y\in G^{\prime}$ such that $y\not\in t^{-1}\alpha(G)t$

for all $t\in G^{\prime}$ . Let $\xi_{y}$ be the function as in Theorem 1. Then $\xi_{y}(\alpha(x))=0$ for
$x\in G$ , hence $\alpha^{*}(\xi_{y})=0$ . Since $\alpha^{*}$ is injective, we have $\xi_{y}=0$, which is contrary
to $\xi_{y}(y)\neq 0$ .

2. The main theorem.

We shall prove our main theorem. Suppose $\lambda$ is Noetherian and of (Krull)

dimension $\leqq 1$ . Let $\mathfrak{m}$ be a maximal ideal of $\lambda$ , and let $B=S^{-1}A$ where S=\‘A--m.

Then $B$ is a Noetherian semi-local domain of dimension $\leqq 1$ (cf. [4, Chap. 4,
\S 2, Corollary 3 to Proposition 9]). We denote by $\mathfrak{a}$ the set $J^{G}$ of all functions
on $G$ which take their values in the Jacobson radical $J$ of $B$ . Obviously $\mathfrak{a}$ is
an ideal of $B^{G}$ . We note that every non-zero ideal of $B$ contains a power of
$J$ (cf. [2, Proposition 9. 1]).

LEMMA 3. $R_{B}(G)$ is a closed (and open) subset of $B^{G}$ with respect to the
a-adic topology.

PROOF. It suffices to show that $\mathfrak{a}^{k}\subseteqq R_{B}(G)$ for some $k$ . Let $T=B-\{0\}$ .
Then $T^{-1}B$ is the quotient field $L$ of $A$ . The orthogonality relations yield
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$T^{-1}R_{B}(G)=L^{G}$ . Since $L^{G}=T^{-1}(B^{G})$ and $B^{G}$ is a finitely generated B-module,
it follows that $t(B^{G})(=(tB)^{G})\subseteqq R_{B}(G)$ for some $t\in T$ . If we choose $k$ so that
$J^{k}\subseteqq tB$ , then we have $\mathfrak{a}^{k}\subseteqq R_{B}(G)$ .

THEOREM 2. Let $\lambda$ be a Dedekind domain, and $\mathfrak{m}$ a maximal ideal of $\lambda$

containing $p$ . Then for any $p$-regular element $a\in G$ there exists a $\lambda$ -valued
K-class function $\phi_{a}\in R_{\lambda}(G)$ such that $\phi_{a}(a)\not\in \mathfrak{m}$ and $\phi_{a}(x)=0$ if $x_{P}$ is not
K-conjugate to $a$ .

PROOF. Let $b\in G$ be K-conjugate to $a$ . It follows from [5, Lemma (40. 7)]

that there exists a $\lambda$-valued class function $\eta\in R_{B}(G)$ such that $\eta(b)=1$ and
$\eta(x)=0$ if $x_{p}$ is not conjugate to $b$ . (Note that $\eta$ lies in Ind $R_{B}(H)$ , an ideal
of $R_{B}(G)$ induced from the ring $R_{B}(H)$ of a p-elementary subgroup $H$ of $G$ .
This fact is used in the proof of Lemma 4.)

Now let $\mathfrak{p}^{\prime}$ be a maximal ideal of $B$ , then $\mathfrak{m}\subseteqq \mathfrak{p}^{\prime}$ . If $x_{p}$ is conjugate to $b$,

then it follows from Lemma 1 that $\eta(x)\equiv 1$ mod $\mathfrak{p}^{\prime}$ . Therefore we have
$\eta(x)\equiv 1mod J$. Noting $p\in J$, one can show by induction on $n$ that

$\eta(x)^{p^{n}}\equiv 1$ $mod J^{n+1}$

for all $n$ .
Define a sequence $\{\alpha_{n}\}$ of $R_{B}(G)$ by $\alpha_{n}=\eta^{p^{n}}$ . Then for $n\geqq k$ we have,

taking congruences modulo $J^{k}$ ,

$\alpha_{n}(x)\equiv\{01$

if $x_{p}$ is conjugate to $b$ ,

otherwise.

Let $\theta_{b}$ be a function of $B^{G}$ such that $\theta_{b}(x)=1$ if $x_{p}$ is a conjugate of $b$ ; other-
wise $\theta_{b}(x)=0$ . Then $\theta_{b}$ is a limit of $\{\alpha_{n}\}$ in $B^{G}$ with respect to the $\mathfrak{a}$-adic
topology, since $\theta_{b}-\alpha_{n}\in \mathfrak{a}^{k}$ for $n\geqq k$ . Therefore Lemma 3 implies $\theta_{b}\in R_{B}(G)$ .

We denote by $C_{a}$ a full set of representatives of the conjugate classes in
all elements of $G$ which are K-conjugates of $a$ , and define a function $\phi^{\prime}$ of
$R_{B}(G)$ by

$\phi^{\prime}=\sum_{b\in C_{a}}\theta_{b}$ .

Then $\phi^{\prime}(x)=1$ if $x_{p}\sim a;K$ otherwise $\phi^{\prime}(x)=0$ . Choose $s\in S$ so that $s\phi^{\prime}\in R_{A}(G)$ ,

and set $\phi_{a}=s\phi^{\prime}$ . From Lemma 2 it follows that $\phi_{a}\in R_{\lambda}(G)$ . Clearly $\phi_{a}$ has
the properties asserted in this theorem.

We now give a proof of Brauer’s theorem on induced characters. Let $C_{p}$

denote a full set of representatives of the K-conjugate classes in the p-regular
elements of $G$ , and let

$\Phi=\bigcup_{p}\{\phi_{a}|a\in C_{p}\}$ ,

where $\phi_{a}$ is the function for $a$ as in Theorem 2.
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PROPOSITION 4. If every maximal ideal of $\lambda$ contains a prime number, then
$\Phi$ is contained in no pr0per ideals of $R_{\lambda}(G)$ .

PROOF. It is sufficient to prove that $\Phi$ is not contained in any maximal
ideal $P_{\mathfrak{p},x}$ . By assumption $\mathfrak{p}$ contains a prime number $p$ . If $x_{p}$ is K-conjugate
to $a\in C_{p}$ , then by Lemma 1 we have $\phi_{a}(x)\not\in \mathfrak{p}$ showing $\phi_{a}\not\in P_{\mathfrak{p},x}$ .

Let us denote by $X_{p}$ the set of all $P$ -elementary subgroups of $G$ , and
define an ideal $V_{p}$ of $R_{\lambda}(G)$ by

$V_{p}=\sum_{H\in X_{p}}$ Ind $R_{\lambda}(H)$ ,

where Ind is a $\lambda$-homomorphism $R_{\lambda}(H)\rightarrow R_{\lambda}(G)$ defined by means of induced
characters.

LEMMA 4 (Shiratani [11]). If $\lambda$ is a Principal ideal domain in which $p$ is
a non-unit, then $\phi_{a}\in V_{p}$ for all $a\in C_{p}$ .

PROOF. We adopt the notation in the proof of Theorem 2. Let $\{c_{i}\}$ be a
full set of representatives of the conjugate classes of $G$ where the p-regular
factor of $c_{i}$ is conjugate to $b$ . Define $n_{i}=\eta(c_{i})\cdot|Z(c_{i})|$ . We can choose $k$ so
that $J^{k}\subseteqq n_{i}B$ for all $i$ . Then the elements

$a_{\chi i}=\frac{1}{n_{i}}\{\theta_{b}(c_{i})-\alpha_{k}(c_{i})\}\chi(c_{i^{-1}})$

are contained in $B$ , since $\theta_{b}(c_{i})-\alpha_{k}(c_{i})\in J^{k}$ . Using the orthogonality relations
one can show that

$\theta_{b}=\alpha_{k}+\sum_{\chi,i}a_{\chi,t}\chi_{\eta}$ .

Since $\alpha_{k}$ , $\eta\in IndR_{B}(H)$ , it follows that $\theta_{b}\in IndR_{B}(H)$ , hence $\phi_{a}\in A\ovalbox{\tt\small REJECT} V_{p}$ .
However, by the same argument as [5, pp. 285-286] we have $ V_{p}=R_{\lambda}(G)\cap$

$A$
$\Phi V_{p}$ and therefore $\phi_{a}\in V_{p}$ .

Taking $\lambda=Z$, Proposition 4 together with Lemma 4 gives

BRAUER’S THEOREM ON INDUCED CHARACTERS. $R(G)=\sum_{p,H\in X_{p}}IndR(H)$ .

3. Applications.

3.1. Augmentation topology. We shall extend a result of Atiyah [1,

Proposition (6. 10)] to the case where $\lambda$ is a Dedekind domain. To do this we
need

LEMMA 5. $ SuPPose\lambda$ is a Dedekind domain. If $p\in \mathfrak{p}$, then $P_{0,x}\subseteqq P_{\mathfrak{p},y}$ implies
$x_{p}\sim y_{p}K$
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PROOF. Let $a=y_{p}$ , and $\phi_{\alpha}$ the function as in Theorem 2. Then by
Lemma 1 we have $\phi_{a}\not\in P_{\mathfrak{p},y}$ , hence $\phi_{a}\not\in P_{0,x}$ , which shows $x_{p}\sim aK$

If we set $I_{\lambda}(G)=P_{0,e}$ , then the same argument as [1] yields

$\bigcap_{n=1}^{\infty}I_{\lambda}(G)^{n}=$ { $f\in R_{\lambda}(G)|f(x)=0$ for all $x$ having prime power order}.

It is clear that $\bigcap_{n}I_{\lambda}(G)^{n}=0,$
$i$ . $e$ . $R_{\lambda}(G)$ is Hausdorff with respect to the aug-

mentation topology if $G$ consists of elements having prime power order. We
shall prove a converse.

PROPOSITION 5. SuPpose $\lambda$ is a Dedekind domain and contains a prjme
number $p$ which is a non-unit in $\lambda$ , and which does not divide the order of $G$ .
If $\bigcap_{n\Leftarrow 1}^{\infty}I_{\lambda}(G)^{n}=0$, then $G$ consists of elements having prime power order.

PROOF. If there exists $a\in G$ whose order has two distinct prime divisors,
then $a$ is a p-regular element, and the function $\phi_{a}$ as in Theorem 2 lies in
$\cap I_{\lambda}(G)^{n}$ , for if $x$ has a prime power order, then $x_{p}$ is not K-conjugate to $a$ ,
hence $\phi_{a}(x)=0$.

3.2. Connectedness of Spec $(R_{\lambda}(G))$ . We shall give a more precise result
than [10, Proposition 31]. Let $\{P_{0,c_{i}}\}_{1\leq i\leqq r}$ be the set of distinct minimal prime
ideals of $R_{\lambda}(G)$ . We denote by $V_{t}$ the set of all prime ideals of $R_{\lambda}(G)$ con-
taining $P_{0,c_{i}}$ . Then the $V_{i}$ are connected closed sets whose union is Spec $(R_{\lambda}(G))$

(for prime spectrum see [2], [4]).

PROPOSITION 6. Two distinct minimal prime ideals $P_{0,x}$ and $P_{0,y}$ are con-
tained in the same connected component of Spec $(R_{\lambda}(G))$ if there exist elements
$x_{0},$ $x_{1},$ $\cdots,$ $x_{n}$ of $G$ and Prime numbers $p_{1},$

$\cdots,$
$p_{n}$ such that

1) $x_{0}=x$ and $x_{n}=y$ ,

2) the $p_{\alpha}$ are non-units in $\lambda$ , and

3) the $p_{a}$-regular factors of $x_{\alpha-1}$ and $x_{\alpha}$ are K-conjugate $(1\leqq\alpha\leqq n)$ .
Furthermore, the converse is true when $\lambda$ is a Dedekind domain such that

every non-zero prime ideal contains a prime number.
PROOF. We may assume that $P_{0,x_{\alpha}}=P_{0,c_{\alpha}}(1\leqq\alpha\leqq n)$ . If $\mathfrak{p}_{a}$ is a prime ideal

of $A$ containing $p_{a}$ , then it follows from Lemmas 1 and 2 that $P_{\mathfrak{p}_{\alpha},x_{\alpha}}\in V_{a-1}\cap V_{\alpha}$ ,

which proves the first assertion.
Now suppose that $\lambda$ satisfies the above condition. If two distinct ideals

$P_{0,x}$ and $P_{0,y}$ are contained in the same connected component, then there exists
a sequence $\{V_{j_{\alpha}}\}_{0\leqq\alpha\leq n}$ such that $P_{0,x}\in V_{j_{0}}$ , $P_{0,y}\in V_{J_{n}}$ , and $ V_{j_{\alpha-1}}\cap V_{J_{\alpha}}\neq\emptyset$

$(1\leqq\alpha\leqq n)$ . If we choose prime ideals $P_{\mathfrak{p}_{\alpha},y_{\alpha}}\in V_{J_{\alpha}- 1}\cap V_{j_{\alpha}}$ such that $\mathfrak{p}_{\alpha}\cap Z=$

$p_{a}Z$ for some prime numbers $p_{\alpha}(1\leqq\alpha\leqq n)$ , then it follows from Lemma 5
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that the $p_{\alpha}$-regular factors of $c_{j_{\alpha}-1}$ and $c_{J_{\alpha}}$ are K-conjugate. Furthermore
Proposition 2 implies that $x$ and $y$ are K-conjugate to $c_{Jo}$ and $c_{J_{n}}$ , respectively.
The result is obtained by setting $x_{\alpha}=c_{j_{\alpha}}(1\leqq\alpha<n)$ .

COROLLARY 1. If no prime divisor of the order of $G$ is a unit in $\lambda$ , then
Spec $(R_{\lambda}(G))$ is connected. Furthermore, the converse is true when $\lambda$ is the ring
as in the propositiOn.

PROOF. To prove the first part it suffices to show that for any $x\in G$ ,
$P_{0,x}$ and $P_{0,e}$ are contained in the same connected component. Let $\{p_{\alpha}\}_{1\leqq a\leqq n}$

be the set of all prime divisors of the order of $x$ , then each $p_{a}$ is a non-unit
in $\lambda$ . Take $x_{\alpha}$ to be the $p_{\alpha}$-regular factor of $x_{\alpha-1}(1\leqq\alpha\leqq n)$ where $x_{0}=x$ , and
apply the proposition to $\{x_{\alpha}\}$ and $\{p_{\alpha}\}$ .

We now assume that $\lambda$ is the ring as asserted in the proposition and that
Spec $(R_{\lambda}(G))$ is connected. Let $x$ be any element of $G$ . It suffices to show
that the order of $x$ is a non-unit in $\lambda$ . Since $P_{0,e}$ and $P_{0,x}$ are contained in the
same connected component, there exist two sequences $\{x_{\alpha}\}$ and $\{p_{a}\}$ which
have the properties in the proposition. Then $x_{0}=e$ means that the order of $x_{1}$

is a power of $p_{1}$ . Similarly the prime divisors of the order of $x_{2}$ are at most
$p_{1}$ and $p_{2}$ , and so on. Thus the prime divisors of the order of $x$ are at most
$p_{1},$ $p_{2},$ $\cdots,$ $p_{n}$ . Hence the order of $x$ is a non-unit in $\lambda$ .

COROLLARY 2 (Serre [10, Proposition 31]). Spec $(R(G))$ is connected.
By Proposition 6 we can determine the individual summand in the decom-

position of $R_{\lambda}(G)$ into a direct sum of indecomposable ideals. In particular,
we have the following:

PROPOSITION 7. Suppose that $\lambda$ is a discrete valuation ring in which $p$ is a
non-unit. Let $\{C_{i}\}_{1\leqq i\leqq s}$ be the set of all K-conjugate classes in the p-regular
elements of $G$ , and let

$B_{i}=\bigcap_{y_{p}\not\in c_{i}}P_{0,y}$
$(1\leqq i\leqq s)$ .

Then $R_{\lambda}(G)$ is a direct sum of indecomposable ideals $B_{i}$ .
PROOF. Let $B_{i}^{\prime}=\cap y_{p}\in C_{i}P0,$

$y$ ’ then $B_{i}\cap B_{i}^{\prime}=0$ . If $R_{\lambda}(G)\neq B_{i}+B_{i}^{\prime}$ , then
there exists a maximal ideal $P_{\mathfrak{p},x}$ such that $B_{i}+B_{i}^{\prime}\subseteqq P_{\mathfrak{p},x}$ . According to [2,
Proposition 1. 11] we have $y_{p}\not\in C_{i}$ and $y_{p}^{\prime}\in C_{i}$ such that $P_{0,y}+P_{0,y^{\prime}}\subseteqq P_{\mathfrak{p},x}$ .
However, since $p\in \mathfrak{p}$, it follows from Lemma 5 that $y_{p}\sim y_{p}^{\prime}K$ which is a con-
tradiction. Thus $R_{\lambda}(G)=B_{i}+B_{i}^{\prime}$ for all $i$ . Noting $\sum_{j\neq i}B_{j}\subseteqq B_{i}^{\prime}$ and $\bigcap_{i}B_{i}^{\prime}=0$ ,

we see that $R_{\lambda}(G)$ is a direct sum of the $B_{i}$ .
Now suppose that $B_{t}$ is not indecomposable, and let $W$ be the set of all

prime ideals of $R_{\lambda}(G)$ which contain $B_{i}^{\prime}$ . It is not hard to show that $W$ is not
a connected subset of Spec $(R_{\lambda}(G))$ . However, Proposition 6 asserts that $W$ is
connected, a contradiction.
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$R+MARK$ . In the case where $\lambda$ is a field $K$, every $P_{0,x}$ is a maximal ideal
of $R_{\lambda}(G)$ . Let $\{x_{i}\}_{1\leqq i\leqq t}$ be a full set of representatives of the K-conjugate
classes of $G$ , then $\bigcap_{i}P_{0,x_{i}}=0$ . If we set $B_{i}=\cap {}_{j\neq i}P_{0,x_{j}}$ , then $R_{\lambda}(G)=P_{0,x_{i}}+B_{i}$ ,

hence $R_{\lambda}(G)$ is a direct sum of $B_{i}$ . On the other hand, since $P_{0,x_{i}}$ is the
kernel of the map $R_{\lambda}(G)\rightarrow L$ which assigns to each $f$ its value $f(x_{x})$ at $x_{i}$ , it
follows that $R_{\lambda}(G)/P_{0,x_{i}}$ (and hence $B_{i}$) is isomorphic to the subfield of $L$

generated by all $\chi(x_{i})$ over $K$. Further results on this ring $R_{\lambda}(G)$ may be
found in [7] and [14].

3.3. A characterization of $p$-groups. Finally we give a characterization
of p-groups.

THEOREM 3. Under the hypOthesis for $\lambda$ as in PropOsitiOn7, the following
conditions are equivalent.

(1) $G$ is a $p$-group.
(2) $R_{\lambda}(G)$ is a Neotherian local ring.
(3) $R_{\lambda}(G)$ is Hausdorff with respect to the augmentation topology.

(4) Spec $(R_{\lambda}(G))$ is connected.

PROOF. (1) $\Rightarrow(2)$ follows from Proposition 1.
(2) $\Rightarrow(3)$ . Use the intersection theorem of Krull [2, Corollary 10. 20].

(3) $\Rightarrow(4)$ . Since $I_{\lambda}(G)$ is a prime ideal, it follows that $R_{\lambda}(G)$ has no non-
trivial idempotents. Therefore Spec $(R_{\lambda}(G))$ is connected.

(4) $\Rightarrow(1)$ follows from Proposition 7.
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