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Introduction.

In [9] Roquette gives a decomposition of 1 in RyG) into a sum of primitive
idempotents, where G is a finite group and R,(G) denotes the character ring
of G with coefficients in p-adic integers 2. On the other hand, Serre has
shown that the prime spectrum Spec(R(G)) of the character ring R(G) is
connected with respect to the Zariski topology, that is, R(G) has no non-trivial
idempotent.

This paper aims at extending these results to the case where the coefficient
ring 2 is a Dedekind domain in the complex number field. It is shown in the
section 3 that if every non-zero prime ideal contains a prime number, then it
is necessary and sufficient for Spec(R;(G)) to be connected that no prime
divisor of the order of G is a unit in 2 (Corollary 1] to [Proposition €). From
this result a characterization of finite p-groups is given in [Theorem 3 In
particular, G is a p-group if and only if Spec(R;(G)) is connected when 4 is
a discrete valuation ring in which p is a non-unit.

The main step in the proofs of these results is to find special zero-divisors
of R,(G) (Theorem 2), and this is done by using the ideas of and [11].
These zero-divisors are also used to prove a converse of some result due to
Atiyah [1].

The above results contain the corresponding results for a finite abelian
group ring, since in this case the group ring is isomorphic to the character ring.
Swan [13, Corollary 8. 1] has shown that the group ring A[G] has no non-trivial
idempotent if 1 is a Dedekind domain of characteristic 0 and no prime divisor of
the order of G is a unit in 4. If G is abelian, then it follows from
5 that G is a p-group if R(G) is Hausdorff with respect to the augmentation
topology (see §3.1). This is a special case of Sinha [12, Corollary].

The section 1 of this paper deals with the prime ideals of R,;(G) for an
arbitrary ring A contained in the complex number field. As an analogue of

[6, §2, h) and i)], gives a necessary and sufficient condition for

R;(G) to be a local ring. Moreover some zero-divisors of R;(G) are constructed
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and applied to an isomorphism problem of character rings and
Proposition J3). The section 2 contains the proofs of and Brauer’s

theorem on induced characters.

1. Prime ideals of R;(G).

Let G be a finite group of order |G|, and let R(G) be its character ring
(for character rings we refer to [1, §6] and [10, §§9-11]). For a subring
A (with identity) of the complex number field C we define the ring

where Z denotes the ring of rational integers. This is a commutative A-algebra
and its identity is the principal character 1; of G. The elements of R,(G) are
A-linear combinations of the complex irreducible characters X of G, and the X’s
form a free basis of R;(G) as a A-module.

We denote by A the subring of C generated by all |G|-th roots of unity
over . Then R;(G) is regarded as a subring of the ring A¢ of all A-valued
functions on G. The ring 4 can be embedded in R,(G) by A-1sz. Thus we have
inclusions

1S R;(G) S A°.

We note that A% is integral over R,(G), since A is integral over A
Therefore every prime ideal of R;(G) is the contraction of some prime ideal
of A% [2, Theorem 5.10]. In other words, it is of the form

Py . ={feR:(G)| f(x)ED}

for some x=G and some prime ideal p of A. In particular, the minimal prime
ideals P, , are obtained by putting p=0. Since f(e)e2 for f=R,(G), we have
P, .—=P. . where m=p M\ 4 and e denotes the identity of G.

For a prime number p every element x of G is uniquely expressed as
x=x,-y, where x, and y commute, the order of x, is prime to p, and the
order of y is a power of p. We call x, the p-regular factor of x.

LEmMA 1. If peEy, then for any fER;(G)

f(0)=f(xp,)  modb.
PROOF. See the proof of [1, Lemma (6.3)].

If G is a p-group and A is a (Noetherian) local ring with maximal ideal m
such that the residue field A/m has characteristic p, then it follows from
LCemma 1 that R,(G) is a (Noetherian) iocal ring (cf. [8, §27). We can also
prove the converse.
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PROPOSITION 1. Suppose G=+{e}. If R;(G) is a (Noetherian) local ring,
then G 1is a p-group and 2 is a (Noetherian) local ring whose residue field has
characteristic p.

Proor. Using an augmentation ¢ : R,(G)— 2 defined by &(f)=f(e), we
observe that A4 is a (Noetherian) local ring. Let m be the maximal ideal of A.
Then Pn,.=¢"*(m) is a unique maximal ideal of R,(G). From the assumption
G+ {e} the character r, afforded by the regular representation of G is a non-
unit in R;(G), hence r¢=Pn,.. Since r4(e)=|G|, it follows that mN\ Z=pZ for
some prime number p dividing |G].

To prove that G is a p-group, let P be a Sylow p-subgroup of G. If fis
the character of G induced from the principal character 1, of P, then fe& Pu .,
hence f is a unit in R;(G) and therefore f(x)+#0 for all xe(G. Consequently
every element of G has for its order a power of p. :

Now let K and L denote the quotient fields of 2 and A, respectively.
Then L is a finite normal extension of K, and each automorphism ¢ of the
Galois group Gal(L/K) is given by

o (w)y=w'*

for all |G]-th roots w of unity, where ¢ is an integer prime to |G|. We denote
by I'x the image of the homomorphism from Gal(L/K) into the group of units
of Z/|G|Z, and by o, the automorphism of Gal(L/K) corresponding to ¢
mod|G| in I'x. For simplicity we shall write ¢ instead of £ mod|G]|.

Two elements x, y of G are said to be K-conjugate (notation: xr y) if xf,

y are conjugate in G for some te[l'x. By a K-class function we mean a
function f on G such that f(x)=f(y) if x~y.

LEMMA 2. Every function fe R;(G) satisfies the equations
o.(f(x))=f(x"),

where x€G and 1€l'y. If 1 is integrally closed, then R;(G) contains all
A-valued K-class functions of R4(G) (=A§>R2(G)).

Proor. See [10, Theorem 26].

We shall frequently use the following 0rtﬁogonality relations :
1Z (x)] if x and y are conjugate,
S u(0)=] _
x otherwise,

where Z(x) is the centralizer of x in G.

THEOREM 1. If 2 is integrally closed, then for each x&G there exists a
Sfunction &, of R;(G) such that &,(y)#0 if X~y otherwise &, (y)=0.
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ProOF. For each %, define ¢, A by
ar= 23 X(x79).
tel g

Then implies that ¢,(ay)=ay for all tel'k, hence a,= AN\ K=A4, since
A is integrally closed. If we set

E.Z:: Z axxy
X

then &, R;(G), and the result follows from the above orthogonality relations.
It is clear that §,&¢P, ,, but §,€P,,, if x, y are not K-conjugate. There-
fore P, ,#P,,. On the other hand, if Xy, then P, ,=P,, by

Thus we obtain a generalization of [7, Theorem 1] as follows :

PROPOSITION 2. If 2 1is integrally closed, then the number of the wminimal
prime ideals of R;(G) is equal to the number of the K-conjugate classes of G.

As another application of we consider an isomorphism problem
of character rings. Let a: G — G’ be a homomorphism of groups. Then we
have a canonical ring-homomorphism a*: R;(G’) — R;(G) defined by a*(f)=f-a.
It is easy to see that a* is injective if a is surjective.

PROPOSITION 3. If a* is an isomorphism, then so is a.

ProoFr. Choose elements f,= R;(G’) so that a*(f;)=X. If x=Kerea, then
2(x)=X(e) for all X, hence x=e¢ by the orthogonality relations.

Suppose « is not surjective. Then there exists yeG’ such that yei 'a (G
for all teG’. Let &, be the function as in [Theorem 1. Then &, (a(x))=0 for
x<G, hence a*(§,)=0. Since a* is injective, we have &,=0, which is contrary
to &, ()=+0.

2. The main theorem.

We shall prove our main theorem. Suppose 4 is Noetherian and of (Krull)
dimension =1. Let m be a maximal ideal of A, and let B=S"*A where S=21—m.
Then B is a Noetherian semi-local domain of dimension =1 (cf. [4, Chap. 4,
§2, Corollary 3 to Proposition 97). We denote by a the set J¢ of all functions
on G which take their values in the Jacobson radical J of B. Obviously a is
an ideal of B%. We note that every non-zero ideal of B contains a power of
J (cf. [2, Proposition 9. 17).

LEMMA 3. R3p(G) is a closed (and open) subset of BE with respect to the
a-adic topology.

Proor. It suffices to show that a*S Rz(G) for some k. Let T=B—{0}.
Then T !B is the quotient field L of A. The orthogonality relations yield
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T 'Rz(G)=LC¢ Since L°=T"*(B% and B¢ is a finitely generated B-module,
it follows that ¢(B%) (=(B)°)SRz(G) for some t=T. If we choose k& so that
J <StB, then we have a*S Rz (G).

THEOREM 2. Let A be a Dedekind domain, and m a maximal ideal of 2
containing p. Then for any p-regular element a=G there exists a A-valued
K-class function ¢,=R;(G) such that ¢.(a)Em and @.(x)=0 if x, is not
K-conjugate to a.

Proor. Let b&G be K-conjugate to a. It follows from [5, Lemma (40.7)]
that there exists a A-valued class function < Rz(G) such that 7(b)=1 and
7(x)=0 if x, is not conjugate to b. (Note that » lies in Ind Rz(H), an ideal
of Rgz(G) induced from the ring Rz(H) of a p-elementary subgroup H of G.
This fact is used in the proof of Cemma 4)

Now let » be a maximal ideal of B, then m&y’. If x, is conjugate to b,
then it follows from that 7(x)=1 mody’. Therefore we have
7(x)=1 mod J. Noting p</, one can show by induction on n that

7(x)?"=1 mod j**!
for all n.
Define a sequence {a,} of Rz(G) by a,=7*". Then for n=Fk we have,
taking congruences modulo J*,
1 if x, is conjugate to b,

a, (=] ,
0 otherwise.
Let 6, be a function of B¢ such that 4,(x)=1 if x, is a conjugate of b; other-
wise 6,(x)=0. Then 6, is a limit of {a,} in B¢ with respect to the a-adic
topology, since 8,—a,<a* for n=k. Therefore implies 6, R5(G).
We denote by C, a full set of representatives of the conjugate classes in
all elements of G which are K-conjugates of a, and define a function ¢’ of
Rz(G) by

Then ¢’ (x)=1 if Xpa; otherwise ¢’(x)=0. Choose s€S so that s¢’eR,(G),

and set ¢,=s¢’. From it follows that ¢,=R;(G). Clearly ¢, has
the properties asserted in this theorem.

We now give a proof of Brauer’s theorem on induced characters. Let C,
denote a full set of representatives of the K-conjugate classes in the p-regular
elements of G, and let

o= \J{galaCyl,

where ¢, is the function for @ as in [Theorem 2.
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PROPOSITION 4. If every maximal ideal of A contains a prime number, then
@ is contained in no proper ideals of R;(G).

Proor. It is sufficient to prove that @ is not contained in any maximal
ideal P, ,. By assumption p contains a prime number p. If x, is K-conjugate
to a=C,, then by we have ¢, (x)&d showing ¢, &P, ..

Let us denote by X, the set of all p-elementary subgroups of G, and
define an ideal V, of R;(G) by

Vo=, Ind R;(ID),

where Ind is a A-homomorphism R,(H)— R;(G) defined by means of induced
characters.

LeEMMA 4 (Shiratani [11]). If 2 is a principal ideal domain in which p is
a non-unit, then ¢,<V, for all acC,.

PrROOF. We adopt the notation in the proof of Let {c;} be a
full set of representatives of the conjugate classes of G where the p-regular
factor of ¢; is conjugate to b. Define n;=n(c;)-|Z(c;)]. We can choose %k so
that J*Sn;B for all i. Then the elements

dz,i:%i‘ {0, (c)—a (e X (ei™)

are contained in B, since 6,(c;)—a,(c;)€J*. Using the orthogonality relations
one can show that

0b:ak+;az,i177.
y %

Since a,, nelnd Rz(H), it follows that #,=Ind Rz(H), hence ¢aeA(§§)Vp.

However, by the same argument as [5, pp. 285-286] we have V,=R;(G)N
A(%Q V, and therefore ¢,=V,.

Taking 1=Z, together with gives

BRAUER’S THEOREM ON INDUCED CHARACTERS. R(G)= ng Ind R(H).
D, P

3. Applications.

3.1. Augmentation topology. We shall extend a result of Atiyah [1,
Proposition (6.10)] to the case where A is a Dedekind domain. To do this we
need

LEMMA 5. Suppose 2 is a' Dedekind domain. If pEy, then Py, ,SP,,, implies

Xp™~ Vo,
pKJ’;n
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PrROOF. Let a=y,, and ¢, the function as in Then by
we have ¢, P, ,, hence @,&P,,,, which shows x,~a.
K

If we set [;(G)=P,,, then the same argument as yields

F\ L;(G)"={feR;(G)| f(x)=0 for all x having prime power order}.

n=1

It is clear that N I;(G)"=0, i.e. R;(G) is Hausdorff with respect to the aug-

mentation topology if G consists of elements having prime power order. We
shall prove a converse.

PROPOSITION 5. Suppose A is a Dedekind domain and contains a prime
number p which is a non-unit in A, and which does not divide the order of G.

If ﬁ]x(G)":O, then G consists of elements having prime power order.
n=1

ProOOF. If there exists a=G whose order has two distinct prime divisors,

then a is a p-regular element, and the function ¢, as in lies in
NI;(G)*, for if x has a prime power order, then x, is not K-conjugate to q,
hence ¢, (x)=0.

3.2. Connectedness of Spec(R;(G)). We shall give a more precise result
than [10, Proposition 31]. Let {P,;}i<is, be the set of distinct minimal prime
ideals of R;(G). We denote by V; the set of all prime ideals of R;(G) con-
taining P, ;. Then the V; are connected closed sets whose union is Spec(R;(G))
(for prime spectrum see [2], [4]).

PROPOSITION 6. Two distinct minimal prime ideals P, , and P, , are con-
tained in the same connected component of Spec(R;(G)) if there exist elements
Xo, X1, =ty Xn 0f G and prime numbers py, ---, pn such that

1) x¢e=x and x,=y,
2) the p. are non-units in A, and
3) the puregular factors of x._, and x, are K-conjugate (1=a=<n).

Furthermore, the converse is true when 2 is a Dedekind domain such that
every non-zero prime ideal contains a prime number.

Proor. We may assume that P, , =P, ., (1=a=n). If p, is a prime ideal
of A containing p., then it follows from Lemmas 1 and 2 that P, . € V. 1NVa,
which proves the first assertion.

Now suppose that 2 satisfies the above condition. If two distinct ideals
P, . and P, , are contained in the same connected component, then there exists
a sequence {V; }losas, such that Py .€Vy, Py,€V;, and V;,_ NV #0
(1=a=n). If we choose prime ideals P, , €V;, _,NV;, such that p, N\ Z=
paZ for some prime numbers p, (1=a=n), then it follows from Lemma 5
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that the p,-regular factors of ¢; _, and c;, are K-conjugate. Furthermore
implies that x and y are K-conjugate to c;, and c;,, respectively.
The result is obtained by setting x,=c;, (1=a<n).

COROLLARY 1. If no prime divisor of the order of G is a unit in A, then
Spec (R;(G)) is connected. Furthermore, the converse is true when A is the ring
as in the proposition.

Proor. To prove the first part it suffices to show that for any x&G,
P, , and P, . are contained in the same connected component. Let {ps}icasn
be the set of all prime divisors of the order of x, then each p, is a non-unit
in . Take x, to be the p,-regular factor of x,.; (I=Sa=n) where x,=x, and
apply the proposition to {x,} and {pa}.

We now assume that A is the ring as asserted in the proposition and that
Spec(R;(G)) is connected. Let x be any element of G. It suffices to show
that the order of x is a non-unit in 4. Since P, . and P, , are contained in the
same connected component, there exist two sequences {x,} and {p,} which
have the properties in the proposition. Then x,—=e¢ means that the order of x,
is a power of p,. Similarly the prime divisors of the order of x, are at most
p: and p,, and so on. Thus the prime divisors of the order of x are at most
b1, Da, =+, pn. Hence the order of x is a non-unit in A.

COROLLARY 2 (Serre [10, Proposition 31]). Spec(R(G)) is connected.

By we can determine the individual summand in the decom-
position of R;(G) into a direct sum of indecomposable ideals. In particular,
we have the following :

PROPOSITION 7. Suppose that A is a discrete valuation ring in which p is a
non-unit. Let {C;},ci<s be the set of all K-conmjugate classes in the p-regular
elements of G, and let

Then R;(G) is a direct sum of indecomposable ideals B;.

Proor. Let B';= Ny ec;Po,y, then B; N\ B’;=0. If R,(G)#B;+B’;, then
there exists a maximal ideal P, , such that B,+B’;SP,, .. According to [2,
Proposition 1.11] we have y,&C; and y’',=C; such that P, ,+P,,, SP, -
However, since pep, it follows from that y,~3’,, which is a con-
tradiction. Thus R;(G)=B;+B’; for all i. Noting > ,,; B;SB’; and N B’;=0,
we see that R;(G) is a direct sum of the B,. '

Now suppose that B, is not indecomposable, and let W be the set of all
prime ideals of R;(G) which contain B’;. It is not hard to show that W is not
a connected subset of Spec(R;(G)). However, asserts that W is
connected, a contradiction.



Zero-divisors of character rings of finite groups 745

REMARK. In the case where 4 is a field K, every P, , is a maximal ideal
of R;(G). Let {x;}.<ic; be a full set of representatives of the K-conjugate
classes of G, then QPO,“:O. If we set B;=\;+:Py,z,, then R;(G)=Py,,;+ B,
hence R;(G) is a direct sum of B;. On the other hand, since P, ,, is the
kernel of the map R;(G)— L which assigns to each f its value f(x,) at x;, it
follows that R;(G)/P,,., (and hence B;) is isomorphic to the subfield of L
generated by all X(x;) over K. Further results on this ring R;(G) may be
found in and [14].

3.3. A characterization of p-groups. Finally we give a characterization
of p-groups.

THEOREM 3. Under the hypothesis for A as in Proposition 7, the following
conditions are equivalent.

(1) G is a p-group.

(2) R3(G) is a Neotherian local ring.

(3) R;(G) is Hausdorff with respect to the augmentation topology.

(4) Spec(R;(G)) is connected.

ProofF. (1)=(2) follows from

(2)=>(3). Use the intersection theorem of Krull [2, Corollary 10.207.

(3)=>(4). Since I;(G) is a prime ideal, it follows that R;(G) has no non-
trivial idempotents. Therefore Spec(R;(G)) is connected.

(4)=>(1) follows from
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