Homeomorphisms on a three dimensional handle

By Mitsuyuki Ochiai

(Received March 22, 1977)
(Revised Nov. 22, 1977)

McMillan proved that any two sets of generators for $\pi_{1}(H)$ are equivalent for an orientable handle H. We extend his result to the non-orientable case. These results may be interesting in view of non-orientable Heegaard diagrams of closed 3 -manifolds, in particular $P^{2} \times S^{1}$ which has that of genus two. All manifolds considered are to be triangulated. All embeddings and homeomorphisms are to be piecewise linear.

Definition. Let H be a compact connected 3-manifold. We say that H is an orientable or non-orientable handle with genus n respectively when H is homeomorphic to $D_{1}^{2} \times S^{1} \# \cdots \# D_{n}^{2} \times S^{1}$ or $M_{1}^{2} \times I \# \cdots \# M_{n}^{2} \times I$ where D_{i}^{2} is a 2 -disk, S^{1} is a 1 -sphere, M_{i}^{2} is a Mobius band, I is a unit interval and \# is a disk sum (boundary connected sum).

Note that $D^{2} \times S^{1} \# M^{2} \times I$ is homeomorphic to $M^{2} \times I \# M^{2} \times I$.
Definition. Let H be a handle with genus n and J_{1}, \cdots, J_{n} mutually disjoint simple closed curves on ∂H. We say that $\left\{J_{k}\right\}_{k=1}^{n}$ is a system of generators for $\pi_{1}(H)$ when S is connected and the inclusion homomorphism $\pi_{1}(S) \rightarrow \pi_{1}(H)$ is onto where $S=\partial H-\bigcup_{k=1}^{n} \stackrel{\circ}{N}\left(J_{k}, \partial H\right)$ and $N\left(J_{k}, \partial H\right)$ is a regular neighborhood of J_{k} 's in ∂H. (Compare the definition in [3].)

Definition. Let $\left\{J_{i}\right\}_{i=1}^{n},\left\{\tilde{J}_{k}\right\}_{k=1}^{n}$ be two systems of generators for $\pi_{1}(H)$. We say that $\left\{J_{i}\right\}_{i=1}^{n}$ is equivalent to $\left\{\tilde{J}_{k}\right\}_{k=1}^{n}$ when there is a homeomorphism of H onto H throwing the elements of $\left\{J_{k}\right\}_{k=1}^{n}$ onto those of $\left\{\tilde{J}_{i}\right\}_{i=1}^{n}$.

Definition. Let M be a compact 3-manifold. We say that M is irreducible when any 2 -sphere embedded in M bounds a 3 -cell in M.

Hereafter let M be a compact connected 3-manifold such that ∂M is nonempty.

Definition. Let L be a simple closed curve in M. Then the curve L is said to be orientable (resp. non-orientable) if $N(L, M)$ is homeomorphic to $D^{2} \times S^{1}$ (resp. $M^{2} \times I$ where M^{2} is a Mobius band).

Lemma 1. If M is irreducible and $\pi_{1}(M)$ is n-free, then ∂M is connected.
Proof. The proof is by induction on the rank of $\pi_{1}(M)$. If $\pi_{1}(M)=\{0\}$, then each component of ∂M is a 2 -sphere and so all the 2 -spheres bound 3 -cells.

Hence ∂M is only one 2 -sphere and connected. We assume that the lemma is true when the rank of $\pi_{1}(M)$ is not greater than $(n-1)$. Then we will verify that the lemma is true when $\pi_{1}(M)$ is n-free. At first, let F be one of the components of ∂M. Then the inclusion homomorphism $\pi_{1}(F) \rightarrow \pi_{1}(M)$ has a non-trivial kernel, since $\pi_{1}(M)$ is n-free and $\pi_{1}(F)$ is not, by Nielsen-Schreier theorem [4]. By Loop theorem [6] and Dehn's lemma [5], there is a proper 2-disk D in M such that ∂D is not homotopic to zero in F, Then two cases happen.

Case (1). Suppose that ∂D does not separate F into two components. Then there is a simple closed curve L in F such that $L \cap \partial D$ is only one point. Let $N(L \cup D, M)$ be a regular neighborhood of $L \cup D$ in M. It is easy to see that $N(L \cup D, M)$ is an orientable or non-orientable handle. And $M=M_{1} \#$ $N(L \cup D, M)$ where $M_{1}=\overline{M-N(L \cup D, M)}$. It is trivial that M_{1} is irreducible and ∂M_{1} is non-empty. By van Kampen [2], we have a following fact, $\pi_{1}(M)=$ $\pi_{1}\left(M_{1}\right) * \pi_{1}(N(L \cup D, M))=\pi_{1}\left(M_{1}\right) * Z$. By Nielsen-Schreier theorem [4], $\pi_{1}\left(M_{1}\right)$ is also $(n-1)$-free. It follows that ∂M_{1} is connected by induction. Hence ∂M is also connected.

Case (2). Suppose that ∂D separates F into two components. Then we will verify that D separates M into two components. For the purpose, suppose that D does not separate M into two components. Let E be $\overline{M-N(D, M)}$. Then E is connected and irreducible. By van Kampen [2], $\pi_{1}(M)=\pi_{1}(E) * Z$. It follows that $\pi_{1}(E)$ is $(n-1)$-free by Nielsen-Schreier theorem [4]. Hence ∂E is connected by induction but this contradicts that ∂D separates F into two components. Thus D separates M into two components M_{1}, M_{2}. By van Kampen [2], $\pi_{1}(M)=\pi_{1}\left(M_{1}\right) * \pi_{1}\left(M_{2}\right)$. Since ∂D is not homotopic to zero in $F, \pi_{1}\left(M_{i}\right)(i=1,2)$ is non-trivial. And so $\pi_{1}\left(M_{i}\right)(i=1,2)$ is m-free and $m<n$ by Nielsen-Schreier theorem [4]. It is easy to see that $M_{i}(i=1,2)$ is irreducible and $\partial M_{i}(i=1,2)$ is non-empty. Hence $\partial M_{i}(i=1,2)$ is connected by induction. Since $M=M_{1} \# M_{2}, \partial M$ is also connected. The proof is complete.

Now let M be satisfy the same conditions as in Lemma 1 and D a properly embedded 2-disk in M such that ∂D is not homotopic to zero in ∂M. Then we have;

Corollary 1.1. If ∂D separates ∂M into two components, then D separates M into two components.

It is clear that next Theorem 1 follows from Lemma 1.
Theorem 1. If M is irreducible and $\pi_{1}(M)$ is n-free, then M is an orientable or non-orientable handle with genus n.

Note that ∂M is non-empty. (Compare Theorem 32.1 in [5] and Lemma in [3].)

For the time being let H be a handle with genus one and $\left\{J_{k}\right\}_{k=1}^{m}$ mutually disjoint simple closed curves in ∂H such that $S=\partial H-\bigcup_{k=1}^{m} N\left(J_{k}, \partial H\right)$ is connected $(\mathrm{m} \geqq 1)$. Then we have;

Lemma 2. If the inclusion homomorphism $\pi_{1}(S) \rightarrow \pi_{1}(H)$ is onto, then $m=1$ and J_{1} generates $\pi_{1}(H)$ and is non-orientable when H is non-orientable.

Proof. It is trivial if H is orientable. Thus let H be non-orientable. Since S is connected, all of $\left\{J_{k}\right\}_{k=1}^{m}$ are non-orientable by Lickorish [1] and $m=1$ because of the inclusion homomorphism $\pi_{1}(S) \rightarrow \pi_{1}(H)$ being onto. The proof is complete.

Next let H be an orientable handle with genus n and $\left\{J_{i}\right\}_{i=1}^{n},\left\{\tilde{J}_{k}\right\}_{k=1}^{n}$ be any two systems of generators for $\pi_{1}(H)$. Then the following lemma follows from McMillan's method.

Lemma 3. $\left\{J_{i}\right\}_{i=1}^{n}$ is equivalent to $\left\{\tilde{J}_{k}\right\}_{k=1}^{n}$.
Proof. Let d be the natural homeomorphism from H onto H^{*}, a disjoint copy of H. Then form the compact 3 -manifold M by identifying points which correspond under $d / S=S^{*}$. Since the inclusion homomorphism $\pi_{1}(S) \rightarrow \pi_{1}(H)$ is onto, the inclusion homomorphism $\pi_{1}(H) \rightarrow \pi_{1}(M)$ is also onto by van Kampen [2]. It is also one-to-one since the identifying map is the natural homeomorphism of H. Hence $\pi_{1}(M)$ is n-free. Next each of H and M is embedded in a compact 3-manifold, which is simply connected, constructed by attaching n fat disks $\left(D^{2} \times I\right)$ along $\partial H-\stackrel{\circ}{S}$. Apparently such a 3 -manifold has an embedded 2 -sphere in which S is contained and so it is simply connected. Consequently McMillan's method can apply to our lemma. (Compare the proof of Theorem in [3].) The proof is complete.

Hereafter suppose that H is a non-orientable handle with genus n and $J_{1}, \cdots, J_{m}(m \geqq 1)$ are mutually disjoint simple closed curves in ∂H such that $S=\partial H-\bigcup_{i=1}^{m} N\left(J_{i}, \partial H\right)$ is connected and the inclusion homomorphism $\pi_{1}(S) \rightarrow$ $\pi_{1}(H)$ is onto. Now let D be a properly embedded 2-disk in H such that ∂D is contained in S and is not homotopic to zero in ∂H.

Lemma 4. If $\partial H-\partial D$ is connected, then $S-\partial D$ is also connected.
Proof. We may assume that at least one of J_{k} 's is orientable. Now let ∂D separate S into two components S_{1}, S_{2} respectively. Then there is a simple closed curve L in ∂H such that $L \cap \bigcup_{k=1}^{m} J_{k}=L \cap J_{1}$ is only one point and $\partial D \cap L$ is also only one point where J_{1} is an orientable loop in $\left\{J_{k}\right\}_{k=1}^{m}$. Since the inclusion homomorphism $\pi_{1}(S) \rightarrow \pi_{1}(H)$ is onto, there is a loop \widetilde{L} in S such that \widetilde{L} is homotopic to L in H. And so the intersection number $(\bmod 2)$ between \widetilde{L} and D is 1 since $L \cap D$ consists only one point. Consequently two boundaries of $N(\partial D, \partial H)$ is connected by an arc in $S-\AA(\partial D, \partial H)$. But it contradicts that ∂D separates S into two components. Hence $S-\partial D$ is con-
nected.
Lemma 5. If at least one of $\left\{J_{k}\right\}_{k=1}^{m}$ is non-orientable, then there are two handles H_{1}, H_{2} such that $H=H_{1} \# H_{2}, H_{1}$ is a handle of genus one whose boundary contains J_{1} where J_{1} is a non-orientable loop in $\left\{J_{k}\right\}_{k=1}^{m}$ and is a system of generators for $\pi_{1}\left(H_{1}\right)$, and that H_{2} is a handle of genus ($n-1$) whose boundary contains $\left\{J_{k}\right\}_{k=2}^{m}$ which is a system of generators for $\pi_{1}\left(H_{2}\right)$.

Proof. We prove the lemma by induction of the genus of H. At first it is trivial by Lemma 2 when the genus of H is one. We assume that the lemma is true when the genus of H is less than n. Then we prove that the lemma is also true when the genus of H is n. As in the proof of Lemma 3, form the compact 3 -manifold M. Then at least one component of ∂M is a Klein bottle K since J_{1} is non-orientable. We recall that $\pi_{1}(M)$ is also n-free. Consider the inclusion homomorphism $\pi_{1}(K) \rightarrow \pi_{1}(M)$. Since $\pi_{1}(M)$ is n-free but $\pi_{1}(K)$ is not, the kernel of the inclusion homomorphism is non-trivial. By Loop theorem [6] and Dehn's lemma [5], there is a 2-disk D in M such that $D \cap \partial M=D \cap K=\partial D$ and ∂D is not homotopic to zero in K. We may assume from Lemma 1 in Lickorish [1] that ∂D is $\partial N\left(J_{1}, \partial H\right)$, where K contains J_{1}, or a meridian circle of K. Then first case does not happen, since $\pi_{1}(M)$ is free. By the general position argument, $D \cap S$ consist of only one arc and simple closed curves. If all the simple closed curves are homotopic to zero in ∂H, then they are also homotopic to zero in S because of S being connected. Thus there is a 2-disk \tilde{D} such that $\partial \tilde{D}=\partial D$ and $\tilde{D} \cap S$ is only one arc. Then $\tilde{D} \cap H=E$ is a 2-disk and $E \cap \partial H=\partial E, E \cap \bigcup \bigcup_{k=1}^{m} J_{k}=E \cap J_{1}$ and $E \cap J_{1}$ is only one point. Let $N\left(E \cup J_{1}, H\right)$ be a regular neighborhood of $E \cup J_{1}$ in H. Then $N\left(E \cup J_{1}, H\right)$ is a non-orientable handle with genus one. We set $H_{1}=\overline{H-N\left(E \cup J_{1}, H\right)}$, then $H=H_{1} \# N\left(E \cup J_{1}, H\right)$ and J_{1} is contained in $N\left(E \cup J_{1}, H\right)$, in which it is a system of generators for $\pi_{1}\left(N\left(E \cup J_{1}, H\right)\right)$. It is easy to see that H_{1} is a handle with genus ($n-1$) by Theorem 1. Next if $D \cap S$ contain at least a simple closed curve which is not homotopic to zero in ∂H, then there is a 2-disk E in H (or H^{*}) such that $E \cap \partial H=\partial E, E \cap \bigcup_{k=1}^{m} J_{k}=0$ and that ∂E is not homotopic to zero in ∂H. Then two cases happen.

Case (1). Suppose that ∂E separates ∂H into two components. Then by Corollary 1.1 E separates H into two components H_{1}, H_{2}. By Theorem 1, H_{1}, H_{2} are handles with positive genus. (Since ∂E is not homotopic to zero in ∂H.) Thus $H=H_{1} \# H_{2}$ and J_{1} is contained in ∂H_{1} or ∂H_{2}. Let ∂H_{1} contain J_{1} and $S_{i}=\partial H_{i}-\bigcup_{\alpha_{i}} \stackrel{\circ}{N}\left(J_{\alpha_{i}}, \partial H_{i}\right)$ where $\left\{J_{k}\right\}_{k \in \alpha_{1}} \cup\left\{J_{d}\right\}_{d \in \alpha_{2}}=\left\{J_{i}\right\}_{i=1}^{m}$. Then S_{i} ($i=1,2$) is connected and $H_{i}(i=1,2)$ is a retract of H. Thus the inclusion homomorphism $\pi_{1}\left(S_{i}\right) \rightarrow \pi_{1}\left(H_{i}\right)(i=1,2)$ is onto. Since the genus of H_{1} is less than n, by induction there is a non-orientable handle with genus one such that
its boundary contains J_{1}.
Case (2). Suppose that $\partial H-\partial E$ is connected. Then by Lemma 4 $S-\partial E$ is connected. Hence there is a simple closed curve c on S which intersects ∂E with only one point, and which has no intersections with $\left\{J_{i}\right\}_{i=1}^{m}$. Let $N(E \cup c, H)$ be a regular neighborhood of $E \cup c$ in H. Thus $H=H_{1} \# N(E \cup$ $c, H)$ where $H_{1}=\overline{H-N(E \cup c, H)}$. By Theorem 1, H_{1} is a handle such that J_{1} is contained in ∂H_{1}. Since H_{1} is a retract of H, the inclusion homomorphism $\pi_{1}\left(S_{1}\right) \rightarrow \pi_{1}\left(H_{1}\right)$ is onto where $S_{1}=\partial H_{1}-\bigcup_{k=1}^{m} N\left(J_{k}, \partial H_{1}\right)$. Since the genus of H_{1} is less than n, by induction there is a handle with genus one such that its boundary contains J_{1}. (Note that case (2) does not happen if $m=n$.) The proof is complete.

Lemma 6. Let $\left\{J_{k}\right\}_{k=1}^{n}$ be a system of generators for $\pi_{1}(H)$. Then at least one of $\left\{J_{k}\right\}_{k=1}^{n}$ is non-orientable.

Proof. Since the inclusion homomorphism $\pi_{1}(S) \rightarrow \pi_{1}(H)$ is onto, S is non-orientable. Now we may assume that all of $\left\{J_{k}\right\}_{k=1}^{n}$ are orientable. Then S is embedded in a 2 -sphere since S is connected, the Euler characteristics of ∂H is $2-2 n$ and all of $\left\{J_{k}\right\}_{k=1}^{n}$ are orientable. It contradicts that S is nonorientable. The proof is complete.

Finally we have the following theorem.
Main Theorem 2. Let H be a non-orientable handle with genus n and $\left\{J_{k}\right\}_{k=1}^{n},\left\{\tilde{J}_{i}\right\}_{i=1}^{n}$ two systems of generators for $\pi_{1}(H)$ both of which contain the same number of orientable loops. Then $\left\{J_{k}\right\}_{k=1}^{n}$ is equivalent to $\left\{\tilde{J}_{i}\right\}_{i=1}^{n}$.

Proof. We prove the theorem by induction of the genus of H. At first, it is trivial by Lemma 2 when the genus of H is one. We assume that the lemma is true when the genus of H is less than n. Then we prove that the lemma is also true when the genus of H is n. Let J_{1} (resp. \tilde{J}_{1}) be a nonorientable loop in $\left\{J_{k}\right\}_{k=1}^{n}$ (resp. $\left\{\tilde{J}_{i}\right\}_{i=1}^{n}$) by Lemma 6. Then it follows from Lemma 5 that $M=M_{1} \# M_{2}=\tilde{M}_{1} \# \tilde{M}_{2}, M_{1}$ (resp. \tilde{M}_{1}) is a non-orientable handle of genus one such that J_{1} (resp. \tilde{J}_{1}) is a system of generators for $\pi_{1}\left(H_{1}\right)$ (resp. $\pi_{1}\left(\tilde{H}_{1}\right)$), and M_{2} (resp. \tilde{M}_{2}) is a handle of genus ($n-1$) such that $\left\{J_{k}\right\}_{k=2}^{n}$ (resp. $\left\{\tilde{J}_{i}\right\}_{i=2}^{n}$) is a system of generators for $\pi_{1}\left(M_{2}\right)$ (resp. $\pi_{1}\left(\tilde{M}_{2}\right)$). Then two cases happen by the assumption in the theorem that both of $\left\{J_{k}\right\}_{k=1}^{n}$ and $\left\{\tilde{J}_{i}\right\}_{i=1}^{n}$ contain the same number of orientable loops. Case (1) is that H_{2}, \widetilde{H}_{2} are orientable and Case (2) is that H_{2}, \widetilde{H}_{2} are non-orientable. Then there is a homeomorphism h_{2} of H_{2} onto \widetilde{H}_{2} throwing the elements of $\left\{J_{k}\right\}_{k=2}^{n}$ onto those of $\left\{\tilde{J}_{i}\right\}_{i=2}^{n}$, by Lemma 3 in Case (1) and by induction in Case (2). Let h_{1} be a homeomorphism of H_{1} onto \widetilde{H}_{1} throwing J_{1} onto \hat{J}_{1}. Then we can find a homeomorphism, which extends both h_{1}, h_{2}, of H onto H throwing the elements of $\left\{J_{k}\right\}_{k=1}^{n}$ onto the elements of $\left\{\tilde{J}_{i}\right\}_{i=1}^{n}$ (see the last part of the proof in Theorem in [3]). This completes the proof.

References

[1] W.B.R. Lickorish, Homeomorphisms of non-orientable two manifolds, Proc. Cambridge Philos. Soc., 59 (1963), 307-318.
[2] E. van Kampen, On the connection between the fundamental groups of some related spaces, Amer. J. Math., 55 (1933), 261-267.
[3] D.R. McMillan, Homeomorphism on a solid torus. Proc. Amer. Math. Soc., 14 (1963), 386-390.
[4] K.A. Kurosch, The Theory of Groups, Vol. 1, 2, Chelsea, New York, 1955.
[5] C.D. Papakyriokopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math., (2) 66 (1957), 1-26.
[6] J. Stallings, On the loop theorem, Ann. of Math., 72 (1960), 12-19.
[7] E.C. Zeeman, Seminar on Combinatorial topology, Inst. Hautes Études Sci. Publ. Math., 1963.

Mitsuyuki Ochiai
Department of Mathematics
Faculty of Science
Tokyo Institute of Technology
Tokyo, Japan

