L^p -spaces and maximal unbounded Hilbert algebras

By Atsushi INOUE

(Received Dec. 9, 1976)

§ 0. Introduction.

Inductive and projective limits of the L^p -spaces with respect to a Hilbert algebra are studied. By using their spaces we give necessary and sufficient conditions under which a maximal unbounded Hilbert algebra defined in [11] is pure.

In this paper \mathcal{D}_0 denotes a Hilbert algebra, \mathfrak{h} the completion of \mathcal{D}_0 , $\mathcal{U}_0(\mathcal{D}_0)$ the left von Neumann algebra of \mathcal{D}_0 , ϕ_0 the natural trace on $\mathcal{U}_0(\mathcal{D}_0)^+$ and π_0 the left regular representation of \mathfrak{h} .

In [11~12], we have studied unbounded Hilbert algebra which is a generalization of the notion of Hilbert algebra to unbounded case. Let $L^p(\phi_0)$ be the L^p -space with respect to ϕ_0 and let $||T||_p$ be the L^p -norm of $T \in L^p(\phi_0)$. The space $L^{\omega}_2(\mathcal{D}_0)$ defined by:

$$L_2^{\omega}(\mathcal{D}_0) = \bigcap_{2 \leq p < \infty} L_2^p(\mathcal{D}_0) \qquad \text{(where} \quad L_2^p(\mathcal{D}_0) := \{x \in \mathfrak{h} \; ; \; \overline{\pi_0(x)} \in L^p(\phi_0) \} \,)$$

is maximal among unbounded Hilbert algebras containing \mathcal{D}_0 and it plays an important role for our study of unbounded Hilbert algebras.

In this paper we shall investigate the space $L_2^{\omega}(\mathcal{D}_0)$ by using the L_2^p -spaces and inductive, projective limits of L_2^p -spaces.

Under the norm $\|x\|_{(2,p)} := \max(\|x\|_2, \|x\|_p)$ (where $\|x\|_p := \|\overline{\pi_0(x)}\|_p$), $L_2^p(\mathcal{D}_0)$ is a Banach space. Furthermore,

$$\mathfrak{h}\supset L_2^{\,p}(\mathcal{D}_0)\supset L_2^{\,q}(\mathcal{D}_0)\supset L_2^{\,\omega}(\mathcal{D}_0)\supset L_2^{\,\omega}(\mathcal{D}_0)\quad (2< p< q<\infty).$$

We define

$$L^{p-}_2(\mathscr{D}_0) = \bigcap_{2 \leq t < p} L^t_2(\mathscr{D}_0) \quad (2 < p \leq \infty)$$
 ,

$$L_2^{p+}(\mathcal{D}_0) = \bigcup_{t>p} L_2^t(\mathcal{D}_0) \quad (2 \leq p < \infty)$$

and give $L_2^{p-}(\mathcal{D}_0)$ (resp. $L_2^{p+}(\mathcal{D}_0)$) the projective limit topology τ_2^{p-} (resp. the inductive limit topology τ_2^{p+}) for the Banach spaces $(L_2^t(\mathcal{D}_0); \| \|_{(2,t)})$. Then it is proved that $(L_2^{p-}(\mathcal{D}_0); \tau_2^{p-})$ is a Fréchet space, $L_2^{\infty-}(\mathcal{D}_0)=L_2^{\omega}(\mathcal{D}_0)$ and $(L_2^{p+}(\mathcal{D}_0); \tau_2^{p+})$ is a separated barrelled space.

We shall investigate the dual spaces of the Banach space $L_2^p(\mathcal{D}_0)$ and locally convex spaces $L_2^{p-}(\mathcal{D}_0)$, $L_2^{p+}(\mathcal{D}_0)$. We set

$${}_{2}L_{p}(\phi_{0}) = \{T_{0} + T_{1}; T_{0} \in L^{2}(\phi_{0}), T_{1} \in L^{p}(\phi_{0})\},$$

$${}_{2}\|T\|_{p} = \inf \{\|T_{0}\|_{2} + \|T_{1}\|_{p}; T = T_{0} + T_{1}, T_{0} \in L^{2}(\phi_{0}), T_{1} \in L^{p}(\phi_{0})\},$$

$$T \in {}_{2}L_{p}(\phi_{0})$$

where T_0+T_1 denotes the strong sum of closed operators T_0 , T_1 . Then ${}_2L_p(\phi_0)$ is a Banach space under the operations of strong sum and strong scalar multiplication and the norm ${}_2\|\ \|_p$. Furthermore,

$$_{2}L_{1}(\phi_{0}) \supset _{2}L_{p}(\phi_{0}) \supset _{2}L_{q}(\phi_{0}) \supset L^{2}(\phi_{0}), \quad 1$$

We define

$$_{2}L_{p}^{-}(\phi_{0}) = \bigcap_{1 \le t < p} {_{2}L_{t}(\phi_{0})}, \quad 1 < p \le 2,$$
 $_{2}L_{p}^{+}(\phi_{0}) = \bigcup_{p < t \le 2} {_{2}L_{t}(\phi_{0})}, \quad 1 \le p < 2.$

and give $_2L_p^-(\phi_0)$ (resp. $_2L_p^+(\phi_0)$) the projective limit topology $_2\tau_p^-$ (resp. the inductive limit topology $_2\tau_p^+$) for the Banach spaces $(_2L_t(\phi_0);_2\|\ \|_t)$. It is proved that the Banach spaces $L_2^p(\mathcal{Q}_0)$ is dual of the Banach space $_2L_{p'}(\phi_0)$ and the spaces $L_2^{p\pm}(\mathcal{Q}_0)$ are dual of the locally convex spaces $_2L_p^{\pm}(\phi_0)$, (where 1 and <math>1/p + 1/p' = 1, $p = \infty$ if p' = 1).

By using these spaces we shall give the necessary and sufficient conditions under which the maximal unbounded Hilbert algebra $L_2^{\omega}(\mathcal{D}_0)$ is pure. That is, the following conditions are equivalent:

- (1) $L_2^{\omega}(\mathcal{D}_0)$ is pure, i. e., $L_2^{\omega}(\mathcal{D}_0) \neq L_2^{\infty}(\mathcal{D}_0)$;
- (2) $\mathfrak{h} \neq L_2^{\infty}(\mathfrak{D}_0)$, i. e., \mathfrak{h} is not a Hilbert algebra;
- (3) $L_2^p(\mathcal{D}_0) \supseteq L_2^q(\mathcal{D}_0)$ for each $2 \leq p < q \leq \infty$;
- (4) $L_2^{p-}(\mathcal{D}_0) \stackrel{\cong}{=} L_2^p(\mathcal{D}_0)$ for each 2 ;
- (5) $L_2^{p+}(\mathcal{D}_0) \subsetneq L_2^p(\mathcal{D}_0)$ for each $2 \leq p < \infty$;
- (6) $_{2}L_{p}(\phi_{0}) \stackrel{>}{=} _{2}L_{q}(\phi_{0})$ for each $1 \leq p < q \leq 2$;
- (7) $_{2}L_{p}^{+}(\phi_{0}) \cong _{2}L_{p}(\phi_{0})$ for each $1 \leq p < 2$;
- (8) ${}_{2}L_{p}^{-}(\phi_{0}) \stackrel{?}{=} {}_{2}L_{p}(\phi_{0})$ for each 1 .

§ 1. Preliminaries.

We give here only the basic definitions and facts needed. Let S and T are linear operators on a Hilbert space \Re with domains $\mathfrak{D}(S)$ and $\mathfrak{D}(T)$. We say S is an extension of T and we denote $S \supset T$, if $\mathfrak{D}(S) \supset \mathfrak{D}(T)$ and $S\xi = T\xi$ for all $\xi \in \mathfrak{D}(T)$. If S is a closable operator we denote by \overline{S} the smallest closed extension of S. Let \mathfrak{A} be a set of closable operators on \Re . Then we set $\overline{\mathfrak{A}} = \{\overline{S}; S \in \mathfrak{A}\}$. If S is a linear operator with dense domain, then we denote by S^* the hermitian adjoint of S. Let $\mathfrak{D}(\Re)$ denote the set of all bounded linear operators on \Re . Let S, T be closed operators on \Re . If S+T is closable, then $\overline{S+T}$ is called the strong sum of S and T, and is denoted by S+T. The strong product is likewise defined to be \overline{ST} if it exists, and is denoted by $S \cdot T$. The strong scalar multiplication $\lambda \in C$ (: the field of complex numbers) and S is defined by $\lambda \cdot S = \lambda S$ if $\lambda \neq 0$, and $\lambda \cdot S = 0$ if $\lambda = 0$.

Let π_0 (resp. π_0') be the left (resp. right) regular representation of \mathcal{D}_0 . For each $x \in \mathfrak{h}$ we define $\pi_0(x)$ and $\pi_0'(x)$ by:

$$\pi_0(x)\xi = \overline{\pi_0'(\xi)}x$$
, $\pi_0'(x)\xi = \overline{\pi_0(\xi)}x$, $\xi \in \mathcal{D}_0$.

Then $\pi_0(x)$ and $\pi_0'(x)$ are linear operators on \mathfrak{h} with the domain \mathcal{D}_0 and π_0 (resp. π_0') is called the left (resp. right) regular representation of \mathfrak{h} . The involution on \mathcal{D}_0 is extended to an involution on \mathfrak{h} , which is also denoted by *. Then we have $\overline{\pi_0(x^*)} = \pi_0(x)^*$ and $\overline{\pi_0'(x^*)} = \pi_0'(x)^*$. Putting $(\mathcal{D}_0)_b = \{x \in \mathfrak{h}; \overline{\pi_0(x)} \in \mathcal{B}(\mathfrak{h})\}$, $(\mathcal{D}_0)_b$ is a Hilbert algebra containing \mathcal{D}_0 . If $\mathcal{D}_0 = (\mathcal{D}_0)_{b'}$ then it is called a maximal Hilbert algebra in \mathfrak{h} . Let \mathfrak{M} (resp. \mathfrak{M}^+) be the set of all measurable (resp. positive measurable) operators on \mathfrak{h} with respect to $\mathcal{U}_0(\mathcal{D}_0)$. For every $T \in \mathfrak{M}^+$ we set

$$\mu_0(T) = \sup \left[\phi_0(\overline{\pi_0(\xi)}) ; 0 \le \overline{\pi_0(\xi)} \le T, \ \xi \in (\mathcal{D}_0)_b^2 \right],$$

$$L^p(\phi_0) = \{ T \in \mathfrak{M} ; \|T\|_p : = \mu_0(|T|^p)^{1/p} < \infty \}, \quad 1 \le p < \infty.$$

Then $||T||_p$ is called the L^p -norm of $T \in L^p(\phi_0)$ and μ_0 is called the integral on $L^1(\phi_0)$. If $p = \infty$, we shall identify $\mathcal{U}_0(\mathcal{D}_0)$ with $L^\infty(\phi_0)$ and we denote by $||T||_\infty$ the operator norm of $T \in \mathcal{U}_0(\mathcal{D}_0)$. We define L_2^ω -spaces with respect to ϕ_0 and \mathcal{D}_0 as follows:

$$L_2^{\omega}(\phi_0) = \bigcap_{2 \leq p < \infty} L^p(\phi_0), \quad L_2^{\omega}(\mathcal{Q}_0) = \{x \in \mathfrak{h} ; \overline{\pi_0(x)} \in L_2^{\omega}(\phi_0)\},$$

respectively. Then $L_2^{\omega}(\mathcal{D}_0)$ is maximal among unbounded Hilbert algebras containing \mathcal{D}_0 . For the definitions and basic properties of unbounded Hilbert algebras the reader is referred to $[11\sim12]$.

§ 2. The spaces $L_2^{p-}(\mathcal{D}_0)$ and $L_2^{p+}(\mathcal{D}_0)$.

In this section we define the inductive and projective limits of the L_2^p -spaces and by using their spaces we give necessary and sufficient conditions under which the maximal unbounded Hilbert algebra $L_2^{\omega}(\mathcal{D}_0)$ is pure.

NOTATION. For $1 \le p \le \infty$ we set

$$L_{2}^{p}(\mathcal{D}_{0}) = \{x \in \mathfrak{h}; \overline{\pi_{0}(x)} \in L^{p}(\phi_{0})\},$$

$$\|x\|_{(2, p)} = \max(\|x\|_{2}, \|x\|_{p}), \quad x \in L_{2}^{p}(\mathcal{D}_{0}).$$

It is immediately showed that $L_2^2(\mathcal{D}_0)=\emptyset$, $\|x\|_{(2,2)}=\|x\|_2$ and $L_2^\infty(\mathcal{D}_0)=(\mathcal{D}_0)_b$.

LEMMA 2.1. For $1 \le p \le \infty$ || $\|_{(2, p)}$ is a norm on $L_2^p(\mathcal{D}_0)$, which makes $L_2^p(\mathcal{D}_0)$ a Banach space.

PROOF. It is easy to show that $\| \|_{(2, p)}$ is a norm on $L^p_2(\mathcal{D}_0)$. We shall show that $L^p_2(\mathcal{D}_0)$ is complete. Suppose that $\{x_n\}$ is a Cauchy sequence of $L^p_2(\mathcal{D}_0)$. From the completeness of \mathfrak{h} and $L^p(\phi_0)$ there exist $x \in \mathfrak{h}$ and $T \in L^p(\phi_0)$ such that $\lim_{n \to \infty} \|x_n - x\|_2 = 0$ and $\lim_{n \to \infty} \|\overline{x_0(x_n)} - T\|_p = 0$. We have only to show $T = \overline{\pi_0(x)}$. For each ξ , $\eta \in \mathcal{D}(T) \cap \mathcal{D}_0$ we have

$$\begin{split} \lim_{n\to\infty} |((\overline{\pi_0(x_n)} - T)\xi|\eta)| &= \lim_{n\to\infty} \mu_0(\overline{\pi_0(\eta)} * \bullet (\overline{\pi_0(x_n)} - T) \bullet \overline{\pi_0(\xi)}) \\ &= \lim_{n\to\infty} \mu_0(\pi_0(\eta \xi^*) * \bullet (\overline{\pi_0(x_n)} - T)) \\ &\leq \lim_{n\to\infty} \|\overline{\pi_0(x_n)} - T\|_p \|\eta \xi^*\|_{p'} = 0 \ (1/p + 1/p' = 1) \end{split}$$

and

$$\lim_{n\to\infty} |((\overline{\pi_0(x_n)} - \overline{\pi_0(x)})\xi|\eta)| \leq \lim_{n\to\infty} ||x_n - x||_2 ||\xi||_2 ||\eta||_2 = 0.$$

It follows that $T\xi = \overline{\pi_0(x)}\xi$ for all $\xi \in \mathcal{D}(T) \cap \mathcal{D}_0$. Since T and $\pi_0(x)$ is essentially measurable, $T + \pi_0(x)$ is essentially measurable ([16] Theorem 4). Hence, $\mathcal{D}(T) \cap \mathcal{D}_0$ is dense in \mathfrak{h} and it follows from ([16] Lemma 1.2) that $T = \overline{\pi_0(x)}$.

LEMMA 2.2. (1) For $1 \le p < 2$ $(\mathcal{D}_0)_b^2$ is dense in $(L_2^p(\mathcal{D}_0); \| \|_{(2,p)})$.

(2) For
$$2 \leq p \leq \infty$$
 $(\mathcal{D}_0)_b$ is dense in $(L_2^p(\mathcal{D}_0); \| \|_{(2,p)})$.

PROOF. (2) If $p=\infty$, then this follows from $L_2^{\infty}(\mathcal{D}_0)=(\mathcal{D}_0)_b$. Suppose $x\in L_2^p(\mathcal{D}_0)$ ($2\leq p<\infty$). Let $\overline{\pi_0(x)}=U|\overline{\pi_0(x)}|$ be the polar decomposition of $\overline{\pi_0(x)}$ and let $|\overline{\pi_0(x)}|=\int_0^\infty \lambda dE(\lambda)$ be the spectral resolution of $|\overline{\pi_0(x)}|$. Then, $\overline{\pi_0(E(n)x)}=\int_0^n \lambda dE(\lambda)\in \mathcal{V}_0(\mathcal{D}_0)$. Hence, we have

$$E(n) x \in (\mathcal{D}_0)_b$$
, $(n=1, 2, \cdots)$,

$$||x-E(n)x||_{2}^{2} = -\int_{n}^{\infty} \lambda^{2} d\phi_{0}(E(\lambda)^{\perp}),$$

$$||x-E(n)x||_{p}^{p} = -\int_{n}^{\infty} \lambda^{p} d\phi_{0}(E(\lambda)^{\perp}).$$

Since $x \in L^p_2(\mathcal{D}_0)$, i.e., $-\int_0^\infty \lambda^2 d\phi_0(E(\lambda)^\perp) < \infty$ and $-\int_0^\infty \lambda^p d\phi_0(E(\lambda)^\perp) < \infty$, we get that $\lim_{n \to \infty} \|x - E(n)x\|_{(2,p)} = 0$. Thus $(\mathcal{D}_0)_b$ is dense in $L^p_2(\mathcal{D}_0)$.

(1) After a slight modification of (2) we can prove the assertion (1).

LEMMA 2.3. (1) For $1 \le p < q \le 2$ we have

$$L_2^1(\mathcal{D}_0) \subset L_2^p(\mathcal{D}_0) \subset L_2^q(\mathcal{D}_0) \subset \mathfrak{h},$$

$$\|x\|_{(2,p)}^q \leq \|x\|_{(2,p)}^2 + \|x\|_{(2,p)}^p, \quad x \in L_2^p(\mathcal{D}_0).$$

(2) For $2 \leq p < q < \infty$ we have

$$\begin{split} \mathfrak{h} \supset L_{2}^{p}(\mathcal{D}_{0}) \supset L_{2}^{q}(\mathcal{D}_{0}) \supset L_{2}^{\infty}(\mathcal{D}_{0}), \\ \|x\|_{(2, p)} &\leq \|x\|_{(2, q)}^{2} + \|x\|_{(2, q)}^{q}, \quad x \in L_{2}^{q}(\mathcal{D}_{0}), \\ \|x\|_{(2, p)} &\leq \|x\|_{(2, \infty)}, \quad x \in L_{2}^{\infty}(\mathcal{D}_{0}). \end{split}$$

PROOF. (2) Suppose $x \in L_2^q(\mathcal{D}_0)$ $(2 \leq p < q < \infty)$. Let $\overline{\pi_0(x)} = U|\overline{\pi_0(x)}|$ be the polar decomposition of $\overline{\pi_0(x)}$ and let $|\overline{\pi_0(x)}| = \int_0^\infty \lambda dE(\lambda)$ be the spectral resolution of $|\overline{\pi_0(x)}|$. Then,

$$\begin{aligned} \|x\|_p^p &= -\int_0^\infty \lambda^p \, d\phi_0(E(\lambda)^\perp) \\ &= -\int_0^1 \lambda^p \, d\phi_0(E(\lambda)^\perp) - \int_1^\infty \lambda^p \, d\phi_0(E(\lambda)^\perp) \\ &\leq -\int_0^1 \lambda^2 \, d\phi_0(E(\lambda)^\perp) - \int_1^\infty \lambda^q \, d\phi_0(E(\lambda)^\perp) \\ &\leq \|x\|_2^2 + \|x\|_q^q < \infty. \end{aligned}$$

Hence, $x \in L^p_2(\mathcal{D}_0)$ and it is also showed that $\|x\|^p_{(2,p)} \leq \|x\|^2_{(2,q)} + \|x\|^q_{(2,q)}$, $x \in L^q_2(\mathcal{D}_0)$. Suppose that $2 and <math>x \in L^\infty_2(\mathcal{D}_0)$. Then,

$$||x||_{p}^{p} = \mu_{0}(|\overline{\pi_{0}(x)}|^{p}) = \mu_{0}(|\overline{\pi_{0}(x)}|^{p-2}|\overline{\pi_{0}(x)}|^{2})$$

$$\leq ||x||_{\infty}^{p-2} ||x||_{2}^{2} \leq ||x||_{2\infty}^{p}.$$

Hence, $||x||_{(2, p)} \leq ||x||_{(2, \infty)}$.

(1) This follows after a slight modification of (2).

Definition 2.4. We set

$$L_2^{p-}(\mathcal{D}_0) = \bigcap_{2 \leq t < p} L_2^t(\mathcal{D}_0), \quad 2 < p \leq \infty,$$

$$L_2^{p+}(\mathcal{D}_0) = \bigcup_{p < t \leq \infty} L_2^t(\mathcal{D}_0), \quad 2 \leq p < \infty.$$

Hereafter we shall treat only the spaces $L_2^{p^-}(\mathcal{D}_0)$ and $L_2^{p^+}(\mathcal{D}_0)$ $(2 \leq p \leq \infty)$, though we can similarly treat the spaces $L_2^{p^-}(\mathcal{D}_0)$ and $L_2^{p^+}(\mathcal{D}_0)$ $(1 \leq p \leq 2)$.

 $L_2^{p-}(\mathcal{D}_0)$ and $L_2^{p+}(\mathcal{D}_0)$ are vector subspaces of the Hilbert space \mathfrak{h} . We define topologies $\tau_2^{p\pm}$ on $L_2^{p\pm}(\mathcal{D}_0)$ as follows: Take $p\in(2,\infty]$. For $2\leq t< p$ let

$$v_t$$
; $L_2^{p-}(\mathcal{D}_0) \longrightarrow L_2^t(\mathcal{D}_0)$

be the identity map. The topology τ_2^{p-} is defined to be the coarsest vector space topology for $L_2^{p-}(\mathcal{D}_0)$ such that all the maps v_t $(2 \le t < p)$ are continuous when $L_2^t(\mathcal{D}_0)$ is given the norm topology $\| \|_{(2,t)}$. This topology is locally convex. $(L_2^{p-}(\mathcal{D}_0); \tau_2^{p-})$ is called the projective limit of the Banach spaces $L_2^t(\mathcal{D}_0)$ $(2 \le t < p)$.

Take $p \in [2, \infty)$. For $p < t < \infty$ let

$$u_t$$
; $L_2^t(\mathcal{D}_0) \longrightarrow L_2^{p+}(\mathcal{D}_0)$

be the identity map. The topology τ_2^{p+} is defined to be the finest locally convex topology on $L_2^{p+}(\mathcal{D}_0)$ such that all the maps u_t $(p < t < \infty)$ are continuous when $L_2^t(\mathcal{D}_0)$ is given in the norm topology $\| \|_{(2,t)}$. This topology exists and is locally convex. $(L_2^{p+}(\mathcal{D}_0); \tau_2^{p+})$ is called the inductive limit of the Banach spaces $L_2^t(\mathcal{D}_0)$ $(p < t < \infty)$.

The locally convex space $(L_2^{\infty-}(\mathcal{D}_0); \tau_2^{\infty-})$ coincides with the locally convex space $(L_2^{\omega}(\mathcal{D}_0); \tau_2^{\omega})$ defined in [14].

THEOREM 2.5. (1) For $2 <math>(L_2^{p-}(\mathcal{D}_0); \tau_2^{p-})$ is a Fréchet space.

- (2) $(L_2^{\infty-}(\mathcal{D}_0); \tau_2^{\infty-})$ is a Fréchet *-algebra (i. e., complete metrizable locally convex *-algebra).
 - (3) For $2 \leq p < \infty$ ($L_2^{p+}(\mathcal{D}_0)$; τ_2^{p+}) is a separated barrelled space.
 - (4) $(\mathcal{D}_0)_b$ is dense in $(L_2^{p-}(\mathcal{D}_0); \tau_2^{p-})$ (2 .
 - (5) $(\mathcal{D}_0)_b$ is dense in $(L_2^{p+}(\mathcal{D}_0); \tau_2^{p+})$ $(2 \leq p < \infty)$.

PROOF. (1) It is easily showed that $(L_2^{p-}(\mathcal{D}_0); \tau_2^{p-})$ is a metrizable locally convex space. We shall prove that $(L_2^{p-}(\mathcal{D}_0); \tau_2^{p-})$ is complete. Suppose that $\{x_n\}$ is a Cauchy sequence of $L_2^{p-}(\mathcal{D}_0)$. For each $t \in [2, p)$ $\{x_n\}$ is a Cauchy sequence of $(L_2^t(\mathcal{D}_0); \| \|_{(2,t)})$ and it follows that there exists an element

 $x^{(t)} \text{ of } L^t_2(\mathcal{D}_0) \text{ such that } \lim_{n \to \infty} \|x_n - x^{(t)}\|_{(2,\,t)} = 0. \text{ The element } x^{(t)} \text{ of } L^t_2(\mathcal{D}_0) \text{ is independent of } t. \text{ In fact, for each } t' \in [2,\,p) \text{ put } t'' = \max(t,\,t'). \text{ Then, from Lemma 2.3, } \lim_{n \to \infty} \|x_n - x^{(t')}\|_{(2,\,t)} = \lim_{n \to \infty} \|x_n - x^{(t')}\|_{(2,\,t')} = 0. \text{ Hence, } x^{(t)} = x^{(t')} = x^{(t')}. \text{ Putting } x = x^{(t)}, \ x \in \bigcap_{2 \le t < p} L^t_2(\mathcal{D}_0) = L^p_2(\mathcal{D}_0) \text{ and } \lim_{n \to \infty} \|x_n - x\|_{(2,\,t)} = 0 \text{ for all } t \in [2,\,p). \text{ Thus } (L^p_2(\mathcal{D}_0); \tau^p_2) \text{ is complete.}$

- (2) This follows from ([14] Theorem 3.2).
- (3) It is obvious that $(L_2^{p+}(\mathcal{D}_0); \tau_2^{p+})$ is barrelled. We shall show that $(L_2^{p+}(\mathcal{D}_0); \tau_2^{p+})$ is separated. Let $L_2^p(\mathcal{D}_0)^*$ denote the dual space of the Banach space $(L_2^p(\mathcal{D}_0); \| \|_{(2, p)})$. Suppose $F \in L_2^p(\mathcal{D}_0)^*$. Then, for each $t \in (p, \infty]$ the restriction $F/L_2^t(\mathcal{D}_0)$ belongs to $L_2^t(\mathcal{D}_0)^*$. Furthermore, $F/L_2^{p+}(\mathcal{D}_0) \circ u_t = F/L_2^t(\mathcal{D}_0) \in L_2^t(\mathcal{D}_0)^*$ for all $t \in (p, \infty]$. Hence $F/L_2^{p+}(\mathcal{D}_0)$ is a continuous linear functional on $(L_2^{p+}(\mathcal{D}_0); \tau_2^{p+})$. As the set of all such F separates the points of $L_2^p(\mathcal{D}_0)$, it certainly separates the points of $L_2^{p+}(\mathcal{D}_0)$. Thus, $(L_2^{p+}(\mathcal{D}_0); \tau_2^{p+})$ is separated.
- (4) We can prove (4) in the same way as in the proof of Lemma 2.2 (2).
- (5) Suppose that $x \in L_2^{p+}(\mathcal{D}_0)$ and \vee is a neighbourhood of zero in $(L_2^{p+}(\mathcal{D}_0); \tau_2^{p+})$. Then, $x \in L_2^t(\mathcal{D}_0)$ for some $t \in (p, \infty]$. Since u_t is continuous, $x+u_t^{-1}(\vee)$ is a neighbourhood of x in $L_2^t(\mathcal{D}_0)$. From Lemma 2.2. $(\mathcal{D}_0)_b$ is dense in $L_2^t(\mathcal{D}_0)$, and so there exists an element ξ of $(\mathcal{D}_0)_b$ such that $\xi \in x+u_t^{-1}(\vee)$. That is, $\xi \in x+\vee$. It follows that $(\mathcal{D}_0)_b$ is dense in $L_2^{p+}(\mathcal{D}_0)$.

We shall give necessary and sufficient conditions under which the maximal unbounded Hilbert algebra $L_{\frac{\omega}{2}}(\mathcal{D}_0)$ of \mathcal{D}_0 is pure. The conditions (1) \sim (4) of the following theorem have been given in ([12] Theorem 3.4.).

THEOREM 2.6. The following conditions are equivalent.

- (1) $L_2^{\omega}(\mathfrak{D}_0)$ is a pure unbounded Hilbert algebra, i.e., $L_2^{\omega}(\mathfrak{D}_0) \neq (\mathfrak{D}_0)_b$.
- (2) There exists a sequence $\{e_n\}$ of non-zero mutually orthogonal projections in $(\mathcal{D}_0)_b$ such that $\sum_{n=1}^{\infty} \|e_n\|_2^2 < \infty$.
 - (3) \mathfrak{h} is not a Hilbert algebra, i.e., $(\mathfrak{D}_0)_b \neq \mathfrak{h}$.
 - (4) $L_2^{\omega}(\mathcal{D}_0) \neq \mathfrak{h}.$
 - (5) $L_2^p(\mathcal{D}_0) \supseteq L_2^q(\mathcal{D}_0)$ for each $q > p \ge 2$.
 - (6) $L_2^{p-}(\mathcal{D}_0) \supseteq L_2^p(\mathcal{D}_0)$ for each $p \in (2, \infty)$.
 - (7) $L_2^p(\mathcal{D}_0) \supseteq L^{p+}(\mathcal{D}_0)$ for each $p \in [2, \infty)$.

PROOF. It follows from ([12] Theorem 3.4) that the conditions (1) \sim (4) are equivalent.

(2) \Rightarrow (5) For each $q > p \ge 2$ take $r \in (p, q)$. Then, since $\lim_{t \to 0} \frac{1/\sqrt[r]{t}}{1/\sqrt[p]{t}} = 0 \quad \text{and} \quad \sum_{n=1}^{\infty} \|e_n\|_2^2 < \infty,$

there exists a positive integer k_0 such that

$$a_1 := \sum_{n=1}^{\infty} \|e_{k_0+n}\|_2^2 < 1$$
, $a_2 := \sum_{n=2}^{\infty} \|e_{k_0+n}\|_2^2$, ...,

$$b_1 := \frac{1}{\sqrt[q]{a_1}} > \frac{1}{\sqrt[q]{a_2}}, \quad b_2 := \frac{1}{\sqrt[q]{a_2}} > \frac{1}{\sqrt[q]{a_2}}, \dots.$$

We set

$$x = \sum_{n=1}^{\infty} b_n e_{k_0+n}.$$

Then we have

$$\begin{split} \|x\|_2^2 &= \sum_{n=1}^\infty b_n^2 \|e_{k_0+n}\|_2^2 = \sum_{n=1}^\infty b_n^2 (a_n - a_{n+1}) \\ &< \int_0^{a_1} \left(\frac{1}{\sqrt[r]{t}}\right)^2 dt < \infty, \\ \|x\|_p^p &= \sum_{n=1}^\infty b_n^p \|e_{k_0+n}\|_2^2 = \sum_{n=1}^\infty b_n^p (a_n - a_{n+1}) \\ &< \int_0^{a_1} \left(\frac{1}{\sqrt[r]{t}}\right)^p dt < \infty. \end{split}$$

Hence, $x \in L_2^p(\mathcal{D}_0)$. On the other hand,

$$||x||_q^q = \sum_{n=1}^{\infty} b_n^q ||e_{k_0+n}||_2^2 > \int_0^{a_1} \left(\frac{1}{\sqrt[q]{t}}\right)^q dt = \int_0^{a_1} \frac{1}{t} dt = \infty.$$

Hence, $x \in L_2^q(\mathcal{D}_0)$. Thus, $L_2^p(\mathcal{D}_0) \cong L_2^q(\mathcal{D}_0)$.

(5) \Rightarrow (6) Suppose that $L_2^{p^-}(\mathcal{D}_0) = L_2^p(\mathcal{D}_0)$ for some $p \in (2, \infty]$. The identity map ℓ of the Banach space $(L_2^p(\mathcal{D}_0); \| \|_{(2, p)})$ onto the Fréchet space $(L_2^{p^-}(\mathcal{D}_0); \tau_2^{p^-})$ is continuous. By the open mapping theorem ℓ is an isomorphism. Hence there exist an element p_0 of (2, p) and a positive number γ such that

$$||x||_{(2,p)} \le \gamma ||x||_{(2,p_0)}, \quad x \in L_2^p(\mathcal{D}_0).$$

From Lemma 2.2 $(\mathcal{D}_0)_b$ is dense in $L_2^{p_0}(\mathcal{D}_0)$, and so $L_2^{p_0}(\mathcal{D}_0) \subset L_2^{p_0}(\mathcal{D}_0)$. Hence, $L_2^{p_0}(\mathcal{D}_0) = L_2^{p_0}(\mathcal{D}_0)$. This contradicts the assumption (5).

 $(6) \Rightarrow (3)$ By the assumption (6),

$$\mathfrak{h} \supset L_2^{p-}(\mathcal{D}_0) \supseteq L_2^p(\mathcal{D}_0) \supset (\mathcal{D}_0)_b$$
.

 $(2) \Rightarrow (7)$ For each $p \in [2, \infty)$ we set $t_n = p + 1/n$ $(n = 1, 2, \cdots)$. By the proof of $(2) \Rightarrow (5)$ there exists a non-zero element x_n of $L_2^p(\mathcal{D}_0) - L_2^{t_n}(\mathcal{D}_0)$ such that $\overline{\pi_0(x_n)} \ge 0$. We set

$$x = \sum_{n=1}^{\infty} \frac{x_n}{2^n \|x_n\|_{(2, p)}}.$$

Then, $\|x\|_{(2,p)} \le \sum_{n=1}^{\infty} 1/2^n < \infty$. For each t > p there is an integer n such that $p < t_n < t$. Then, $x \ge x_n/2^n \|x_n\|_{(2,p)}$ and it follows that

$$||x||_t \ge \frac{||x_n||_t}{2^n ||x_n||_{(2, p)}} = \infty.$$

Hence, $x \in L_2^t(\mathcal{D}_0)$ for each t > p. Thus, $L_2^p(\mathcal{D}_0) \supseteq L_2^{p+}(\mathcal{D}_0)$.

 $(7) \Rightarrow (3)$ By the assumption (7),

$$\mathfrak{h} \supset L_2^p(\mathcal{D}_0) \cong L_2^{p+}(\mathcal{D}_0) \supset (\mathcal{D}_0)_b$$
.

COROLLARY 2.7. The following conditions are equivalent.

- (1) The Hilbert space \mathfrak{h} is a Hilbert algebra, i.e., $\mathfrak{h}=(\mathfrak{D}_0)_b$.
- (2) $L_2^{\omega}(\mathcal{D}_0)$ is a Hilbert algebra, i.e., $L_2^{\omega}(\mathcal{D}_0) = (\mathcal{D}_0)_b$.
- (3) $\mathfrak{h}=L_2^{\omega}(\mathcal{D}_0)=(\mathcal{D}_0)_b$.
- (4) Either $E((\mathcal{D}_0)_b)$ (the set of all non-zero projections in $(\mathcal{D}_0)_b$) is a finite set or $\sum_{n=1}^{\infty} \|e_n\|_2^2 = \infty$ for each sequence $\{e_n\}$ of mutually orthogonal projections in $(\mathcal{D}_0)_b$.
 - (5) There exists c>0 such that $||e||_2 \ge c$ for all $e \in E((\mathcal{D}_0)_b)$.
 - (6) $L_2^p(\mathcal{D}_0)=L_2^q(\mathcal{D}_0)$ for some $q>p\geq 2$.
 - (7) $L_2^{p-}(\mathcal{D}_0)=L_2^p(\mathcal{D}_0)$ for some $p\in(2,\infty]$.
 - (8) $L_2^{p+}(\mathcal{D}_0)=L_2^p(\mathcal{D}_0)$ for some $p\in[2,\infty)$.

PROOF. This follows from ([12] Corollary 3.5) and Theorem 2.6.

§ 3. The spaces ${}_{2}L_{p}(\phi_{0})$, ${}_{2}L_{p}^{-}(\phi_{0})$ and ${}_{2}L_{p}^{+}(\phi_{0})$.

In this section we shall define the spaces $_2L_p(\phi_0)$, $_2L_p^-(\phi_0)$ and $_2L_p^+(\phi_0)$ and investigate their properties.

NOTATION. For $1 \le p \le \infty$ we set

$${}_{2}L_{p}(\phi_{0}) = \{T_{0} + T_{1}; T_{0} \in L^{2}(\phi_{0}), T_{1} \in L^{p}(\phi_{0})\},$$

$${}_{2}\|T\|_{p} = \inf \{\|T_{0}\|_{2} + \|T_{1}\|_{p}; T = T_{0} + T_{1}, T_{0} \in L^{2}(\phi_{0}), T_{1} \in L^{p}(\phi_{0})\},$$

$$T \in {}_{2}L_{p}(\phi_{0}).$$

It is clear that $_2L_p(\phi_0)$ is a vector space under the operations of strong sum and strong scalar multiplication.

Theorem 3.1. For $1 \le p \le \infty$ 2 || || p is a norm on 2Lp(ϕ_0), which makes 2Lp(ϕ_0) a Banach space.

PROOF. We shall show that $_2\|\ \|_p$ is a norm on $_2L_p(\phi_0)$. Suppose that $T\in_2L_p(\phi_0)$ and $_2\|T\|_p=0$. For each positive integer n there exist a sequence $\{T_0^{(n)}\}$ of $L^2(\phi_0)$ and a sequence $\{T_1^{(n)}\}$ of $L^p(\phi_0)$ such that

$$T = T_0^{(n)} + T_1^{(n)}, \quad ||T_0^{(n)}||_2 + ||T_1^{(n)}||_p < 1/n.$$

Hence, $\lim_{n\to\infty}\|T_0^{(n)}\|_2=0$ and $\lim_{n\to\infty}\|T_1^{(n)}\|_p=0$. For each ξ , $\eta\in\mathcal{D}(T)\cap\mathcal{D}_0$ we have

$$\begin{split} \lim_{n\to\infty} |(T_0^{(n)}\xi|\eta)| &\leq \lim_{n\to\infty} \|T_0^{(n)}\|_2 \|\xi\|_\infty \|\eta\|_2 = 0, \\ \lim_{n\to\infty} |(T_1^{(n)}\xi|\eta)| &= \lim_{n\to\infty} \mu_0 (T_1^{(n)} \cdot \overline{\pi_0(\xi\eta^*)}) \\ &\leq \lim_{n\to\infty} \|T_1^{(n)}\|_p \|\xi\eta^*\|_{p'} = 0 \quad (1/p + 1/p' = 1). \end{split}$$

Hence, $(T\xi|\eta)=0$ for each ξ , $\eta\in\mathcal{D}(T)\cap\mathcal{D}_0$. In the same way as the proof of Lemma 2.1, $\mathcal{D}(T)\cap\mathcal{D}_0$ is dense in \mathfrak{h} and it follows that T=0. Suppose that $S, T\in_2 L_p(\phi_0)$. Let $S=S_0+S_1$; $S_0\in L^2(\phi_0)$, $S_1\in L^p(\phi_0)$ and $T=T_0+T_1$; $T_0\in L^2(\phi_0)$, $T_1\in L^p(\phi_0)$ be each decompositions of S and T, respectively. Then, $S+T=(S_0+T_0)+(S_1+T_1)$ is a decomposition of S+T. Hence,

$$2\|S+T\|_{p} \leq \|S_{0}+T_{0}\|_{2} + \|S_{1}+T_{1}\|_{p}$$

$$\leq (\|S_{0}\|_{2} + \|S_{1}\|_{p}) + (\|T_{0}\|_{2} + \|T_{1}\|_{p}).$$

It follows that $_2\|S+T\|_p \leq _2\|S\|_p + _2\|T\|_p$. It is easily proved that $_2\|\|_p$ satisfies the other conditions of norm. Thus $(_2L_p(\phi_0); _2\|\|_p)$ is a normed space.

We shall show that $({}_2L_p(\phi_0); {}_2\| \|_p)$ is complete. Suppose that $\{T_n\}$ is a Cauchy sequence of ${}_2L_p(\phi_0)$. Then there exists a subsequence $\{T_{n(k)}\}$ of $\{T_n\}$ such that

$$_{2} \| T_{n(k+1)} - T_{n(k)} \|_{p} \le 1/2^{k+1}, \quad k=1, 2, \cdots.$$

From the definition of the norm $_2\|\ \|_p$, for each k there exists a decomposition of $T_{n(k+1)}-T_{n(k)}$ such that

$$\begin{split} &T_{n(k+1)} - T_{n(k)} \!=\! (T_{n(k+1)} - T_{n(k)})_0 \!+\! (T_{n(k+1)} - T_{n(k)})_1, \\ &(T_{n(k+1)} - T_{n(k)})_0 \!\in\! L^2(\phi_0), \quad (T_{n(k+1)} - T_{n(k)})_1 \!\in\! L^p(\phi_0), \\ &\| (T_{n(k+1)} - T_{n(k)})_0 \|_2 \!\leq\! 1/2^k, \quad \| (T_{n(k+1)} - T_{n(k)})_1 \|_p \!\leq\! 1/2^k. \end{split}$$

Let $T_{n(1)} = (T_{n(1)})_0 + (T_{n(1)})_1$; $(T_{n(1)})_0 \in L^2(\phi_0)$, $(T_{n(1)})_1 \in L^p(\phi_0)$ be a decomposition of $T_{n(1)}$. We set

$$(T_{n(2)})_0 = (T_{n(1)})_0 + (T_{n(2)} - T_{n(1)})_0, \quad (T_{n(2)})_1 = (T_{n(1)})_1 + (T_{n(2)} - T_{n(1)})_1,$$

$$.....$$

$$(T_{n(k)})_0 = (T_{n(k-1)})_0 + (T_{n(k)} - T_{n(k-1)})_0, \quad (T_{n(k)})_1 = (T_{n(k-1)})_1 + (T_{n(k)} - T_{n(k-1)})_1,$$

$$.....$$

Then, for each k

$$T_{n(k)} = (T_{n(k)})_0 + (T_{n(k)})_1, \quad (T_{n(k)})_0 \in L^2(\phi_0), \quad (T_{n(k)})_1 \in L^p(\phi_0)$$

and it is a decomposition of $T_{n(k)}$. Furthermore, for each k > r,

$$\begin{split} \|(T_{n(k)})_{0} - (T_{n(r)})_{0}\| &= \|(T_{n(k)} - T_{n(k-1)})_{0} + \dots + (T_{n(r+1)} - T_{n(r)})_{0}\|_{2} \\ &\leq 1/2^{k-1} + \dots + 1/2^{r}, \\ \|(T_{n(k)})_{1} - (T_{n(r)})_{1}\|_{p} &= \|(T_{n(k)} - T_{n(k-1)})_{1} + \dots + (T_{n(r+1)} - T_{n(r)})_{1}\|_{p} \\ &\leq 1/2^{k-1} + \dots + 1/2^{r}. \end{split}$$

Hence $\{(T_{n(k)})_0\}$ and $\{(T_{n(k)})_1\}$ are Cauchy sequences of $L^2(\phi_0)$ and $L^p(\phi_0)$ respectively, and so there exist $T_0 \in L^2(\phi_0)$ and $T_1 \in L^p(\phi_0)$ such that $\lim_{k \to \infty} \|(T_{n(k)})_0 - T_0\|_2 = 0$ and $\lim_{k \to \infty} \|(T_{n(k)})_1 - T_1\|_p = 0$. We set

$$T = T_0 + T_1$$
.

Then, $T \in {}_{2}L_{p}(\phi_{0})$ and $\lim_{k \to \infty} {}_{2} \|T_{n(k)} - T\|_{p} = 0$. Furthermore, we have

$$\lim_{k\to\infty} {}_{2}\|T_{k}-T\|_{p} \leq \lim_{k\to\infty} \left\{ {}_{2}\|T_{k}-T_{n(k)}\|_{p} + {}_{2}\|T_{n(k)}-T\|_{p} \right\} = 0.$$

Thus, $({}_{2}L_{p}(\phi_{0}); {}_{2}\|\ \|_{p})$ is complete.

It is easy to prove that the Banach space $({}_{2}L_{2}(\phi_{0}); {}_{2}\| \|_{2})$ equals the Banach space $(L^{2}(\phi_{0}); \| \|_{2})$.

LEMMA 3.2. (1) For $1 \le p < q \le 2$,

$$_2L_1(\phi_0)\supset _2L_p(\phi_0)\supset _2L_q(\phi_0)\supset L^2(\phi_0)$$
 ,

$$_{2}\|T\|_{p} \leq \max \{_{2}\|T\|_{q} + (_{2}\|T\|_{q})^{q/p}, \ _{2}\|T\|_{q} + (_{2}\|T\|_{q})^{q/2}\}, \quad T \in _{2}L_{q}(\phi_{0}).$$

(2) For $2 \leq p < q < \infty$.

$$L^2(\phi_{\scriptscriptstyle 0}) \subset {_2L_p}(\phi_{\scriptscriptstyle 0}) \subset {_2L_q}(\phi_{\scriptscriptstyle 0}) \subset {_2L_{\scriptscriptstyle \infty}}(\phi_{\scriptscriptstyle 0})$$
 ,

$$_{2}\|T\|_{q} \leq \max \; \{_{2}\|T\|_{p} + (_{2}\|T\|_{p})^{q/p}, \;_{2}\|T\|_{p} + (_{2}\|T\|_{p})^{q/2}\}, \quad T \in _{2}L_{p}(\phi_{0}).$$

PROOF. (1) Suppose $T \in {}_2L_q(\phi_0)$. Let $T = T_0 + T_1$; $T_0 \in L^2(\phi_0)$, $T_1 \in L^q(\phi_0)$ be each decomposition of T. Let $T_1 = U|T_1|$ be the polar decomposition of T_1 and let $|T_1| = \int_0^\infty \lambda dE(\lambda)$ be the spectral resolution of $|T_1|$. Then,

$$\begin{split} \|T_1\|_q^q &= -\int_0^\infty \lambda^q \, d\phi_0(E(\lambda)^\perp) \\ &= -\int_0^1 \lambda^q \, d\phi_0(E(\lambda)^\perp) - \int_1^\infty \lambda^q \, d\phi_0(E(\lambda)^\perp) \\ &\geq -\int_0^1 \lambda^2 \, d\phi_0(E(\lambda)^\perp) - \int_1^\infty \lambda^p \, d\phi_0(E(\lambda)^\perp) \\ &= \|UE(1)|T_1| \, \|_2^2 + \|UE(1)^\perp|T_1| \, \|_p^p. \end{split}$$

Hence, $UE(1)|T_1| \in L^2(\phi_0)$, $UE(1)^{\perp}|T_1| \in L^p(\phi_0)$ and $T_1 = UE(1)|T_1| + UE(1)^{\perp}|T_1|$. It follows that $T = (T_0 + UE(1)|T_1|) + (UE(1)^{\perp}|T_1|) \in {}_2L_p(\phi_0)$. Furthermore, we have

$$\begin{split} & _{2}\|T\|_{p} \leq \|T_{0} + UE(1)|T_{1}| \|_{2} + \|UE(1)^{\perp}|T_{1}| \|_{p} \\ & \leq \|T_{0}\|_{2} + \|E(1)|T_{1}| \|_{2} + \|E(1)^{\perp}|T_{1}| \|_{p} \\ & = \|T_{0}\|_{2} - \left[\int_{0}^{1} \lambda^{2} d\phi_{0}(E(\lambda)^{\perp})\right]^{1/2} - \left[\int_{1}^{\infty} \lambda^{p} d\phi_{0}(E(\lambda)^{\perp})\right]^{1/p} \\ & \leq \|T_{0}\|_{2} - \left[\int_{0}^{1} \lambda^{q} d\phi_{0}(E(\lambda)^{\perp})\right]^{1/2} - \left[\int_{1}^{\infty} \lambda^{q} d\phi_{0}(E(\lambda)^{\perp})\right]^{1/p} \\ & \leq \|T_{0}\|_{2} + \|T_{1}\|_{q}^{q/2} + \|T_{1}\|_{q}^{q/p}. \end{split}$$

If $||T_1||_q \ge 1$, then $_2 ||T||_p \le (||T_0||_2 + ||T_1||_q) + (||T_0||_2 + ||T_1||_q)^{q/p}$ and if $||T_1||_q \le 1$ then $_2 ||T||_p \le (||T_0||_2 + ||T_1||_q) + (||T_0||_2 + ||T_1||_q)^{q/2}$. Hence, we have

$$_{2} \| T \|_{p} \leq \max \{_{2} \| T \|_{q} + (_{2} \| T \|_{q})^{q/p}, _{2} \| T \|_{q} + (\| T \|_{q})^{q/2} \}.$$

(2) This follows after a slight modification of (1).

DEFINITION 3.3. We set

$$_{2}L_{p}^{-}(\phi_{0}) = \bigcap_{1 \le t < p} {_{2}L_{t}(\phi_{0})}, \quad 1 < p \le 2,$$
 $_{2}L_{p}^{+}(\phi_{0}) = \bigcup_{1 \le t < 2} {_{2}L_{t}(\phi_{0})}, \quad 1 \le p < 2.$

Hereafter we shall treat only the spaces $_2L_p^-(\phi_0)$ and $_2L_p^+(\phi_0)$ $(1 \le p \le 2)$, though we can similarly treat the spaces $_2L_p^-(\phi_0)$ and $_2L_p^+(\phi_0)$ (p>2).

Under the operations of strong sum and strong scalar multiplication ${}_2L^-_p(\phi_0)$ and ${}_2L^+_p(\phi_0)$ are vector spaces. We define the projective limit topology ${}_2\tau^-_p$ on ${}_2L^-_p(\phi_0)$ and the inductive limit topology ${}_2\tau^+_p$ on ${}_2L^+_p(\phi_0)$ for the Banach spaces $({}_2L_t(\phi_0); {}_2\| \ \|_t)$. Then the following theorem is proved after a slight modification of the proof of Theorem 2.5.

THEOREM 3.4. (1) For $1 <math>({}_{2}L_{p}^{-}(\phi_{0}); {}_{2}\tau_{p}^{-})$ is a Fréchet space.

- (2) For $1 \leq p < 2$ ($_2L_p^+(\phi_0)$; $_2\tau_p^+$) is a separated barrelled space.
- (3) $(\mathcal{D}_0)_b$ is dense in $({}_2L_p(\phi_0); {}_2\| \|_p)$ $(1 \leq p \leq 2)$.
- (4) $(\mathcal{D}_0)_b$ is dense in $({}_2L_p^-(\phi_0); {}_2\tau_p^-)$ (1 .
- (5) $(\mathcal{D}_0)_b$ is dense in $({}_2L_p^+(\phi_0); {}_2\tau_p^+)$ $(1 \le p < 2)$.

§ 4. Duality and some consequences.

In this section we shall investigate the dual spaces of the Banach spaces $(L_2^p(\mathcal{D}_0); \| \|_{(2,p)})$, $({}_2L_p(\phi_0); {}_2\| \|_p)$ and the locally convex spaces $(L_2^{p\pm}(\mathcal{D}_0); \tau_2^{p\pm})$, $({}_2L_p^{\pm}(\phi_0); {}_2\tau_p^{\pm})$.

Let $L_2^p(\mathcal{D}_0)^*$ (resp. $_2L_p(\phi_0)^*$) denote the dual space of the Banach space $(L_2^p(\mathcal{D}_0); \| \|_{(2,p)})$ (resp. $(_2L_p(\phi_0); _2\| \|_p)$). Then $L_2^p(\mathcal{D}_0)^*$ and $_2L_p(\phi_0)^*$ are Banach spaces under the norms:

$$||f||_{(2, p)} = \sup [|f(x)|; x \in L_2^p(\mathcal{D}_0), ||x||_{(2, p)} \le 1], f \in L_2^p(\mathcal{D}_0)^*,$$

$$||f||_p = \sup [|f(T)|; T \in L_p(\phi_0), L_p(\phi_0), L_p(\phi_0)^*], f \in L_p(\phi_0)^*,$$

respectively. For each $t \in [1, \infty]$ we set t' = t/t - 1, i.e., 1/t + 1/t' = 1 (where $t' = \infty$ if t = 1 and t' = 1 if $t = \infty$).

THEOREM 4.1. (1) $_2L_p(\phi_0)^*=L_2^{p'}(\mathcal{D}_0)$ $(1\leq p<\infty)$. That is, for each $x\in L_2^{p'}(\mathcal{D}_0)$ putting

$$[\Phi(x)](T) = \mu_0(\overline{\pi_0(x)} \cdot T), \quad T \in {}_{2}L_p(\phi_0),$$

 Φ is an isometric isomorphism of the Banach space $(L_2^{p'}(\mathcal{D}_0); \| \|_{(2, p')})$ onto the Banach space $({}_2L_p(\phi_0)^*; {}_2\| \|_p)$.

(2) Let $1 . For each <math>T \in {}_{2}L_{p'}(\phi_{0})$ putting

$$[\Psi(T)](x) = \mu_0(\overline{\pi_0(x)} \cdot T), \quad x \in L_2^p(\mathcal{D}_0),$$

 Ψ is an isometric isomorphism of the Banach space $_{2}L_{p'}(\phi_{0})$ into the Banach space $L_{2}^{p}(\mathcal{D}_{0})^{*}$.

PROOF. (1) For each $x \in L_2^{p'}(\mathcal{D}_0)$ we have $\Phi(x) \in {}_2L_p(\phi_0)^*$. In fact, it is easily showed that $\Phi(x)$ is a well-defined linear functional on ${}_2L_p(\phi_0)$. Furthermore, for each decomposition $T = T_0 + T_1$; $T_0 \in L^2(\phi_0)$, $T_1 \in L^p(\phi_0)$ we get

$$\begin{split} |[\Phi(x)](T)| &= |\mu_0(\overline{\pi_0(x)} \cdot (T_0 + T_1))| \\ &\leq |\mu_0(\overline{\pi_0(x)} \cdot T_0)| + |\mu_0(\overline{\pi_0(x)} \cdot T_1)| \\ &\leq ||x||_2 ||T_0||_2 + ||x||_{p'} ||T_1||_p \\ &\leq ||x||_{(2, p')} (||T_0||_2 + ||T_1||_p). \end{split}$$

Hence, $\Phi(x) \in {}_{2}L_{p}(\phi_{0})^{*}$ and ${}_{2}\|\Phi(x)\|_{p} \leq \|x\|_{(2,p')}$. It follows that Φ is a map of $L_{2}^{p'}(\mathcal{D}_{0})$ into ${}_{2}L_{p}(\phi_{0})^{*}$. We shall show that ${}_{2}\|\Phi(x)\|_{p} = \|x\|_{(2,p')}$. Suppose that $\|x\|_{2} \geq \|x\|_{p'}$. Since $\|x\|_{2} = \sup [|\mu_{0}(\overline{\pi_{0}(x)} \cdot T_{0})|; T_{0} \in L^{2}(\phi_{0}), \|T_{0}\|_{2} \leq 1]$, for each $\varepsilon > 0$ there exists an element T_{0} of $L^{2}(\phi_{0})$ ($\subset {}_{2}L_{p}(\phi_{0})$) such that

$$\|T_0\|_{\eta} \leq \|T_0\|_{2} \leq 1$$
 and $\|\mu_0(\overline{\pi_0(x)} \cdot T_0)\| + \varepsilon \geq \|x\|_{2} = \|x\|_{(2, \eta')}$.

On the other hand, suppose that $\|x\|_2 \leq \|x\|_{p'}$. Since $\|x\|_{p'} = \sup[|\mu_0(\overline{\pi_0(x)} \cdot T_1)|; T_1 \in L^p(\phi_0), \|T_1\|_p \leq 1]$, there exists an element T_1 of $L^p(\phi_0)$ ($\subset_2 L_p(\phi_0)$) such that

$$\|x\|_{p} \le \|T_{1}\|_{p} \le \|T_{1}\|_{p} \le 1$$
 and $\|\mu_{0}(\overline{\pi_{0}(x)} \cdot T_{1})\| + \varepsilon \ge \|x\|_{p'} = \|x\|_{(2, p')}$.

Thus, for each $\varepsilon > 0$ there exists an element T of $_2L_p(\phi_0)$ such that

$$\|T\|_p \leq 1$$
 and $\|\mu_0(\overline{\pi_0(x)} \cdot T)\| + \varepsilon \geq \|x\|_{(2, p')}$.

Hence, $\|x\|_{(2,p')} = 2\|\Phi(x)\|_p$. Next we shall show that Φ is onto. Suppose that $f \in {}_2L_p(\phi_0)^*$, that is, there exists a positive constant γ such that

$$|f(T)| \leq \gamma (2 ||T||_p)$$

for all $T \in {}_{2}L_{p}(\phi_{0})$. In particular,

$$|f(T_0)| \leq \gamma ({}_2 ||T_0||_p) \leq \gamma ||T_0||_2, \quad T_0 \in L^2(\phi_0),$$

$$|f(T_1)| \leq \gamma ({}_2 ||T_1||_p) \leq \gamma ||T_1||_p, \quad T_1 \in L^p(\phi_0).$$

Hence, $f/L^2(\phi_0)$ (the restriction of f to $L^2(\phi_0)$) $\in L^2(\phi_0)^*$ and $f/L^p(\phi_0) \in L^p(\phi_0)^*$.

Since $L^2(\phi_0)^*=L^2(\phi_0)$ and $L^p(\phi_0)^*=L^{p'}(\phi_0)$, there exist $a\in\mathfrak{h}$ and $B\in L^{p'}(\phi_0)$ such that

$$f(T_0) = \mu_0(\overline{\pi_0(a)} \cdot T_0), \quad T_0 \in L^2(\phi_0),$$

 $f(T_1) = \mu_0(B \cdot T_1), \quad T_1 \in L^p(\phi_0).$

Then we have $\overline{\pi_0(a)} = B$. In fact, for each $x, y \in \mathcal{D}_0 \cap \mathcal{D}(B)$

$$f(\overline{\pi_0(x)} \bullet \overline{\pi_0(y)}^*) = \mu_0(\overline{\pi_0(a)} \bullet \overline{\pi_0(x)} \bullet \overline{\pi_0(y)}^*)$$

$$= (\overline{\pi_0(a)} x | y),$$

$$f(\overline{\pi_0(x)} \bullet \overline{\pi_0(y)}^*) = \mu_0(B \bullet \overline{\pi_0(x)} \bullet \overline{\pi_0(y)}^*)$$

$$= (Bx|y).$$

Hence, $\overline{\pi_0(a)}x = Bx$ for all $x \in \mathcal{D}_0 \cap \mathcal{D}(B)$. Since $\pi_0(a) + B$ is essentially measurable, $\mathcal{D}_0 \cap \mathcal{D}(B)$ is dense in \mathfrak{h} , and so $B = \overline{\pi_0(a)}$. Hence, $a \in L_2^{p'}(\mathcal{D}_0)$ and

$$f(T) = \mu_0(\overline{\pi_0(a)} \cdot T) = [\Phi(a)](T), \quad T \in {}_2L_p(\phi_0).$$

Hence, Φ is onto. It is clear that Φ is a linear map of $L_2^{p'}(\mathcal{D}_0)$ onto ${}_2L_p(\phi_0)^*$. Thus Φ is an isometric isomorphism of $L_2^{p'}(\mathcal{D}_0)$ onto ${}_2L_p(\phi_0)^*$.

(2) In the same way as (1) we can prove that Ψ is a continuous linear map of ${}_{2}L_{p'}(\phi_0)$ into $L_{2}^{p}(\phi_0)^*$. By (1), ${}_{2}L_{p'}(\phi_0)^*=L_{2}^{p}(\mathcal{D}_0)$ and it follows that

$$_{2}\|T\|_{p'} = \sup_{x \in L_{0}^{p}(\mathcal{D}_{0}); \|x\|_{(2, p)} \le 1} |[\Psi(T)](x)|, \quad T \in _{2}L_{p'}(\phi_{0}).$$

From the completeness of ${}_{2}L_{p'}(\phi_{0})$, $\Psi({}_{2}L_{p'}(\phi_{0}))$ is a closed subspace of $L_{2}^{p}(\mathcal{D}_{0})^{*}$. Hence, Ψ is an isometric isomorphism of ${}_{2}L_{p'}(\phi_{0})$ into $L_{2}^{p}(\mathcal{D}_{0})^{*}$.

QUESTION. We don't know whether the isomorphism Ψ is into (that is, the Banach space ${}_{2}L_{p'}(\phi_{0})$ is dual of the Banach space $L_{2}^{p}(\mathcal{D}_{0})$), or not.

QUESTION.
$$_2L_{\infty}(\phi_0)^*=L_2^1(\mathcal{D}_0)$$
?

In order to solve the above problem, we shall introduce a topology on ${}_{2}L_{\infty}(\phi_{0})$ as follows: for each $x, y \in \mathfrak{h}$ and $T \in {}_{2}L_{\infty}(\phi_{0})$ we set

$$_{2} \| T \|_{(x,y)} = \inf \{ \| T_{0} \|_{2} + |(T_{1} x | y)| ; T = T_{0} + T_{1}, T_{0} \in L^{2}(\phi_{0}), T_{1} \in L^{\infty}(\phi_{0}) \}.$$

Then it is easily proved that $\|\|_{(x,y)}$ is a seminorm on ${}_{2}L_{\infty}(\phi_{0})$. The topology induced by the family $\{_{2}\|\|_{(x,y)}; x, y \in \mathfrak{h}\}$ of the seminorms is called the

 $_2L_\infty$ -weak topology on $_2L_\infty(\phi_0)$ and is denoted by $_2\tau_\infty(\omega)$. It is easily showed that the topology $_2\tau_\infty(\omega)$ is coarser than the topology $_2\parallel\parallel_\infty$ (denoted by $_2\tau_\infty(\omega) \succ_2\parallel\parallel_\infty$) and $(_2L_\infty(\phi_0)\,;\,_2\tau_\infty(\omega))$ is a separated locally convex space. Let $(_2L_\infty(\phi_0)\,;\,_2\tau_\infty(\omega))^*$ denote the dual space of a locally convex space $(_2L_\infty(\phi_0)\,;\,_2\tau_\infty(\omega))$. Since $_2\tau_\infty(\omega) \succ_2\parallel\parallel_\infty$, we have $(_2L_\infty(\phi_0)\,;\,_2\tau_\infty(\omega))^*\subset _2L_\infty(\phi_0)^*$. When we regard $(_2L_\infty(\phi_0)\,;\,_2\tau_\infty(\omega))^*$ as a normed subspace of the Banach space $_2L_\infty(\phi_0)^*$, we denote it by $_2L_\infty(\phi_0)_*$.

THEOREM 4.3. $_2L_{\infty}(\phi_0)_*=L_2^1(\mathcal{D}_0)$. That is, for each $x\in L_2^1(\mathcal{D}_0)$ putting

$$\llbracket \boldsymbol{\Phi}(x) \rrbracket (T) = \mu_0(\overline{\pi_0(x)} \cdot T), \quad T \in {}_{\mathbf{2}}L_{\infty}(\phi_0),$$

 Φ is an isometric isomorphism of the Banach space $(L_2^1(\mathcal{D}_0); \| \|_{(2,1)})$ onto the Banach space $({}_2L_{\infty}(\phi_0)_*; {}_2\| \|_{\infty})$.

PROOF. In the same way as in Theorem 4.1 we can prove that Φ is an isometric isomorphism of the Banach space $L^1_2(\mathcal{D}_0)$ into the Banach space ${}_2L_{\infty}(\phi_0)^*$. We shall show that $\Phi(L^1_2(\mathcal{D}_0))={}_2L_{\infty}(\phi_0)_*$. Suppose $x\in L^1_2(\mathcal{D}_0)$. Then, $\overline{\pi_0(x)}=\overline{\pi_0(x_1)}\cdot\overline{\pi_0(x_2)}^*$ for some $x_1, x_2\in\mathfrak{h}$. Let $T=T_0+T_1$; $T_0\in L^2(\phi_0)$, $T_1\in L^\infty(\phi_0)$ be each decomposition of $T\in {}_2L_{\infty}(\phi_0)$. Then,

$$\begin{split} |[\Phi(x)](T)| &= |\mu_0(\overline{\pi_0(x)} \cdot (T_0 + T_1))| \\ &\leq |\mu_0(\overline{\pi_0(x)} \cdot T_0)| + |\mu_0(\overline{\pi_0(x_1)} \cdot \overline{\pi_0(x_2)}^* \cdot T_1)| \\ &\leq ||x||_2 ||T_0||_2 + |(T_1 x_1 | x_2)| \\ &\leq (||x||_2 + 1) (||T_0||_2 + |(T_1 x_1 | x_2)|). \end{split}$$

Hence, for all $T \in {}_{2}L_{\infty}(\phi_{0})$

$$|[\Phi(x)](T)| \leq (||x||_2 + 1)_2 ||T||_{(x_1, x_2)}.$$

Therefore, $\Phi(x) \in {}_{2}L_{\infty}(\phi_{0})_{*}$. Conversely suppose that $f \in {}_{2}L_{\infty}(\phi_{0})_{*}$. Then, $f/L^{2}(\phi_{0}) \in L^{2}(\phi_{0})^{*}$ and $f/L^{\infty}(\phi_{0}) \in L^{\infty}(\phi_{0})_{*}$ (, where $L^{\infty}(\phi_{0})_{*}$ denote the predual of the von Neumann algebra $L^{\infty}(\phi_{0})$) are easily showed. Since $L^{2}(\phi_{0})^{*}=L^{2}(\phi_{0})$ and $L^{\infty}(\phi_{0})_{*}=L^{1}(\phi_{0})$, there exist $a \in L^{2}(\phi_{0})$ and $B \in L^{1}(\phi_{0})$ such that

$$f(T_0) = \mu_0(\overline{\pi_0(a)} \cdot T_0), \quad T_0 \in L^2(\phi_0),$$

 $f(T_1) = \mu_0(B \cdot T_1), \quad T_1 \in L^\infty(\phi_0).$

In the same way as in the proof of Theorem 4.1, we can prove $\overline{\pi_0(a)} = B$. Hence, $a \in L_2^1(\mathcal{D}_0)$ and for all $T \in {}_2L_{\infty}(\phi_0)$

$$f(T) = \mu_0(\overline{\pi_0(a)} \cdot T) = [\Phi(a)](T).$$

Hence Φ is a map of $L_2^1(\mathcal{D}_0)$ onto ${}_2L_{\infty}(\phi_0)_*$. Thus Φ is an isometric isomorphism of the Banach space $L_2^1(\mathcal{D}_0)$ onto the Banach space ${}_2L_{\infty}(\phi_0)_*$.

Let X be a locally convex space with a topology τ and let X^* be the dual space of $(X;\tau)$. We denote by $\beta(X^*,X)$ (resp. $\tau(X^*,X)$) the strong topology (resp. Mackey topology) on X^* .

THEOREM 4.4. Let $1 \leq p \leq 2$.

(1) The dual space $_2L_p^+(\phi_0)^*$ of the locally convex space $(_2L_p^+(\phi_0);_2\tau_p^+)$ consists of the maps

$$\Phi(x)$$
; $T \longrightarrow \mu_0(\overline{\pi_0(x)} \cdot T)$

where $x \in L_2^{p'-}(\mathcal{D}_0)$ and

$$_{2}\tau_{p}^{+}=\beta(_{2}L_{p}^{+}(\phi_{0}), L_{2}^{p'-}(\mathcal{D}_{0}))=\tau(_{2}L_{p}^{+}(\phi_{0}), L_{2}^{p'-}(\mathcal{D}_{0})).$$

(2) The dual space $({}_{2}L_{p}^{-}(\phi_{0}))^{*}$ of the locally convex space $({}_{2}L_{p}^{-}(\phi_{0}); {}_{2}\tau_{p}^{-})$ consists of the maps

$$\Psi(x)$$
; $T \longrightarrow \mu_0(\overline{\pi_0(x)} \cdot T)$

where $x \in L_2^{p'+}(\mathcal{D}_0)$ and

$$_{2}\tau_{p}^{-}=\beta(_{2}L_{p}^{-}(\phi_{0}), L_{2}^{p'+}(\mathcal{D}_{0}))=\tau(_{2}L_{p}^{-}(\phi_{0}), L_{2}^{p'+}(\mathcal{D}_{0})).$$

PROOF. It is not difficult to show that $\Phi(x)$ $(x \in L_2^{p'-}(\mathcal{D}_0))$ is a well-defined linear functional on ${}_2L_p^+(\phi_0)$. Let $T \in {}_2L_t(\phi_0)$ $(p < t \leq 2)$. Let $T = T_0 + T_1$; $T_0 \in L^2(\phi_0)$, $T_1 \in L^t(\phi_0)$ be each decomposition of T. Then,

$$\begin{split} |[\varPhi(x)](T)| &= |\mu_0(\overline{\pi_0(x)} \cdot (T_0 + T_1))| \\ &\leq |\mu_0(\overline{\pi_0(x)} \cdot T_0)| + |\mu_0(\overline{\pi_0(x)} \cdot T_1)| \\ &\leq ||x||_2 ||T_0||_2 + ||x||_{t'} ||T_1||_t \\ &\leq ||x||_{(2,t')} (||T_0||_2 + ||T_1||_t). \end{split}$$

Hence, $\|[\Phi(x)](T)\| \le \|x\|_{(2,t')_2} \|T\|_t$ for all $T \in _2L_t(\phi_0)$. It follows that $[\Phi(x)]/_2L_t(\phi_0) \in _2L_t(\phi_0)^*$ for all $t \in (p,2]$. Hence, $\Phi(x) \in _2L_p^+(\phi_0)$; $_2\tau_p^+)^*$. Next we shall show that the map Φ is onto. Suppose $f \in _2L_p^+(\phi_0)$; $_2\tau_p^+)^*$. Then, $f \circ u_t \in _2L_t(\phi_0)^*$ for all $t \in (p,2]$. From Theorem 4.1, for each $t \in (p,2]$ there exists an element $x^{(t)}$ of $L_2^v(\mathcal{D}_0)$ such that

$$(f \circ u_t)(T) = \mu_0(\overline{\pi_0(x^{(t)})} \cdot T), \quad T \in {}_2L_t(\phi_0).$$

The element $x^{(t)}$ is independent of t. In fact, for each $t \in (p, 2]$ and $T \in L^2(\phi_0)$ we have

$$f(T) = (f \circ u_2)(T) = \mu_0(\overline{\pi_0(x^{(2)})} \cdot T)$$
$$= (f \circ u_t)(T) = \mu_0(\overline{\pi_0(x^{(t)})} \cdot T).$$

Hence, $\mu_0(\overline{\pi_0(x^{(2)}-x^{(t)})} \bullet T) = 0$ for all $T \in L^2(\phi_0)$ and it follows that $x^{(t)} = x^{(2)}$. Putting $x = x^{(t)}$, $x \in \bigcap_{2 \le t' < p'} L_2^{t'}(\mathcal{D}_0) = L_2^{p'-}(\mathcal{D}_0)$ and $f(T) = \mu_0(\overline{\pi_0(x)} \bullet T) = [\Phi(x)](T)$ for all $T \in {}_2L_p^+(\phi_0)$. Thus Φ is onto. Similarly we can prove that ${}_2L_p^-(\phi_0)^* = \Psi(L_2^{p'+}(\phi_0))$. From Theorem 2.5, 3.4, $L_2^{p'+}(\mathcal{D}_0)$ and ${}_2L_p^+(\phi_0)$ are separated barrelled spaces. From ([19] Corollary 4.1.1) we have

$${}_{2}\tau_{p}^{+} = \beta({}_{2}L_{p}^{+}(\phi_{0}), L_{2}^{p'-}(\mathcal{D}_{0})) = \tau({}_{2}L_{p}^{+}(\phi_{0}), L_{2}^{p'-}(\mathcal{D}_{0})),$$

$${}_{2}\tau_{p}^{-} = \beta({}_{2}L_{p}^{-}(\phi_{0}), L_{2}^{p'+}(\mathcal{D}_{0})) = \tau({}_{2}L_{p}^{-}(\phi_{0}), L_{2}^{p'+}(\mathcal{D}_{0})).$$

COROLLARY 4.5. (1) $_{2}L_{1}^{+}(\phi_{0})^{*}=L_{2}^{\omega}(\mathcal{D}_{0}).$

(2)
$$_{2}\tau_{1}^{+}=\beta(_{2}L_{1}^{+}(\phi_{0}), L_{2}^{\omega}(\mathcal{D}_{0}))=\tau(_{2}L_{1}^{+}(\phi_{0}), L_{2}^{\omega}(\mathcal{D}_{0})).$$

THEOREM 4.7. The following conditions are equivalent.

- (1) $L_2^{\omega}(\mathcal{D}_0)$ is a pure unbounded Hilbert algebra.
- (2) $_{2}L_{p}(\phi_{0}) \neq _{2}L_{q}(\phi_{0})$ for each $1 \leq p < q \leq 2$.
- (3) $_{2}L_{p}^{+}(\phi_{0})\neq_{2}L_{p}(\phi_{0})$ for each $1\leq p<2$.
- (4) $_{2}L_{p}^{-}(\phi_{0})\neq_{2}L_{p}(\phi_{0})$ for each 1.

PROOF. This follows from Theorem 2.2 and Theorem 4.4.

§ 5. The L^p -spaces with respect to a Hilbert algebra with an identity.

Suppose that a Hilbert algebra \mathcal{D}_0 has an identity e and $\|e\|_2=1$. Then, for 1 we have

$$L^1(\phi_0)\supset L^p(\phi_0)\supset L^q(\phi_0)\supset L^\infty(\phi_0)$$
, $\|T\|_q{\ge}\|T\|_p$, $T{\in}L^q(\phi_0)$.

We define

$$L^{p-}(\phi_0) = \bigcap_{1 \le t < p} L^t(\phi_0), \quad 1 < p \le \infty,$$
 $L^{p+}(\phi_0) = \bigcup_{t > p} L^t(\phi_0), \quad 1 \le p < \infty$

and give $L^{p^-}(\phi_0)$ (resp. $L^{p^+}(\phi_0)$) the projective limit topology τ^{p^-} (resp. inductive limit topology τ^{p^+}) for the Banach spaces $(L^t(\phi_0); \| \|_t)$. Then we have

$$(L^{p}(\phi_{0}); \| \|_{p}) = (L_{2}^{p}(\phi_{0}); \| \|_{(2, p)}), \quad 2 \leq p \leq \infty,$$

$$(L^{p-}(\phi_{0}); \tau^{p-}) = (L_{2}^{p-}(\phi_{0}); \tau_{2}^{p-}), \qquad 2
$$(L^{p}(\phi_{0}); \| \|_{p}) = ({}_{2}L_{p}(\phi_{0}); {}_{2}\| \|_{p}), \quad 1 \leq p \leq 2,$$

$$(L^{p+}(\phi_{0}); \tau^{p+}) = ({}_{2}L_{p}^{+}(\phi_{0}); {}_{2}\tau_{p}^{+}), \qquad 1 \leq p < 2.$$$$

THEOREM 5.1. (1) For $1 (<math>L^{p-}(\phi_0)$; τ^{p-}) is a Fréchet space.

- (2) $(L^{\infty}(\phi_0); \tau^{\infty}) = (L_2^{\omega}(\phi_0); \tau_2^{\omega})$. Hence $(L^{\infty}(\phi_0); \tau^{\infty})$ is a complete metrizable GB*-algebra defined by Allan [1].
 - (3) For $1 \leq p < \infty$ ($L^{p+}(\phi_0)$; τ^{p+}) is a separated barrelled space.
 - (4) For 1 we have

$$(L^{p-}(\phi_{\scriptscriptstyle 0})$$
 ; $au^{p-})^* = L^{p'+}(\phi_{\scriptscriptstyle 0})$,

$$\tau^{p-} = \beta(L^{p-}(\phi_0), L^{p'+}(\phi_0)) = \tau(L^{p-}(\phi_0), L^{p'+}(\phi_0)).$$

(5) For $1 \leq p < \infty$ we have

$$(L^{p+}(\phi_0); \tau^{p+})^* = L^{p'-}(\phi_0),$$

$$\tau^{p+} = \beta(L^{p+}(\phi_0), L^{p'-}(\phi_0)) = \tau(L^{p+}(\phi_0), L^{p'-}(\phi_0)).$$

THEOREM 5.2. The following conditions are equivalent.

- (1) $L_2^{\omega}(\phi_0)$ is a pure unbounded Hilbert algebra.
- (2) $L^p(\phi_0) \neq L^q(\phi_0)$ for each $1 \leq p < q \leq \infty$.
- (3) $L^{p-}(\phi_0) \neq L^p(\phi_0)$ for each 1 .
- (4) $L^{p+}(\phi_0) \neq L^p(\phi_0)$ for each $1 \leq p < \infty$.

References

- [1] G.R. Allan, A class of locally convex algebras, Proc. London Math. Soc., (3) 17 (1967), 91-114.
- [2] W. Ambrose, The L^2 -system of a unimodular group, Trans. Amer. Math. Soc., 65 (1949), 27-48.
- [3] R. Arens, The space L^{ω} and convex topological rings, Bull. Amer. Math. Soc., 52 (1946), 931-935.
- [4] H.W. Davis, F.J. Murray and J.K. Weber, Families of L_p -spaces with inductive and projective topologies, Pacific J. Math., 34 (1970), 619-638.
- [5] H.W. Davis, F.J. Murray and J.K. Weber, Inductive and projective limits of L_p -spaces, Portugal. Math., 31 (1972), 21-29.
- [6] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertian, Paris, 2é edition, 1969.
- [7] P.G. Dixon, Generalized B^* -algebras, Proc. London Math. Soc., (3) 21 (1970), 693-715.
- [8] N. Dunford and J.T. Schwartz, Linear operators II, New York, 1963.
- [9] R. Godement, Theorie des caractères I. Algèbres unitaires, Ann. Math., 59 (1954), 47-69.
- [10] A. Inoue, On a class of unbounded operator algebras, Pacific J. Math., 65 (1976), 77-95.
- [11] A. Inoue, On a class of unbounded operator algebras II, Pacific J. Math., (to appear).

- [12] A. Inoue, On a class of unbounded operator algebras II, Pacific J. Math., (to appear).
- [13] A. Inoue, Unbounded representation of symmetric *-algebras, J. Math. Soc. Japan, 29 (1977), 219-232.
- [14] A. Inoue, Unbounded Hilbert algebras as locally convex algebras, Math. Rep. College General Ed. Kyushu Univ., X (2) (1976), 114-129.
- [15] G. Lassner, Topological algebras of operators, Rep. Mathematical Phys., 3 (1972), 279-293.
- [16] T. Ogasawara and K. Yoshinaga, A noncommutative theory of integration for operators, J. Sci. Hiroshima Univ., 18 (3) (1955), 311-347.
- [17] R. Pallu de La Barrière, Algèbres unitaires et espaces d'Ambrose, Ann. Éc. Norm. Sup., 70 (1953), 381-401.
- [18] M.A. Rieffel, Square-integrable representations of Hilbert algebras, J. Functional Analysis, 3 (1969), 265-300.
- [19] A.P. Robertson and W. Robertson, Topological vector spaces, Cambridge, 1966.
- [20] I.E. Segal, A noncommutative extension of abstract integration, Ann. Math., 57 (1953), 401-457.
- [21] B. Yood, Hilbert algebras as topological algebras, Ark. Math., 12 (1974), 131-151.

Atsushi INOUE
Department of Applied Mathematics
Fukuoka University
Nanakuma, Fukuoka
Japan