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§ 0. Introduction.

Inductive and projective limits of the LP-spaces with respect to a Hilbert
algebra are studied. By using their spaces we give necessary and sufficient
conditions under which a maximal unbounded Hilbert algebra defined in
is pure. .

In this paper 9, denotes a Hilbert algebra, § the completion of 9D, U,(9D,)
the left von Neumann algebra of 9,, ¢, the natural trace on U,(D,)* and =,
the left regular representation of b.

In [11~12], we have studied unbounded Hilbert algebra which is a gen-
eralization of the notion of Hilbert algebra to unbounded case. Let L?(¢,) be
the LP-space with respect to ¢, and let |7, be the L?P-norm of T<L?(¢,).
The space L¢(9D,) defined by :

L@’(EDO)ZMQ@L%’(QO) (where L(9D,) : ={x€b; m,(x) €LP($o)})

is maximal among unbounded Hilbert algebras containing 9, and it plays an
important role for our study of unbounded Hilbert algebras.

In this paper we shall investigate the space L¢(9,) by using the LZ-spaces
and inductive, projective limits of LZ-spaces.

Under the norm [ x[le,, : =max(l|x|., [xll,) (where |xll,:=[z(x)|,),
L?(9,) is a Banach space. Furthermore,

h D L2(D,) D LYD,) DLY(Dy) D LT (D) (2<p<g<oo).
We define
Ly @)= LY@) @<pseo),

Ly (@)= Li(9y) (@=p<oo)

and give L2 (9D, (resp. L& (9,)) the projective limit topology 72~ (resp. the
inductive limit topology z§*) for the Banach spaces (L5(Do); | l,e). Then it
is proved that (L2 (9,); z%") is a Fréchet space, Ly (D,)=L¢(D,) and (L2 (D,);
7%*) is a separated barrelled space.
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We shall investigate the dual spaces of the Banach space L?(9,) and locally
convex spaces L2 (D,), L2 (9D,). We set

oLy (90)=A{To+Ty; TocL*($y), TiSL?(B0)},
A Tlp=inf {| Toll,+ 1 Tullp; T=To+ Ty, To L2 ($0), Ti€ L7 ()},
Te,L,(¢0)

where T,+ 7T, denotes the strong sum of closed operators T,, 7,. Then

.Ly(¢,) is a Banach space under the operations of strong sum and strong
scalar multiplication and the norm ,| [,. Furthermore,

oL1(ho) D 2Ly (6o) D 2Lo(ppo) D L% (@), 1<p<g<2.
We define

oLy ()= . Qp Li(do), 1<p=2,

1y

2L;(¢o):p< . 2Lt (¢0); 1§p<2

t

A

and give ,L; (@, (resp. ,L;(é,)) the projective limit topology .z, (resp. the
inductive limit topology ,z}) for the Banach spaces (L.(¢o);.] ). It is
proved that the Banach spaces L#(9,) is dual of the Banach space ,L, (¢,) and
the spaces L%*(9,) are dual of the locally convex spaces ,Lj; (¢,), (where
1<p=co and 1/p+1/p’=1, p=co if p'=1).

By using these spaces we shall give the necessary and sufficient conditions
under which the maximal unbounded Hilbert algebra L¢(9,) is pure. That is,
the following conditions are equivalent :

(1) L#(9D,) is pure, i.e.,, Le(Do)#L5(Dy);

(2) Y#L3(9,)), i.e., b is not a Hilbert algebra;

(3) L3(9D,) 2 LY(D,) for each 2=p<g=co;

(4) L2 (D) = LE(D,) for each 2< p=oo;

(5) L2 (D,) & LE(D,) for each 2< p<oo;

(6) 2Lp(do) 2 2Ly(¢) for each 1=p<g=2;

(7) zL;<¢o> == 2Lp(¢0> for each l§p<2;

(8) 2L7(¢y) 2 2Ly (@) for each 1<p=2,
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§1. Preliminaries.

We give here only the basic definitions and facts needed. Let S and T
are linear operators on a Hilbert space & with domains 9(S) and 9(T).
We say S is an extension of 7 and we denote SO T, if 92(S) D 2(T) and
SE=T¢ for all £€9(T). If S is a closable operator we denote by S the
smallest closed extension of S. Let % be a set of closable operators on &.
Then we set 51:{5 ; SeUp. If S is a linear operator with dense domain, then
we denote by S* the hermitian adjoint of S. Let ®(®) denote the set of all
bounded linear operators on & Let S, T be closed operators on & If S+ 7T
is closable, then S+ 7 is called the strong sum of S and 7, and is denoted by
S+7T. The strong product is likewise defined to be ST if it exists, and is
denoted by S.T. The strong scalar multiplication A=C (: the field of complex
numbers) and S is defined by 4:S=A4S if 10, and 41.S=0 if 2=0.

Let m, (resp. m,”) be the left (resp. right) regular representation of 9,.
For each x=Y) we define n,(x) and =,/(x) by:

mo(x)é=n,C)x, m/()é=m(§)x, E€D,.

Then 7,(x) and =,/(x) are linear operators on §) with the domain 9, and =,
(resp. my’) is called the left (resp. right) regular representation of %. The
involution on 9, is extended to an involution on ¥, which is also denoted by *.
Then we have 7,(x*)=r,(x)* and =7,/ (x*)=nr,(x)*. Putting (Dy)p=1{x<€h;
T ea®}, (D), is a Hilbert algebra containing 9,. If 9,=(9D,), then it is
called a maximal Hilbert algebra in 5. Let I (resp. M*) be the set of all
measurable (resp. positive measurable) operators on 0 with respect to U,(9D,).
For every T we set

to(T)=sup [¢o(7(9); 0=m, O =T, £(Dy)i],
LP(¢)={TeW; IT|, : =p(ITIP)VVP <0}, 1=p<oo.

Then ||T], is called the LP-norm of TeL”(¢,) and g, is called the integral on
L'(¢y). 1f p=co, we shall identify U,(9,) with L*(¢,) and we denote by || Tl
the operator norm of T€U,(9,). We define L¢-spaces with respect to ¢,
and 9, as follows:

Lﬁ" (¢o>:2§Qw Lp (¢0)) Léu(@0>: {XEb ’ ﬁo(x) EL:SU(SbO)}:

respectively. Then L¢(9,) is maximal among unbounded Hilbert algebras con-
taining 9,. For the definitions and basic properties of unbounded Hilbert

algebras the reader is referred to [11~12].
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§2. The spaces L2 (9D, and L3 (9,).

In this section we define the inductive and projective limits of the LZ-spaces
and by using their spaces we give necessary and sufficient conditions under
which the maximal unbounded Hilbert algebra L¢(9D,) is pure.

NOTATION. For 1=p=<co we set
L3(D)={x&b; m,(x)€L?(¢)},
[ %], p=max ([ x]le [x]5), xEL5(Dy).

It is immediately showed that L3(D,)="0, || x|, =|xll: and L5 (Dy)=(Dy),.

LEMMA 2.1. For 1=p=co | |, 1S a norm on L3(D,), which makes
L2(D,) a Banach space.

PrOOF. It is easy to show that || |, is @ norm on L%(9,). We shall
show that L%(9D,) is complete. Suppose that {x,} is a Cauchy sequence of
L%(D,). From the completeness of h and L?(¢,) there exist x<l) and
TeL?(¢,) such that lirg |x,—x|s=0 and ng.} (7o(xny—T],=0. We have only
to show T=7,(x). Ft)r each & »€9(T)N 9, we have

lim |((M—T)§|77)|:Li_lgﬂo(7fo(77)*' (o (xn)=T) 7 (E))

=lim g2, (o (€*)*+ (T Gx) —T))

=lim 7o G =T | 176%l, =0 (1/p+1/p'=1)

and
}3_{1;10 [((7o (xn) _ﬂo(x))a'/])|§}tg£1 lxn—x[11E], ”77”2:0-

It follows that Té=m,(x)¢& for all £€D(T) N\ D,. Since T and z,(x) is essen-
tially measurable, T+m,(x) is essentially measurable ({16] Theorem 4). Hence,
D(T)N D, is dense in § and it follows from ([16] Lemma 1.2) that T=z,(x)."

LEMMA 2.2. (1) For 1=p<2 (D, is dense in (LE(D); | ez, m)-

(2) For 2=p=co (D,), ts dense in (LE(Do); | ez, p)-

Proor. (2) If p=co, then this follows from L5(Dy)=(D,),. Suppose
xEL3(D,) 2= p< ). Let 7,(x)=U|xm,(x)| be the polar decomposition of 7,(x)
and let ]no(x)I:f:ZdE(Z) be the spectral resolution of |7,(x)|. Then, 7, (E (n)x)

:jn AMEQDeU,(9,). Hence, we have
0

E(?l)XE(@())b, (7’1,:1, 2, '”);
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lx—E ) xli=— "2 dp(ED"),

5= E ) xlg=—{ 27 dgo(E@").

Since xL2(9,), i.e., —Sj22d¢0(E(2)L)<oo and —szpd¢0(E(2)*)<OO, we get
0
that lim [|x—E(n) x|, pp=0. Thus (9,), is dense in L3(9D,).

(1) After a slight modification of (2) we can prove the assertion (1).
LEMMA 2.3. (1) For 1=p<q=<2 we have

Li(9) C L3(D,) C LY(D,) T Y,
[xllp=lxltntlxltm, x€Li(D).
(2) For 2=p<g<oo we have
Y D LE(De) D LI(Do) D L3 (Do),
Ixle, m=lxltetIxlte, x€L3(Dy),

[xlce, m=lxlle,m, xELT(Do).

PrOOF. (2) Suppose x€L3(D,) 2= p<g<oo). Let m,(x)=Ul|x,(x)| be the
polar decomposition of 7,(x) and let 1ﬂ0(x)|:f AdE(2) be the spectral resolu-
0

tion of |z,(x)|. Then,

lxli=—{ 27 dgo(E")
=— | wag,EH | 2 dpEQH
= 2ag B~ T21ag,E @Y

< |l xll,+ 2]l <o

Hence, x=L%(9,) and it is also showed that [x[|% =[x+ lx1%e, x=Li(D,).
Suppose that 2< p<co and x=L5(D,). Then,

Ixl15=pto (I7ro () [P)=pto (Io (O 1772 | 7o (X) [*)
ShxlElxl3=lx[%e.

Hence, Hx‘|<z,p)§”x”(z,m>-
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(1) This follows after a slight modification of (2).
DEFINITION 2.4. We set

Ly (@)= Li@), 2<p=os,
25t<lp

Lyr(@)=_\) Ly, 2=p<oo.
p<tEe

Hereafter we shall treat only the spaces L2~ (9D,) and L% (9D, (2L=p=c0),
though we can similarly treat the spaces Ly (9,) and L} (9,) (1=p=2).

L2 (9,) and LZ"(9D,) are vector subspaces of the Hilbert space ). We
define topologies 72* on L%*(9,) as follows: Take p<=(2, co]. For 2=t<p let

vy L8 (Do) —> L5(D,)

be the identity map. The topology <~ is defined to be the coarsest vector
space topology for L% (9D,) such that all the maps v, (2=t{<p) are continuous
when L{(9,) is given the norm topology | [le,. This topology is locally
conveX. (LZ (D,); t8") is called the projective limit of the Banach spaces
Li(Dy) 2=t<p).

Take pe[2, c0). For p<t<oo let

uy; Li(Dy) — LI (D)

be the identity map. The topology 7&* is defined to be the finest locally convex
topology on LZ*(9,) such that all the maps u, (p<t<oco) are continuous when
Li(D,) is given in the norm topology | le,:. This topology exists and is
locally convex. (L2*(9D,); z¥*) is called the inductive limit of the Banach
spaces L§(D,) (p<t<c0).

The locally convex space (L5 (9,); z57) coincides with the locally convex
space (L¢(9,); 7¢) defined in [14].

THEOREM 2.5. (1) For 2<p=co (L2 (D,); t¥7) is a Fréchet space.

(2) (L5 (Dy); t57) is a Fréchet «-algebra (i.e., complele metrizable locally
convex x-algebra).

(3) For 2=p<co (L¥(D,); t8) is a separated barrelled space.
(4) (D) 1s dense in (L2 (D,); t27) 2<p=c0).
(5) (Do), is dense in (L2F(D,); 0 C=p< o).

Proor. (1) It is easily showed that (L2 (@,); r&") is a metrizable
locally convex space. We shall prove that (L?~(9,); 727) is complete. Suppose
that {x,} is a Cauchy sequence of L? (9,). For each t=[2, p) {x,} is a
Cauchy sequence of (Li(Dy); | lle,1) and it follows that there exists an element
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x® of L{(D,) such that lim [|x,—x®|,,=0. The element x® of Li(D,) is
independent of . In facgj ?or each '=[2, p) put t”=max(t, t’). Then, from
lim [ x,— x|, p=lm [ x,— x5, ,»=0. Hence, x®=x%"=x“,
Putting x=x¥, x& 1) L4(@)=L} () and lim || xa—xle,n=0 for all t<[2, p).
Thus (L% (D,); 727) is complete.

(2) This follows from ([14] Theorem 3. 2).

(3) It is obvious that (L?*(D,); %) is barrelled. We shall show that
(L2 (Dy); 78) is separated. Let L3(9,* denote the dual space of the Banach
space (L3(Do); | lle, ). Suppose FeL2(Dy)*. Then, for each t=(p, o] the
restriction F/L:{(9D,) belongs to Li(Dy*. Furthermore, F/L2*(D)ou,=F/Li{(D,)
e Li(Dy)* for all te(p, «o]. Hence F/L?*(D,) is a continuous linear functional

on (L¥(9D,); v&7). As the set of all such F separates the points of L3(9,),
it certainly separates the points of L2*(D,). Thus, (LZ"(9D,); t8*) is separated.

(4) We can prove (4) in the same way as in the proof of
2.2 (2).

(5) Suppose that x=Lf"(9D,) and \/ is a neighbourhood of zero in
(L2*(D,); z8*). Then, x=Li{(D,) for some t(p, oo]. Since u, is continuous,
x+u;'(V) is a neighbourhood of x in Li(9D,). From (D), is
dense in Li(9D,), and so there exists an element & of (9,), such that £
x+urt(V). That is, Eex+ V. It follows that (9,), is dense in L2*(9D,).

We shall give necessary and sufficient conditions under which the maximal
unbounded Hilbert algebra L¢(9,) of 9, is pure. The conditions (1)~(4) of the
following theorem have been given in ([12] ).

THEOREM 2.6. The following conditions are equivalent.

(1) L¢(9D,) is a pure unbounded Hilbert algebra, i.e., LY (Do)#(Dg)s.

(2) There exists a sequence {e,} of non-zero mutually orthogonal projections
in (Do such that 3 lleg|3<oo.

(3) b is not a Hilbert algebra, i.e., (Dy),+).

(4) L2 (Do)#h.

(5) L3(9D0)2Li(D,) for each qg>p=2.

(6) L2 (D)2LE(D,) for each p=(2, oo].

(7)) LE(9Dy)2L**(Dy) for each ps[2, o).

ProoOF. It follows from fTheorem 3 4) that the conditions (1)~ (4)

are equivalent.
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(2) > (5) For each ¢>p=2 take r=(p, ¢). Then, since
. 1/vt
GUSYEaS

there exists a positive integer k, such that

=0 and 3 Jeali<oo,

a,: = 21 leryinli<l, @@= 221lek0+n”37

1 1 1 1
by =——>—F—, b i=—7—=—>—F—,
! va, Va, : va, Va,

We set

Then we have

I2li= 3 billespunli= b3 (ar—ans)
a 1 2
<So ( Jt > di<co,

Ixl13= 3 bZlesyunlli= 3 b2(an—ans)

<S:l( {/17 )pdt<oo.

Hence, x=L%(9,). On the other hand,

o0 9 aj l q o ali .
Ixlg= B lesgenli> | () dt= " pdt=ce

Hence, x« L3(D,). Thus, L2(D)=L(D,).

(5) = (6) Suppose that L% (9,)=L%(9D,) for some p=(2, co]. The identity
map ¢ of the Banach space (L3(Dy); || l,p) onto the Fréchet space (L¥(9D,);
7¥7) is continuous. By the open mapping theorem ¢ is an isomorphism. Hence
there exist an element p, of (2, p) and a positive number y such that

“x“(Z,p)érnx”(Z,po); xeLz‘g(‘@O)'

From (D,), is dense in L2(9D,), and so L2 (D,) C L3(9D,). Hence,
L2(D)=L%(D,). This contradicts the assumption (5).
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(6) > (3) By the assumption (6),
H D LE (D) 2 LE(Ds) D (Do)s-
(2)> (7) For each pe[2, o0) we set t,=p+1/n (n=1,2, ). By the

proof of (2) = (5) there exists a non-zero element x, of L3(Dy)—Lir(D,) such
that w,(xn) =0. We set

o x’ﬂ
T S el

Then, [x]¢ = i 1/2"<co. For each ¢>p there is an integer n such that
n=1

p<t,<t. Then, x=x,/2"|x,]lc. and it follows that

 Jxall

1= 5 T

—=co0.

Hence, x& Li(9D,) for each t>p. Thus, L3(D,) 2 L2 (D,).
(7) > (3) By the assumption (7),
h D LE(D,) = LI (Do) D (D).

COROLLARY 2.7. The following conditions are equivalent.

(1) The Hilbert space %) is a Hilbert algebra, i.e., 1=(D,)s.

(2) L¢(9D,) is a Hilbert algebra, i.e., LY (Dy)=(Dy)s.

(3) =L (Do)=(Do)s-

(4) FEither E((Dy)s) ( the set of all non-zero projections in (Dy)y) is a finite
set or ﬂZ}:IIenllgzoo for each sequence {e,} of mutually orthogonal projections in

(Do)
(5) There exists ¢>0 such that |e],=c for all e E((Dy)).

(6) L5(Dy)=LYDy,) for some qg>p=2.
(7) L¥ (99)=L%(D,) for some ps(2, «o].
(8) L2 (Dy)=L3(D,) for some p[2, o).

Proor. This follows from ([12] Corollary 3.5) and

§3. The spaces ,L,(d,), ;L7 (d,) and ,L; ().

In this section we shall define the spaces ,L,(¢,), L, (¢o) and .L,(¢,) and
investigate their properties.
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NOTATION. For 1=p=<oco we set

sz(¢o):{To+ T:; T06L2<¢0>, T.eL? (¢0)};
M TN p=int {| Tolly+ I Tllp; T=To+ Ty, Toe L*(¢o), T:=L?(dy)},
TEZLP((;SO).

It is clear that ,L,(¢,) is a vector space under the operations of strong
sum and strong scalar multiplication.

THEOREM 3.1. For 1=p=oco ,| |, is a norm on ,L,(d,), which makes
oLy (do) a Banach space.

Proor. We shall show that ,| |, is a norm on ,L,(¢,). Suppose that
Te,L,(¢,) and ,|T]|,=0. For each positive integer n there exist a sequence
{T®} of L?(¢,) and a sequence {T{”} of L?(gh,) such that

T=T@+Tr, ITELAHITP<L/n.

Hence, lim | T§”|l,=0 and lim | T{’|,=0. For each & »=9(T)N 9D, we have
}ziglo (TMEII= 1}12 N 75N 1€l mll;=0,
o (T SIS g o (T 70 @)

=Hm T, 167*, =0 A/p+1/p"=1).

Hence, (T¢|7)=0 for each &, =D (T)N\ 9,. In the same way as the proof of
1, 9(T)N D, is dense in Y and it follows that T=0. Suppose that
S, Te,L,(do). Let S=S4S;; SocL*(@y), Si€LP(¢y) and T=T+T,; T,
L*(p,), T,=L?(p,) be each decompositions of S and T, respectively. Then,
S+ T=(S;+T)+(S,+ T, is a decomposition of S+ 7. Hence,

2| SHTIp=[SotTolo+1S: 4Tl
=(ISolleH1Sull )+ Tolla+1 T4l ) -

It follows that ,|S+T|,=<.||S|,+:ITl,. It is easily proved that ,|| ||, satisfies
the other conditions of norm. Thus (GL,(¢); 2/l lIp) is a normed space.

We shall show that (,L,(d,); 2l |,) is complete. Suppose that {T,} is a
Cauchy sequence of ,L,(¢,). Then there exists a subsequence {7} of {T,}
such that

ol Tacrsn—Tnn,=1/2%7, k=1, 2, ---.
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From the definition of the norm ,| ||,, for each & there exists a decomposition
of Tn(k+l)_Tn(k) such that

Tn(k+1>—Tn(k):(Tn(k+1)—Tn(k))o+(Tn(k+1)"‘Tn<k))1,
(Trcr+=Tr)oEL? (¢o), (Trcrs=TrecshELP (¢0):
H(Tn(k+1)—Tn(k))o”2§1/2k, H(Tn(kﬂ)_Tn(k))lHpél/zk-

Let Tooo=(Trw)otH (Traw)i; (Trhw)hEL* (@), (Trw)ELP(¢y) be a decomposi-
tion of T,,. We set

(Tn(z))(]:(Tn(l))O'l'(Tn(z)—Tn(l))o.- (Tn(2))l:(Tn(l))l'l'_(Tn(z)_Tn(l))l;

(Tn(k>)o:(Tn(k-1>)o+(Tn<k)"‘Tn(k—1))0, (Tn(k))1:<Tn(k—1))1+(Tn(k)_Tn(k—1))1;

Then, for each &
Tris=Tri)oFH (Trier)1s, (Tair)e€L*(de), (TrxhELP(Po)
and it is a decomposition of T,.,. Furthermore, for each &>v,
H(Tn(k)>o_(Tn(T))0H:”(Tn(k)_Tn(k—l))O'i' +(Tn(r+1)_Tn(r))0Hz
=1/2F 14 ... +1/27,
II(Tn(k))1_<Tn(T)>1”p:H(Tn(k)_Tn(k—l))1+ +(Tn(r+1)_Tn(r))al

<1/2%14 e 41727,

Hence {(Tncey)o and {(T.):} are Cauchy sequences of L*(@,) and LP(g,)
respectively, and so there exist T,=L*(¢,) and T,=L"(¢,) such that
jléijg (T wcy)o—T,ol:=0 and }zlfﬁ (T rceo)—Till,=0. We set

T=T+T,.
Then, T<,L,(¢,) and lgmzii Tniwy—T|,=0. Furthermore, we have

I, | T =T =lm LI Te=Tow o el Taco—=Tl5} =0.

Thus, (o6Ly(d); .l l,) is complete.

It is easy to prove that the Banach space (,L,(d,); ./l |l.) equals the Banach
space (L*(¢o); I 12).
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LEMMA 3.2. (1) For 1=p<qg=2,

2L1(80) D oLy ($0) D 2Lo(go) D L* (o),
2| Tlp=max L Tle+CITIQY?, ol The+GITI)?,  TEaLo(B0).

(2) For 2=p<g<oco,
L*(¢o) C 2Ly (do) T 2 Lo(po) C 2L (D0),

2| Tlle=max | T, +CITINY?, I Tlp+GI T, TeLy(go).

PROOF. (1) Suppose T&,L,(¢,). Let T=T+T,; To=L¢y), T:=LU o)
be each decomposition of 7. Let T,=U|T,.| be the polar decomposition of T,

and let ]TII:fOZdE(Z) be the spectral resolution of |7T,]. Then,
0
ITl3=—, 22 dgo(EQ@)*)
1 o
=—('2eag. ey -{ 22ag.E@Y

= (' rag e -{ 2 agE0m
=[UEMIT] B+HIUEW* T 13-

Hence, UE ()| T, | L*(¢,), UE()*|T | L?($,) and T,=UE M| T, |+UE)*|T,|.
It follows that T=(T,+UE|T,)+WUEQ)*|T\)=,L,(¢,). Furthermore, we
have

AT ENTHUEOIT LHIUED T,
SITol,AHTEOI T LA TE@MT

=1 Tule—| ( 2ago B " =[ [ 2 ag.E @]

1/p

A

17| (20 agE @] [ |20 apuE 2]
S TollaH I Tul + 1T

If [|T,,=1, then o T, = Tollo+ I Tulld+UTollo+1Tull)?"? and if [[T,],=1 then
2l T = TulloaH 1T+ Tolle+1 T1ll?%. Hence, we have

oI Tl Smax LTl CLTID?, ol Tt T

(2) This follows after a slight modification of (1).
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DEFINITION 3.3. We set
2L}(¢o): lst oL¢ (¢o), 1<p§2:

2L; (¢o): p<kt)§2 2Ly (¢0), lép <2.

Hereafter we shall treat only the spaces ,L;(d,) and .L;(¢,) (1=p=2),
though we can similarly treat the spaces ,L,($,) and L} (¢,) (p>2).

Under the operations of strong sum and strong scalar multiplication ,L} (@)
and ,L; (¢,) are vector spaces. We define the projective limit topology ,z; on
2L (¢,) and the inductive limit topology ,zj on ,L;(¢,) for the Banach spaces

GL:(@o); 2l 1)« Then the following theorem is proved after a slight modifica-
tion of the proof of 5.

THEOREM 3.4. (1) For 1<p=2 (,LL,(d,); 27p) ts a Fréchet space.
(2) For 1=p<2 (;L;(do); s73) is a separated barrelled space.

(3) (Do) 1s dense in Ly (do); ol [I,) A1=p=2).

(4) (D) is dense in (LLp (o) ; 2v5) I<Pp=2).

(5) (Do) is dense in (L (do); o7h) 1=p<2).

§4. Duality and some consequences.

In this section we shall investigate the dual spaces of the Banach spaces
(LE(D); || llcew»)» (:Lp(@0); 2l 1lp) and the locally convex spaces (LE*(D,); 75*),
(szf (¢0); 2‘5'1:;)-

Let L2(Dy)* (resp. ,L,($o)*) denote the dual space of the Banach space
(L2(@o); | llepy) (resp. Lp(@o); ol 15)).  Then LI(D)* and .L,(g,)* are

Banach spaces under the norms:
I flle. pp=sup LI f (O] ; x€LE(Dy), | xllce. p=1], FELE (DY,
ol flo=sup LI (D5 TELy(@0), ol TH,=1], fELp(do)¥,

respectively. For each te[l, co] we set t'=t/t—1, i.e., 1/t+1/'=1 (where
Y=oco if t=1 and =1 if t=co0).

THEOREM 4.1. (1) L (¢)*=L¥ (D,) (1=p<co). That is, for each x<
LY (D) putting

[P (x)] (T>:#o (mo(x)«T), Te sz (9?50) ’

@ is an isometric isomorphism of the Banach space (LY (Dy); || |l py) onto the
Banach space (oL, (0)*; 2l Ilp)-
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(2) Let 1<p=oco. For each T<,L, ($,) putting

(T (T)]()=p(me(x)+T), x£LE (D),
¥ is an isometric isomorphism of the Banach space ,L, (¢,) into the Banach
space L2(Dy)*.

Proor. (1) For each xeL¥(9,) we have @ (x)=,L,(dy)*. In fact, it is
easily showed that @(x) is a well-defined linear functional on ,L,(¢,). Further-
more, for each decomposition T=T+T,; T,=L*(¢,), T.€L?(¢,) we get

L2 (DI(D)=pe (@ (x) «(To+T1))|
= o (o (x) * To) [ 4| pto (o (x) « T
Sl xle [ Tolle+lxllp 17405
=l xllce oo T ol T4 ).

Hence, @ (x)=,L,(¢)* and ,|D (%)=l %]z pr. It follows that @ is a map of
L? (9D, into ,L,(¢e)*. We shall show that ,|®@ (x)|,=|xllc »>. Suppose that
[xllo=lxl,. Since [xll=sup[lge(mo(x)+T)|; To&L*(@0), [ Toll.=1], for each
¢>0 there exists an element T, of L*(¢,) (C .L,(¢,)) such that

2 Tollp =M Toll: =1 and  [pe(mo(x) « To)l+ez [ xl.=lxll 2. 5> -

On the other hand, suppose that ||x|;=[x[, . Since | x| ,=sup [|u,(7e(x)*TI;
T,€L?(¢,), IT,|,=1], there exists an element T, of L?(¢,) (C,L,(d,)) such
that

ATl =1 T1,=1 and  |po(me(x)+ Tl +ezllxl p =l xllcz. > -

Thus, for each ¢>0 there exists an element T of ,L,(¢,) such that

o Tlp=1 and [pe(me(0)« T)[+e=lxllcs >

Hence, ||x] e py=:19 (x)ll,. Next we shall show that @ is onto. Suppose that
f€.L,(4,)% that is, there exists a positive constant y such that

LF(DI=rGITI,)
for all T€,L,(¢,). In particular,

LS(TI=T GIT ol D=1 Toll.s  Tos L2 (g0),
| ATOIZr GITADSII T, TieLP ().

Hence, f/L*(¢,) (the restriction of f to L*(¢,))= L*(¢,)* and J/L? (§)= L? (¢o)*.
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Since L*(¢po)*=L*(¢,) and L?(P)*=L*? ($,), there exist a<h) and BeL? (¢,)
such that

f(To):ﬂo(ﬂ'o(a) * To); T.eL? (950);

f(Tl):#o(B‘Tl); T,eL? (¢0)-

Then we have 7w,(a)=B. In fact, for each x, ye9, N\ 92(B)

F(@o(x) smo (M *)=pro(mo(a@) o (x) * o (3)*)

= (7o (a)xly),
S (@o(x) o (1) )=pto(BeTo(x) o (3)*)
=(Bx|y).

Hence, 7,(a) x=Bx for all x€9, "\ 9(B). Since m,(a)+ B is essentially measur-
able, 9, D(B) is dense in ), and so B=x,(a). Hence, a=L? (D, and

F(T)=p(me(@)« T)=L[P()N(T), T&,Ly(o).

Hence, @ is onto. It is clear that @ is a linear map of L% (D,) onto ,L,(¢o)*.
Thus @ is an isometric isomorphism of L% (9,) onto ,L,(d,)*.

(2) In the same way as (1) we can prove that ¥ is a continuous linear
map of ,L, (¢,) into LE(py)*. By (1), Ly (do)*=L%(D,) and it follows that

o Tllp= sup (DI, Te,Ly(9o).

*ELPD);lxl g, py 51

From the completeness of ;L (¢o), ¥ (L, (o)) is a closed subspace of L2(9D)*.
Hence, ¥ is an isometric isomorphism of ,L, (¢,) into L?(Dy)*.

QUESTION. We don’t know whether the isomorphism ¥ is into (that is,
the Banach space L, (¢,) is dual of the Banach space L?(9,)), or not.

QUESTION. ;Lo (@o)*=Li(D,)?

In order to solve the above problem, we shall introduce a topology on
2L (¢o) as follows: for each x, yel) and Te,L.(¢,) we set

e Tllca. yp=Inf {| Tolle+-[(Ty x[3) 5 T=To+T1, To€L* (o), T1EL"(P0)}-

Then it is easily proved that .|| [lc.,, is @ seminorm on ,L.(@,). The topology
induced by the family {,| [z.45; x, y=b} of the seminorms is called the
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2L.-weak topology on ,L.($,) and is denoted by ,r.(w). It is easily showed
that the topology ,r.(w) is coarser than the topology .|| |. (denoted by
2T (@) >3l |lw) and (L. (@) ; 27(w)) is a separated locally convex space. Let
(:Lw(@0) ; 27 (w))* denote the dual space of a locally convex space (.L..(d);
Tw(®)).  Since ,7w(®) >l o, We have (oLeo(@o); 27w (@))* T 2Lwu(@e)*. When
we regard (oL.(@s); :7w(®))* as a normed subspace of the Banach space
2L (@o)*, we denote it by ,L.(do)x .

THEOREM 4.3. :L.(@0)x=Li(D,). That is, for each x<Li(D,) putting

[O()I(T)=p(me(x)+T), Te&,Lo(y),

D is an isometric isomorphism of the Banach space (LY(Dy); |l 1) onto the
Banach space (3Le(G0)x ;5 2l o)

PROOF. In the same way as in we can prove that @ is an
isometric isomorphism of the Banach space Li(9,) into the Banach space
2L (¢po)*. We shall show that @ (L}(D,))=:Le.(¢o)x. Suppose x=Li(D,). Then,
To(X)=To(Xy) *To(xz) ¥ for some x,, x:€YH. Let T=T,+T,; T,cL*($,), T,
L>(¢,) be each decomposition of T€,L.(¢,). Then,

ILO (x)J(D)=|pe(me(x)«(To+T0))l
=0 (o ()« To)| o (o (X ) = 7o (x0) ¥ T')
Sxlle [ Tollet (T x4l 20)]
=(xle+D U Tolle (T x1] x2)D)-
Hence, for all T<,L.(d,)
ILQ (D)1= xletDe I Tllzy, 2o -

Therefore, @ (x)=,L..(¢y)«x. Conversely suppose that fe,L.(dy)x. Then,
f/L(g)E L*(¢o)* and f/L*(¢)EL"(¢o)x (, where L*(h,)sx denote the predual
of the von Neumann algebra L~(¢,)) are easily showed. Since L*(¢y)*=L"*(¢,)
and L”(¢o)«=L'(d,), there exist a=L?*(¢,) and BE L' (¢,) such that

f(To):#o (mola)-Ty), TocL® (¢0);

f(T1):[10(B’T1), T1ELW(¢0>-
In the same way as in the proof of 1, we can prove =,(a)=25.

Hence, a=Li(D,) and for all T<,L.(¢,)
F(T)=po(mo(@)+ T)=[D(a)I(T).

Hence @ is a map of Li(D,) onto ;L.(dy)x. Thus @ is an isometric isomorphism
of the Banach space Li(9,) onto the Banach space ,L..(¢o)x.



Maximal unbounded Hilbert algebras 683

Let X be a locally convex space with a topology z and let X* be the dual
space of (X; 7). We denote by 3(X*, X) (resp. z(X*, X)) the strong topology
(resp. Mackey topology) on X*.

THEOREM 4.4. Let 1=p=2.

(1) The dual space ,L;(po)* of the locally convex space (L} (ds); 275)
consists of the maps

O(x); T —> po(mo(x)=T)
where xe LY~ (D,) and
ZT;:‘B (2L; (¢o): LY~ (g)o)):T(zL; (950): Ly- (@o»-

(2) The dual space (L, (¢o))* of the locally convex space (2L,(Po); 277)
consists of the maps

U(x); T —> po(mwo(x)+T)

where x=L¥*(9,) and
275 =P (L3 (90), LYY (Do))=7(L5(90), LY (D).

ProOOF. It is not difficult to show that @ (x) (xL¥ " (D,)) is a well-defined
linear functional on L} (¢p,). Let Te,L,(p,) (p<t=2). Let T=T+T,; T,
L*(p,), T,=L*(p,) be each decomposition of 7. Then,

(LP ()I(D)=|pto (o (x) «(Ts+ T1))
= o (7o ()« To)l 4| 1o (7o () « T)
Shxle | TollaA-Hxlle 1Tl
Slxlc e (ITsll4 1 Talle) -

Hence, [[@ (x)1(T)I=lxllc2.00,II TH, for all Te,L,(¢,). It follows that [P (x)]/
2L (@o)E,L, (Po)* for all t=(p, 2]. Hence, @ (x)=(GL; (@) ; 2z5)*. Next we shall
show that the map @ is onto. Suppose f&(L; (do); .vh)*. Then, fou,&,L,(Py)*
for all te(p, 2]. From [Theorem 4.1, for each t=(p, 2] there exists an
element x of L} (9,) such that

(feu) (T)=pe (o (x®)T), T<,L, (o).

The element x‘* is independent of ¢. In fact, for each t=(p, 2] and T < L*(¢,)
we have

F(D)=(fou) (T)=po(mo(x®) T)

=(fou) (T)=po(mo(x) T).
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Hence, ,(z,(x®—x®)-T)=0 for all TeL*(¢,) and it follows that x®©=x®,
Putting x=x©, x& LY (D)=L{" (@) and f(T)=pu 7o)+ T)=LO (1) )(T)
for all Te,L; (). Thus D is onto Similarly we can prove that ,L, (o)*=
U(LY*(py)). From 3.4, L¥*(9,) and ,L;(p,) are separated
barrelled spaces. From Corollary 4.1.1) we have

2T =B Ly (Po), LY (Do))=7 (oL ($o), LT (D)),
2Tp= B (L3 (o), LT (Do))=7 (L3 (g0), LY (Dy)).
COROLLARY 4.5. (1) LL{(¢)*=L¢(9D,).
(2) st =BGLE (g0, LY (@)=t (Lt (), L2 (D).
THEOREM 4.7. The following conditions are equivalent.
(1) L9(D,) is a pure unbounded Hilbert algebra.
(2) oLp(Po)#2Ly(@o) for each 1=p<g=2.
(3) 2L (@o)F#oLp(Pe) for each 1=p<2.
(4) Lp(Po)#:2Lp(@o) for each 1< p=2.
ProOF. This follows from Theorem 2.2 and 4.

§5. The L7-spaces with respect to a Hilbert algebra with an identity.

Suppose that a Hilbert algebra 9, has an identity e¢ and |e|,=1. Then,
for 1<p<g<co we have

L (¢0) D LP(¢e) D L2(g) D L7 (0),

[Tz T, TeL ().
We define

L (g0= ) L'$o), 1<p=os,
Lo (go= \J L'(gy), 1=p<eo

and give L? (¢, (resp. L?*(¢,)) the projective limit topology z?~ (resp. in-
ductive limit topology z?*) for the Banach spaces (L!(d,); | l.). Then we
have

L2 | 1=LED); | Nl pp), 2=p=co,
(L2 (o) ; eP)=(LE (o) ; 87), 2<p=oo,
(L2(go); I 12)=CLp(B0); 2l 1), 1=p=2,
(L7 (o) ; TP)=(L5 (B0) ; 275), l1=p<2.
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THEOREM 5.1. (1) For 1<p=co (L? (¢,); c?") is a Fréchet space.
(2) (L= (o) ; =7 )=(LE(Po); t¢). Hence (L= (do); t™7) is a complete metriz-

able GB*-algebra defined by Allan [1].

(3) For 1=p<oco (LP*(¢,); z2%) is a separated barrelled space.
(4) For 1<p=co we have
(LP™ (o) ; TFT)*=LP"" ($0),
P =B (LP"(¢o), LP " (P0))=1(LP" (do), L7 *($0)).
(5) For 1=p<oco we have
L+ (¢0> ;TPT)F=LP" (¢0) ’
Pr=B (L7 (po), L7 (¢o))=1(LP* (@0), L? ™ (§0)).
THEOREM 5.2. The following conditions are equivalent.
(1) L%(¢o) is a pure unbounded Hilbert algebra.
(2) LP(¢o)#Lr(p,) for each 1=p<g=co.
(3) LP(@o)#L?(¢y) for each 1<p=co.

(4) LP*(@o)#LP(¢,) for each 1=p<co.
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