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This paper is a direct continuation of Part I and deals with the spectral
and scattering theory for Schrodinger operators with real long-range potentials.
Throughout the paper, the same notations as in Part [ will be used, and
Theorems etc. given in Part I will be quoted as Theorem I. 5.1 for theorems,
as (I1.3.9) for formulas, as [ 1.1] for references, etc.

The present paper is divided into five sections. In §1 the summary of our
main results concerning the scattering theory, that is, the completeness and
invariance principle for modified wave operators, will be presented. Our as-
sumption on the long-range potentials, which will be assumed throughout the
paper, is slightly stronger than Hoérmander’s [ 1.8] which was assumed to
prove the existence of modified wave operators. §2 is assigned to developing
the spectral theory for Schrodinger operators, which forms our another main
result and will play an important role in establishing the results summarized
in §1. In §2 the results of Y. Saitd [ 1.27], [ 1.28] will be used. §§3~4 are
then devoted to proving the results presented in §1 applying the abstract
framework given in Part I and using the result of §2. In §5, some related
problems will be considered.

We remark here that except for developing spectral theory, we only need
assume the same assumption as that of Hormander [ 1.8] (cf. footnotes 6),
10) and [5]).

Here the author wishes to express his sincere appreciation to Professor
S. T. Kuroda for unceasing encouragement in the course of the preparation of
this paper.

§1. Assumption and main results.

In this section, we summarize our main results concerning the scattering
theory for Schriodinger operators
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Hy=—A=— 3 5*/0x3,"
(L.1) { =
H,=H,+U

defined in a Hilbert space $=L?*(R"), N=1, under the following assumption on
the potential U.

AssuMPTION 1. 1. U is a maximal multiplication operator in & defined by
a real-valued function U (x)=V(x)+ Vs(x), where functions V and Vg satisfy
the following conditions (I.) and (S), respectively :

(L) Vis a real-valued C* function on R?" and satisfies
(1.2) 103V (0)|=CA+|x[)-m0ad
for any multi-index a with |a|=<4, where C>0; m (k)=k+e,, 0=k=3, 0<e,<],

m(1)4+m 4)>5; and 0,=(0/0x,, -+, 3/dxy).

(S) Vg is a real-valued Borel measurable function on RY and satisfies
(L.3) Vs (0)|=C(1+]x])7 7%,

where constants C and ¢, are the same as in (L).

Under this assumption, H, is a self-adjoint operator in 9 with 92(H,)=
D(H)=H?(RY), where H?2(R") denotes the Sobolev space of order two.

By Lemmas 3.2 and 3.3 of [ I.8] we may replace V and Vs by another
V and Vg which satisfy U=V+ Vs and the following assumption.

AsSsuMPTION 1.1, Vg satisfies (§) of Assumption 1.1, and V is a real-
valued C~ function on R" and satisfies
(1.2 105 V (0)| £ Co (14| x[)-mctav
for all «. Here C,>0 and

m (k)=k+e, for 0=k=3,
{m(k)=pk+d for k=4,

where 1/2<p<1, 0<¢o<min(p—1/2, 1—p), m(3)=3p+d, m (4)<4, and m 1)+
m (4)>5.

In order to formulate our main results, we record a theorem essentially
due to Hormander [ 1. 8].

THEOREM 1.2. Let Assumption 1.1’ be satisfied. Then there exists a real-
valued function X (&, )eC*((R¥—{0})X RY) which satisfies X(€, 0)=0 for all

1) H, is a self-adjoint realization of —4 restricted to C2(RY) in $=L2(RV).
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§cRY—{0} and the following two conditions for any compact subset 2 of
RY¥—{0} :
i) There is a positive constant T such that
(1.4) 0, X, )=V (@2E+0: X, 1))
for any £§€ 8 and |t|>T, where 9,=0d/0t, and 0:=(0/0&,, ---, 0/0Ey).

ii) For any multi-index a, there is a positive constant C such that
102 W (€, D] C(L+ |ty ruta-n,

(1.5)
{ 108 X (€, )| SC(1+[t])rrrdan-c

for any §€Q and teR*, where W, H)=t|§|*+X (&, 1) and p(k)=max(0, k+1—
m(k+1)) for k=—1.

The proof of this theorem under our Assumption 1.1’ is easily reconstructed
from that of Lemma 3.7 and Theorem 3.8 of Hormander [ 1.8] so we shall
omit the proof. From this theorem, we can deduce the following fundamental
estimates, which will play a crucial role in the subsequent sections.

PROPOSITION 1.3, Let Assumption 1.1’ be satisfied. Then the function
X(&, ©) defined in Theorem 1.2 satisfies the following estimates: For any com-
pact subset 2 of RY—{0} and any multi-indices a, 8%, there is a positive

constant C such that
.6 { 1070% X (&, N|=C(L+]t]) 1, la|+|B|=3,
' 029% X (6, DISCAH [ Perabl,  al+|p|=3

for any E€ 2 and tR'. Here ¢, and h' is defined by
ei=m @)+ m (1)—5>0,
{ h'=2—p—d—e,<3p—2.
Moreover, when a=+0, (1.6) holds with ¢, and h’' replaced by e, and h"=3p—2

—&yp.
The deduction of this proposition from is not difficult by
induction so the proof is omitted.

DEFINITION 1.4. For any t= R}, define

1.7 X=X E - -1g.

2) Here « and j denote 1- and N-dimensional multi-indices, respectively. In the
following, multi-indices will be used without any remark on their dimensions, as no

confusion will arise.
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Here & denotes the ordinary Fourier transformation in $=L*(RY):

EWO=1O=C0 " Um. | e T u(dy, ush,

lzlsM

and X (&, t)- denotes the maximal multiplication operator in L?*(Rf¥) defined by
the function X (&, ©).

Obviously X (¢) defines a self-adjoint operator in  which commutes with
H, for any teR! Now we can formulate our main result as the following
theorem.

THEOREM 1.5 (Completeness of modified wave operators). Suppose that
Assumption 1.1 is satisfied. Then the following (strong) limit

(1.8) WE=g-lim eit#2 g itH1=iX W

t—xoo

exists. This Wi defines a partially isometric operator in £ with initial set
D1,0c=9 and final set 9,4, and satlisfies the intertwining property: For any
Borel set 4 of RY,

(1.9) WiE (d)=E, (D)W 5.

(That is, the modified wave operator W3 is complete.)
Next let us formulate the invariance principle.

THEOREM 1. 6 (Invariance principle). Suppose that Assumption 1.1 is satisfied.
Let I’ be a bounded Borel set in R* such that I' < (0, o), and let I < (0, o) be
a bounded open interval containing I'. Let o=C>(I) be real-valued and let
peCy(RY) satisfy p(A=1 on I and suppn C I Then we can define Q,(t)=
B(®), teR, as in (1.2.17). Suppose further that ¢'>0 and ¢”+0 on I
Then the following strong limit

(1. 10) Wy (F):S;;lim et H D Q (1) £y o (I7)

exists and we have

(1. 11) Wi (D)=W3 Eyae (D).

§ 2. Eigenfunction expansions.

In this section, we shall construct an eigenopsrator &j;(4) and state an
eigenfunction expansion theorem for H; (j=1, 2) under Assumption 1.1’. The
eigenoperator <;(4) constructed below will be used in the subsequent sections
to prove Theorems and First of all, we make the following definition.
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DEFINITION 2.1. For any r>0, w=RY, 2R, £ RY, and t=R?, put

2.1 f(r, 0, 25§, H=<o, +t(A—|EH—XE, /7,

where X is the function constructed in Theorem 1.2%,
Then the following proposition holds.

PROPOSITION 2.2. Let Assumption 1.1’ be salisfied. Let K be a compact
interval contained in (0, co). Then there exist a positive constant R=Rx>1, an
open neighbourhood U=Ug of SV 'XK in (R"—{0})XR*!, and a unique C*%
Sunction (&3, t7) 1 (R, o)X U — R¥Y X R satisfying the following properties i)~
i) * :

i) For any r>R and (w, DU,

2.2) { @:1)(r, ©, 2565 (r, 0, D), 11 (r, 0, D)=0,

(atf) (7’, (l), Z ; éf (T; (U, 2), tg: (T; w7 2))20'
ii) There is a positive constant C such that
(2.3) & (r, o, D), 1 (r, 0, D)= (£ vV 10/, £lol/2vV2)|<Cr=

for any r>R and (w, )= U.

iii) There exist positive constants a and b such that a<|J|<b and
a<|detJ|<b for any r>R and (w, )= U, where

2.4 J=](r, 0, 2;8:(r, 0, D, t: (r, 0, D)

0:0:f 0:0.f
¥

(r, w, ;&5 (r, w, D), t: (r, w, 2)).
at aEf az acf

Proor. Take positive numbers c¢;, ¢, d; and d, such that K (¢ ¢.?),
d,<1/2¢,<1/2¢,<d, and put

B={ci<lfl<c}l, D*={xt]|d,<t<ds}.

3) At this stage, this definition may be abrupt to the reader. But the meaning
and the importance of the function f will become clear as we proceed. Note especially
that the function f will appear as the phase function of the modified resolvent S=*(z)
if we rewrite it using Fourier transform and then make a change of variable {-—#t
(see (3.25)).

B 4) This transformation (¢7,#*) will play a crucial role in connecting the time
" dependent modified wave operator with the eigenoperators of H, and H,. The origin
of our discovery of this transformation lies in the investigation of the asymptotic
behavior of the modified resolvent S*(2)u for uc D=F1(Cy(RY¥ —{0})) (see §3 and [9)).
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Take g such that #>1/e; and put

( BED 0:1) (07", w, 2; &, 1) for p>0,
, W, 436, 1)=
g {w—ZtE for p=0,
2.5)
. @)™ o A;§, 1) for 0>0,
hp, w, 1;§, t):{
A—|E|? for p=0.

Then using [Proposition 1.3 and the identity
{ ©0:)(r, o, 2; &, H=w—21—(0: X) (&, D)/,
@.f)(r, w, 2; &, D=2—1§*— (0. X) (€, r1),

it can be easily seen that the function (g, h) belongs to C'(R*XRY X R'XBXD*).
Moreover this function satisfies the following relations: For any (w, 4, §, H)E
RYX R'X B X D*,

(2.6)

2.7 det ( =N ()Y |24V 120,

(0,w,4,5,1)

afg atg>

and for any (w, ) SV XK,
g0, w A; + vV Aw, +1/24/2)=0,

2.8
@9 {h(O, w, 2; £+ 2w, +1/24/21)=0.

Thus we can apply the implicit function theorem to (g, #) and obtain the
following result: For any (w, )=SV 'XK, there exist bounded open neigh-
bourhoods A%, C R'X(R¥—{0})XRY® of (0, A2 and C%;C BXD* of
(v 2w, £1/2+/7) such that for any (p, o/, )€ A;; there is a unique point
(&x, {x)eCz, satisfying

{ g(P: (U/, 21 ; ég: f?):07

2.9 L
h(p, o', 2" &2, £5)=0.

The function (&%, f%): Az, —Cz, is of course C'. Furthermore, from (2.9)

and [Proposition 1.3, the following estimate holds good: There exists a positive

constant C such that

(2.10) 1€z (p, o, X), {2 (p, o, X))~ (£ VT o' /|0'], E|0'|/2V T ZC|pleet

for any (p, o, )= AZ,;. Now, since SY !X K is compact, we can easily prove
the existence of a positive number p,, an open neighbourhood U of S¥"'XXK,

5) RL={tSR!|t=0}.
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and a unique C! function (&%, §%): (—po, po)XU — BXD* satisfying (2.9) and
(2.10), with (w’, ) replaced by (w, ), for any (p, w, )=(—p,, po) XU, where
C>0 is independent of (p, w, 4).

Thus if we put

é: ) ) 2 :éct —Il‘u’ ) 2 2
2.1 {E (r, w, D=3 (™", @, 4)

t: (r, @, = (r' Ve, o, 2)

for r>R=p,* and (0, H)=U, then the function (§5, ti): (R, 0)XU— BXD*
satisfies i) and ii). Moreover by [Proposition 1.3 and (2.7) the matrix

—2Iy—0: X)E&, rt)/r  —26—(0:0, X)(§, rt))
[—26—(0:0. X)(, r)]  —r(0i X)(, D)

2.12) I, 0, 2;€ 0=(

clearly satisfies condition iii) if R>0 is sufficiently large. The smoothness of
the function (&%, t;) can be easily proved by using the implicit function
theorem. Q.E.D.

Now the following definition makes sense.

DEFINITION 2.3. Let K be a compact interval contained in (0, o). Let
R=Rjy; and U=Ug be the same as in Proposition 2.2. Define Y* by
(2.13) Ye(ro; D=V Ar—rf(r, 0, 2;&(r, 0, D), t: (r, 0, D)

for r>R and (w, )=SY !X K where (&f, 17) is the C* function on (R, oo)X U
defined in [Proposition 2.2
For this function Y#*, the following theorem holds.

THEOREM 2.4. Suppose that Assumption 1.1’ is satisfied. Let K be a com-
pact interval contained in (0, co). Then there exists a positive number R'=Rix>
R=Ry such that the following two assertions hold:

1) There exists a positive constant C such that
(2.14) |05 Y *(x; DISClx|*1me
for any 2K, |x|>R’, and |a|=3.
ii) For any vr>R’, w=S""! and 2K, one has
(2.15) +24/20,Y*(rw; D=V (ra)+10, Y*(@w; D2
ProOOF. By definition we have
(2.16) YE(rw; D=+ 2 r—rw, & (r, v, )
—rti(r, 0, HA—IE: (r, o, DI
+XE(ry, w, D), rte(r, w, A)).
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Thus, when |a|=0, the estimate (2.3) proves (2.14). Let |al=1. By (2.2) and
a straightfoward computation, we get

{ 0, Y*)rw; V== v 1 —<o, E(r, w, A,
0, Y*)rw; D=—rE:(r, , A).

(2.17)

Thus using the identity
(2.18) (0, 8) (@)= (0,8)(r, W)+ {(0,8)(r, )—<0,8) (r, ®), w>w}
which holds for g(rw)=g @, w), r>0, w=S¥"!, we obtain
(2.19) @ YCw; D=t~V 2Aw—E:(r, w, ).
This and the estimate (2.3) prove (2.14) for |a|=1.

Next let |a|=2. Then using (2.18) and (2.19), we can easily obtain
(2200 (82,02, Y ) (s D)

=—; 0,5+ V 10— 00,65F V 2 00,108,655, @)},

where 0,,=0/0x,; and & denotes the j-th component of &z. Therefore we have
only to prove the following estimates :

10, &5 <Cr™i7sy,
(2 21) l + ’\/75”_80,1551 \/70)1 (Uj[ <C7“=‘1’

0w &5, wy| <Crme.

By differentiating (2. 2) with respect to » and w, we obtain

S 2388, 1y (5 (DT B 1Dy

0,17 N30, F)(r, w, A3 E5, 1)

and

awiéi):_((awiaef)(r, w, 2; &2, 17)

J, w, 25 &2, 17) .
(amii-c—t (a(uz atf) (7", @, /7‘ , 53) tf)>

From these identities, Proposition 1.3, and (2.12), we can easily obtain (2.21).

Similar but somewhat more complicated consideration proves i) for |a|=3.
The relation (2.15) can be easily shown by using (2.17), (2.19), (1.4), and

(2.2). Q.E.D.
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Next let us construct an eigenoperator for H; (j=1, 2)®. For this purpose,
we set

(2.22) H,=H,+V,
where V is the long-range potential satisfying Assumption 1.1’. Then we have
(2.23) Hy,=H;+ V5.
DEFINITION 2.5. For 2>0, w=S""! and »>R,;(>0), put
0 (r, w, )=F v/ A r,
(2. 24) 0:(r, w, )=F vV Ar+Y*(rw; A)
=—rf(r, 0, 4,5 (r, 0, D), 15(r, 0, 2)),

where R, remains bounded when 2 varies over a compact subset of (0, oc).

The following theorem can now be proved by using the results of Y. Saitd
[1.27], [ 1.28]%.

THEOREM 2.6. Suppose that Assumption 1.1’ is satisfied. Let y be fixed as
1/2<y=1/2+¢4/4. Then:

i) For any 2>0, g L3(R™)®, and j=1 or 3, there exists a sequence {r;}
of positive numbers diverging to co such that for k— o

J”S (R; (2210 ) ()] dS =0,
(2. 25) Tk
l 7’k27'“158 (D.,, R;(A+10) g) (x)1*dS — 0.
Tk
Here S,={x<R"| |x|=r} and 9.,,=0/or+(N—1)/2rFi~/ 2, r=|x|.
ii) For any 2>0, g L}(RY), and j=1 or 3, the following limit
(2.26) lim 7, ¥ =1/2" TR0 (R, (2440) ) (r4-)

]

exists in W=L2(S¥"Y) for any sequence {r,} satisfying (2.25) and does not depend
on the choice of such {r,}.

6) In the remainder of this section, we shall only use the estimate (2.14) and
the relation (2.15) just proved. The reason we adopted Assumption 1.1 which is
stronger than Hoérmander’s [1.8] is only to assure the estimate (2.14) even for
|a| =3 which will be needed to construct eigenoperators. In all the other parts of
this paper except for constructing eigenoperators, we only need assume the same
assumption as that of Hormander.

7) The following [Theorem 2. 6 was first proved by Y. Saitd [ I.27] for the case
y>3/2—¢. Professor Y. Saitd suggested the author that this theorem would probably
hold even for y>1/2.

8) LI(RY)=L*(RY, (1+|x|)%dx).
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In the above R;(A+10)g denotes the boundary value of R;(A=+ie)g as ¢ — -+-0
in L2, (RY), the existence of which is assured by the limiting absorption principle
proved by Ikebe and Saito [ 1.10].

PROOF. i) is obvious by the limiting absorption principle (cf. [Theorem 1.5
of [1.10]). Next let us outline the proof of ii). Without loss of generality
we may assume j=3. Y. Saitd [ I.27] proved ii) for y=(, where § is taken
as 8>3/2—e,. (See Theorem 5. 6 of [I.27] and note that its proof depends
only on the estimate (2.14) and the relation (2.15)®.) We shall use this result.
Put for geL;(R") and >0,

w* (r)=r V202" P (R (A0)g) ()

and denote the limit (2.26) by wi=wi(g)eh for g=Li(RY). Then the mapping
ws : L3(RV)> g — wi(g)=h can be extended to a continuous mapping

L} (RY)2g— wi(g)sh
(cf. Proposition 3.6 of Saitd [ I.28]). Put

v (r>:r—<N—1)/2efi03’(rv‘v1> © () I (rey

for »>0, where ¢ is an arbitrary smooth function on S¥~* and p is a real-
valued smooth function on [0, c0) such that p(r)=1 near co and =0 near 0.
For this v* we can prove the following estimates for » — oo :
v (=0 (¥R,
(2.27) (9.,0%) (=0 (=¥ =Drz-1),
l hE=(—d4+ V=D v*=0(p N-D/2-1-a),
Thus we can apply the same reasoning as in the proof of Lemma 3.2 in Ikebe

[ 1.9] to our case, and prove the existence of the following weak limit in %
and the relation

xxz—lim wE(ry)=wk

9) Precisely speaking, Saitd used the so-called ¢“cutting-off” argument in proving
the estimate (2.14) in [ 1.27] which plays a fundamental role in the proof of our
[Theorem 2.6 for the case y=pg. Namely, he first proved the estimate (2.14) of [TI.27]
for potentials with compact supports, and then extended it to general long-range
potentials by taking a limit of the approximate sequence (3.56) in [I1.27]. In our
case, such an argument seems to be difficult to do. But the remedy comes from the
proof of Lemma 2.2 of Isozaki [T.11] in which no cutting-off arguments were used
and only the estimates (2.14) and (2.15) of our [Theorem 2.4 were used. This fact
assures our [Theorem 2 6 for y=3.



Scattering theory for Schrodinger operators 613

for any g=L3(RV). Furthermore, using (2.25) and Proposition 3.6 of [ 1.28]

we can prove
lkifi lw* (rlly =l wly

in quite the same way as in the proof of Lemma 2.1 of [ 1.9]. Therefore
we have proved ii).

For the sake of completeness, we outline the proof of (2.27). The first
estimate is obvious by definition. As to the second estimate, by a straight-
forward computation we obtain

D, 7=, 0, Y*(rw; Av*.

Thus (2. 14) proves the second estimate of (2.27). Moreover a direct computa-
tion gives

dv*=(+2+20,Y*—[0, Y*[2P—=2)v=+0 (r~N-D/2-1-21),
where use was made of the estimate (2.14). Thus we get
h*=(—4+V—-2)v*
=(T2v 20, Y+ V4|0, Y*[))+0(r~N¥-D/2mi-2)
=0 (¥,
from the relation (2.15). This completes the proof of (2.27). Q.E.D.
Now the following definition makes sense.

DEFINITION 2.7. Let y>1/2. For any A>0, g L;(RY) and j=1 or 3, put

2.28) g5 (Dg=z""*2"*lim P VD120 R (R (2410)g) (r i),

where {r.} is any sequence satisfying (2.25) with the number y replaced by
some other 7’ such that 1/2<y’=1/24¢,/4 when y>1/24¢,/4. Moreover
following lkebe [2], we define for 2>0 and g=LZ(RY),

(2.29) Fy(Ng=F; (A (g—VsR,(A+i0)g).

The following proposition is due to Y. Saitd [ I.28] (cf. Proposition 3.6
of [ I.28]).

PROPOSITION 2.8. Let Assumption 1.1’ be satisfied and let y>1/2. Let
J=1,2 or 3. Then the linear operator F;(A) . L}(RY) — §=L*(S¥) satisfies

(2.30) (F7(Dg, F57(Dh)y=e;; g, h)
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for any 2>0 and g, he L}(RY). Here e; is defined as follows:
(2.31) 0,25 g M=y (R, (2+i0)g—R,(2—i0)g) ,

for 2>0 and g, he Ly(RY).

Now the following expansion theorem can be proved in a standard way
and hence we shall omit the proof (cf. Ikebe [ 1.9], [2], Saito [ 1.28]).

“THEOREM 2.9 (Eigenfunction expansion). Suppose that Assumption 1.1 is
satisfied. Let y>1/2 and let j=1, 2, or 3. Then:

i) For any g, he L3 (RY) and any Borel set BC (0, o), we have
(E,(B)g, o=\ (% (g, F3 D2

ii) Define F; by
(T7e)D=F;Ng  for geLi(RY).

Then i : L2(R™) — H=12((0, o0); §) can be extended to a partial isometry on
9 with initial set 9; .. and final set D (which we shall denote also by F7), and
the following relation holds: For any bounded Borel function a(2) and for any
gE£)j,ac

(F7a(H)g) D=aD)(Fig)(D), a.e 2>0.

iii) For any bounded Borel set B satisfying B C (0, o), define
7;56=, 7 e a1 g=h.

Then % belongs to B®, D) and we have F:3=FE;(B)F;". For any Borel
set B put By=BN[N™, N] (N>1). Then the following strong limit exists
and we have

s&lim F;i—=E;(B)F;.
In particular, the following inversion formula holds:

. N o -
g=slim SN—l Fi (DX (F52)DdA, gED;, qc.

iv) F;(A)* is an eigenoperator for H; with eigenvalue 2>0 in the sense

that for any @Y% and any smooth function g with compact support in RV
we have

(H; F:(D*e, 2)o=A(T:(D*p, 9)s,

where H; should be interpreted as the differentiation in the distribution sense.
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§ 3. Completeness of modified wave operators (proof of Theorem 1.5).

This section is devoted to giving a proof of that is, to
proving the completeness of time dependent modified wave operators inter-
twining H; and H,. For this purpose we shall use Theorem 1I.2.2 under the
following replacement :

I"=a bounded Borel set of R! such that I' C (0, =),
H=L*(RY),

H,=—4,

H,=H,+U,

X()=X(t) defined in

X,;=9=F 1(Cy(RY—{0})) endowed with the norm of L2(RY), where
0 is fixed as 1/2<0<1/2+¢,,

X,=L3(RY),
h=L*(S¥Y),
Fi(A)=%;(4) defined in with 7=6.

Then 9(H,))=9D(H,), and X; is a dense linear subspace of $ and obviously
satisfies i)~iv) of §1.2. The condition (L. A.P.) is assured by the result of
Ikebe and Saito [I.10]. Conditions (X), (BC), and (XA) are also clearly
satisfled by Definition 1.4 and [Proposition 1.3 The operator Z;(4) satisfies
(a) of Theorem I. 2.2 by [Proposition 2.8 of the preceding section. Thus there
remains to prove conditions (Q*), (b) and (c) of Theorem 1.2.2. To prove
these conditions, we prepare the following theorem.

THEOREM 3.1. Let Assumption 1.1’ be satisfied'®. Let a* (&, )= C=(RY X R")
satisfy the following two conditions:

al) For some positive numbers a,, a, satisfying 0<a;<a,<oo,

@. 1 supp a* C {&]a,<|é|<a,} XRL.

10) This theorem holds under the same assumption on V as that of Hormander
[I.8] with A/=1—d. Hence all results proved in this section except the first equality
of (3.22) which contains & (1) hold under Hormander’s assumption with § being fixed
as 1/2<o<1/2+¢, ez=m(1)+m(3)—~4>0 and taking hy=1—-d—p—e¢ for af. Here p
and d are the numbers corresponding to o and d of our Assumption 1.1/ in the case
of Hormander. Thus the existence and invariance principle hold under Hérmander’s
assumption, as condition (f*) of Part I can be proved under Hérmandei’s assumption
quite similarly to the proof of Proposition 2.4 of [ I.15] and as the results of §4 also
hold under H6érmander’s assumption.
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a2) For some veal numbers hy, h, with h,=0, h,=2p—2,
3.2 { |07 0% a*(§, DI=CA+[t))" ', when |al+|B|=1,
. |07 0% a*(&, )| = C(1+[t])re-erai+-pidl when |al+|8|=2,

Jor any = RY, te R' and multi-indices a, B, where C>0 is independent of &, t,
and p is the number given in Assumption 1.1’. Put

(3.3) Acpa=@=|"_ensmixan axg, nu(ende

Jor ¢>0, 2R, and £=RY, where X (&, 1) is the function defined in Theorem
1.2 and X is a rapidly decreasing function on R' such that X(0)=1. Then
obviously A. z.:€ 9D (RY) for any e>0 and A= R*. Now take a compact interval
K in (0, o) such that [a.?, a,*] C K¢ where K* denotes the interior of K. Then
the following assertions hold:

i) For every ¢>0 and ueCy(RY), there is a positive constant C such that
B.4) IKAs zyas, u€™™P) — (A 2,05, ue™ Y SC(A—=2 |+ x—x'])
for every A, R and x, X’ €R".

ii) For every xeRY, AeR* and ucsCy(RY), the following limit

3.5) lim (A, ;,q%, ue*®>)

&=>+0
exists and this defines a distribution Ay e=€ 9D (RY).

i) For any usCy (R"Y) and any integer v such that v>((N+2)(1—p--¢,)
+2+4¢0)/(2p—2¢,—1), there exist positive constants R and C such that the follow-
ing four assertions hold :

a) For every 2=R'—K, ¢=0 and xR",

(3.6) <A 2,0, ue* ™2 SC (14| x )" V0272 (14-2]) 7
b) For every A€ K, ¢=0 and |x|=<R,

3.7 [CA. 3,a%, uet =y =C.
c¢) For every 2K, ¢=0 and |x|2R,

(3.8 I<As, 2,05, uet ™)

_(2”)(1\”1)/2 gFFIN =14 4= (N =12 eir/(r,m,z;53<r,w,1),z§<r,m,2))
X|det JI7"2a* (&5 (r, 0, ), 115 (r, o, )

X J@: J7D, DY 75 00) ™7 (20)7/5 ]

<:C‘7,—(A'-1)/2—l+max(hl,h1+h’+2—3‘n,h2+2—2p)
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Here the function f and (&7, t¥) are the same as in Proposition 2.2; h' is the
number defined in Proposition 1.3; J=](r, w, 1;&:(r, w, 2), t: (r, , 2)); r=|x|,
w=x/r; D=—1d,; and

(3.9) Ve (y)
=uE+E: (r, w, D)X (er (t+12 (r, @, D)VLE, Dlgo=0,, o, 10>
X |det 0y ¢r,w,2(¥)I,

where ¢, and X are the functions determined by Morse lemma (cf. Lemma 2.1
and (2.16) of [5]) such that 1=C7 (R"), =1 near 0, and ¢ ,,:(0)=0. Moreover
Qrow,2 and % can be taken the same as long as X remains the same.

d) For every A=K, ¢=0 and |x|=R, (3.8) holds with v and the right-hand
side replaced by 1 and Cr~N-DI2tmin(-1/2,1-20)  yospectively.

PROOF. i) is obvious. Assertion iii), a) can be proved by integration by
parts. It is easy to see that the functions a*, X, ¢(4;§, t)=t(2—|£|*), and
¢(w; &)=—<w, & satisfy the conditions (Ca), (CX), (Cp), and (C¢) of
1.2 of with Q=S""'XK, I'={£| a,<|é|<a;} XRL, p=p, 0=¢,, hi=hy,
hy=h,, h’=h’, and ¢,=¢,. So assertions ii) and b)~d) of iii) follow im-

mediately from i)~iii) of of [5]. Q.E.D.
Now let us prove (Q*) using [Theorem 3.1. In quite the same way as in

the proof of (1.16) of [ 1.15], we get
(3. 10) (Hi—2)S*@u=7F " 1.(0)e* -2 (- ) e

for us¥X, and zeC*. Take a real-valued function 7C7(RY—{0}) so that
7(6)=1 on supp# and put

Xy()=F[X(E )7 &)-1<.

Then (3. 10) holds with X (¢) replaced by X,(¢f). Thus in Lemma 1.5 of [ I.15],
putting X=9, I=[a, b], f()=e"**#0y and A{t)=e *%2®, and letting a — —o0
or b — co, we obtain

(3.11) (H,—2)S*(2) u:uiigl (1) (0, X) (1) e ¥ XV gitz=Hu g g,
where (0, X)()=F [0, X)(&, t)-1F. From this we get

)

(3.12) Q*(2) u=US*(2) uiz& wxx(t) 0, X) () e~ 1% D gite=Hp 3y 4y

for u=X, and z=C=. Using inverse Fourier transformation, we then obtain
for x= RY
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(3.13) Fi@2m)V2(Q* (2) u) (x)

=U(x) S‘:c SRN X () eB®®+it-3BH-iX G0 4 (£) J &4t

— S:o SRN X: (t) ei(z,$>+it(z—If[2)—iX(5,L) (az X) (5, t) i (S) dfdi.

Choose p*=C>(R') such that
1 for +t=1,
(3.14) ot ()= {
0 for +t=1/2
and put
{ ai (&, =p*W 7€),
ay (€, H=p* )@, X)(E, )1 &),

where 7= Cy(RY—{0}) is taken as 5(§)=1 on supp#. Then af and ai are
C= and satisfy conditions al) and a2) of with h,=0, h,=2p—2
and h,=—¢,, h,=h"—p, respectively (cf. [Proposition 1.3). So writing
z=A1+ie (AR}, ¢>0), we obtain

3.16) (Q* @ u)()==xi@r) " [I*(e, 4, 0)+] (e, 2, )]

for x= RY, where

(3.15)

<3 17) I* (57 e X):U(X) <A5y2yait’ ﬁei<z,;~‘>> - <As,2,a§, a@i(z":>>
with X(H)=1—p7(f))e """ and
(3.18) J* (e, A, x)=the remainder term.

By [Theorem 31 and using the relation V(rw)=(0,X)E:(r, w, 2), rtz(r, w, 2)),
we can easily show that the following three estimates hold good :

i) For every £>0, there is a constant C>0 such that
(3.19) 1= (e, 4, x)— 1" (e, 2, x)|=CJA—=A"|+|x—x'|)
for x, x’€R¥ and A, Y= R.

ii) The following limit exists for every 1€ R! and x= R :

(3. 20) I(0, 4, x)=1lim I* (¢, 4, x).

e—+0

iifi) There exists a positive constant C such that
(3.21) 11# (e, 4, DI=CAA+|x])= Dm0 (14)2])7

for any =0, 1€ R* and x= RY.
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On the other hand, by repeated integration by parts, we can show that
the same estimates i)~iii) as above hold with I* replaced by J*. Thus
(Q*(Axie)u)(x) also satisfies i)~iii). Therefore (Q*) holds. Moreover we
have shown that the condition ¢) of Remark I 6.3 also holds.

Next let us prove (b) and (¢) of Theorem 1.2.2. We shall prove

(3.22) F: (D) (ut+ Iilg Q*(Axie)u)

—=92-1/2 I:N—z>/4e$::i(1v—3)/4ﬂ(i \/70))
=FF(Au

in §=L*(S¥"!) for any u<X,=9 and 21>0. (Note that the existence of Q*(A)u
=1im Q* (Axie)u in X,=L3(RY) for 2>0 has already been proved in the above
e->+0

as the condition c¢) of Remark 1.6.3.) Let us prove the first equality of
(3.22).
From the definition of &3 (2) (cf. Definition 2. 7), we get using (L. A.P.),

(3.23) F () (ut lim Q* (A:kie)w)
=5 () lim (1= Vs Ry(Aie)) G* (Azxie)
=5 () lim (G* (Aie)u— Vs S* (A:tie) u)
=5 (1) lim (H,— (A= ie)) S* (A i) u.

From the definition of 5 (1), we thus obtain
(3.24) Fr (D) (u+ lir;g Q*(A*xie)u)

=g-V2 14 im rk<zv—1)/2 o5 (TRss 2

koo

X[Ra(liiO)sliglo (Hs—(A+tie))S*(Axie) ul(re-)
:f”%‘"‘k@ rk“v‘””e“’siwk"'b[613133 S*(A+ie)ul(ry-).
Here El_l)rg S*(A+ie)u denotes the limit in ¥¥=12;(RY), and {r,} is any sequence
satisfying (2.25) with j=3. Using af defined by (3.15), we can then write
(3.25) (S*(Axie)u)(x)
=+i(@2r) V2 [ A 302, fe* ™y +K* (e, 4, x)1,
where

(3. 26) K= (e, 4, x)

— S"j SRN (1_‘0t (t))Xi (,) P @D 1A - X 0 ﬁ(E) gt dédt.



620 H. Kitapa

Repeated integration by parts proves the existence of the limit lim K*(e, 2, x)
e—>+0

for any A=R! and x<RY, and the following estimate: For any integer £=0,
there is a positive constant C such that

®3.27) K= (e, 4, D)I=CA+] 2]

for any ¢>0, x€R", and A€ R'. On the other hand, by ii) of [Theorem 3.1,
the limit

(3. 28) lim (Ag g0z, B6"55)

e—~+0

also exists for any A€ R! and x=RY. Furthermore iii), d) of
shows that

(3.29) | lim <A5,2’ait, et =)
£>+0
— (27N +D12 gFRIN =1 /4 = (N =D1>/2 e—iﬁ;f(rmba(g: (r, w, 2))
X|det J(r, w, ;65 (r, @, D), 15 (7, @, )7

éCl,’,—*(N—l)/2+min(—1/2,1~2p)

for >0 and x=rw with r=|x|>R,, where positive numbers C; and R; remain
bounded when A varies over a compact subset of (0, ). Thus we get from
(3.24), (3.27), and (3.29),

(3.30) ) (utlim Q= (Aie) u)
=T 2NN lim A€ (74, 0, D)

X [det](rkx @, 2 ’ E&t (7’};, w, 2)) tg: (rk: w, 2))I—1/2

for 2>0 and u<¥,. From this, using ii) of [Proposition 2.2, we can easily
prove the first equality of (3.22).

The second equality of (3.22) can be proved using (3.30) if we put X(§, t)
=0 in (3.24). Thus we have proved the conditions (Z) and (#G) of Theorem
I.5.1 and Remark 1.5.2 with F,;())=F%(1) and G(A)=1+Q*(4). In particular
we have proved the conditions (a), (b), and (c) of Theorem I.2.2. Therefore
we have established the existence and completeness of modified wave operator

W3 (F):St-lim gitHs o= itH1=iX (D) El,a.c (F)

- +00

(3.31)

for any bounded Borel subset I in R!' such that " (0, o). Since I" is
arbitrarv, it follows from this that [Theorem 1.5 holds.
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§4. Invariance principle (proof of Theorem 1.6).

In this section, we shall prove [Theorem 1.6, that is, the invariance principle.
For this purpose, we shall use Theorem 1.2.3 and Remark 1.2.4. In the
preceding section, we have already proved all the assumptions of Theorem
1. 2.3 except conditions (Q%*) and (¥X,). But (¥,) is clearly satisfied since X,=9.
So we have only to prove (Q%). Without loss of generality we may assume
that I is a compact interval contained in (0, o).

To prove (Q%), let us investigate the asymptotic behavior of Q,(1)u as
t — too for u€9,,,.(I"). For this purpose we prepare several lemmas.

LEMMA 4.1. Let Assumption 1.1’ be satisfied. Let o=C?*(I) be~real-valued
and satisfy

4.1) >0, ¢”x0 on I

Then ¢’ has an inverse | . ¢’ (I)— 1. Put

(4.2) g M=yl —eU)—yIEP=X(, ty)/t

for EeRY, te R'— {0}, and ye¢'(I). Take an open interval I so that

4.3) IF'csuwpppclcicIc(0, )
and put
4. 4) c,=min ¢'|7, c,=max ¢’|7.

Then there exist a positive constant T, an open interval I' such that r.c r'c
Ic 0, c0), and a wunique C' function y.. BpX(—oco, —=T)\J (T, c0) — ¢’ (I),
where BFp=1{¢| |§|*’e I}, satisfying the following properties:

i) For any £E= By and |t|>T,
4.5 0, 8)E, t; ye(€ 1)=0.

ii) There is a positive constant C such that for any |t|>T and £ By,
(4.6) |3e (&, D—¢" (1€ <Cle] .

iii) There exist positive constants a and b such that for any |t|>T and
£ By,

@1 a<|@22)E, t; ve(&, 1)) <b.

PrROOF. From (4.2), we have

0, 9)E, t; N=1(»N—1EP—=0@. X)(, ty)



622 H. KiTapa

for E&RY, (=0 and ye¢’(I). Then if u>1/e,, it can be easily seen that the
function

N @y, 8§, sgn(@)lzl™*; y)  for z=0,
h(E 75 )= { )
[(y)—IgI? for =0
belongs to C*(ByXR'X¢’(I)). Furthermore, we have
1
0, 1) &, 0; »)=U'(y)=— 77— #0
@y, )&, 0; y)=l'(y) UG
for any (§, y)eByx¢'(I), and
hg, 0; ¢ (16%))=0

for £ By. Thus using the implicit function theorem, we get to the following
result : For any &= By, there exist bounded open neighbourhoods A: C By X R!
of (£,0) and C:C ¢’ (I) of ¢’(|€>) such that for any (&, z) A: there is a
unique point y.€C; satisfying A (&', z; ¥.)=0. The function j.: A:—C: is C*
and satisfies

[ (&, ©)— ¢ (1§17 =Clz|#=

for (¢/, z)e A:, where constant C>0 is independent of (¢/, r). Now using the

compactness of By C By, we can prove the existence of a positive number z,,
an open interval I" C I containing ", and a unique C' function 7. : BjX(—z,,
7o) — ¢’ (I) satisfying A (&, 7; J:(§, v))=0 and

7€, ©)— ¢ (G| =Cle|e=s

for (&, ©)e By X(—r,, 7o), Where C>0 is independent of (&, ). Thus the function
ye(& H=3.(§, sgn(f)|t]™*'#) satisfies 1) ~iii) with T=|z,| = Q.E.D.

The following Lemmas and are essentially the same as Lemmas 2
and 3, respectively, of Matveev [ 1.217] so we shall omit the proof.

LEMMA 4.2, Let ¢&C*(I) be real-valued and satisfy ¢'>0, ¢”=0 on I.
Put

(4. 8) ay(t, r)= 21;1_ Soj 7 () e~ tterird g g

where neCy (RY) is taken as p(A)=1 on I' and suppn C 1. Then there exists
a positive constant C such that

(4. 9) ]aga(t; 7,)__ m-uz ei[rlm-l)—m(l(rt-l)n(]b(},z—l)! <CIT’|_3/2

for r|>1 with y=rt*<[cy, ¢o], where
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(4.10) ¢(;v):¢;ﬁ emrsEn DI o (L)) ™2 (1(3))

for velc, c].

LeEmMA 4.3. Let ¢ and a, be as in Lemma 4.2. Let A be an open interval
such that ¢'(suppn) C AC A C(cy, c)=¢' (I). Then there exists a positive
constant C such that

(4.11) la, (¢, )I=Cmin(|¢]7% [r[™®)
for any r, t satisfying ri-'e R'—A.

Now take 7eCy(RY) so that 0=7=1, suppi=[c,, c.], and 7(y)=1 on
some open interval A such that ¢/'(I") C ¢’ (supp ) C A C A C (¢y, c,). Put

J I, (&, t):SD_C a (t, ) o TS iX &) A—=7t™)) dr,
(4.12)

o0

1 ING t):S a,(, r)e rEEIXED F (=)

Then we can write

(4.13) F(Qu() Erac (D) w)E)=L11(§, O+ IAp (&) a(E),

where X is the characteristic function of By. From [Lemma 4.3, we obtain
(4.14) (&, DI=Cli™

for £ RY and t+0, where C>0 is independent of &, t.

In order to estimate I,, put

(4.15) 7@ 0=\"_a,t tpyevarram )y,

Then we have
(4.16) L& H=t1JE, b
and from [Lemma 4.2, we get

(®.17) 176 o=t ("_ etsenvg(yrGydyl<ci,
where C>0 is independent of |/|>1 and é=RY. Now let us denote the integral
in (4.17) by J(&, t) and investigate its asymptotic behavior when ¢t — oo using

the stationary phase method. As usual, we first divide f into the sum of two
integrals, that is, into the integral near the critical point y.(§, t) and the
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integral on the remainder region, which will be denoted by fl &, ) and /, (¢, D),
respectively. As to J;, since holds, we can apply Morse lemma
(cf. Lemma 2.1 of [5]) and make a change of variables given by that lemma
in the integral jl. Thus Lemma A.2 of [ 1.8] is applicable to fl and hence
we obtain

(4.18) | J1(&, )= 1] 742 gresitive G| < Cly| 1,

where constant C>0 is independent of &= B, and |{|>1. Here we have also
used the estimates (4.6) and (1.6). On the other hand, by Lemma A.1 of
{1.8], J.(&, 1) is bounded by Cl|¢|* for some constant C>0 independent of
¢=Bpr and |{|>1. Thus we have proved (4.18) with J, replaced by J.
Combining this with (4.16) and (4.17), we obtain

(4.19) II.(&, N—eitsGtvc@m| L Clp|mir2,

where constant C>0 is independent of £= B and [¢|>1. Therefore from (4. 13),
(4.14) and (4.19), we obtain

(4.20) 1Qp () Erac ) u—QF ) Eroc (I ulle =Clt|™*luls
for |{|>1 and u<9, where
(4' 21) Q$s (t)zg-l [eicg(;‘,z; ye& ) XI“ (8] F.

Thus we have proved (Q%) and hence Moreover we have
proved that

(4.22) W3 Eo(D)=Wo([N=Wgs (),
where
4. 23) LVé’“S(F):sL-lim eI Qe (N Eq o (1)

§5. Supplementary remarks.

In the above we have proved the existence and the completeness of time
dependent modified wave operators of Hérmander type. But to complete the
discussion from the physical poinf of view as well as from the mathematical
point of view, we must show that e %72y for uc9,,. behaves like a free
state when #— 4co. In this section, we shall first give a solution of this
problem. Next we shall consider the modified wave operator of Alsholm type
(cf. Alsholm [I.2]) and prove its completeness. We shall then treat the case
1>¢,>1/2 in which the situation is somewhat simpler. We shall next discuss
the relation between the stationary wave operator of Pinchuk [I1.22] or
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Isozaki [ 1.11] and ours. Finally we shall consider a relation between
eigenoperators and our stationary wave operators.

5.1. Asymptotic behavior of e “#zy as t— toco for u€9,,. The
following theorem gives a solution of this problem.

THEOREM 5.1. Suppose that Assumption 1.1’ is satisfied. Put for f€9,
10, and x+0,
5.1) (U= () f)(x)=(t)" V12 gt¢@m= g 1B X 05500 £ /21)

Here pi=n:(x, t) denotes the regular critical point of

j(x, t; )=<x, p>/t—In|*—=X(n, O/t
Then U*(t) defines a unitary operator in § and satisfies for any f€9
(5.2) lim |e #H17¢X O f [T (1) f |5 =0.

t>too

Therefore it follows from Theorem 1.5 that for any us9,,q. there exists a free
state u*€9=9,,,. such that

(5.3) lim |le”*#2y—U=* () u*| =0.

t—otoo

) . A
Thus, the probability density of e **#2u converges asymptotically to |t|"¥|u*(x/2t)|?
as t — *oo, and hence e "2y (ue9, o) behaves like a free state as t — +co.

PrROOF. We have only to prove (5.2). But this is a consequence of the
proof of Theorem 3.9 of Hormander [ I.8]. Q.E.D.

5.2. The modified wave operator of Alsholm type. Alsholm [1.2] con-
sidered and proved the existence of the limit (1.8) with X (¢) replaced by X,(?)
assuming (1.2) of Assumption 1.1 for |a|=K,=[1/¢,]1** with m(k)=k+e,.
Here X,(H)=X%9(?) is defined by iteration as follows:

(6.4 XPE D=0, XPE¢ D= g; V(Z2sE+(0: X3 (&, 8))ds
and

(5.5) XPWO=F[XPE n-1F

for h=1, 2, ---.

Using our method developed in Part I, we can prove the existence and the
completeness of

(5.6) W5=s-lim ¢itHz g=itH1-iXact),
t

—+oo

11) Here [a] for a=R! denotes the maximum integer n such that n<a.
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But the proof is somewhat long and complicated so we shall be content with
an outline of the proof. Later in this subsection, we shall also give another
simpler proof using

To give a direct proof of the existence and the completeness of W%, we
shall use Theorem 1.2.2. For the sake of simplicity, we assume that Vg=0
and that (1.2) of Assumption 1.1 is satisfied for all @« with m(k)=Fk-+¢,, where
constant C appearing in Assumption 1.1 depends on «. First of all, we must
construct an eigenoperator. But this can be done in quite the same way as in
§ 2, although we must replace (2.15) by

(5.7 |4+24/ 20, Y*(0rw: D—Vrw)—0, Y*(rw; D2 |<Cr2.

Let us make a replacement in Theorem I.2.2 similar to the one stated at the
beginning of §3. We can easily show that the assumptions except (Q*), (b)
and (¢) of Theorem I.2.2 are all satisfied. The condition (Q*) can be proved
by using the results of Alsholm [ 1.2] in a way similar to the proof of Pro-
position 2.3 of [I.15], though it is more complicated and longer. Conditions
(b) and (¢) of Theorem [.2.2 can be proved by using our [Theorem 3.1, as
[Proposition 2.2 and [[heorem 3, 1l also hold with X(&§, 1) replaced by X (&, t).
Thus we can surely prove the existence and completeness of W% directly.
The proof outlined above is rather long and complicated. But if we use
we can give another proof which is simpler than the one given
above. The crucial point is the following lemma.

LEMMA 5.2. Let (1.2) of Assumption 1.1 be satisfied for |a|=K,=[1/e.]
with m(k)=k+e,*®. Then for any E€RY— {0} the following limit exists:

(5.8 F=(©)=lim (X (&, )— X4, 1)).

PrRoOOF. We have only to prove the following estimate: For any compact
subset 2 of R¥— {0} and any e, satisfying 0<e,<e,, there exist positive con-
stants C and 7 such that

|(a? X) (‘5) t)_(ag XXL)) (5’ t)I§C|tP‘(h+l)Ez

for any &, |t|>T and 1=Z|a|=K,—h, h=0,1, ---, K,—1. But this can be
easily proved by induction in A using Lemma 5 of Alsholm [1.2] and¥an
appropriate version of Q.E.D.

Thus we have proved the following theorem.

THEOREM 5.3. Let (1.2) of Assumption 1.1 be satisfied for |a|=max
([1/eo], 4) with m(k)=~k+e,. Then there exists the limit

12) Note that an appropriate version of [Theorem 1.2 holds under the assumption
of the lemma (cf. Hormander [ I.8]).



Scattering theory for Schridinger operators 627

(5.9 W 4a=s-lim ¢#tHz2 g~ 1t H1=1X 41>

t—+oo

This W3 satisfies
(5.10) Wi=Whe "D,
where F*(D)=F '[F*(&)-1F, F*() being defined by (5.8). Hence W3 is

complete.

When 1>¢,>1/2, this theorem proves the completeness of Wi(I') in §2.2
of Part L

5.3. The case 1>¢,>1/2. In this case situation becomes somewhat
simpler than the case 1/2=¢,>0. That is, the function 65 (r, @, 1) in
2.5 can be replaced by

!+ —— B 1 T
5.11) 0 (1, 0, D=F ¥ Tk S V (sw)ds.

The crucial point is the following lemma.

LEMMA 5.4, Let (1.2) of Assumption 1.1 be salisfied for |a|=3 wilh
1>¢,>1/2 and m(k)=k+e,. Then the limit

(5 12) hm [6’3 (7’, @, /2)_0§i (7", @, 2):[
exists for any 2>0 and ws SV

Proor. From the identity

05 (r, 0, )=F V 2Ar+XP (= vV 2w, £r/2+ )
and we have only to prove the existence of the limit

(5.13) m [65 (v, w, =0 (r, 0, 1) ],

where
1=, 0, A=F AV Ar+X(+ v 2w, +r/2 7).
But using (2.2) we obtain
03 (r, w, )—6*(r, w, 2)
=—riFl&i—(E V2 )P —0: X) 2, rtp), Ei—(= vV T w))
HX @ )X (= V1w, £7/24 7).

Thus an appropriate version of [Proposition 1.3 and (2.3) yields

03 (r, @, D—00% (r, @, D=0 (%)  (r — co)
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for any e, satisfying e¢,>¢,>1/2. Therefore the limit (5.13) exists and is
equal to zero. Q.E.D.

This lemma shows that all theorems and propositions in §2 after
2.5 hold good with 6; replaced by 6@*. This result gives another proof of
Ikebe’s result [ 1.9]. Furthermore if we replace X(¢) by X@ (¢) in S*(z) then
we can prove Theorem 3 of [I1.16] in a way similar to the proof of (3.22)
and

As to the invariance principle we can also give another proof of the result
of §1.2.2. In fact we can prove the following lemma.

LEMMA 5.5. Let (1.2) of Assumption 1.1 be satisfied for |a|=3 with

1>¢,>1/2 and m(k)=k+¢e,. Let I' be a compact interval contained in (0, o).
Then the [imit

(6.14 lim Lo (IE1°)-+ XD @, o7 (I€17))—tg (€, 15 ye (S, )]

exists for any E=Br={§| |]*’e '}, where functions ¢, g, and y. are the same
as in Lemma 4. 1.

PrROOF. The formula in the parenthesis [ ] of (5.14) can be rewritten
using (4.5)'® as follows: )

1[0, X) (€, tye) yeto (E1) =@ U(yo)]
HLX(E, to" (1E1°)—X &, ty) J+LX(E, ty)—XD (€ tyd)].

The last two terms converge as ¢ — oo by [Proposition 1.3, (4.6), and
5.2. The convergence of the first term can be proved using (4.5), by differen-
tiating and integrating the formula in [ ] with respect to % Q.E.D.

From this lemma and (4. 22), we obtain (I. 2. 23).

5.4. The stationary wave operator of Pinchuk and Isozaki. In [I.22]
Pinchuk constructed a time-independent wave operator and proved its complete-
ness for the case ¢,>1/2. Isozaki [ I.11] extended Pinchuk’s results to the
case ¢,>0. Although their methods are somewhat different from each other
especially in their abstract theory, their fundamental estimates are both based
on those appeared in Ikebe [1.9] or Saito [1.27], [1.28].

In this subsection, we shall first give another proof of the completeness of
their stationary wave operators and then prove that they are equal to our
stationary wave operator and hence to time dependent ones'®.

13) Note that Lemma 4l 1 holds under the assumption of the lemma or even under
the assumption of Hormander.

14) Recently Ikebe and Isozaki also obtained a proof that Isozaki’s stationary
wave operator coincides with the time dependent one.
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In the following we denote the stationary wave operators of Pinchuk and
Isozaki by W% and W3, respectively. For the sake of simplicity, we shall
assume Vs(x)=0 so H,=H;*. Let us first summarize some of the results of
Pinchuk and Isozaki which we need in the sequel.

THEOREM 5.6 (due to Pinchuk [ 1.22]). Let (1.2) of Assumption 1.1 be
satisfied for |al=4 with 1>¢,>1/2 and m(R)=k+¢e,'®. Let I' be a bounded
Borel set in R* such that I' © (0, o0). Put for i’

e 1 T . B
. 15) U*()=exp <+m:SOV(sw)ds>-, r=|x|, 0=x/r.
Then there exists the limit

(5. 16) Gs(h)= llrg (Hy—(A+1e))U* (1) Ry (At 1e)

in B(¥;, X)) for all 2el’. Here
(5.17) Xi=L}.,.(RY), X=L3(R"), 1/2<0'<e,.

Moreover G:(A)u is strongly measurable as an ¥Xj-valued function of A€l for
every usX.

THEOREM 5.7 (due to Isozaki [1.11]). Let (1.2) of Assumption 1.1 be
satisfied for |a|=[2/e,]+2 with 1/2=2¢,>0 and m(k)=k+¢,. Let I' be a
bounded Borel set in R such that ' C (0, o). Define Z9(x, k) for j=1, 2, ---,
k€ R'— {0} and x=RY—{0} as in page 602 of [ 1.11] and put

Z(x, D=2 (x, 1),

(5.18)
{ U*(2, e)=exp(—iZ(x, ReA/Axic)):, i1l’, ¢>0.

Then there exists the limit

(5.19) Gy (1)5511{13 (Hy—Q=x1e))U* () R, (At ie)

m B(X{, X{) for AeI’. Here

(5. 20) X{=L3_5(RY), X/=L}(RY), 1/2<”<1/2+¢,/4.

Moreover Gi(A)u 1is strongly continuous as an XJ-valued function of A€l for

every us¥Xy.

15) This restriction is not essential at all. We can prove the completeness and
equality even when Vg(x)=0.

16) Pinchuk’s assumption is somewhat weaker than the one adopted here. But for
the sake of simplicity we assume this.
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To prove the completeness and equality, we shall use Theorem I.5.4.
We first consider W5. As was shown in lkebe [1.9] or in the preceding
subsection, the following limit exists in H=L2?(S¥"!) for A2>0 and g<¥,=
Ly (R¥)™

G.21)  FF(Dg=x i lim p, YDk (R, (1i0)g) ().

where {r,} is an appropriate sequence of positive numbers diverging to co as
k— oo, and

(5.22) 0 (r, w, D=F ~ Ar+ ?\% S: Vsw)ds.

This Z;* (1) satisfies (a) of (Z) in Theorem L. 5.1 with F,()=%%*(2) and X,=X%;
(cf. Lemma 2.1 of [1.9] or §5.3). Now the following relation can be easily
seen by definition: For any 1€l and u<X]

(5.23) FE (DGR u=77* (D u,

where <[*(A) is the one defined in with y=4’. Thus we have
proved all the assumptions of Theorem I[.5.1 for H, and H,. Therefore W3 is
complete, because Pinchuk’s W3 was constructed from G3 in essentially the
same way as ours stated in Part I (compare Theorems 1.4.1 and I.4.4 with
Theorem 3.11 of Pinchuk [1.22]). Moreover from we have

(5. 24) FrDu=A*QDFDu, 2l’, usX, N\ %X
for some unitary operator A* (1) in §. Therefore, by Theorem I.5.4, we obtain
(5. 25) L*Wi=W3sE, (I,

where L* is the unitary operator constructed from A*(2) as in Theorem I.5.4,

and Wi is our stationary wave operator constructed from G*()=140Q*(2) as
in Theorem I.5.1.

Next let us consider Wj7. Put ;
(5. 26) 07 (r, w, D=F v Ar+Z(ro, £+ 1)

for 2>0, r>0 and w=S""'. Then the following limit exists in H=L2(S¥"") for
2>0 and geX/=L3}(R¥)'®

(5.27) @4 (g=r 2 lim r, 00 gk (R, (1i0)g) (),

17) When we use lkebe’s result, this statement can be justified by the same
reasoning as in the proof of [Theorem 2.6.
18) The remark similar to footnote 17) holds here.
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where {r,} is an appropriate sequence of positive numbers diverging to oo
(cf. of [I1.11]). This F/*(A) satisfies (a) of () in Theorem I.5.1.
Moreover by definition we have

(5.28) FDGFDu=F*(Du

for iel” and u<X/, where F/*(2) is the one defined in with
y=0". Thus by Theorem I.5.1, we can construct a complete stationary wave
operator Wi . Since Isozaki’s wave operator W7 satisfies (I.4.8) by (1.4) of
[ I.11], we obtain

(5. 29) Wi E1,ac([,):WIiT

Therefore Wi is complete. Furthermore by (5. 27), and the fact
that R(F£(2)) is dense in §) for 2=/’, we have

(5.30) FrNu=A*DF*Du, 2l’, ueX,NX,

where A*(2) is a unitary operator in §. Therefore by Theorem I. 5.4, there
exists a unitary operator L* such that

(5.31) L*Wi=Wi E, ..(I).
5.5. Relation between eigenoperators and our stationary wave operators.

As was shown in [Theorem 2.9, Z; is a partial isometry from £ to $ with
initial set 9, .. and final set . Thus if we define

(5.32) Wis=93:* ¢,

then Wi_s is a partial isometry in $ with initial set 9, ,.=9 and final set 9,
Furthermore, by ii) and iii) of [Theorem 2.9, Wi ¢ satisfies

yace

(5.33) Wisk, (A):Ez (A)Wli—s

for any Borel set 4 in R'. Thus Wi gives a unitary equivalence between
H,=H, 4. and H,,.. In this sense Wi can be regarded as a stationary

wave operator intertwining f; and H,. In fact we can prove the following
theorem.

THEOREM 5.8. Let Assumption 1.1 be satisfied. Then we have
(5. 34) Wis El,ac(p):WIt“:Wli) El,ac([’)
for any bounded Borel set I' in (0, o) such that I' C (0, o). Hence we have

(5.35) Wis=Ws.
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[1]
[2]

H. Kitapa

We omit the proof, because it is similar to the one given in [ I.16]'.
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19) This proof gives another proof of the completeness of Wz. But note that this
proof depends on [Theorem 2.9 and hence on the measurability of Fi(Dg, gELURY),

etc.

which was not made use of in §3, where the completeness was proved,
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