On the fundamental group of the complement of certain plane curves

By Mutsuo OKA

(Received March 2, 1976) (Revised Feb. 6, 1978)

§ 0. Notations.

Throughout this paper, we use the following notations. Z: the integers or an infinite cyclic group (n_1, n_2, \dots, n_k) : the greatest common divisor of n_1, n_2, \dots, n_k G, G_1, G_2 : groups Z(G): the center of G D(G): the commutator group of G G_1*G_2, G_1*G_2*G : the free product of G_1 and G_2 or of G_1, G_2 and G respectively Z_p : a cyclic group of order p F(p): a free group of rank p $\{e\}$: the trivial group e: the unit element G(p;q)G(p;q;r) $\}$: special groups. See the definitions in §2.

§1. Introduction and statement of results.

Let C be an irreducible curve in the projective space P^2 and let G be the fundamental group of the complement of C. So far known, we have only two cases: (I) G is infinite and the commutator group D(G) is a free group of a finite rank (Zariski [8]; Oka [6]). (II) G is a finite group (Zariski [8]).

We do not know whether this is true or not in general. The purpose of this paper is to give a theorem which says that, for a certain case, we have only the case (I). Namely let

(1.1)
$$C: \prod_{j=1}^{l} (Y - \beta_j Z)^{\nu_j} - \prod_{i=1}^{m} (X - \alpha_i Z)^{\lambda_i} = 0$$

where X, Y and Z are homogenous coordinates of P^2 and

(1.2)
$$n = \sum_{j=1}^{l} \nu_j = \sum_{i=1}^{m} \lambda_i$$

is the degree of the curve C and $\{\alpha_i\}$ $(i=1, 2, \dots, m)$ or $\{\beta_j\}$ $(j=1, 2, \dots, l)$ are mutually distinct complex numbers respectively. C is not necessarily irreducible. Let $\nu = (\nu_1, \nu_2, \dots, \nu_l)$ and $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$. The result is this:

THEOREM (1.3). Assume that the singular points of C are contained in the intersection of lines: $\prod_{j=1}^{l} (Y - \beta_j Z)^{\nu_j} = \prod_{i=1}^{m} (X - \alpha_i Z)^{\lambda_i} = 0$. Then the fundamental group $\pi_1(\mathbf{P}^2 - C)$ is isomorphic to the group $G(\nu; \lambda; n/\nu)$. Therefore the structure of the group $\pi_1(\mathbf{P}^2 - C)$ is decided by three integers n, ν, λ .

As a corollary of Theorem (1.3) and Theorem (2.12), one obtains

COROLLARY (1.4). (i) The center $Z(\pi_1(\mathbf{P}^2-C))$ contains a cyclic group \mathbf{Z}_a such that $\mathbf{Z}_a \cap D(\pi_1(\mathbf{P}^2-C)) = \{e\}$ where a is defined by the integer $ns/\lambda \cdot \nu$, $s=(\nu, \lambda)$.

(ii) The quotient group of $\pi_1(\mathbf{P}^2-C)$ by \mathbf{Z}_a is isomorphic to

$$\mathbf{Z}_{\nu/s} * \mathbf{Z}_{\lambda/s} * F(s-1).$$

(iii) Therefore the commutator group $D(\pi_1(\mathbf{P}^2-C))$ is isomorphic to $D(\mathbf{Z}_{\nu/s} * \mathbf{Z}_{\lambda/s} * F(s-1))$. In the case of s=1 (i.e. C is irreducible), this is isomorphic to $F((\nu-1)(\lambda-1))$.

As for the geometric meaning of $D(\pi_1(\mathbf{P}^2-C))$, we refer to Oka [4]. Note that \mathbf{Z}_a is equal to the center $Z(\pi_1(\mathbf{P}^2-C))$ if $\pi_1(\mathbf{P}^2-C)$ is not abelian.

§2. Combinatorial group theory.

In this section, we consider a certain group theoretical problems which we encounter in the process of the calculation of the fundamental group.

DEFINITION (2.1). Let p and q be positive integers. A group G(p;q) is defined by

(2.2)
$$G(p;q) = \langle \omega, a_i \ (i \in \mathbb{Z}); \omega = a_{p-1}a_{p-2} \cdots a_0, R_1, R_2 \rangle$$

where

(2.3)
$$R_1$$
 (Periodicity): $a_i = a_{i+q}$ for $i \in \mathbb{Z}$

and

(2.4)
$$R_2 \text{ (Conjugacy): } a_{i+p} = \omega a_i \omega^{-1} \text{ for } i \in \mathbb{Z}$$

(This group appears as a local fundamental group. See § 3.)

PROPOSITION (2.5). Let r=(p, q) and let $q_1=q/r$. Then ω^{q_1} is contained in the center Z(G(p; q)).

PROOF. Let $p_1 = p/r$. Then

$$a_i = a_{i+p_1q}$$
 by (2.3)
 $= \omega^{q_1} a_i \omega^{-q_1}$ by (2.4).

This says that ω^{q_1} is contained in Z(G(p;q)).

PROPOSITION (2.6).

$$\omega = a_i a_{i-1} \cdots a_{i-p+1}$$
 for any $i \in \mathbb{Z}$.

PROOF. This is proved by the two-sided induction on i starting at i=p-1. Assume that this is true for i. Then

$$a_{i+1}a_{i} \cdots a_{i-p+2} = \omega a_{i-p+1}\omega^{-1} \cdot a_{i}a_{i-1} \cdots a_{i-p+1} \cdot a_{i-p+1}^{-1} \quad \text{by (2.4)}$$
$$= \omega$$
$$a_{i-1}a_{i-2} \cdots a_{i-p} = a_{i}^{-1} \cdot a_{i}a_{i-1} \cdots a_{i-p+1} \cdot \omega^{-1}a_{i}\omega \quad \text{by (2.4)}$$
$$= \omega.$$

Note that we need only (2.4) and $\omega = a_{p-1}a_{p-2}\cdots a_0$ to prove the above proposition.

Now let q_1, q_2, \dots, q_m be positive integers and let

(2.7)
$$G(p; \{q_1, q_2, \dots, q_m\}) = \langle \omega, a_i \ (i \in \mathbb{Z}); \omega = a_{p-1}a_{p-2} \dots a_0, R'_1, R_2 \rangle$$

where R_2 is as before ((2.4)) and

(2.8)
$$R'_1: a_i = a_{i+q_j}$$
 for $i \in \mathbb{Z}$ and $1 \leq j \leq m$.

PROPOSITION (2.9). $G(p; \{q_1, q_2, \dots, q_m\})$ is isomorphic to G(p; q) for $q = (q_1, q_2, \dots, q_m)$.

PROOF. We can write $q = k_1q_1 + k_2q_2 + \cdots + k_mq_m$ for some $k_1, \cdots, k_m \in \mathbb{Z}$. Then by (2.8) we get

$$(2.10) a_{i+q} = a_i for i \in \mathbb{Z}.$$

On the other side, (2.10) clearly implies (2.8).

DEFINITION (2.11). Let r be a positive integer. We define a group G(p; q; r) by

$$G(p;q;r) = \langle \omega, a_i \ (i \in \mathbb{Z}); \ \omega = a_{p-1}a_{p-2} \cdots a_0, R_1, R_2, \ \omega^r = e \rangle$$

where R_1 and R_2 are as before ((2.3), (2.4)).

By the definition, G(p;q;r) is a quotient group of G(p,q). As is stated in Theorem (1.3), G(p;q;r) appears as a global fundamental group. The following

theorem describes the structure of G(p; q; r).

THEOREM (2.12). Let s=(p, q) and a=(q/s, r). Then we have

(i) The center Z(G(p;q;r)) contains the cyclic group $\mathbb{Z}_{r/a}$ generated by ω^a and $\mathbb{Z}_{r/a} \cap D(G(p;q;r)) = \{e\}$.

$$\begin{pmatrix} The \ latter \ is \ equivalent \ to \ that \ the \ composite \ homomorphisms \\ \mathbf{Z}_{r/a} \longrightarrow G(p;q;r) \longrightarrow G(p;q;r)/D(G(p;q;r)) \\ is \ injective. \end{pmatrix}$$

(ii) The quotient group
$$G(p;q;r)/\mathbb{Z}_{r/a}$$
 is isomorphic to $\mathbb{Z}_{p/s} * \mathbb{Z}_a * F(s-1)$.

PROOF. Let $H_1(G(p;q;r)) = G(p;q;r)/D(G(p;q;r))$ (the abelianization). Then it is easy to see that $H_1(G(p;q;r))$ is an abelian group generated by \bar{a}_0 , $\bar{a}_1, \dots, \bar{a}_{s-1}, \bar{\omega}$ and they have two relations:

(i)
$$r \cdot (p/s) \cdot \sum_{i=0}^{s-1} \bar{a}_i = 0$$
 and (ii) $\bar{\omega} = (p/s) \cdot \sum_{i=0}^{s-1} \bar{a}_i$

where \bar{g} is the equivalence class of $g \in G(p; q; r)$ in $H_1(G(p; q; r))$. This homological consideration proves that ω^a is an element of order r/a and $Z_{r/a} \cap D(G(p; q; r)) = \{e\}$ where $Z_{r/a}$ is the cyclic group generated by ω^a . Write $a = k_1(q/s) + k_2 r$. Then

$$\omega^a = (\omega^{q/s})^{k_1}$$
 by the relation $\omega^r = e$.

Therefore by Proposition (2.5) ω^a is contained in Z(G(p;q;r)). The quotient group $\tilde{G}(p;q;r) \equiv G(p;q;r)/\mathbf{Z}_{r/a}$ is represented by

$$\widetilde{G}(p; q; r) = \langle \omega, a_i \ (i \in \mathbb{Z}); R_0, R_1, R_2, R_3 \rangle$$

where

$$R_{0}: \omega = a_{p-1}a_{p-2} \cdots a_{0}$$

$$R_{1}: a_{i} = a_{i+q} \quad \text{for } i \in \mathbb{Z}$$

$$R_{2}: a_{i+p} = \omega a_{i}\omega^{-1} \quad \text{for } i \in \mathbb{Z}$$

$$R_{3}: \omega^{a} = e.$$

We can write $s=p_1p+q_1q$ for some $p_1, q_1 \in \mathbb{Z}$. Then

$$a_{i+s} = a_{i+p_1p}$$
 by R_1
 $= \omega^{p_1} a_i \omega^{-p_1}$ by R_2 .

Namely we get

$$(2.13) a_{i+s} = \omega^{p_1} a_i \omega^{-p_1} \text{for } i \in \mathbb{Z}.$$

By (2.13) and R_0 ,

$$\omega = \omega^{(p/s-1)p_1} a_{s-1} \omega^{-(p/s-1)p_1} \cdot \omega^{(p/s-1)p_1} a_{s-2} \omega^{-(p/s-1)p_1} \cdots a_{s-1} a_{s-2} \cdots a_0$$

= $\omega (\omega^{-p_1} a_{s-1} a_{s-2} \cdots a_0)^{p/s}$ by R_3 .

Namely we get

(2.14)
$$(\omega^{-p_1}a_{s-1}a_{s-2}\cdots a_0)^{p/s} = e .$$

Conversely R_3 , (2.13) and (2.14) imply R_0 , R_1 , R_2 :

$$R_0: a_{p-1}a_{p-2} \cdots a_0 = \omega^{(p/s-1)p_1}a_{s-1}\omega^{-(p/s-1)p_1}\omega^{(p/s-1)p_1}a_{s-2}\omega^{-(p/s-1)p_1}a_{s-2}\omega$$

$$\cdots a_{s-1} \cdots a_0 \quad \text{by (2.13)}$$
$$= \omega (\omega^{-p_1} a_{s-1} \cdots a_0)^{p/s} \quad \text{by } R_3$$
$$= \omega \qquad \qquad \text{by (2.14)}$$

$$R_{1}: a_{i+q} = a_{i+s(q/s)}$$

$$= \omega^{(q/s)p_{1}}a_{i}\omega^{-(q/s)p_{1}} \quad \text{by (2.13)}$$

$$= a_{i} \quad \text{by } R_{3}$$

$$R_{2}: a_{i+p} = \omega^{(p/s)p_{1}}a_{i}\omega^{-(p/s)p_{1}} \quad \text{by (2.13)}$$

$$= \omega^{1-(q/s)q_{1}}a_{i}\omega^{-1+(q/s)q_{1}}$$

$$= \omega a_{i}\omega^{-1} \quad \text{by } R_{3}.$$

Thus we get the representation

$$\widetilde{G}(p;q;r) = \langle \boldsymbol{\omega}, a_i \ (i \in \mathbf{Z}); R_s, (2.13), (2.14) \rangle$$
.

By the elimination of generators, one gets:

(2.15)
$$\widetilde{G}(p;q;r) = \langle \omega, a_0, a_1, \cdots, a_{s-1}; (2.14), R_s \rangle.$$

Taking ω , a_0 , a_1 , \cdots , a_{s-2} and $b \equiv \omega^{-p_1} a_{s-2} \cdots a_0$ as generators, we can rewrite (2.15) as

$$G(p; q; r) = \langle \omega, a_0, a_1, \cdots, a_{s-2}, b; \omega^a = b^{p/s} = e \rangle.$$

Therefore one obtains the desired isomorphism

$$\widetilde{G}(p;q;r) \cong \mathbb{Z}_{p/s} * \mathbb{Z}_a * F(s-1)$$
,

completing the proof.

COROLLARY (2.16). G(p;q;r) is abelian if and only if (i) s=1 and a=1 i.e. (p,q)=1 and (q,r)=1

or

(ii) *p*=1

or

(iii) s=2, a=1 and p=2. Namely we get:

$$G(p;q;r) \cong \begin{cases} \mathbf{Z}_{pr} & \text{if } (p, q) = 1, (q, r) = 1 \\ \mathbf{Z}_{r} & \text{if } p = 1 \\ \mathbf{Z} \oplus \mathbf{Z}_{r} & \text{if } s = 2, a = 1 \text{ and } p = 2 \end{cases}$$

PROOF. Assume that (p, q) = (q, r) = 1. Then by Theorem (2.12), ω is contained in Z(G(p;q;r)). Therefore

$$G(p;q;r) = \langle \omega, a_i \ (i \in \mathbb{Z}); \ \omega = a_{p-1}a_{p-2} \cdots a_1, \ a_{i+p} = a_{i+q} = a_i$$

for $i \in \mathbb{Z}, \ \omega^r = e \rangle$
$$= \langle \omega, a_0; \ \omega = a_0^p, \ \omega^r = e \rangle$$

$$\cong \mathbb{Z}_{pr}.$$

Assume that p=1. Then $\omega = a_0$ and clearly we have

$$G(1; q; r) \cong \mathbf{Z}_r$$
.

Assume that s=2, a=1 and p=2. Then we can write $q=2q_1$ and $(q_1, r)=1$. ω is contained in $Z(G(2, 2q_1, r))$ by Theorem (2.12).

$$G(2; 2q_1; r) \cong \langle \boldsymbol{\omega}, a_i \ (i \in \mathbb{Z}); \ \boldsymbol{\omega}^r = e, \ \boldsymbol{\omega} = a_1 a_0, \ a_i = a_{i+2}$$

for $i \in \mathbb{Z}, \ [\boldsymbol{\omega}, a_i] = \boldsymbol{\omega} a_i \boldsymbol{\omega}^{-1} a_i^{-1} = e$ for $i \in \mathbb{Z} \rangle$
 $\cong \langle \boldsymbol{\omega}, a_0; \ \boldsymbol{\omega}^r = e, \ [a_0, \ \boldsymbol{\omega}] = e \rangle$
 $\cong \mathbb{Z} \bigoplus \mathbb{Z}_r.$

(The last case corresponds geometrically to the case that C has two irreducible components.)

COROLLARY (2.17). Assume that p and q are coprime. Then D(G(p;q;r)) is isomorphic to F((p-1)(a-1)).

PROOF. By Theorem (2.12), we have the isomorphism

$$D(G(p; q; r)) \cong D(\mathbf{Z}_p * \mathbf{Z}_a)$$

because s=1. It is well-known that the latter is isomorphic to F((p-1)(a-1)). In [6], we gave a geometric proof of this isomorphism.

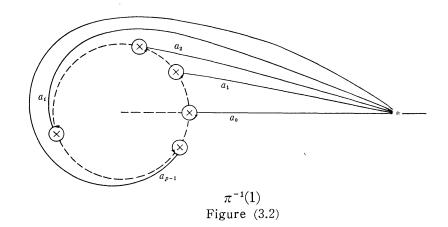
 $\left(\begin{array}{l} \text{Group theoretically, this is derived from the next fact:}\\ \text{Let } G_1 \text{ and } G_2 \text{ be abelian groups. Then } D(G_1 * G_2) \text{ is a free}\\ \text{group and generated by these elements } [g_1, g_2] = g_1 g_2 g_1^{-1} g_2^{-1} \text{ for}\\ g_1 \in G_1, g_2 \in G_2. \text{ See for example [3], problem 34 (p. 197).} \end{array}\right)$

§3. Model of the local monodromy relation.

We consider an affine curve

$$(3.1) V: y^p = x^q$$

in C^2 . Let $\pi: C^2 - V \to C$ be the first projection map i.e. $\pi(x, y) = x$. Then π gives a locally trivial fibration over $C - \{0\}$. Take generators a_0, a_1, \dots, a_{p-1} of $\pi_1(\pi^{-1}(1), *)$ as in Figure (3.2). (The base point * is chosen so that the absolute value of its y-coordinate is large enough.)



We consider $\pi^{-1}(\eta)$ $(\eta \in C)$ as a subset of C by the projection into the y-coordinate. Let D be the unit disk $\{z, |z| \leq 1\}$ in the x-coordinate plane C. Then $\pi^{-1}(D)$ is a deformation retract of $C^2 - V$. Let D^+ or D^- be the upper or lower closed half disk respectively.

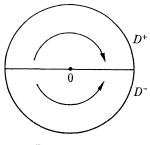
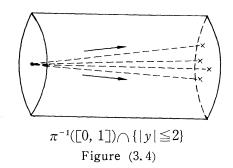


Figure (3.3)

Then $\pi^{-1}(D^+)$ or $\pi^{-1}(D^-)$ can be deformed into $\pi^{-1}([0, 1])$ by the rotation of the argument. Again $\pi^{-1}([0, 1])$ can be deformed into $\pi^{-1}(1)$.



Therefore we have isomorphisms $\pi_1(\pi^{-1}(1), *) \cong \pi_1(\pi^{-1}(D^+), *)$ and $\pi_1(\pi^{-1}(1), *) \cong \pi_1(\pi^{-1}(D^-), *)$. Applying the theorem of Van Kampen to the division $\pi^{-1}(D) = \pi^{-1}(D^+) \cup \pi^{-1}(D^-)$; one obtains this:

 $\pi_1(C^2-V, *)$ is generated by the image of $\pi_1(\pi^{-1}(1), *)$ and the generating relations are derived from the monodromy relations i.e. the relations which are obtained by the deformation of the fiber $\pi^{-1}(1)$ along the circle |x|=1. (This is exactly the situation which is considered in [2].) More precisely, we get:

(3.5)
$$\begin{cases}
 a_{0} = \omega^{m} a_{r} \omega^{-m} \\
 a_{1} = \omega^{m} a_{r+1} \omega^{-m} \\
 \vdots \\
 a_{p-r-1} = \omega^{m} a_{p-1} \omega^{-m} \\
 a_{p-r} = \omega^{m+1} a_{0} \omega^{-(m+1)} \\
 \vdots \\
 a_{p-1} = \omega^{m+1} a_{r-1} \omega^{-(m+1)}
\end{cases}$$

where the integers m and r are defined by the equation: q=mp+r, $0 \le r \le p-1$ and

$$\omega = a_{p-1}a_{p-2}\cdots a_0$$

To understand these relations more systematically, we introduce infinite elements a_i $(i \in \mathbb{Z})$ by

(3.7)
$$a_{kp+j} = \omega^k a_j \omega^{-k}$$
 for $k \in \mathbb{Z}$ and $0 \leq j \leq p-1$.

Then it is easy to see that (3.7) is equivalent to

(3.8)
$$a_{j+p} = \omega a_j \omega^{-1}$$
 for any $j \in \mathbb{Z}$.

Now (3.5) can be written in the following simple form

$$(3.9) a_j = a_{j+q} 0 \leq j \leq p-1.$$

By (3.8), this implies

 $(3.10) a_j = a_{j+q} \text{for any} \quad i \in \mathbb{Z} .$

Thus we obtain

PROPOSITION (3.11). $\pi_1(C^2 - V, *)$ is isomorphic to G(p; q).

The next corollary is important.

COROLLARY (3.12). $\pi_1(C^2-V)$ is abelian if and only if q=1 (or p=1) or p=q=2.

(i) In the case of q=1 or p=1, $\pi_1(C^2-V)\cong Z$.

(ii) In the case of p=q=2, $\pi_1(C^2-V)\cong Z \oplus Z$.

PROOF. Let r=(p, q) and let $q_1=q/r$. Then by Proposition (2.5), ω^{q_1} is contained in the center. Let N be the (infinite) cyclic group generated by ω^{q_1} . Then the quotient group is isomorphic to $G(p; q; q_1)$. By Theorem (2.12), $G(p; q; q_1)$ is isomorphic to $\mathbf{Z}_{p/r} * \mathbf{Z}_{q_1} * F(r-1)$. Thus for $\pi_1(\mathbf{C}^2 - V, *)$ to be abelian, it is necessary that p=1 or q=1 or p=q=2. The other direction is immediate by the definition of G(p; q). Geometrically (ii) corresponds to the case that V has an ordinary double point at the origin.

§ 4. Representation of the fundamental group $\pi_1(\mathbf{P}^2-C)$.

We return to the situation of Theorem (1.3) in §1. Let

(4.1)
$$C: \prod_{j=1}^{l} (Y-\beta_j Z)^{\nu_j} - \prod_{i=1}^{m} (X-\alpha_i Z)^{\lambda_i} = 0$$

Consider the set $U = \{(\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \dots, \beta_l) \in C^{l+m}; \text{ the singular points of } C$ defined by (4.1) are contained in the intersection of lines: $\prod_{j=1}^{l} (Y - \beta_j Z)^{\nu_j} = \prod_{i=1}^{m} (X - \alpha_i Z)^{\lambda_i} = 0\}$. Here $\nu_1, \nu_2, \dots, \nu_l, \lambda_1, \dots, \lambda_m$ are fixed. It is easy to see that U is a Zariski open set. Therefore for a given C satisfying the assumption in Theorem (1.3), we can arrange $\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_l$ at a suitable position using the deformation of the following type:

$$C_{t}: \prod_{j=1}^{l} (Y - \beta_{j}(t)Z)^{\nu_{j}} - \prod_{i=1}^{m} (X - \alpha_{i}(t)Z)^{\lambda_{i}} = 0$$

where $(\alpha_1(t), \alpha_2(t), \dots, \alpha_m(t), \beta_1(t), \dots, \beta_l(t)) \in U$ for each t. The topological type of C_t or $P^2 - C_t$ is constant under the deformation. We arrange $\alpha_1, \alpha_2, \dots, \alpha_m$, $\beta_1, \beta_2, \dots, \beta_l$ on the real line so that $\alpha_1 < \alpha_2 < \dots < \alpha_m$ and $\beta_1 < \beta_2 < \dots < \beta_l$. U contains such a point by the next argument. For the calculation, we use the method of a pencil section (Zariski, [7]).

Namely we consider the pencil

$$(4.2) L_{\eta}: X = \eta Z, \quad \eta \in C.$$

The center of the pencil (4.2) is the point $\infty \equiv [0; 1; 0]$. We take ∞ as a (fixed) base point of P^2-C . Let x=X/Z and y=Y/Z be the affine coordinates of the

chart $\{Z \neq 0\}$. (Note that the line: Z=0 meets C at n distinct points.) In this affine space C^2 , C is defined by

(4.3)
$$C: \prod_{j=1}^{l} (y-\beta_j)^{\nu_j} - \prod_{i=1}^{m} (x-\alpha_i)^{\lambda_i} = 0.$$

The singular points of C are these:

(4.4) $P_{ij} = (\alpha_i, \beta_j), \quad 1 \leq i \leq m; \quad 1 \leq j \leq l \quad \text{such that } \lambda_i, \nu_j \geq 2.$

In a sufficiently small neighborhood of P_{ij} , C is topologically described by

(4.5)
$$(y-\beta_j)^{\nu_j}=c(x-\alpha_i)^{\lambda_i}$$
, $(c\neq 0, \text{ constant})$.

If a pencil line $L_{\eta}: x = \eta$ meets C at (\tilde{y}, η) with the intersection multiplicity ≥ 2 , \tilde{y} is a root of the following equations.

(4.6)
$$\prod_{j=1}^{l} (y - \beta_j)^{\nu_j} = \prod_{i=1}^{m} (\eta - \alpha_i)^{\lambda_i}$$

(4.7)
$$\sum_{j=1}^{l} \nu_j (y - \beta_j)^{\nu_j - 1} \prod_{i \neq j} (y - \beta_i)^{\nu_i} = 0.$$

Considering the real function

(4.8)
$$f(y) = \prod_{j=1}^{l} (y - \beta_j)^{\nu_j},$$

one finds that there is at least a real root γ_j of (4.7) in the open interval (β_j, β_{j+1}) for each $j=1, 2, \dots, l-1$. Because the degree of $f'(y)/\prod_{j=1}^{l} (y-\beta_j)^{\nu_j-1}$ is $l-1, \gamma_1, \gamma_2, \dots, \gamma_{l-1}$ and β_j such that $\nu_j \ge 2, 1 \le j \le l$, are the roots of (4.7). See Figure (4.9).

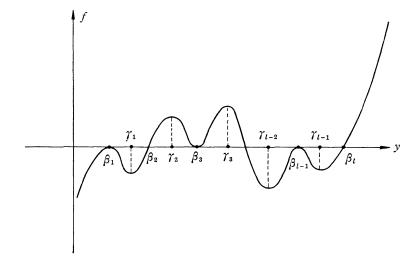


Figure (4.9) (n: odd)

By a slight perturbation of β_j if necessary, we can assume that $\{f(\gamma_1), f(\gamma_2), \dots, f(\gamma_{l-1})\}$ are mutually distinct. (This is not essential.) Let $g(x) = \prod_{i=1}^{m} (x - \alpha_i)^{\lambda_i}$. By taking $|\alpha_j|$ small enough, we can assume

(4.10)
$$|g(x)| < \min \{|f(\gamma_1)|, |f(\gamma_2)|, \cdots, |f(\gamma_{l-1})|\}$$

for $\alpha_1 - \varepsilon_0 \leq x \leq \alpha_m + \varepsilon_0$ (ε_0 : small enough). Then applying the same argument as above to g(x), we can see that the roots of

(4.11)
$$g(x) = f(\gamma_j) \quad \text{for} \quad 1 \leq j \leq l-1$$

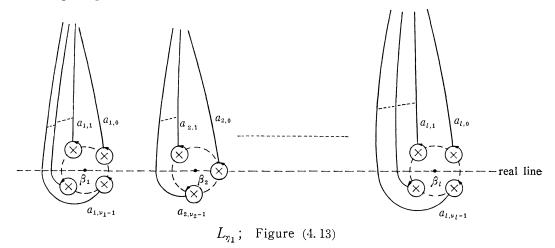
are mutually distinct for each *j*. In particular, this implies that $(\alpha_1, \alpha_2, \dots, \alpha_m; \beta_1, \dots, \beta_l)$ is contained in *U*. Let $\delta_{j,1}, \delta_{j,2}, \dots, \delta_{j,n}$ be the roots of (4.11). At each point $(\delta_{j,k}, \gamma_j)$, *C* is topologically equivalent to

(4.12)
$$C: (y-\gamma_j)^2 = c \cdot (x-\delta_{j,k}) \qquad (c \neq 0, \text{ constant}).$$

This says that the line: $x = \delta_{j,k}$ is tangent to C with the multiplicity 2. (Note that γ_j is a simple root of (4.7).)

Let $\pi: \mathbb{C}^2 - \mathbb{C} \to \mathbb{C}$ be the projection into the x-coordinate. The fiber $\pi^{-1}(\eta)$ is $\mathbb{C}^2 \cap L_{\eta} - \mathbb{C} \cap \mathbb{C}^2 \cap L_{\eta}$. By the above consideration, π is a locally trivial fibration over $\mathbb{C} - \{\alpha_1, \alpha_2, \dots, \alpha_m; \delta_{j,k} \ (1 \leq j \leq l-1, 1 \leq k \leq n)\}$. By the theorem of Van Kampen [2] (see also § 3), $\pi_1(\mathbb{P}^2 - \mathbb{C}, \infty)$ is generated by the image of $\pi_1(L_{\eta} - L_{\eta} \cap \mathbb{C}, \infty)$ for any fixed $\eta \in \mathbb{C} - \Sigma$ ($\Sigma = \{\alpha_1, \alpha_2, \dots, \alpha_m; \delta_{j,k} \ (1 \leq j \leq l-1, 1 \leq k \leq n)\}$) and the generating relations between fixed generators of $\pi_1(L_{\eta} - L_{\eta} \cap \mathbb{C}, \infty)$ are derived from (i) a torsion relation (see below) and (ii) the local monodromy relations at (α_i, β_j) or $(\delta_{j,k}, \gamma_j)$.

Take $\varepsilon > 0$ small enough so that we can find ν_j points of $f^{-1}(\varepsilon)$ on a small circle centered at β_j $(j=1, 2, \dots, l)$ and similarly λ_i points of $g^{-1}(\varepsilon)$ on a small circle centered at α_i $(i=1, 2, \dots, m)$. We take $\eta_1 \in g^{-1}(\varepsilon)$ on the circle with center α_1 as a base point of $C-\Sigma$ and we take generators a_{jk} , $1 \le j \le l$, $0 \le k \le \nu_i - 1$, of $\pi_1(L_{\eta_1}-L_{\eta_1} \cap C, \infty)$ as follows.



 $\{a_{jk}\}\$ are oriented in the counterclockwise direction and are joined to ∞ along the half line: $\{y; \text{ argument } (y)=\pi/2\}.$

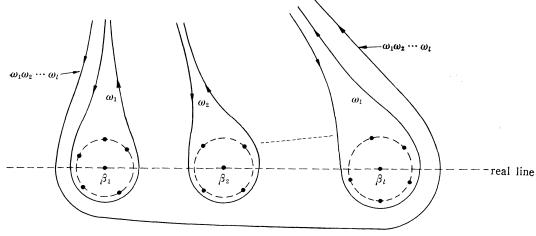
Let us define ω_j $(j=1, 2, \dots, l)$ by

(4.14)
$$\omega_j = a_{j,\nu_j-1} a_{j,\nu_j-2} \cdots a_{j,0} \quad \text{for } 1 \leq j \leq l.$$

Then the torsion relation is this:

(4.15) $\omega_1 \omega_2 \cdots \omega_l = e \,.$

See the following picture.



 L_{η_1} ; Figure (4.16)

To avoid the complexity of the monodromy relations, we introduce $a_{j,k}$ $(1 \leq j \leq l, k \in \mathbb{Z})$ by

(4.17)
$$a_{j,k+t\nu_j} = \omega_j^t a_{j,k} \omega_j^{-t}$$
 for $1 \le j \le l$ and $0 \le k \le \nu_j - 1$ and $t \in \mathbb{Z}$.

Once we define $a_{j,k}$ by (4.17), they satisfy

(4.18)
$$a_{j,k+\nu_j} = \omega_j a_{j,k} \omega_j^{-1}$$
 for $1 \leq j \leq l$ and $k \in \mathbb{Z}$.

First we consider the monodromy relation at $x=\alpha_1$. When x moves around a small circle centered at α_1 , each small circle with center β_j in Figure (4.13) is rotated by the angle $2\lambda_1 \pi/\nu_j$. Namely by the local argument in § 3, we get

$$(4.19) a_{j,k} = a_{j,k+\lambda_1} for \quad 1 \le j \le l \text{ and } k \in \mathbb{Z}.$$

Now let $x = \alpha_i$. Take a point η_i of $g^{-1}(\varepsilon)$ on a small circle with center α_i . Note that the picture of $\pi^{-1}(\eta_i)$ is completely the same as in Figure (4.13). Therefore let $a_{j,k}(\eta_i)$ $(1 \le j \le l; k \in \mathbb{Z})$ be the elements of $\pi_1(\mathbb{P}^2 - C, \infty)$ represented by the loops in $\pi^{-1}(\eta_i) \cup \{\infty\}$ corresponding to $a_{j,k}$. Then the same argument as above gives the relation:

$$(4.20) a_{j,k}(\eta_i) = a_{j,k+\lambda_i}(\eta_i) for k \in \mathbb{Z}.$$

To translate (4.20) into the words in $a_{j,k}$, consider the following path P_i . (The circle centered at α_i is mapped to the circle $|z| = \varepsilon$ by g.)

The deformation along the arc S_k is nothing but the rotation of the small circle with center β_j of the angle θ_k/ν_j for $j=1, 2, \dots, l$ for some θ_k where θ_k does not depend on j but only on k and i. The deformation along the line segment \tilde{l}_k is trivial by (4.10). (Consider the points of f(y)=t, t: real.) Thus the deformation along P_i from η_i to η_1 is the rotation of the small circles with center β_j by θ/ν_j ; $\theta = \sum_{k=1}^i \theta_k$ for $j=1, 2, \dots, l$. Note that $\theta = 2\pi \cdot a$ for some $a \in \mathbb{Z}$ and the rotation of the above circles with center β_j by the angle $2\pi/\nu_i$ for $i=1, 2, \dots, l$ or $i=1, 2, \dots, l$ corresponds to the transformation

$$a_{j,k} \longrightarrow a_{j,k+1}$$
 for $1 \leq j \leq l, k \in \mathbb{Z}$.

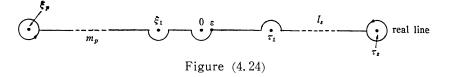
Therefore the relation (4.20) is translated into

$$(4.22) a_{j,k} = a_{j,k+\lambda_i} for k \in \mathbb{Z} and 1 \leq j \leq l.$$

It is not necessary to calculate θ_k or θ explicitly by virtue of the periodicity of (4.20). Thus gathering the monodromy relations at $x = \alpha_i$ ($i=1, 2, \dots, m$), one obtains

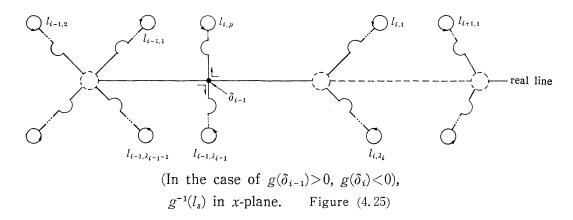
(4.23)
$$a_{j,k} = a_{j,k+\lambda_i}$$
 for $1 \leq j \leq l, 1 \leq i \leq m$ and $k \in \mathbb{Z}$.

Now we must read the monodromy relations at $x=\delta_{j,k}$ for $j=1, 2, \dots, l-1$ and $k=1, 2, \dots, n$. Let $\tau_1, \tau_2, \dots, \tau_{r_1}$ $(0 < \tau_1 < \dots < \tau_{r_1})$ be the positive numbers of $\{f(\gamma_1), f(\gamma_2), \dots, f(\gamma_{l-1})\}$ and let $\xi_1, \xi_2, \dots, \xi_{r_2}$ $(0 > \xi_1 > \xi_2 > \dots > \xi_{r_2})$ be the negative elements of them $(r_1+r_2=l-1)$. We consider the following loops l_s $(s=1, 2, \dots, r_1)$ and m_p $(p=1, 2, \dots, r_2)$ in the complex plane (=the *f*-value plane).

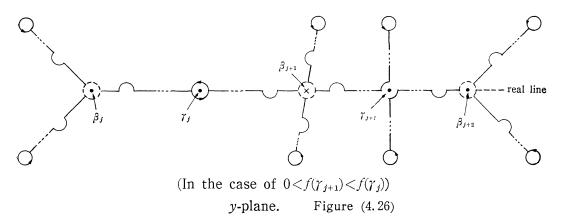


Each loop is based at ε and the half circles are of radius ε . Take γ_j and assume that $f(\gamma_j) = \tau_s$ for example. The inverse image $g^{-1}(l_s)$ consists of *n* loops which

are not necessarily disjoint but meet only at δ_i such that $g(\delta_i)>0$ where δ_i is a root of g'(x)=0 such that $\alpha_i < \delta_i < \alpha_{i+1}, i=1, \dots, m-1$. Let $\alpha_{i,1}, \alpha_{i,2}, \dots, \alpha_{i,\lambda_i}$ be the suitably ordered points of $g^{-1}(\varepsilon)$ on the small circle with the center α_i . Let $l_{i,k}$ $(k=1, \dots, \lambda_i)$ be the corresponding loop which is based at $\alpha_{i,k}$. At a δ_{i-1} as above, $l_{i-1,p}$ and $l_{i,p}$, turns to the right. They are sketched as follows.



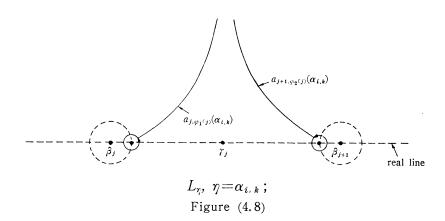
The inverse image $f^{-1}(l_s)$ consists of (n-2) disjoint loops and two paths on the interval (β_j, β_{j+1}) overlapping each other except the small circle part centered at γ_j .



When $x=\eta$ moves along $l_{i,k}$ starting at $\alpha_{i,k}$, each point of $L_{\eta} \cap C$ are deformed along $f^{-1}(l_s)$. Therefore by Proposition (3.11) for (p, q)=(2, 1) and (4.12), we get

4.27)
$$a_{j,\varphi_1(j)}(\alpha_{i,k}) = a_{j+1,\varphi_2(j)}(\alpha_{i,k}), \quad 1 \le k \le \lambda_i$$

where $\varphi_1(j)$ and $\varphi_2(j)$ are integers depending only on the first ordering of $a_{j,k}$.



Using the deformation along the small circle centered at α_i , we can transform the relation (4.27) into the fiber $x = \alpha_{i,1}$ where we may assume that $\alpha_{i,1}$ is equal to η_i defined in (4.20).

(4.29)
$$a_{j,\varphi_1(j)+h}(\alpha_{i,1}) = a_{j+1,\varphi_2(j)+h}(\alpha_{i,1}), \quad 0 \leq h \leq \lambda_i - 1.$$

Now applying the deformation along P_i in Figure (4.21) considered in the argument at $x=\alpha_i$ and using the periodicity (4.23), we obtain

(4.30)
$$a_{j,\varphi_1(j)+h} = a_{j+1,\varphi_2(j)+h}$$
 for any $h \in \mathbb{Z}$.

Because this relation is independent of i $(i=1, 2, \dots, m)$, the monodromy relations at $x=\delta_{j,k}$ $(k=1, 2, \dots, n)$ are (4.30) in the existence of (4.23).

Applying the same argument for every $f(\gamma_j)$; $1 \leq j \leq l-1$, we obtain

$$(4.31) a_{j,\varphi_1(j)+k} = a_{j+1,\varphi_2(j)+k} for 1 \leq j \leq l-1 and k \in \mathbb{Z}$$

where $\varphi_1(j)$ and $\varphi_2(j)$ are integers depending on j. (If $f(\gamma_j)$ is negative, we use the corresponding loop m_p .) Thus the generating relations are gotten.

§5. Decision of the group structure.

Let $G = \pi_1(\mathbf{P}^2 - C, \infty)$. By the above argument, G is generated by $\omega_1, \omega_2, \cdots, \omega_l$ and $a_{j,k}$ $(1 \le j \le l, k \in \mathbb{Z})$ and their complete generating relations are these:

(5.1)
$$\omega_j = a_{j,\nu_j-1} a_{j,\nu_j-2} \cdots a_{j,0} \quad \text{for} \quad 1 \leq j \leq l$$

(5.2)
$$\omega_1 \omega_2 \cdots \omega_l = e$$

(5.3)
$$a_{j, k+\nu_j} = \omega_j a_{j, k} \omega_j^{-1} \quad \text{for} \quad 1 \leq j \leq l, \ k \in \mathbb{Z}$$

(5.4)
$$a_{j,k+\lambda_i} = a_{j,k}$$
 for $1 \leq j \leq l, 1 \leq i \leq m$ and $k \in \mathbb{Z}$

(5.5)
$$a_{j,k} = a_{j+1,k+d_j}$$
 for $1 \le j \le l-1$ and $k \in \mathbb{Z}$.

(Here we put $d_j = \varphi_2(j) - \varphi_1(j)$.)

By Proposition (2.9), (5.4) is equivalent to

(5.6) $a_{j,k+\lambda} = a_{j,k}$ for $1 \leq j \leq l, k \in \mathbb{Z}$,

where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)$. One can see that (5.3)+(5.5) is equivalent to (5.3)'+(5.5) where

 $(5.3)' a_{j,k+\nu_p} = \omega_p a_{j,k} \omega_p^{-1} for 1 \le j, \ p \le l \text{ and } k \in \mathbb{Z}.$

Let $\nu = (\nu_1, \nu_2, \dots, \nu_l)$ and write $\nu = k_1\nu_1 + k_2\nu_2 + \dots + k_l\nu_l$. Then

$$a_{j, k+\nu} = a_{j, k+k_1\nu_1 + \dots + k_l\nu_l} = \omega_l^{k_l} \omega_{l-1}^{k_{l-1}} \cdots \omega_1^{k_1} a_{j, k} \omega_1^{-k_1} \omega_2^{-k_2} \cdots \omega_l^{-k_l} \qquad \text{by } (5.3)'.$$

Expressing $\omega_l^{kl} \omega_{l-1}^{kl-1} \cdots \omega_1^{k_1}$ as a continuous product of $a_{j,k}$ (j: fixed) by (5.5) and Proposition (2.6), we have

(5.7)
$$\omega_l^{k_l} \omega_{l-1}^{k_{l-1}} \cdots \omega_1^{k_1} = a_{j,\nu-1} a_{j,\nu-2} \cdots a_{j,0}$$
 for $j=1, 2, \cdots, l$.

We put

(5.8)
$$\omega = a_{j,\nu-1}a_{j,\nu-2}\cdots a_{j,0} \quad \text{for} \quad 1 \leq j \leq l.$$

Then by the above equation, one gets:

(5.9)
$$a_{j, k+\nu} = \omega a_{j, k} \omega^{-1}$$
 for $1 \leq j \leq l$ and $k \in \mathbb{Z}$.

By (5.8), (5.9) and Proposition (2.6), we can write (5.1) and (5.2) as

$$(5.1)' \qquad \qquad \omega_j = \omega^{\nu_j/\nu}$$

$$(5.2)' \qquad \qquad \omega^{n/\nu} = e.$$

Thus we get the representation

$$G = \langle \boldsymbol{\omega}, \, \boldsymbol{\omega}_j, \, a_{j, k} \ (1 \leq j \leq l \, ; \, k \in \mathbb{Z}) \, ; \, (5.1)', \, (5.2)', \, (5.3)',$$

(5.6), (5.5), (5.8), (5.9) .

It is clear that (5.3)' is contained in (5.9)+(5.1)'. Using (5.5), (5.6), (5.8) and (5.9) are recovered from (5.6) (j=1) and (5.9) (j=1). Thus

$$G = \langle \boldsymbol{\omega}, \, \boldsymbol{\omega}_j, \, a_{j, k} \ (1 \leq j \leq l, \ k \in \mathbb{Z}); \ (5.1)', \ (5.2)', \ (5.5), \ (5.6)$$

for $j=1$, (5.8) for $j=1$, (5.9) for $j=1 \rangle$.

Now (5.1)' and (5.5) say that we can eliminate the generators $\omega_1, \dots, \omega_l$ and $a_{j,k}$ $(2 \leq j \leq l)$. Namely one obtains finally

$$G = \langle \boldsymbol{\omega}, a_{1,k} \ (k \in \mathbb{Z}); \ \boldsymbol{\omega} = a_{1,\nu-1}a_{1,\nu-2} \cdots a_{1,0},$$

(5.6) for $j=1$, (5.9) for $j=1$ and $\boldsymbol{\omega}^{n/\nu} = e \rangle$
 $\cong G(\nu; \lambda; n/\nu)$ by the definition of $G(\nu; \lambda; n/\nu)$.

This completes the proof of Theorem (1.3). Now Corollary (1.4) is obtained from Theorem (2.12), because $(\lambda/s, n/\nu) = \lambda/s$ by (1.2) where $s = (\nu, \lambda)$.

§6. Examples.

In this section, we give some typical examples. By Theorem (1.3) and Theorem (2.12), we have the criterion

(i) $\pi_1(\mathbf{P}^2 - C)$ is abelian

 $\Leftrightarrow \lambda = 1$ or $\nu = 1$ (*C*: irreducible)

or

 $\nu = 2, \lambda = 2$ (C: 2 components).

(ii)
$$Z(\pi_1(\mathbf{P}^2-C))$$
 is non-trivial and $\pi_1(\mathbf{P}^2-C)$ is not abelian

$$\Leftrightarrow n > \lambda \nu$$
, $(\lambda, \nu) = 1$ and $\lambda \neq 1$, $\nu \neq 1$ (C: irreducible)

or

 $s=(\lambda, \nu)>1$, $ns>\lambda\nu$ except $\nu=2$ and $\lambda=2$ (C: not irreducible).

(iii) $Z(\pi_1(P^2-C))$ is trivial i.e. $\pi_1(P^2-C)$ is centerless

 \Leftrightarrow (λ , ν)=1, $n=\lambda\nu$ except $\lambda=1$ or $\nu=1$

or

 $s=(\lambda, \nu)>1$, $ns=\lambda\nu$ and n>2.

(A) Abelian.

EXAMPLE (6.1). Let $C: X^n + Y^n + Z^n = 0$. Then C is non-singular and $\pi_1(\mathbf{P}^2 - C) \cong \mathbf{Z}_n$.

EXAMPLE (6.2). Let $C: (Y^r - Z^r)(Y^l - 2Z^l)^2 - \varepsilon \cdot (X^s - Z^s)(X^m - 2Z^m)^2 = 0$ where n = r + 2l = s + 2m and ε is a positive small number. Then C has (n-r)(n-s)/4 ordinary double points and is irreducible if $r \ge 1$. $\pi_1(\mathbf{P}^2 - C) \cong \mathbf{Z}_n$.

EXAMPLE (6.3). Let C be an irreducible curve of type (1.1) satisfying the assumption in Theorem (1.3) and assume that n (=the degree of C) is prime. Then $\pi_1(\mathbf{P}^2-C)\cong \mathbf{Z}_n$ because $\lambda=1$ or $\nu=1$.

(B) Non abelian with a non-trivial center.

EXAMPLE (6.4). Let $C: (X^{pr}+Z^{pr})^q+(Y^{qr}+Z^{qr})^p=0$ and assume that (p, q) = 1 and $p \ge 2$, $q \ge 2$, $r \ge 2$. Then C is irreducible and

- (i) $\pi_1(\mathbf{P}^2 C) \cong G(p; q; qr)$
- (ii) $Z(\pi_1(\mathbf{P}^2-C)) \cong \mathbf{Z}_r$ and $\pi_1(\mathbf{P}^2-C)/Z(\pi_1(\mathbf{P}^2-C)) \cong \mathbf{Z}_p * \mathbf{Z}_q$

(iii)
$$D(\pi_1(\mathbf{P}^2 - C)) \cong F((p-1)(q-1)).$$

C has $nr (=pqr^2)$ singular points and each of them is topologically described by $y^p + x^q = 0$. For instance, take p=r=2 and q=3. Then

$$\pi_{1}(\boldsymbol{P}^{2}-C) \cong G(2; 3; 6)$$
$$\cong \langle a, b; a^{6}=e, b^{2}=a^{3} \rangle$$
$$\cong SL(2, \boldsymbol{Z}).$$

EXAMPLE (6.5). Let $C: (X^{pr}+Z^{pr})^{qs}+(Y^{qr}+Z^{qr})^{ps}=0$ and assume that (p, q) = 1 and $p, q, r, s \ge 2$. Then C has s irreducible components.

(i) $\pi_1(\mathbf{P}^2 - C) \cong G(ps; qs; qr)$

(ii)
$$Z(\pi_1(P^2-C)) \cong Z_r$$
 and $\pi_1(P^2-C)/Z(\pi_1(P^2-C)) \cong Z_p * Z_q * F(s-1)$

- (iii) $D(\pi_1(\mathbf{P}^2-C)) \cong D(\mathbf{Z}_p * \mathbf{Z}_q * F(s-1))$ (=a free group of infinite rank).
- (C) Centerless.

EXAMPLE (6.6). Let $C: (X^p+Z^p)^q+(Y^q+Z^q)^p=0$ and assume that (p, q)=1 and $p, q \ge 2$. Then C is irreducible and C has pq cusp singularities. We have

$$\pi_1(\boldsymbol{P}^2 - C) \cong \boldsymbol{Z}_p * \boldsymbol{Z}_q \qquad (\cong G(p; q; q))$$

and

$$D(\pi_1(\mathbf{P}^2 - C)) \cong F((p-1)(q-1))$$
.

This example was first studied by Zariski [8], in the case of p=2 and q=3. (Then $\pi_1(\mathbf{P}^2-C)\cong \mathbf{Z}_2 * \mathbf{Z}_3\cong PSL(2, \mathbf{Z})$). In our previous paper [6], we studied this example in general case.

EXAMPLE (6.7). Let $C: (X^p + Z^p)^{qr} + (Y^q + Z^q)^{pr} = 0$ and assume that (p, q) = 1 and $p, q, r \ge 2$. Then C has r irreducible components and

$$\pi_1(\boldsymbol{P}^2 - C) \cong \boldsymbol{Z}_p * \boldsymbol{Z}_q * F(r-1).$$

REMARK (6.8). Theorem (1.3) says that C is irreducible if $(\nu, \lambda)=1$. Note that this is not necessarily true if we omit the assumption on the singular points of C. For example, consider the curve $C: Y(Y-Z)^2 - X(X-Z)^2 = 0$. C has 2 non-singular irreducible components.

References

- S.S Abhyankar, Tame coverings and fundamental groups of algebraic varieties, Amer. J. Math., I, 81 (1959), II, 82 (1960).
- [2] E.R. Van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math., 55 (1933).
- [3] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, 1966.

- [4] M. Oka, On the monodromy of a curve with ordinary double points, Inventiones Math., 27 (1974).
- [5] M. Oka, On the fundamental group of a reducible curve in P², J. London Math. Soc. (2), 12 (1976), 239-252.
- [6] M. Oka, Some plane curves whose complements have non-abelian fundamental groups, Math. Ann., 218 (1975), 55-65.
- [7] R. Thom, L'Équivalence d'une fonction différentiable et d'un polynome, Topology, 3, 1965.
- [8] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math., 51 (1929).
- [9] O. Zariski, Algebraic surfaces, 2nd Edition, Springer, (1971).

Mutsuo OKA Department of Mathematics Faculty of Science Tokyo University Tokyo, Japan