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\S 0. Notations.

Throughout this paper, we use the following notations.
$Z$ : the integers or an infinite cyclic group
$(n_{1}, n_{2}, \cdots , n_{k})$ : the greatest common divisor of $n_{1},$ $n_{2},$

$\cdots$ , $n_{k}$

$G,$ $G_{1},$ $G_{2}$ : groups
$Z(G)$ : the center of $G$

$D(G)$ : the commutator group of $G$

$G_{1}*G_{2},$ $G_{1}*G_{2}*G$ : the free product of $G_{1}$ and $G_{2}$ or of $G_{1},$ $G_{2}$

and $G$ respectively
$Z_{p}$ : a cyclic group of order $P$

$F(p)$ : a free group of rank $P$

$\{e\}$ : the trivial group
$e$ : the unit element
$G(p;q)$
$G(p;q;r)\}$ : special groups. See the definitions in \S 2.

\S 1. Introduction and statement of results.

Let $C$ be an irreducible curve in the projective space $P^{2}$ and let $G$ be the
fundamental group of the complement of $C$ . So far known, we have only two
cases: (I) $G$ is infinite and the commutator group $D(G)$ is a free group of a
finite rank (Zariski [8]; Oka [6]). (II) $G$ is a finite group (Zariski [8]).

We do not know whether this is true or not in general. The purpose of
this paper is to give a theorem which says that, for a certain case, we have
only the case (I). Namely let

(1.1) $C:\prod_{j=1}^{l}(Y-\beta_{j}Z)^{\nu_{j}}-\prod_{i=1}^{m}(X-\alpha_{i}Z)^{\lambda_{i}}=0$

where $X,$ $Y$ and $Z$ are homogenous coordinates of $P^{2}$ and
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(1.2) $n=\sum_{j=1}^{l}\nu_{j}=\sum_{i=1}^{m}\lambda_{i}$

is the degree of the curve $C$ and $\{\alpha_{i}\}$ ($i=1,2,$ $\cdots$ , m) or $\{\beta_{j}\}$ ($j=1,2,$ $\cdots$ , l) are
mutually distinct complex numbers respectively. $C$ is not necessarily irreducible.
Let $\nu=(\nu_{1}, \nu_{2}, \cdots , \nu_{l})$ and $\lambda=(\lambda_{1}, \lambda_{2}, \cdots , \lambda_{m})$ . The result is this:

THEOREM (1.3). Assume that the singular points of $C$ are contained in the

intersection of lines: $\prod_{j=1}^{l}(Y-\beta_{j}Z)^{\nu_{j}}=\prod_{i=1}^{m}(X-\alpha_{i}Z)^{\lambda_{i}}=0$ . Then the fundamental
group $\pi_{1}(P^{2}-C)$ is isomorphic to the group $G(\nu;\lambda;n/\nu)$ . Therefore the structure
of the group $\pi_{1}(P^{2}-C)$ is decided by three integers $n,$ $\nu,$

$\lambda$ .
As a corollary of Theorem (1.3) and Theorem (2.12), one obtains
COROLLARY (1.4). (i) The center $Z(\pi_{1}(P^{2}-C))$ contains a cyclic group $Z_{a}$

such that $Z_{a}\cap D(\pi_{1}(P^{2}-C))=\{e\}$ where $a$ is defined by the integer $ ns/\lambda\cdot\nu$ ,
$s=(\nu, \lambda)$ .

(ii) The quotient group of $\pi_{1}(P^{2}-C)$ by $Z_{a}$ is isomorphic to

$Z_{\nu/s}*Z_{\lambda/s}*F(s-1)$ .

(iii) Therefore the commutator group $D(\pi_{1}(P^{2}-C))$ is isomorphic to $D(Z_{\nu/s}*$

$Z_{\text{{\it \‘{A}}}/s}*F(s-1))$ . In the case of $s=1$ ( $i$ . $e$ . $C$ is irreducible), this is isomorphjc to
$F((\nu-1)(\lambda-1))$ .

As for the geometric meaning of $D(\pi_{1}(P^{2}-C))$ , we refer to Oka [4]. Note
that $Z_{a}$ is equal to the center $Z(\pi_{1}(P^{2}-C))$ if $\pi_{1}(P^{2}-C)$ is not abelian.

\S 2. Combinatorial group theory.

In this section, we consider a certain group theoretical problems which we
encounter in the process of the calculation of the fundamental group.

DEFINITION (2.1). Let $P$ and $q$ be positive integers. A group $G(p;q)$ is
dePned by

(2.2) $ G(P ; q)=\langle\omega, a_{i}(i\in Z) ; \omega=a_{p- 1}a_{p- 2}\cdots a_{0}, R_{1}, R_{2}\rangle$

where

(2.3) $R_{1}$ (Periodicity): $a_{i}=a_{i+q}$ for $i\in Z$

and

(2.4) $R_{2}$ (Conjugacy): $a_{i+p}=\omega a_{i}\omega^{-1}$ for $i\in Z$ .
\langle This group appears as a local fundamental group. See \S 3.)

PROPOSITION (2.5). Let $r=(P, q)$ and let $q_{1}=q/r$ . Then $\omega^{q_{1}}$ is contained in
the center $Z(G(P;q))$ .
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PROOF. Let $p_{1}=p/r$ . Then

$a_{i}=a_{i+p_{1}q}$ by (2.3)

$=\omega^{q1}a_{i}\omega^{-q_{1}}$ by (2.4).

This says that $\omega^{q1}$ is contained in $Z(G(p;q))$ .
PROPOSITION (2.6).

$\omega=a_{i}a_{i- 1}\cdots a_{i-p+1}$ for any $i\in Z$ .

PROOF. This is proved by the two-sided induction on $i$ starting at $i=p-1$ .
Assume that this is true for $i$ . Then

$a_{i+1}a_{i}\cdots a_{i- p+2}=\omega a_{i- p+1}\omega^{-1}\cdot a_{i}a_{i-1}\cdots a_{i- p+1}\cdot a_{i-p+1}^{-1}$ by (2.4)

$=\omega$

$ a_{i-1}a_{i- 2}\cdots a_{i-p}=a_{i}^{-1}\cdot a_{i}a_{l-1}\cdots a_{i-p+1}\cdot\omega^{-1}a_{i}\omega$ by (2.4)

$=\omega$ .
Note that we need only (2.4) and $\omega=a_{p- 1}a_{p- 2}$

, . $a_{0}$ to prove the above proposi-
tion.

Now let $q_{1},$ $q_{2},$
$\cdots$ , $q_{m}$ be positive integers and let

(2.7) $ G(p;\{q_{1}, q_{2}, \cdots , q_{m}\})=\langle\omega, a_{t}(i\in Z);\omega=a_{p- 1}a_{p- 2}\cdots a_{0}, R_{1}^{\prime}, R_{2}\rangle$

where $R_{2}$ is as before $((2.4))$ and

(2.8) $R_{1}^{\prime}$ : $a_{i}=a_{i+q_{j}}$ for $i\in Z$ and $1\leqq j\leqq m$ .

PROPOSITION (2.9). $G(p;\{q_{1}, q_{2}, \cdots , q_{m}\})$ is isomorphic to $G(p;q)$ for $q=$

$(q_{1}, q_{2}, \cdots q_{m})$ .
PROOF. We can write $q=k_{1}q_{1}+k_{2}q_{2}+\cdots+k_{m}q_{m}$ for some $k_{1},$

$\cdots,$
$k_{m}\in Z$. Then

by (2.8) we get

(2.10) $a_{i+q}=a_{i}$ for $i\in Z$ .

On the other side, (2.10) clearly implies (2.8).
DEFINITION (2.11). Let $r$ be a positive integer. We define a group $G(p;q;r)$

by

$ G(P ; q ; r)=\langle\omega, a_{i}(i\in Z) ; \omega=a_{p- 1}a_{p- 2}\cdots a_{0}, R_{1}, R_{2}, \omega^{r}=e\rangle$

where $R_{1}$ and $R_{2}$ are as before $((2.3), (2.4))$ .
By the definition, $G(p;q;r)$ is a quotient group of $G(p, q)$ . As is stated in

Theorem (1.3), $G(p;q;r)$ appears as a global fundamental group. The following
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theorem describes the structure of $G(p;q;r)$ .
THEOREM (2.12). Let $s=(p, q)$ and $a=(q/s, r)$ . Then we have
(i) The center $Z(G(p;q;r))$ contains the cyclic grouP $Z_{r/a}$ generated by $\omega^{a}$

and $Z_{r/a}\cap D(G(p;q;r))=\{e\}$ .

$\left(\begin{array}{llll}Thelatteris & equivalenltothatlhe & composite & homomorphism\\Z_{r/a}=G(p,q,r)\rightarrow G(p.q.r)/D(G(p.q.r)) & & & \\isinjective. & & & \end{array}\right)$

(ii) The quotient group $G(p;q;r)/Z_{r/a}$ is isomorphic to $Z_{p/s}*Z_{a}*F(s-1)$ .
PROOF. Let $H_{1}(G(p;q;r))=G(p;q;r)/D(G(p;q;r))$ (the abelianization).

Then it is easy to see that $H_{1}(G(p;q;r))$ is an abelian group generated by $\overline{a}_{0}$ ,
$\overline{a}_{1},$ $\cdots$ , $\overline{a}_{s- 1}$ , di and they have two relations:

$r\cdot(p/s)\cdot\sum_{i\Rightarrow 0}^{s- 1}\overline{a}_{i}=0$ and (ii) $\overline{\omega}=(p/s)\cdot\sum_{i\subset 0}^{s- 1}\overline{a}_{i}$

where $\overline{g}$ is the equivalence class of $g\in G(p;q;r)$ in $H_{1}(G(p;q;r))$ . This homo-
logical consideration proves that $\omega^{a}$ is an element of order $r/a$ and $ Z_{r/a}\cap$

$D(G(p;q;r))=\{e\}$ where $Z_{r/a}$ is the cyclic group generated by $\omega^{a}$ . Write $a=$

$k_{1}(q/s)+k_{2}r$ . Then
$\omega^{a}=(\omega^{q/s})^{k_{1}}$ by the relation $\omega^{r}=e$ .

Therefore by Proposition (2.5) $\omega^{a}$ is contained in $Z(G(P;q;r))$ . The quotient
group $\tilde{G}(p;q;r)\equiv G(p;q;r)/Z_{r/a}$ is represented by

$\tilde{c}(p ; q ; r)=\langle\omega, a_{i}(i\in Z) ; R_{0}, R_{1}, R_{2}, R_{3}\rangle$

where
$R_{0}$ : $\omega=a_{p-1}a_{p-2}\cdots a_{0}$

$R_{1}$ : $a_{i}=a_{i+q}$ for $i\in Z$

$R_{2}$ : $a_{i+p}=\omega a_{i}\omega^{-1}$ for $i\in Z$

$R_{3}$ : $\omega^{a}=e$ .

We can write $s=p_{1}p+q_{1}q$ for some $p_{1},$ $q_{1}\in Z$. Then

$a_{i+s}=a_{i+p_{1}p}$ by $R_{1}$

$=\omega^{p1}a_{i}\omega^{-p1}$ by $R_{2}$ .
Namely we get

(2.13) $a_{i+s}=\omega^{p1}a_{i}\omega^{-p1}$ for $i\in Z$ .
By (2.13) and $R_{0}$ ,
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$\omega=\omega^{(p/s- 1)p_{1}}a_{s-1}\omega^{-(p/s-1)p1}\cdot\omega^{(p/s-1)p_{1}}a_{s- 2}\omega^{-(p/s-1)p_{1}}$ ... $a$ s-las-2.. $a_{0}$

$=\omega(\omega^{-p1}a_{s-1}a_{s- 2}\cdots a_{0})^{p/s}$ by $R_{3}$ .

Namely we get

(2.14) $(\omega^{-p_{1}}a_{s- 1}a_{s-2}\cdots a_{0})^{p/s}=e$ .
Conversely $R_{3},$ $(2.13)$ and (2.14) imply $R_{0},$ $R_{1},$ $R_{2}$ :

$R_{0}$ : $a_{p-1}a_{p-2}\cdots a_{0}=\omega^{(p/s-1)p_{1}}a_{s- 1}\omega^{-(p/s-1)p_{1}}\omega^{(p/s- 1)p_{1}}a_{s-2}\omega^{-(p/s-1)p_{1}}$

$a_{s-1}\cdots a_{0}$ by (2.13)

$=\omega(\omega^{-p1}a_{s-1}\cdots a_{0})^{p/s}$ by $R_{3}$

$=\omega$ by (2.14)

$R_{1}$ : $a_{i+q}=a_{i+s(q/s)}$

$=\omega^{(q/s)p_{1}}a_{i}\omega^{-(q/s)p_{1}}$ by (2.13)

$=a_{i}$ by $R_{3}$

$R_{2}$ : $a_{i+p}=\omega^{(p/s)p_{1}}a_{i}\omega^{-(p/s)p_{1}}$ by (2.13)

$=\omega^{1-(q/s)q_{1}}a_{t}\omega^{-1+(q/s)q_{1}}$

$=\omega a_{t}\omega^{-1}$ by $R_{3}$ .
Thus we get the representation

$\tilde{G}(p;q;r)=\langle\omega, a_{i}(i\in Z);R_{3}, (2.13), (2.14)\rangle$ .

By the elimination of generators, one gets:

(2.15) $\tilde{G}(p;q;r)=\langle\omega, a_{0}, a_{1}, \cdots , a_{s- 1} ; (2.14), R_{3}\rangle$ .

Taking $\omega,$ $a_{0},$ $a_{1},$
$\cdots$ , $a_{s-2}$ and $b\equiv\omega^{-p_{1}}a_{s-1}a_{s-2}\cdots a_{0}$ as generators, we can rewrite

(2.15) as
$\tilde{G}(D;q;r)=\langle\omega, a_{0}, a_{1}, \cdots , a_{s- 2}, b;\omega^{a}=b^{p/s}=e\rangle$ .

Therefore one obtains the desired isomorphism

$\tilde{G}(p ; q ; r)\cong Z_{p/s}*Z_{a}*F(s-1)$ ,

completing the proof.
COROLLARY (2.16). $G(p;q;r)$ is abelian if and only if
(i) $s=1$ and $a=1i$ . $e$ . $(p, q)=1$ and $(q, r)=1$

$or$

(ii) $P=1$
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$or$

(iii) $s=2,$ $a=1$ and $p=2$ .
Namely we get:

$G(p;q;r)\cong\left\{\begin{array}{ll}Z_{pr} & if (p, q)=1, (q, r)=1\\Z_{r} & if p=1\\Z\oplus Z_{r} & if s=2, a=1 and p=2.\end{array}\right.$

PROOF. Assume that $(p, q)=(q, r)=1$ . Then by Theorem (2.12), $\omega$ is con-
tained in $Z(G(p;q;r))$ . Therefore

$G(p ; q ; r)=\langle\omega,$ $a_{i}(i\in Z)$ ; $\omega=a_{p-1}a_{p- 2}\cdots a_{1},$ $a_{i+p}=a_{i+q}=a_{i}$

for $i\in Z,$ $\omega^{\gamma}=e\rangle$

$=\langle\omega, a_{0} ; \omega=a_{0}^{p}, \omega^{r}=e\rangle$

$\cong Z_{pr}$ .
Assume that $p=1$ . Then $\omega=a_{0}$ and clearly we have

$G(1;q;r)\cong Z_{r}$ .
Assume that $s=2,$ $a=1$ and $p=2$ . Then we can write $q=2q_{1}$ and $(q_{1}, r)=1$ . $\omega$

is contained in $Z(G(2,2q_{1}, r))$ by Theorem (2.12).

$G(2;2q_{1} ; 7^{\prime})\cong\langle\omega,$ $a_{i}(i\in Z);\omega^{r}=e,$ $\omega=a_{1}a_{0},$ $a_{i}=a_{i+2}$

for $i\in Z,$ $[\omega, a_{i}]=\omega a_{i}\omega^{-1}a_{i}^{-1}=e$ for $ i\in Z\rangle$

$\cong\langle\omega, a_{0} ; \omega^{r}=e, [0_{0}, \omega]=e\rangle$

$\cong Z\oplus Z_{T}$ .
(The last case corresponds geometrically to the case that $C$ has two irreducible
components.)

COROLLARY (2.17). Assume that $P$ and $q$ are coPrime. Then $D(G(p;q;r))$

is isomorphic to $F((p-1)(a-1))$ .
PROOF. By Theorem (2.12), we have the isomorphism

$D(G(p;q;r))\cong D(Z_{p}*Z_{a})$

because $s=1$ . It is well-known that the latter is isomorphic to $F((p-1)(a-1))$ .
In [6], we gave a geometric proof of this isomorphism.

$(g_{1}\in G_{1},g_{2}\in G_{2}.Seeforexamp1e[3],prob1em34(p.197)groupandgeneratedbythesee1ements[g_{1},g_{2}]=g_{1}g_{2}g^{\frac{a}{1}1}g_{2}^{-1}forLetG_{1}andG_{2}beabe1iangroups.ThenD(G_{l}*G_{2})isf.reeGrouptheoretica11y,thisisderivedfromthenextfact.)$
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\S 3. Model of the local monodromy relation.

We consider an affine curve

(3.1) $V:y^{p}=x^{q}$

in $C^{2}$ . Let $\pi$ : $C^{2}-V\rightarrow C$ be the first projection map $i$ . $e$ . $\pi(x, y)=x$ . Then $\pi$

gives a locally trivial fibration over $C-\{0\}$ . Take generators $a_{0},$ $a_{1},$
$\cdots$ , $a_{p-1}$ of

$\pi_{1}(\pi^{-1}(1), *)$ as in Figure (3.2). (The base point $*is$ chosen so that the absolute
value of its y-coordinate is large enough.)

We consider $\pi^{-1}(\eta)(\eta\in C)$ as a subset of $C$ by the projection into the y-coordi-
nate. Let $D$ be the unit disk $\{z, |z|\leqq 1\}$ in the x-coordinate plane $C$. Then
$\pi^{-1}(D)$ is a deformation retract of $C^{2}-V$ . Let $D^{+}$ or $D^{-}$ be the upper or lower
closed half disk respectively.

Figure (3. 3)

Then $\pi^{-1}(D^{+})$ or $\pi^{-1}(D^{-})$ can be deformed into $\pi^{-1}([0,1])$ by the rotation of the
argument. Again $\pi^{-1}([0,1])$ can be deformed into $\pi^{-1}(1)$ .
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$\pi^{-1}([0,1])\cap\{|y|\leqq 2\}$

Figure (3. 4)

Therefore we have isomorphisms $\pi_{1}(\pi^{-1}(1), *)^{\sim}\rightarrow\pi_{1}(\pi^{-1}(D^{+}), *)$ and $\pi_{1}(\pi^{-1}(1), *)\simeq$

$\pi_{1}(\pi^{-1}(D^{-}), *)$ . Applying the theorem of Van Kampen to the division $\pi^{-1}(D)=$

$\pi^{-1}(D^{+})\cup\pi^{-1}(D^{-})$ ; one obtains this:
$\pi_{1}(C^{2}-V, *)$ is generated by the image of $\pi_{1}(\pi^{-1}(1), *)$ and the generating
relations are derived from the monodromy relations $i$ . $e$ . the relations which are
obtained by the deformation of the fiber $\pi^{-1}(1)$ along the circle $|x|=1$ . (This

is exactly the situation which is considered in [2].) More precisely, we get:

(3.5)

$(a_{0}=\omega^{m}a_{r}\omega^{-m}a_{1}=\omega^{m}a_{r+1}\omega^{-m}a_{p- r-1}=\omega^{m}a_{p- 1}\omega^{-m}$

$(a_{p-\gamma}=\omega^{m+1}a_{0}\omega^{-(m+1)}a_{p-1}=\omega^{m+1}a_{r-1}\omega^{-(m+1)}$

where the integers $m$ and $r$ are defined by the equation: $q=mp+r,$ $0\leqq r\leqq p-1$

and

(3.6) $\omega=a_{p- 1}a_{p-2}\cdots a_{0}$ .

To understand these relations more systematically, we introduce infinite
elements $a_{i}(i\in Z)$ by

(3.7) $a_{kp+j}=\omega^{k}a_{j}\omega^{-k}$ for $k\in Z$ and $0\leqq j\leqq p-1$ .
Then it is easy to see that (3.7) is equivalent to

(3.8) $a_{j+p}=\omega a\mu^{-1}$ for any $j\in Z$ .
Now (3.5) can be written in the following simple form

(3.9) $a_{j}=a_{j+q}$ $0\leqq j\leqq p-1$ .

By (3.8), this implies

(3.10) $a_{j}=a_{j+q}$ for anv $;\in\acute{c}$
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Thus we obtain
PROPOSITION (3.11). $\pi_{1}(C^{2}-V, *)$ is isomorphic to $G(p;q)$ .
The next corollary is important.
COROLLARY (3.12). $\pi_{1}(C^{2}-V)$ is abelian if and only if $q=1$ (or $p=1$ ) or

$P=q=2$ .
(i) In the case of $q=1$ or $p=1,$ $\pi_{1}(C^{2}-V)\cong Z$.

(ii) In the case of $p=q=2,$ $\pi_{1}(C^{2}-V)\cong Z\oplus Z$.
PROOF. Let $r=(P, q)$ and let $q_{1}=q/r$ . Then by Proposition (2.5), $\omega^{q_{1}}$ is

contained in the center. Let $N$ be the (infinite) cyclic group generated by $\omega^{q_{1}}$ .
Then the quotient group is isomorphic to $G(p;q;q_{1})$ . By Theorem (2.12),
$G(p;q;q_{1})$ is isomorphic to $Z_{p/r}*Z_{q_{1}}*F(r-1)$ . Thus for $\pi_{1}(C^{2}-V, *)$ to be
abelian, it is necessary that $p=1$ or $q=1$ or $p=q=2$ . The other direction is
immediate by the definition of $G(p;q)$ . Geometrically (ii) corresponds to the
case that $V$ has an ordinary double point at the origin.

\S 4. Representation of the fundamental group $\pi_{1}(P^{2}-C)$ .
We return to the situation of Theorem (1.3) in \S 1. Let

(4.1) $C:\prod_{j=1}^{l}(Y-\beta_{j}Z)^{\nu}!-\prod_{i=1}^{m}(X-\alpha_{i}Z)^{\lambda_{i}}=0$ .

Consider the set $U=$ { $(\alpha_{1}, \alpha_{2}, \cdots , \alpha_{m}, \beta_{1}, \cdots , \beta_{l})\in C^{l+m}$ ; the singular points of $C$

defined by (4.1) are contained in the intersection of lines: $\prod_{j=1}^{l}(Y-\beta_{j}Z)^{\nu_{j}}=$

$\prod_{i=1}^{m}(X-\alpha_{\ell}Z)^{\lambda_{i}}=0\}$ . Here $\nu_{1},$ $\nu_{2},$
$\cdots$ , $\nu_{l},$

$\lambda_{1},$ $\cdots$ , $\lambda_{m}$ are fixed. It is easy to see

that $U$ is a Zariski open set. Therefore for a given $C$ satisfying the assumption
in Theorem (1.3), we can arrange $\alpha_{1},$ $\alpha_{2},$

$\cdots$ , $\alpha_{m},$ $\beta_{1},$ $\beta_{2},$ $\cdots$ , $\beta_{l}$ at a suitable
position using the deformation of the following type:

$C_{l}$ : $\prod_{j=1}^{l}(Y-\beta_{f}(t)Z)^{\nu_{j}}-\prod_{i=1}^{m}(X-\alpha_{i}(t)Z)^{\lambda_{i}}=0$

where $(\alpha_{1}(t), \alpha_{2}(t),$ $\cdots$ , $\alpha_{m}(t),$ $\beta_{1}(l),$ $\cdots$ , $\beta_{l}(t))\in U$ for each $t$ . The topological type
of $C_{t}$ or $P^{2}-C_{t}$ is constant under the deformation. We arrange $\alpha_{1},$ $\alpha_{2},$

$\cdots$ , $\alpha_{m}$ ,
$\beta_{1},$ $\beta_{2},$ $\cdots$ , $\beta_{l}$ on the real line so that $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}$ and $\beta_{1}<\beta_{2}<\ldots<\beta_{l}$ . $U$

contains such a point by the next argument. For the calculation, we use the
method of a pencil section (Zariski, [7]).

Namely we consider the pencil

(4.2) $L_{\eta}$ : $X=\eta Z$ , $\eta\in C$ .

The center of the pencil (4.2) is the point $\infty\equiv[0;1;0]$ . We take $\infty$ as a (fixed)

base point of $P^{2}-C$ . Let $x=X/Z$ and $y=Y/Z$ be the affine coordinates of the
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chart $\{Z\neq 0\}$ . (Note that the line: $Z=0$ meets $C$ at $n$ distinct points.) In this
affine space $C^{2},$ $C$ is defined by

(4.3) $C:\prod_{j=1}^{l}(y-\beta_{j})^{v_{j}}-\prod_{i=1}^{m}(x-\alpha_{i})^{\lambda_{i}}=0$ .

The singular points of $C$ are these:

(4.4) $P_{ij}=(\alpha_{i}, \beta_{j})$ , $1\leqq i\leqq m$ ; $1\leqq j\leqq l$ such that $\lambda_{i},$ $\nu_{j}\geqq 2$ .
In a sufficiently small neighborhood of $P_{ij},$ $C$ is topologically described by

(4.5) $(y-\beta_{j})^{\nu_{j}}=c(x-\alpha_{i})^{\text{{\it \‘{A}}}_{i}}$ , ($c\neq 0$ , constant).

If a pencil line $L_{\eta}$ : $ x=\eta$ meets $C$ at $(\tilde{y}, \eta)$ with the intersection multiplicity
$\geqq 2,\tilde{y}$ is a root of the following equations.

(4.6) $\prod_{j=1}^{l}(y-\beta_{f})^{\nu_{j}}=\prod_{i=1}^{m}(\eta-\alpha_{i})^{\lambda_{i}}$

(4.7) $\sum_{j=1}^{l}\nu_{j}(y-\beta_{j})^{\nu_{j}- 1}\prod_{i\pm j}(y-\beta_{i})^{\nu_{i}}=0$ .

Considering the real function

(4.8) $f(y)=\prod_{j=1}^{l}(y-\beta_{j})^{v_{j}}$ ,

one finds that there is at least a real root $\gamma_{j}$ of (4.7) in the open interval

$(\beta_{j}, \beta_{j+1})$ for each $j=1,2,$ $\cdots$ , 1–1. Because the degree of $f^{\prime}(y)/\prod_{j=1}^{l}(y-\beta_{j})^{v}j^{-1}$ is

$l-1,$ $\gamma_{1},$ $\gamma_{2},$ $\cdots$ , $\gamma_{l-1}$ and $\beta_{j}$ such that $\nu_{j}\geqq 2,1\leqq j\leqq l$ , are the roots of (4.7). See
Figure (4.9).

Figure (4. 9) ( $n$ : odd)
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By a slight perturbation of $\beta_{j}$ if necessary, we can assume that $\{f(\gamma_{1}),$ $f(\gamma_{2}),$ $\cdots$ ,

$f(\gamma_{l-1})\}$ are mutually distinct. (This is not essential.) Let $g(x)=\prod_{i-1}^{m}(x-\alpha_{i})^{\lambda_{i}}$ .
By taking $|\alpha_{j}|$ small enough, we can assume

(4.10) $|g(x)|<minimum\{|f(\gamma_{1})|, |f(\gamma_{2})|, \cdots , |f(\gamma_{l-1})|\}$

for $\alpha_{1}-\epsilon_{0}\leqq x\leqq\alpha_{m}+\epsilon_{0}$ ( $\epsilon_{0}$ ; small enough). Then applying the same argument as
above to $g(x)$ , we can see that the roots of

(4.11) $g(x)=f(\gamma_{j})$ for $1\leqq j\leqq l-1$

are mutually distinct for each $j$ . In particular, this implies that ( $\alpha_{1},$ $\alpha_{2},$
$\cdots$ , $\alpha_{m}$ ;

$\beta_{1},$ $\cdots$ , $\beta_{l}$ ) is contained in $U$. Let $\delta_{j.1},$ $\delta_{j.2},$ $\cdots$ , $\delta_{j,n}$ be the roots of (4.11). At
each point $(\delta_{j.k}, \gamma_{j}),$ $C$ is topologically equivalent to

(4.12) $C:(y-\gamma_{j})^{2}=c\cdot(x-\delta_{j,k})$ ( $c\neq 0$ , constant).

This says that the line: $x=\delta_{j,k}$ is tangent to $C$ with the multiplicity 2. (Note

that $\gamma_{j}$ is a simple root of (4.7).)
Let $\pi$ : $C^{2}-C\rightarrow C$ be the projection into the x-coordinate. The fiber $\pi^{-1}(\eta)$

is $C^{2}\cap L_{\eta}-C\cap C^{2}\cap L_{\eta}$ . By the above consideration, $\pi$ is a locally trivial fibration
over $C-\{\alpha_{1}, \alpha_{2}, \cdots , \alpha_{m} ; \delta_{j,k}(1\leqq j\leqq l-1,1\leqq k\leqq n)\}$ . By the theorem of Van
Kampen [2] (see also \S 3), $\pi_{1}(P^{2}-C, \infty)$ is generated by the image of
$\pi_{1}(L_{\eta}-L_{\eta}\cap C, \infty)$ for any Pxed $\eta\in C-\Sigma(\Sigma=\{\alpha_{1},$ $\alpha_{2},$

$\cdots$ , $\alpha_{m}$ ; $\delta_{j,k}(1\leqq j\leqq l-1$ ,
$1\leqq k\leqq n)\})$ and the generating relations between fixed generators of $\pi_{1}(L_{\eta}-L_{\eta}\cap C$,
$\infty)$ are derived from (i) a torsion relation (see below) and (ii) the local mono-
dromy relations at $(\alpha_{i}, \beta_{j})$ or $(\delta_{j,k}, \gamma_{j})$ .

Take $\epsilon>0$ small enough so that we can find $\nu_{j}$ points of $f^{-1}(\epsilon)$ on a small
circle centered at $\beta_{j}$ $(j=1,2, \cdots , 1)$ and similarly $\lambda_{i}$ points of $g^{=1}(\epsilon)$ on a small
circle centered at $\alpha_{i}$ $(i=1,2, \cdots , m)$ . We take $\eta_{1}\in g^{-1}(\epsilon)$ on the circle with
center $\alpha_{1}$ as a base point of $ C-\Sigma$ and we take generators $a_{jk},$ $1\leqq j\leqq l$, OS $k\leqq v_{i}-1$ ,
of $\pi_{1}(L_{\eta_{1}}-L_{\eta_{1}}qC, \infty)$ as follows.

$L_{\eta_{1}}$ ; Figure (4. 13)
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$\{a_{jk}\}$ are oriented in the counterclockwise direction and are joined to $\infty$ along
the half line: { $y$ ; argument $(y)=\pi/2$}.

Let us define $\omega_{j}$ $(j=1,2, \cdots , 1)$ by

(4.14) $\omega_{j}=a_{j,\nu_{j}-1}a_{j}$ , $.,-2$
$a_{j.0}$ for $1\leqq i\leqq l-$ .

Then the torsion relation is this:

(4.15) $\omega_{1}\omega_{2}\cdots\omega_{l}=e$ .

See tbe following picture.

$L_{\eta_{1}}$ ; Figure (4. 16)

To avoid the complexity of the monodromy relations, we introduce $a_{j.k}$

$(1\leqq j\leqq l, k\in Z)$ by

(4.17) $a_{j,k+tv_{j}}=\omega_{j}^{t}a_{j,k}\omega_{j}^{-t}$ for $1\leqq j\leqq l$ and $0\leqq k\leqq v_{j}-1$ and $t\in Z$ .
Once we define $a_{j.k}$ by (4.17), they satisfy

(4.18) $a_{j}k+\nu_{j^{=\omega_{J}a_{j,k}\omega_{J}^{-1}}}$ for $1\leqq j\leqq l$ and $k\in Z$ .
First we consider the monodromy relation at $x=\alpha_{1}$ . When $x$ moves around a
small circle centered at $\alpha_{1}$ , each small circle with center $\beta_{j}$ in Figure (4.13) is
rotated by the angle $2\lambda_{1}\pi/\nu_{j}$ . Namely by the local argument in \S 3, we get

(4.19) $a_{j,k}=a_{j,k+\lambda_{1}}$ for $1\leqq j\leqq l$ and $k\in Z$ .

Now let $x=\alpha_{i}$ . Take a point $\eta_{i}$ of $g^{-1}(\epsilon)$ on a small circle with center $\alpha$ .
Note that the picture of $\pi^{-1}(\eta_{i})$ is completely the same as in Figure (4.13).

Therefore let $a_{j,k}(\eta_{i})(1\leqq j\leqq l;k\in Z)$ be the elements of $\pi_{1}(P^{2}-C, \infty)$ represented
by the loops in $\pi^{-1}(\eta_{i})\cup\{\infty\}$ corresponding to $a_{j,k}$ . Then the same argument
as above gives the relation:
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(4.20) $a_{j.k}(\eta_{i})=a_{j.k+\lambda_{i}}(\eta_{i})$ for $k\in Z$ .

To translate (4.20) into the words in $a_{j,k}$ , consider the following path $P_{i}$ . (The
circle centered at $\alpha_{i}$ is mapped to the circle $|z|=\epsilon$ by $g.$)

path $P_{i}$ : Figure (4. 21)

The deformation along the arc $S_{k}$ is nothing but the rotation of the small circle
with center $\beta_{j}$ of the angle $\theta_{k}/\nu_{j}$ for $j=1,2,$ $\cdots$ , $l$ for some $\theta_{k}$ where $\theta_{k}$ does
not depend on $j$ but only on $k$ and $i$ . The deformation along the line segment
$\sim l_{k}$ is trivial by (4.10). (Consider the points of $f(y)=t,$ $t$ : real.) Thus the de-
formation along $P_{i}$ from $\eta_{i}$ to $\eta_{1}$ is the rotation of the small circles with center

$\beta_{j}$ by $\theta/\nu_{j}$ ; $\theta=\sum_{k\Leftarrow 1}^{i}\theta_{k}$ for $j=1,2,$ $\cdots$ , $l$ . Note that $\theta=2\pi\cdot$ $a$ for some $a\in Z$ and

the rotation of the above circles with center $\beta_{j}$ by the angle $2\pi/\nu_{i}$ for $i=1,2$,
. , 1 corresponds to the transformation

$a_{j}k\rightarrow a_{j,k+1}$ for $1\leqq j\leqq l,$ $k\in Z$ .
Therefore the relation (4.20) is translated into

(4.22) $a_{j}k^{=a_{j.k+\lambda_{i}}}$ for $k\in Z$ and $1\leqq j\leqq l$ .
It is not necessary to calculate $\theta_{k}$ or $\theta$ explicitly by virtue of the periodicity of
(4.20). Thus gathering the monodromy relations at $x=\alpha_{i}(i=1,2, \cdots , m)$ , one
obtains

(4.23) $a_{j,k}=a_{j,k+\lambda_{i}}$ for $1\leqq j\leqq l,$ $1\leqq i\leqq m$ and $k\in Z$ .
Now we must read the monodromy relations at $x=\delta_{j.k}$ for $j=1,2,$ $\cdots$ , 1–1

and $k=1,2,$ $\cdots$ , $n$ . Let $\tau_{1},$ $\tau_{2},$
$\cdots$ , $\tau_{r_{1}}(0<\tau_{1}<\ldots<\tau_{r_{1}})$ be the positive numbers

of $\{f(\gamma_{1}), f(\gamma_{2}), \cdots , f(\gamma_{l=1})\}$ and let $\xi_{1},$ $\xi_{2},$ $\cdots$ , $\xi_{r_{2}}(0>\xi_{1}>\xi_{2}>\ldots>\xi_{r_{2}})$ be the nega-
tive elements of them $(r_{1}+r_{2}=l-1)$ . We consider the following loops $l_{s}(s=1$ ,
2, $\cdots$ , $r_{1}$) and $m_{p}(p=1,2, \cdots , r_{2})$ in the complex plane ($=thef$-value plane).

Each loop is based at $\epsilon$ and the half circles are of radius $\epsilon$ . Take $\gamma_{j}$ and assume
that $f(\gamma_{j})=\tau_{s}$ for example. The inverse image $g^{-1}(l_{s})$ consists of $n$ loops which
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are not necessarily disjoint but meet only at $\delta_{i}$ such that $g(\delta_{i})>0$ where $\delta_{i}$ is
a root of $g^{\prime}(x)=0$ such that $\alpha_{i}<\delta_{i}<\alpha_{i+1},$ $i=1,$ $\cdots$ , $m-1$ . Let $\alpha_{i,1},$ $\alpha_{i2},$

$\cdots$ , $\alpha_{i.\lambda_{i}}$

be the suitably ordered points of $g^{-1}(\epsilon)$ on the small circle with the center $\alpha_{i}$ .
Let $l_{i,k}$ $(k=1, \cdots , \lambda_{i})$ be the corresponding loop which is based at $\alpha_{i,k}$ . At a
$\delta_{i-1}$ as above, $l_{i-1\cdot p}$ and $l_{i,p_{y}}$ turns to the right. They are sketched as follows.

(In the case of $g(\delta_{\ell- 1})>0,$ $g(\delta_{i})<0$),

$g^{-1}(l_{s})$ in $x$-plane. Figure (4. 25)

The inverse image $f^{-1}(l_{s})$ consists of $(n-2)$ disjoint loops and two paths on the
interval $(\beta_{j}, \beta_{j+1})$ overlapping each other except the small circle part centered
at $\gamma_{j}$ .

(In the case of $0<f(\gamma_{j+1})<f(\gamma_{j})$)

y-plane. Figure (4.26)

When $ x=\eta$ moves along $l_{i,k}$ starting at $\alpha_{i,k}$ , each point of $L_{\eta}\cap C$ are deformed
along $f^{-1}(l_{s})$ . Therefore by Proposition (3.11) for $(p, q)=(2,1)$ and (4.12), we get

4.27) $a_{j,\varphi_{1^{(}}j)}(\alpha_{i.k})=a_{f+1.\varphi_{2^{(}}j)}(\alpha_{i,k})$ , $1\leqq k\leqq\lambda_{i}$

where $\varphi_{1}(j)$ and $\varphi_{2}(j)$ are integers depending only on the first ordering of $a_{j.k}$ .
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$L_{\eta}y\eta=\alpha_{i.k}$ ;
Figure (4. 8)

Using the deformation along the small circle centered at $\alpha_{i}$ , we can transform
the relation (4.27) into the fiber $x=\alpha_{i,1}$ where we may assume that $\alpha_{i,1}$ is equal
to $\eta_{i}$ defined in (4.20).

(4.29) $a_{j,\varphi_{1^{(}}j)+h}(\alpha_{i,1})=a_{j+1,\varphi z^{(j)+h}}(\alpha_{i,1})$ , $0\leqq h\leqq\lambda_{i}-1$ .
Now applying the deformation along $P_{i}$ in Figure (4.21) considered in the argu-
ment at $x=\alpha_{i}$ and using the periodicity (4.23), we obtain

(4.30) $a_{j.\varphi_{1^{(}}j)+h}=a_{j+1,\varphi 2^{(j)+h}}$ for any $h\in Z$ .

Because this relation is independent of $i$ $(i=1,2, \cdots , m)$ , the monodromy rela-
tions at $x=\delta_{j,k}$ ($k=1,2,$ $\cdots$ , n) are (4.30) in the existence of (4.23).

Applying the same argument for every $f(\gamma_{j});1\leqq j\leqq l-1$ , we obtain

(4.31) $a_{j,\varphi_{1^{(j)+k}}}=a_{j+1}\varphi_{2^{(}}j$ ) $+k$ for $1\leqq j\leqq l-1$ and $k\in Z$

where $\varphi_{1}(j)$ and $\varphi_{2}(j)$ are integers depending on $j$ . (If $f(\gamma_{j})$ is $negative_{y}$ we use
the corresponding loop $m_{p}.$) Thus the generating relations are gotten.

\S 5. Decision of the group structure.

Let $G=\pi_{1}(P^{2}-C, \infty)$ . By the above argument, $G$ is generated by $\omega_{1},$ $\omega_{2}$ .
, $\omega_{l}$ and $a_{j,k}(1\leqq j\leqq l, k\in Z)$ and their complete generating relations are these:

(5.1) $\omega_{j}=a_{j,\nu_{j}- 1}a_{j,\nu_{j}- 2}\cdots a_{j.0}$ for $1\leqq j\leqq l$

(5.2) $\omega_{1}\omega_{2}\cdots\omega_{l}=e$

(5.3) $a_{j,k+\nu_{j}}=\omega_{j}a_{j.k}\omega_{j}^{-1}$ for $1\leqq j\leqq l,$ $k\in Z$

(5.4) $a_{j,k+\lambda_{i}}=a_{j,k}$ for $1\leqq j\leqq l,$ $1\leqq i\leqq m$ and $k\in Z$

(5.5) $a_{j,k}=a_{j+1,k+d_{j}}$ for $1\leqq j\leqq l-1$ and $k\in Z$ .
(Here we Put $d_{j}=\varphi_{2}(j)-\varphi_{1}(j).$)
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By Proposition (2.9), (5.4) is equivalent to

(5.6) $a_{j,k+\lambda}=a_{j,k}$ for $1\leqq j\leqq l,$ $k\in Z$ ,

where $\lambda=(\lambda_{1}, \lambda_{2}, \cdots , \lambda_{m})$ . One can see that $(5.3)+(5.5)$ is equivalent to (5.3) $+$

(5.5) where

(5.3) $a_{j}k+\nu_{p}=\omega_{p}a_{J,k}\omega_{p}^{-1}$ for $1\leqq j,$ $p\leqq l$ and $k\in Z$ .

Let $\nu=(\nu_{1}, \nu_{2}, \cdots , \nu_{l})$ and write $\nu=k_{1}v_{1}+k_{2}\nu_{2}+\cdots+k_{l}\nu_{l}$ . Then

$aj,$ $k+\nu^{=a_{J}}k+k+\cdots+k$ by (5.3).

Expressing $\omega_{l}^{k_{l}}\omega_{l1}^{k_{\underline{l}-1}}\cdots\omega_{1}^{k_{1}}$ as a continuous product of $a_{j,k}$ ( $j$ : fixed) by (5.5) and
Proposition (2.6), we have

(5.7) $\omega_{l}^{k_{l}}\omega_{l1}^{k_{\underline{l}-1}}\cdots\omega_{1}^{k_{1}}=a_{j}$ . $- 1a_{1}$ . $- 2$ $a_{J,0}$ for $j=1,2,$ $\cdots$ , $l$ .

We put

(5.8) $\omega=a_{j\nu- 1}a_{j.\nu- 2}\cdots a_{j,0}$ for $1\leqq j\leqq l$ .

Then by the above equation, one gets:

(5.9) $a_{j}k+\nu^{=\omega a_{j}}k\omega^{-1}$ for $1\leqq j\leqq l$ and $k\in Z$ .

By $(5.8)_{y}(5.9)$ and Proposition $(2.6)_{y}$ we can write (5.1) and (5.2) as

(5.1) $\omega_{j}=\omega^{\nu_{j}/\nu}$

(5.2) $\omega^{n/\nu}=e$ .
Thus we get the representation

$G=\langle\omega,$
$\omega_{j},$ $a_{j,k}(1\leqq j\leqq l;k\in Z);(5.1)^{\prime},$ $(5.2)^{\prime},$ $(5.3)^{\prime}$ ,

(5.6), (5.5), (5.8), $(5.9)\rangle$ .

It is clear that (5.3) is contained in $(5.9)+(5.1)^{\prime}$ . Using (5.5), (5.6), (5.8) and (5.9)

are recovered from (5.6) $(j=1)$ and (5.9) $(j=1)$ . Thus

$G=\langle\omega,$
$\omega_{j},$ $a_{j.k}(1\leqq j\leqq l, k\in Z)$ ; (5.1), (5.2), (5.5), (5.6)

for $j=1,$ $(5.8)$ for $j=1,$ $(5.9)$ for $ j=1\rangle$ .
Now $(5.1)^{\prime}$ and (5.5) say that we can eliminate the generators $\omega_{1},$

$\cdots$ , $\omega_{l}$ and $a_{j}k$

$(2\leqq j\leqq l)$ . Namely one obtains finally

$G=\langle\omega,$ $a_{1,k}(k\in Z)$ ; $\omega=a_{1}$ , .-ll, $\nu-21,0$ ’

(5.6) for $j=1,$ $(5.9)$ for $j=1$ and $\omega^{n/v}=e\rangle$

$\cong G(\nu;\lambda;n/\nu)$ by the definition of $G(\nu;\lambda;n/\nu)$ .
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This completes the proof of Theorem (1.3). Now Corollary (1.4) is obtained
from Theorem (2.12), because $(\lambda/s, n/\nu)=\lambda/s$ by (1.2) where $s=(\nu, \lambda)$ .

\S 6. Examples.

In this section, we give some typical examples. By Theorem (1.3) and
Theorem (2.12), we have the criterion

(i) $\pi_{1}(P^{2}-C)$ is abelian

$\Leftrightarrow\lambda=1$ or $\nu=1$ ($C$ : irreducible)

or

$\nu=2,$ $\lambda=2$ ($C:2$ components).

(ii) $Z(\pi_{1}(P^{2}-C))$ is non-trivial and $\pi_{1}(P^{2}-C)$ is not abelian

$\Leftrightarrow n>\lambda v,$ $(\lambda, \nu)=1$ and $\lambda\neq 1,$ $\nu\neq 1$ ($C$ : irreducible)

or

$s=(\lambda, \nu)>1,$ $ ns>\lambda\nu$ except $\nu=2$ and $\lambda=2$ ($C$ : not irreducible).

(iii) $Z(\pi_{1}(P^{2}-C))$ is trivial $i$ . $e$ . $\pi_{1}(P^{2}-C)$ is centerless

$\Leftrightarrow(\lambda, \nu)=1,$ $ n=\lambda\nu$ except $\lambda=1$ or $\nu=1$

or

$s=(\lambda, v)>1,$ $ ns=\lambda\nu$ and $n>2$ .

(A) Abelian.
EXAMPLE (6.1). Let $C:X^{n}+Y^{n}+Z^{n}=0$ . Then $C$ is non-singular and

$\pi_{1}(P^{2}-C)\cong Z_{n}$ .
EXAMPLE (6.2). Let $C:(Y^{r}-Z^{T})(Y^{l}-2Z^{l})^{2}-\epsilon\cdot(X^{s}-Z^{s})(X^{m}-2Z^{m})^{2}=0$ where

$n=r+2l=s+2m$ and $\epsilon$ is a positive small number. Then $C$ has $(n-r)(n-s)/4$

ordinary double points and is irreducible if $r\geqq 1$ . $\pi_{1}(P^{2}-C)\cong Z_{n}$ .
EXAMPLE (6.3). Let $C$ be an irreducible curve of type (1.1) satisfying the

assumption in Theorem (1.3) and assume that $n$ ( $=the$ degree of $C$ ) is prime.
Then $\pi_{1}(P^{2}-C)\cong Z_{n}$ because $\lambda=1$ or $\nu=1$ .

(B) Non abelian with a non-trivial center.
EXAMPLE (6.4). Let $C:(X^{pr}+Z^{pr})^{q}+(Y^{qr}+Z^{qr})^{p}=0$ and assume that $(p, q)$

$=1$ and $P\geqq 2,$ $q\geqq 2,$ $r\geqq 2$ . Then $C$ is irreducible and

(i) $\pi_{1}(P^{2}-C)\cong G(p;q;qr)$

(ii) $Z(\pi_{1}(P^{2}-C))\cong Z_{T}$ and $\pi_{1}(P^{2}-C)/Z(\pi_{1}(P^{2}-C))\cong Z_{p}*Z_{q}$
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(iii) $D(\pi_{1}(P^{2}-C))\cong F((p-1)(q-1))$ .
$C$ has $nr(=pqr^{2})$ singular points and each of them is topologically described by
$y^{p}+x^{q}=0$ . For instance, take $p=r=2$ and $q=3$ . Then

$\pi_{1}(P^{2}-C)\cong G(2;3;6)$

$\cong\langle a, b;a^{6}=e, b^{2}=a^{3}\rangle$

$\cong SL(2, Z)$ .
EXAMPLE (6.5). Let $C:(X^{pr}+Z^{pr})^{qs}+(Y^{qr}+Z^{qr})^{ps}=0$ and assume that $(p, q)$

$=1$ and $p,$ $q,$ $r,$
$s\geqq 2$ . Then $C$ has $s$ irreducible components.

(i) $\pi_{1}(P^{2}-C)\cong G(p_{S} ; qs;qr)$

(ii) $Z(\pi_{1}(P^{2}-C))\cong Z_{T}$ and $\pi_{1}(P^{2}-C)/Z(\pi_{1}(P^{2}-C))\cong Z_{p}*Z_{q}*F(s-1)$

(iii) $D(\pi_{1}(P^{2}-C))\cong D(Z_{p}*Z_{q}*F(s-1))$ ( $=a$ free group of infinite rank).
(C) Centerless.
EXAMPLE (6.6). Let $C:(X^{p}+Z^{p})^{q}+(Y^{q}+Z^{q})^{p}=0$ and assume that $(p, q)=1$

and $p,$ $q\geqq 2$ . Then $C$ is irreducible and $C$ has $Pq$ cusp singularities. We have

$\pi_{1}(P^{2}-C)\cong Z_{p}*Z_{q}$ $(\cong G(p;q;q))$

and
$D(\pi_{1}(P^{2}-C))\cong F((p-1)(q-1))$ .

This example was first studied by Zariski [8], in the case of $p=2$ and $q=3$ .
(Then $\pi_{1}(P^{2}-C)\cong Z_{2}*Z_{8}\cong PSL(2,$ $Z)$). In our previous paper [6], we studied
this example in general case.

EXAMPLE (6.7). Let $C:(X^{p}+Z^{p})^{qr}+(Y^{q}+Z^{q})^{pr}=0$ and assume that $(p, q)$

$=1$ and $p,$ $q,$
$r\geqq 2$ . Then $C$ has $r$ irreducible components and

$\pi_{1}(P^{2}-C)\cong Z_{p}*Z_{q}*F(r-1)$ .

REMARK (6.8). Theorem (1.3) says that $C$ is irreducible if $(\nu, \lambda)=1$ . Note
that this is not necessarily true if we omit the assumption on the singular
points of $C$. For example, consider the curve $C:Y(Y-Z)^{2}-X(X-Z)^{2}=0$ . $C$

has 2 non-singular irreducible components.
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