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Let $G$ be a finite group and $D$ a skewfield. A D-representation of the group
$G$ is a homomorphism of $G$ into $GL(n, D)$ where $GL(n, D)$ is the group of all
nonsingular $n\times n$ matrices over $D$ . Equivalence, irreducibility, etc. of such
representations are defined in the usual manner.

The following question arises:
What is the number of equivalence classes of irreducible D-representations of
$G$ ? The answer to this question for the case when $D$ is a skewfield of real
quaternions was given by J. E. Houle [4] who showed that if $r$ and $r^{\prime}$ are re-
spectively the number of conjugacy classes and the number of selfinverse con-
jugacy classes of a finite group $G$ , then the number of equivalence classes of

irreducible representations of $G$ over the real quaternions is equal to $\frac{r+r^{\prime}}{2}$ .

The aim of this note is to find the group theoretical characterisation of the
number of equivalence classes of irreducible D-representations of a finite group
where $D$ is finite dimensional over its centre.

1. Notation and definitions. $D$ is a skewfield with characteristic $p\geqq 0$ . $K$

is the centre of D. $D_{n}$ is the ring of all $n\times n$ matrices over D.
$\sim K$ (respectively

$\sim)D$ is the K-equivalence (respectively D-equivalence). Let $A$ and $B$ be K-algebras.
We shall call two $(A, B)$-modules $M_{1}$ and $M_{2}$ isomorphic if and only if $M_{1}$ and
$M_{2}$ are isomorphic regarded as left A-modules and right B-modules.

Finally, let $n$ be the least common multiple of the orders of the $P^{\prime}$-elements
in $G$ and let $\epsilon$ be a primitive n-th root of unity over $K$. Let $I_{n}$ be the multi-
plicative group consisting of those integers $r$, taken modulo $n$, for which $\epsilon\rightarrow\epsilon^{r}$

defines an automorphism of $K(\epsilon)$ over $K$. Two $P^{\prime}$-elements $a,$ $b,$ $\in G$ are called
K-conjugate if $x^{-1}bx=a^{r}$ for some $x\in G$ and some $r\in I_{n}$ .

2. The number of equivalence classes of irreducible representations of a
finite group over a skewfield. If $D$ is a field we may treat the terms matrix
representation and DG-module as interchangeable. Slight modification is needed
for the case when $D$ is a skewfield. Namely, the following lemma holds.
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LEMMA. There is $a$ one-to-one correspondence between the set of all D-represen-
tations of $G$ and the set of all $(KG, D)$-modules. Moreover, any two D-represen-
tations are irreducible, completely reducible, equivalent if and only if the corre-
sp0nding $(KG, D)$-modules are irreducible, completely reducible, isomorphjc.

PROOF. If $M$ is a $(KG, D)$-module then $M$ is a left G-module and since
$(gm)\lambda=g(m\lambda)$ for any $g\in G,$ $m\in M,$ $\lambda\in D$ the module $M$ defines a D-representa-
tion of $G$ of degree $n$ , where $n$ is the dimension of $M$ as a right vector space
over $D$ . On the other hand, if $g\rightarrow\Gamma(g)$ is a D-representation of $G$ then
$\sum_{i}\alpha_{i}g_{i}\rightarrow\sum_{i}\alpha_{i}\Gamma(g_{i})(\alpha_{i}\in K, g_{i}\in G)$ is the homomorphism of the group algebra

$KG$ into $D_{n}$ and thus $\Gamma$ defines a $(KG, D)$-module $M$ where $M$ is the right
vector space of all $n\times 1$ matrices over $D$ . The proof of the second part of the
lemma is exactly the same as in the case of representations over fields (see,

for example [3]).

THEOREM. Suppose $(D:K)<\infty$ . Then the number of equivalence classes of
irreducible D-representations of $G$ is equal to the number of K-conjugacy classes
of $P^{\prime}$-elements of G. Moreover, if $\Gamma_{1},$ $\cdots$ , $\Gamma_{s}$ are all nonequivalent $K$-representa-

tions of $G$ , then $\Gamma_{i^{\sim}}^{D}n_{i}\Gamma_{i}^{\prime}$ ($i=1,$ $\cdots$ , s) where $\{\Gamma_{1}^{\prime}, \cdots , \Gamma_{s}^{\prime}\}$ are all nonequivalent
$D$-rePresentations of $G$ .

PROOF. In view of lemma it suffices to consider $(KG, D)$-modules. Let $M$

be a $(KG, D)$-module. For any $a\in KG$ the mapping $a\rightarrow a_{L}(m\rightarrow am)$ is a homo-
morphism of the group algebra $KG$ into $L=HomK(M, M)$ and $d\rightarrow d_{R}(m\rightarrow md)$

is an anti-homomorphism of $D$ into $L(d\in D, m\in M)$ .
Let $D^{\prime}$ be a skewfield anti-isomorphic to $D$ under $d^{\prime}\rightarrow d$ . The mapping

$\sum_{i=1}^{n}a_{i}\otimes d_{i}^{\prime}\rightarrow\sum_{i=1}^{n}(a_{i})_{L}(d_{i}^{\prime})_{R}$ is a homomorphism of $KG\bigotimes_{K}D^{\prime}$ into $L$ . Thus $M$ can
be regarded as a unitary $KG\bigotimes_{K}$ D’-module relative to the composition

$(\sum_{i=1}^{n}a_{t}\otimes d_{t}^{\prime})m=\sum_{i=1}^{n}a_{i}md_{i}$ . This implies that $M$ is irreducible, completely reducible,

etc. as a $(KG, D)$-module if and only if it is irreducible, completely reducible
etc. as a $KG\bigotimes_{K}$ D’-module. Isomorphisms, homomorphisms, etc. for two $(KG, D)-$

modules yield isomorphisms, homomorphisms, etc. for the corresponding $KG\bigotimes_{K}D^{\prime}-$

modules. It is clear if $M$ is a $KG\bigotimes_{K}$ D’-module then by setting $am=(a\otimes 1_{D^{\prime}})m$ ,

$md=(1_{A}\otimes d^{\prime})m,$ $a\in KG,$ $m\in M$ we can regard $M$ as a $(KG, D)$-module. Thus to
prove the theorem it is sufficient to consider all $KG\bigotimes_{K}$ D’-modules. First we

observe that
Rad $(KG\bigotimes_{K}D^{\prime})=RadKG\bigotimes_{K}D^{\prime}$ ([1], Chapter VIII, p. 7) and hence

$KG\bigotimes_{K}D^{\prime}/Rad(KG\otimes D^{\prime})=(KG\bigotimes_{K}D^{\prime})/RadKG\bigotimes_{K}D^{\prime}\cong KG/RadKG\bigotimes_{K}D^{\prime}$ . Let $\overline{A}=$

$KG/RadKG,\overline{B}=^{\frac{K}{A}}\bigotimes_{K}D^{\prime}$ . Suppose that $\overline{A}=\overline{A}e_{1}+\cdots+\overline{A}e_{s}$ is the decomposition
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of the semisimple algebra $\overline{A}$ into the direct sum of minimal two-sided ideals.
Then $e_{1},$

$\cdots$ , $e_{s}$ are all minimal central idempotents of $\overline{B}$ ([5] p. 121), $i$ . $e$ . $\overline{B}=$

$\overline{B}e_{1}+\cdots+\overline{B}e_{s}$ is the decomposition of the semisimple algebra $B$ into the direct
sum of minimal two-sided ideals. This shows that the number of equivalence
classes of irreducible D-representations of $G$ is the same as the number of
nonequivalent irreducible representations of the algebra $KG/RadKG$ . But the
last number coincides with the number of K-conjugacy classes of $P^{\prime}$ -elements of
$G$ ([2]). This proves the first part of the theorem. Finally, let $ e_{i}=e_{i1}+\cdots$

$+e_{ik_{i}}$($i=1,$ $\cdots$ , s) be the decomposition of the minimal central idempotents of $\overline{A}$

into the sum of mutually orthogonal minimal idempotents of $\overline{A}$ . Then $\overline{B}e_{i}=$

$\overline{B}e_{i1}+\cdots+\overline{B}e_{ik_{i}}$ is the decomposition of the simple component of the algebra
$\overline{B}$ into the direct sum of left ideals of $\overline{B}$ (not necessarily minimal). The fact
that all minimal left ideals of the simple algebra $\overline{B}e_{i}$ are isomorphic implies
that $\overline{B}e_{i}$ is the direct sum of minimal isomorphic left ideals. This shows that
a minimal left ideal of $\overline{A}e_{i}$ regarded as a left ideal of $\overline{B}$ is the direct sum of
isomorphic minimal left ideals of $\overline{B}$ , proving the theorem.

COROLLARY 1. [4]. Let $r$ and $r^{\prime}$ be respectively the number of conjugacy
classes and the number of self inverse conjugacy classes of the group G. Then
the number of equivalence classes of irreducible representations of $G$ over the

$r+r^{\prime}$

skewfield of real quaternions is equal to
$\overline{2}$

.
PROOF. Let $K=R$ be the real number field, then $G$ splits into R-conjugacy

classes as follows:

$ G=C_{g_{1}}\cup C_{g_{2}}\cup$ $\cup C_{gr^{\prime}}\cup[C_{h_{1}}\cup C_{h_{1}^{-1}}]\cup$ $\cup[c_{h_{k_{k}^{\cup C_{h^{-1}}]}}}$

where $C_{gt}$ is a self-inverse conjugacy class with representative $g_{i}$ $(i=1,2, \cdots , r^{\prime})$ .
$r-r^{\prime}$ $r+r^{\prime}$

Hence the number of R-conjugacy classes is equal to $r^{\prime}+=\overline{2}\overline{2}$ .

Now apply the theorem.
COROLLARY 2. Let $T_{1}$ and $T_{2}$ be irreducible $K$-representations of G. If $T_{1}$

and $T_{2}$ are D-equivalent then they are K-equivalent.

PROOF. It follows from theorem that $\tau_{1^{\sim\Gamma_{i}}}^{K},$ $T_{2^{\sim}}^{lf}\Gamma_{j}$ and $T_{1^{\sim}}^{D}n_{i}\Gamma_{i}^{\prime},$ $T_{2}^{D}\sim n_{f}\Gamma_{j}^{\prime}$

for some $1\leqq i,$ $j\leqq s$. Since $T_{1}$ and $T_{2}$ are D-equivalent, $i=j$ , proving the corollary.

ACKNOWLEDGEMENT. I wish to thank the referee for helpful suggestions.



508 G. KARPILOVSKY

References

[1] N. Bourbaki, Elements de Mathematique, Livre II, Algebra, Paris, Herman & $C^{ie}$ ,
Editeurs.

[2] S. D. Berman, The number of irreducible representations of a finite group over
an arbitrary field, Dokl. Akad. Nauk SSSR, 106 (1956), 767-769.

[3] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative
algebras, Interscience, New York and London, 1962.

[4] J. E. Houle, Finite groups of quaternion matrices, Duke Math. J., 28, No. 3 (1961),
383-386.

[5] B. L. Van der Waerden, Modern Algebra, I, Ungar, New York, 1949.

G. KARPILOVSKY
Department of Mathematics
La Trobe University
Victoria, Australia


	THEOREM. Suppose ...
	References

