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\S 1. Introduction.

Many results have recently been obtained concerning simply invariant
subspaces on compact abelian groups. The most fundamental result in this
direction is due to Helson [4] and states the existence of unitary functions in
any simply invariant subspace on compact abelian group with archimedean
ordered dual. In this paper we shall give among other things a generalization
of this result of Helson’s to the case of function algebras: Let $A$ be a logmod-
ular algebra and $m$ a representing measure for $A$ . If $g$ is a function in $L^{2}(m)$

whose zero-set is of measure zero, then the $L^{2}(m)$-closure of $Ag$ contains unitary
functions. Moreover we shall prove the following result concerning d-con-
tinuous cocycles of Helson [5]: Let $M$ be a simply invariant subspace corre-
sponding to a non-trivial $d$-continuous cocycle of some special form. Then $M$

is generated by functions with absolutely convergent Fourier series.

\S 2. Preliminaries.

Let $X$ be a compact Hausdorff space and $A$ a logmodular algebra on $X$.
As is well-known ([1], [8]), every non-zero complex homomorphism of $A$ has
unique representing measure. Let $m$ be a representing measure for $A$ . Note
that, if $m$ is not a point mass on $X$, then $m$ is a continuous measure. For
each positive number $p,$ $H^{p}(m)$ denotes the closure of $A$ in the normed space
$L^{p}(X, m)$ and $H^{\infty}(m)$ denotes the $w^{*}$-closure of $A$ in $L^{\infty}(X, m)$ . An outer function
$g$ in $H^{p}(m)$ is a function in $H^{p}(m)$ such that the closure of $Ag$ in $L^{p}(X, m)$

coincides with $H^{p}(m)$ and a unitary fuction $q$ is a function in $L^{\infty}(X, m)$ with
$|q|=1$ almost everywhere. By an invariant subspace we mean a closed subspace
$M$ of $L^{2}(X, m)$ such that $AM\subset M$. An invariant subspace $M$ is doubly invariant
if $\overline{A}M\subset M$. We shall call an invariant subspace $M$ a simply invariant if $M$ is
not doubly invariant.

Next, let $K$ be a compact abelian group, not a circle, dual to a subgroup
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$\Gamma$ of the discrete real line $R_{d}$ . $\mathfrak{U}$ is the space of all continuous analytic func-
tions on $K,$ $i$ . $e.$ , the set of all continuous functions on $K$ whose Fourier coeffi-
cients $a_{\lambda}$ vanish for all negative $\lambda$ in $\Gamma$ . Then $\mathfrak{A}$ is a Dirichlet algebra, so is
logmodular, and the normalized Haar measure $\sigma$ on $K$ is a representing measure
for $\mathfrak{A}$ . Let $T_{t}$ be the translation operator,

$T_{t}f(x)=f(x+e_{t})$ ,

where $e_{t}$ is the element of $K$ defined by $e_{t}(\lambda)=e^{it\lambda}$ for all $\lambda$ in $\Gamma$ . The mapping
from $t$ to $e_{t}$ embeds the real line $R$ continuously onto a dense subgroup $K_{0}$ of
$K$. A family of unitary functions $A=\{A_{t}\}$ in $L^{\infty}(K, \sigma)$ with the following
properties is called cocycle:

(i) $|A_{t}(x)|=1$ almost everywhere,
(ii) $A_{t}$ moves continuously in $L^{2}(K, \sigma)$ as a function of $t$,

(iii) $A_{t+u}=A_{t}T_{t}A_{u}$ for each real $t,$ $u$ in $R$ .
A cocycle is a coboundary if it is of the form $\varphi(x)\cdot\overline{\varphi(x+e_{t})}$ , where $\varphi$ is a
unitary function in $L^{\infty}(K_{y}\sigma)$ . A one to one correspondence was established in
[3] between normalized simply invariant subspaces and cocycles on $K$.

In our discussion in the forthcoming sections, we frequently use the follow-
ing lemma which is a corollary of Szg\"o’s theorem.

LEMMA 2.1. Let $A$ be a logmodular algebra on $X$ and let $m$ be a represent-
ing measure for A. If $f$ is a function in $L^{2}(X, m)$ such that $\log|f|$ is summable,
then $f=ph$ with a unitary $P$ in $L^{\infty}(X, m)$ and an outer $h$ in $L^{2}(X, m)$ . The
factoring is unique, up to a constant factor of modulus one

\S 3. Existence theorem.

Helson [4] showed that every simply invariant subspace on $K$ contains a
function $f$ in $L^{2}(K, \sigma)$ such that log $|f|$ is summable. We shall extend this
and a few other results to the case of logmodular algebras. In 3.1, 3.2, $3.5^{\prime}$

and 3.6 we assume that $A$ is a logmodular algebra on a compact Hausdorff
space $X$ and $m$ is a representing measure for $A$ . For any $g$ in $L^{2}(X, m),$ $M_{g}$

denotes the smallest invariant subspace containing $g$.
THEOREM 3.1. If the zero-set of $g$ in $L^{2}(X, m)$ is of m-measure zero, then

the invariant subspace $M_{g}$ generated by $g$ contains a function $h$ such that log $|h|$

is summable.
COROLLARY 3.2. If the zero-set of $g$ in $L^{2}(X, m)$ is of m-measure zero, then

$M_{g}$ contains a unitary function.
In order to prove Theorem 3.1, we need two lemmas.
LEMMA 3.3 ([5; Chap. 2, 5, Lemma 1]). Let $\mu$ be the normalized Haar measure

on $T^{\infty}$, the infinite dimensional torus, and $\{a_{n}\}$ be any square-summable sequence
of numbers. Then
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$\int_{T\infty}\log|\sum_{n=1}^{\infty}a_{n}e^{i\theta_{n}}|d\mu(e^{i\theta_{1}}, e^{i\theta_{2}}, )$

$\geqq\max\{\log|a_{n}| : n=1,2, 3, \}$ .
LEMMA 3.4. Let $\nu$ be a bounded positive Borel regular measure on a compact

Hausdorff space $X_{y}$ and let $E$ be a Borel subset of X. If $\nu$ is continuous, then,

for any $\alpha$ with $0\leqq\alpha\leqq 1$ , there exists Borel subset $F_{a}$ of $E$ such that $\nu(F_{\alpha})=\alpha\cdot\nu(E)$ .
Lemma 3.4 is well-known, so we omit the proof.
PROOF OF THEOREM 3.1. We may assume that $m$ is a continuous measure.

Put $Z(g)=\{x\in X:g(x)=0\}$ . By hypothesis, $m(Z(g))=0$ . Let $p=\min(1_{y}|g|^{-1})$ ,

then log $P$ is summable. Hence there is an outer function $h$ such that $|h|=p$

by Lemma 2.1. Since $M_{g}=M_{hg}$ and $hg$ is in $L^{\infty}(X, m)$ , we may assume that $g$

is in $L^{\infty}(X, m)$ , and $\Vert g\Vert_{\infty}=1$ . We set

$H_{n}=\{x\in X:1/n\leqq|g(x)|\leqq 1\}$ .
Since the complement of $\bigcup_{n=1}^{\infty}H_{n}$ is $Z(g),$ $m(\bigcup_{n\Rightarrow 1}^{\infty}H_{n})=1$ . Therefore there exists
$k_{1}$ such that $m(H_{k_{1}})>1/2$ . We can choose a Borel subset $G_{1}$ of $H_{k_{1}}$ such that
$m(G_{1})=1/2$ by Lemma 3.4. By induction, it is not hard to find sequences $\{k_{n}\}$

of indices and $\{G_{n}\}$ of Borel sets such that

$H_{k_{n}}\backslash \bigcup_{i=1}^{n-1}G_{i}\supset G_{n}$ , $m(G_{n})=2^{-n}$ .
We define $p_{n}=\min(k_{n}^{-1}, |g|^{-1})$ , so log $p_{n}$ is summable. Hence there exists an
outer function $h_{n}$ in $H^{\infty}(m)$ such that $|h_{n}|=p_{n}$ . Note that $h_{n}g$ is in $M_{g}$ and
$|h_{n}g|=1$ on $G_{n}$ . Since $\Vert h_{n}g\Vert_{2}\leqq 1$ , the function

$F_{\theta}(x)=\sum_{n=1}^{\infty}n^{-2}e^{i\theta_{n}}(h_{n}g)(x)$

is in $M_{g}$ for any point $\theta=(\theta_{1}, \theta_{2}, )$ in $T^{\infty}$. By Fubini’s theorem and Lemma
3.3, we have

$\int_{T\infty}\int_{X}\log|F_{\theta}(x)|dm(x)d\mu(\theta)$

$\geqq\int\sup_{Xn}$ log $|n^{-2}(h_{n}g)(x)|dm(x)$

$\geqq\sum_{n=1}^{\infty}\int_{G_{n}}\log(n^{-2})dm(x)$

$=\sum_{n=1}^{\infty}\log(n^{-2})2^{-n}>-\infty$ .
Therefore log $|F_{\theta}(x)|$ is summable for $\mu$ -almost all $\theta$ in $T^{\infty}$ . This completes
the proof.

Next we shall give a generalization of one result in [4]. For any family
$\mathcal{F}$ of measurable functions, we write:
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$|\mathcal{F}|=$ { $|f|$ : $f$ is in $\mathcal{F}$ }.

PROPOSITION 3.5. SuppOse that $H^{\infty}(m)$ is maximal among $w^{*}$-closed subalgebras

of $L^{\infty}(X, m)$ . If $M$ is simply invariant subspace, then $|M|=|H^{2}(m)|$ .
PROOF. Let $\tilde{M}$ be the set of all $h$ in $L^{2}(X, m)$ such that $fh$ is in $H^{1}(m)$

for all $f$ in $M$. Then $\tilde{M}$ is a simply invariant subspace. It follows from $S$ zg\"o $s$

theorem that the space of all bounded functions in $M$ (resp. $\tilde{M}$ ) is dense in $M$

(resp. $\tilde{M}$ ). Since $M$ and $\tilde{M}$ are simply invariant, we see that there exist a
bounded function $f$ in $M$ and a bounded function $g$ in $\tilde{M}$ such that $fg$ is not
identically equal to zero. Since $fg$ is in $H^{\infty}(m)$ , it follows from [9; Theorem]

that $Z(f)$ and $Z(g)$ are m-measure zero. Therefore, we see that both $M$ and
$\tilde{M}$ have unitary functions by Corollary 3.2. Thus we have $|M|=|H^{2}(m)|$ .

PROPOSITION 3.6. If $g$ is a continuous function such that the zero set of $g$,
$Z(g)$ , is of m-measure zero, then $M_{g}$ contains a continuous function $h$ such that
log $|h|$ is in $L^{1}(X, m)$ .

PROOF. We may assume that $m$ is a continuous measure and $\Vert g\Vert_{\infty}=1$ .
Since $A$ is logmodular, for any positive real-valued continuous function $p$ and
any given $\epsilon>0$, we can find $f$ in $A$ such that $\Vert|f|-p\Vert_{\infty}<\epsilon$ . Let $H_{k_{n}}$ and $G_{n}$

be as in the proof of Theorem 3.1. Put $h_{n}=\min(n, |g|^{-1})$ , so $h_{n}$ is positive
continuous function on $X$. Therefore there exists $f_{n}$ in $A$ such that $\Vert|f_{n}|-h_{n}\Vert_{\infty}$

$<2^{-1}$ . Since

$\Vert h_{n}|g|-|f_{n}g|\Vert_{\infty}<2^{-1}$ and $|h_{n_{k}}g|=1$ on $G_{k}$ ,

we have $|f_{n_{k}}g|>2^{-1}$ on $G_{k}$ . On the other hand, $\Vert f_{n}g\Vert_{\infty}<3/2$ , so for any $\theta$

$=(\theta_{1}, \theta_{2}, )$ in $T^{\infty}$,

$F_{\theta}(x)=\sum_{n=1}^{\infty}n^{-2}e^{t\theta_{n}}(f_{n}g)(x)$

is a continuous function in $M_{g}$ . And we can see log $|F_{\theta}(x)|$ is in $L^{1}(X, m)$ for
$\mu$-almost all $\theta$ by the same way as in the proof of Theorem 3.1. This com-
pletes the proof.

REMARK. We put $X=K$, a compact abelian group, not a circle, which has an
archimedean ordered dual, then there exists a continuous function $f$ such that

$\rho(f)=\int_{-\infty}^{\infty}\log|f(x+e_{t})|\frac{1}{1+t^{2}}dt>-\infty$

and log $|f|$ is not in $L^{1}(K, \sigma)$ . So $M_{f}$ is simply invariant, for it is known that
this is the case if and only if $\rho(f)>-\infty$ (cf. [5; Theorem 22]). By Proposition
3.6, we see that $M_{f}$ contains a continuous function $h$ such that log $|h|$ is in
$L^{1}(K, \sigma)$ .

We can extend Theorem 3.1 to the case of $w^{*}$-Dirichlet algebras which
were introduced by Srinivasan and Wang [10]. Recall that by definition a
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$w^{*}$-Dirichlet algebra is an algebra $A$ of essentially bounded measurable function
on a probability measure space (X, $\mathfrak{B},$ $m$) such that $A$ contains constant func-
tions, $A+\overline{A}$ is $w^{*}$-dense in $L^{\infty}(X, m)$ , and $m$ is multiplicative on $A$ (cf. [10]).

We define $H^{p}(m),$ $ 0<p\leqq\infty$ , and invariant subspaces in the same way as in
section 2.

PROPOSITION 3.7. Let $A$ be a $w^{*}$-Dirichlet algebra on a probability measure
space(X, $\mathfrak{B},$ $m$). If the zero-set of $g$ in $L^{2}(X, m)$ is of m-measure zero, then $M_{g}$

contains a function $h$ in $L^{2}(X, m)$ such that log $|h|$ is summable.
PROOF. We may regard $H^{\infty}(m)$ as a logmodular algebra on $\Omega$ which is the

maximal ideal space of $L^{\infty}(X, m)$ . On the other hand, the zero-set of Gelfand
transform of $g$ has $\hat{m}$-measure zero, where $\hat{m}$ is the Radonization of $m$ (cf. [10;
2.4]). Therefore Proposition 3.7 follows from Theorem 3.1.

\S 4. $\mathcal{A}$-continuous cocycles.

Let di be the Banach algebra of all functions on $K$ which have absolutely
convergent Fourier series. $A$ cocycle $A=\{A_{t}\}$ is a $\mathcal{A}_{H}$ -cocycle if there exist a
unitary function $q$ in $d$ and a function $m$ in $\mathcal{A}$ with Fourier coefficient $m_{\lambda}$

satisfying
$\sum_{0<\lambda<1}|m_{\lambda}$ log $\lambda|<\infty$

such that

$A(t, x)=\exp\{i\int_{0}^{t}m(x+e_{u})du\}\cdot q(x)\overline{q(x+e_{t})}$ .

Note that $d_{H}$-cocycle is an $d$-continuous cocycle, $i$ . $e.,$ $A_{t}\in \mathcal{A}$ for all $t$ in $R$ .
Helson [5; Theorem 31] has shown that any simply invariant subspace corres-
ponding to $d_{H}$-cocycle has non-null elements of $d$ (cf. [11; Theorem 2]). In
this section we shall show that non-trivial invariant subspaces of this sort are
generated by elements of $d$ , and give some remarks on closed ideals in function
algebra $\mathfrak{A}$ which consists of all generalized analytic functions.

THEOREM 4.1. Let $M$ be a simply invariant subspace correspOnding to a non-
trivial $\mathcal{A}_{H}$-cocycle. Then $M$ is generated by two unitary functions in $d$ .

In order to prove Theorem 4.1, we need the following lemmas. The first
one is a weaker version of [5; Theorem 32].

LEMMA 4.2. If $f$ is an element of $d$ and non-vanishing on $K$ (so log $|f|$ is
in $L^{1}(K, \sigma))$ , then the unitary and outer factors of $f$ are both in $d$ .

LEMMA 4.3. If $ f_{1y}\ldots$ , $f_{n}$ are continuous functions which have no common
zeros on $K$, then there exist trigonometric polynomials $p_{1},$ $\cdots$ , $p_{n}$ such that plfl
$+\cdots+p_{n}f_{n}$ is non-vanishing on $K$.

PROOF. $C(K)$ denotes the space of all complex-valued continuous functions
on $K$. Let $J$ be the closed ideal of $C(K)$ generated by $f_{1},$ $\cdots$ , $f_{n}$ . Since $f_{1},$ $\cdots$ , $f_{n}$
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have no common zeros and the maximal ideal space of $C(K)$ is $K,$ $J$ coin-
cides with $C(K)$ . Since the set of all trigonometric polynomials is dense in
$C(K)$ , it follows that there exist trigonometric polynomials $p_{1},$ $\cdots$ , $p_{n}$ such that
$p_{1}f_{1}+\cdots+p_{n}f_{n}$ is non-vanishing on $K$.

PROOF OF THEOREM 4.1. We can find $g$ in $M$ such that $g$ is an element
of $\mathcal{A}$ and $g$ is orthogonal to $\chi_{-,\vee\cdot M}$ for some positive $\tau$ in $\Gamma$ (cf. [5; Theorem
31]). Since

$x+K_{0}=$ {$x+e_{t}$ ; $t$ in $R$ }

is dense in $K$, there exist $t_{1},$ $\cdots$ , $t_{n}$ such that $g,$ $T_{t_{1}}g,$ $\cdots$ , $T_{t_{n}}g$ have no common
zeros. Since

$A_{t}T_{t}g=-\int_{0}^{\tau}e^{it\lambda}dP_{\lambda}g$

for the orthogonal projection $P_{\lambda}$ from $L^{2}(K, \sigma)$ to $\chi_{\lambda}M$, it follows that $A_{t_{1}}T_{t_{1}}g$,
... , $A_{t_{n}}T_{\mathfrak{r}_{n}}g$ are continuous functions in $M$. From Lemma 4.3, we have trigono-
metric polynomials $p_{0},$ $\cdots$ , $p_{n}$ such that

$F^{\prime}=p_{0}g+p_{1}A_{t_{1}}T_{t_{1}}g+\cdots+p_{n}A_{\iota_{n}}T_{t_{n}}g$

is non-vanishing on $K$. Since $p_{0},$ $\cdots$ , $p_{n}$ are trigonometric polynomials, there
exists a positive $\lambda$ in $\Gamma$ such that $\chi_{\lambda}p_{0},$ $\cdots$ , $x_{\lambda}p_{n}$ are analytic trigonometric
polynomials. Hence $F=x_{\lambda}\cdot F^{\prime}$ is an element of $d\cap M$ which is orthogonal to
$\chi_{\tau+\lambda}\cdot M$. We see that there exists a $G$ in $d\cap M$ such that $G$ is orthogonal to
$\chi_{\tau+\lambda}.M$ and is not contained in $\chi_{\nu}M$ for any positive $\nu$ in $\Gamma$ . In fact, if $F$ is
in $\chi_{\nu_{1}}M$ for some positive $\nu_{1}$ in $\Gamma$, then there exists a positive $\mu_{1}$ such that
$F_{1}=\overline{\chi}_{\mu_{1}}F$ is contained in $M$ and not in $\chi_{\nu_{1}}M$. But $F_{1}$ may be contained in $\chi_{\nu_{2}}.M$

where $0<\nu_{2}<(1/2)\nu_{1}$ . Repeat the procedure to find a function $F_{2}$ in $M$ and is
not in $\chi_{\nu_{2}}M$. We continue in this way infinitely if necessary. $\Vert\cdot\Vert_{\leftrightarrow q}$ denotes
the norm of $A$ , and set

$G=F+\sum_{n=1}^{\infty}a\cdot F_{n}2^{-(n+1)}\Vert F_{n}\Vert_{d}^{-1}$

where $ a=\min$ { $|F(x)|$ ; $x$ in $K$ }. Then it is not hard to see that $G$ has the
desired properties (cf. [11; Theorem 3]). Since log $|G|$ is summable, $G=qh$

where $q$ is unitary and $h$ is outer. By Lemma 4.2, $q$ and $h$ are both elements
in $d$ . So $B(t, x)=A(t, x)\overline{q(x)}q(x+e_{t})$ is an $d$-continuous cocycle. By the same
way as in the proof of [5; Theorem 26], we see that $B(t, x)$ is a Blaschke
cocycle such that the zeros of $B(z, x)$ do not accumulate on the real axis for
almost all $x$. From the proof of [5; Theorem 33], we can choose $u$ in $R$ such
that $q$ and $A_{u}T_{u}q$ generate $M$. Tbis completes the proof.

PROPOSITION 4.4. There exist non-trivial analytic (Blaschke type) $d_{H}$-cocycles.
PROOF. We can construct non-trivial $d_{H}$-cocycles by a method similar to
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the one used in [6]. From the proof of Theorem 4.1, we have the existence
of such cocycles.

COROLLARY 4.5. Let $\mathfrak{A}$ be the function algebra which consists of all con-
tinuous analytic functions on K. Then there exists a closed ideal I in $\mathfrak{A}$ such
that the $L^{2}(K, \sigma)$-closure of I has a non-trivial cocycle.

PROOF. Let $A=\{A_{t}\}$ be a non-trivial $d_{H}$-cocycle which is analytic, and let
$M$ be the simply invariant subspace corresponding to $\overline{A}=\{\overline{A}_{t}\}$ . Since $A$ is
analytic, $M$ is contained in $H^{2}(\sigma)$ (cf. [5; Theorem 21]). On the other hand, $M$

is generated by elements of $d$ by Theorem 4.1. We set $I$ is the set of all
continuous functions in $M$. Then $I$ is a closed ideal of $\mathfrak{A}$ which has desired
properties.

REMARK. The closed ideals of the disc algebra are completely known (see

[2]). But it must be difficult to describe the closed ideals of function algebra
which consists of all generalized analytic functions by the similar way as in
[2]. The corollary above shows that there exists an ideal whose $L^{2}(K, \sigma)-$

closure is a peculiar invariant subspace.
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Added in proof: After this paper was submitted, the author has found
another proof of Theorem 3.1. For the proof, see our paper: A note on Helson’s
existence theorem, which will appear in Proc. Amer. Math. Soc.
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