Some remarks on simply invariant subspaces on compact abelian groups

By Jun-ichi TANAKA

(Received Jan. 17, 1977) (Revised Sept. 28, 1977)

§1. Introduction.

Many results have recently been obtained concerning simply invariant subspaces on compact abelian groups. The most fundamental result in this direction is due to Helson [4] and states the existence of unitary functions in any simply invariant subspace on compact abelian group with archimedean ordered dual. In this paper we shall give among other things a generalization of this result of Helson's to the case of function algebras: Let A be a logmodular algebra and m a representing measure for A. If g is a function in $L^2(m)$ whose zero-set is of measure zero, then the $L^2(m)$ -closure of Ag contains unitary functions. Moreover we shall prove the following result concerning \mathcal{A} -continuous cocycles of Helson [5]: Let M be a simply invariant subspace corresponding to a non-trivial \mathcal{A} -continuous cocycle of some special form. Then Mis generated by functions with absolutely convergent Fourier series.

§2. Preliminaries.

Let X be a compact Hausdorff space and A a logmodular algebra on X. As is well-known ([1], [8]), every non-zero complex homomorphism of A has unique representing measure. Let m be a representing measure for A. Note that, if m is not a point mass on X, then m is a continuous measure. For each positive number p, $H^p(m)$ denotes the closure of A in the normed space $L^p(X, m)$ and $H^{\infty}(m)$ denotes the w*-closure of A in $L^{\infty}(X, m)$. An outer function g in $H^p(m)$ is a function in $H^p(m)$ such that the closure of Ag in $L^p(X, m)$ coincides with $H^p(m)$ and a unitary function q is a function in $L^{\infty}(X, m)$ with |q|=1 almost everywhere. By an invariant subspace we mean a closed subspace M of $L^2(X, m)$ such that $AM \subset M$. An invariant subspace M is doubly invariant if $\overline{A}M \subset M$. We shall call an invariant subspace M a simply invariant if M is not doubly invariant.

Next, let K be a compact abelian group, not a circle, dual to a subgroup

J. TANAKA

 Γ of the discrete real line R_d . \mathfrak{A} is the space of all continuous analytic functions on K, i.e., the set of all continuous functions on K whose Fourier coefficients a_{λ} vanish for all negative λ in Γ . Then \mathfrak{A} is a Dirichlet algebra, so is logmodular, and the normalized Haar measure σ on K is a representing measure for \mathfrak{A} . Let T_t be the translation operator,

$$T_t f(x) = f(x + e_t)$$
,

where e_t is the element of K defined by $e_t(\lambda) = e^{it\lambda}$ for all λ in Γ . The mapping from t to e_t embeds the real line R continuously onto a dense subgroup K_0 of K. A family of unitary functions $A = \{A_t\}$ in $L^{\infty}(K, \sigma)$ with the following properties is called *cocycle*:

- (i) $|A_t(x)| = 1$ almost everywhere,
- (ii) A_t moves continuously in $L^2(K, \sigma)$ as a function of t,
- (iii) $A_{t+u} = A_t T_t A_u$ for each real t, u in R.

A cocycle is a *coboundary* if it is of the form $\varphi(x) \cdot \overline{\varphi(x+e_t)}$, where φ is a unitary function in $L^{\infty}(K, \sigma)$. A one to one correspondence was established in [3] between normalized simply invariant subspaces and cocycles on K.

In our discussion in the forthcoming sections, we frequently use the following lemma which is a corollary of Szgö's theorem.

LEMMA 2.1. Let A be a logmodular algebra on X and let m be a representing measure for A. If f is a function in $L^2(X, m)$ such that $\log |f|$ is summable, then f=ph with a unitary p in $L^{\infty}(X, m)$ and an outer h in $L^2(X, m)$. The factoring is unique, up to a constant factor of modulus one.

§ 3. Existence theorem.

Helson [4] showed that every simply invariant subspace on K contains a function f in $L^2(K, \sigma)$ such that $\log |f|$ is summable. We shall extend this and a few other results to the case of logmodular algebras. In 3.1, 3.2, 3.5, and 3.6 we assume that A is a logmodular algebra on a compact Hausdorff space X and m is a representing measure for A. For any g in $L^2(X, m)$, M_g denotes the smallest invariant subspace containing g.

THEOREM 3.1. If the zero-set of g in $L^2(X, m)$ is of m-measure zero, then the invariant subspace M_g generated by g contains a function h such that $\log |h|$ is summable.

COROLLARY 3.2. If the zero-set of g in $L^2(X, m)$ is of m-measure zero, then M_g contains a unitary function.

In order to prove Theorem 3.1, we need two lemmas.

LEMMA 3.3 ([5; Chap. 2, 5, Lemma 1]). Let μ be the normalized Haar measure on T^{∞} , the infinite dimensional torus, and $\{a_n\}$ be any square-summable sequence of numbers. Then

$$\int_{T_{\infty}} \log \left| \sum_{n=1}^{\infty} a_n e^{i\theta_n} \right| d\mu(e^{i\theta_1}, e^{i\theta_2}, \cdots)$$

$$\geq \max \{ \log |a_n| : n=1, 2, 3, \cdots \}.$$

LEMMA 3.4. Let ν be a bounded positive Borel regular measure on a compact Hausdorff space X, and let E be a Borel subset of X. If ν is continuous, then, for any α with $0 \le \alpha \le 1$, there exists Borel subset F_{α} of E such that $\nu(F_{\alpha}) = \alpha \cdot \nu(E)$. Lemma 3.4 is well known so we omit the proof

Lemma 3.4 is well-known, so we omit the proof.

PROOF OF THEOREM 3.1. We may assume that *m* is a continuous measure. Put $Z(g) = \{x \in X : g(x) = 0\}$. By hypothesis, m(Z(g)) = 0. Let $p = \min(1, |g|^{-1})$, then log *p* is summable. Hence there is an outer function *h* such that |h| = p by Lemma 2.1. Since $M_g = M_{hg}$ and hg is in $L^{\infty}(X, m)$, we may assume that *g* is in $L^{\infty}(X, m)$, and $||g||_{\infty} = 1$. We set

$$H_n = \{x \in X : 1/n \le |g(x)| \le 1\}.$$

Since the complement of $\bigcup_{n=1}^{\infty} H_n$ is Z(g), $m(\bigcup_{n=1}^{\infty} H_n)=1$. Therefore there exists k_1 such that $m(H_{k_1})>1/2$. We can choose a Borel subset G_1 of H_{k_1} such that $m(G_1)=1/2$ by Lemma 3.4. By induction, it is not hard to find sequences $\{k_n\}$ of indices and $\{G_n\}$ of Borel sets such that

$$H_{k_n} \setminus \bigcup_{i=1}^{n-1} G_i \supset G_n, \qquad m(G_n) = 2^{-n}.$$

We define $p_n = \min(k_n^{-1}, |g|^{-1})$, so $\log p_n$ is summable. Hence there exists an outer function h_n in $H^{\infty}(m)$ such that $|h_n| = p_n$. Note that $h_n g$ is in M_g and $|h_n g| = 1$ on G_n . Since $||h_n g||_2 \leq 1$, the function

$$F_{\theta}(x) = \sum_{n=1}^{\infty} n^{-2} e^{i\theta_n} (h_n g)(x)$$

is in M_g for any point $\theta = (\theta_1, \theta_2, \dots)$ in T^{∞} . By Fubini's theorem and Lemma 3.3, we have

$$\begin{split} \int_{T\infty} \int_{\mathcal{X}} \log |F_{\theta}(x)| dm(x) d\mu(\theta) \\ & \geq \int_{\mathcal{X}} \sup_{n} \log |n^{-2}(h_{n}g)(x)| dm(x) \\ & \geq \sum_{n=1}^{\infty} \int_{G_{n}} \log (n^{-2}) dm(x) \\ & = \sum_{n=1}^{\infty} \log (n^{-2}) 2^{-n} > -\infty \,. \end{split}$$

Therefore $\log |F_{\theta}(x)|$ is summable for μ -almost all θ in T^{∞} . This completes the proof.

Next we shall give a generalization of one result in [4]. For any family \mathcal{F} of measurable functions, we write:

J. TANAKA

$$|\mathcal{F}| = \{|f| : f \text{ is in } \mathcal{F}\}.$$

PROPOSITION 3.5. Suppose that $H^{\infty}(m)$ is maximal among w*-closed subalgebras of $L^{\infty}(X, m)$. If M is simply invariant subspace, then $|M| = |H^2(m)|$.

PROOF. Let \tilde{M} be the set of all h in $L^2(X, m)$ such that fh is in $H^1(m)$ for all f in M. Then \tilde{M} is a simply invariant subspace. It follows from Szgö's theorem that the space of all bounded functions in M (resp. \tilde{M}) is dense in M (resp. \tilde{M}). Since M and \tilde{M} are simply invariant, we see that there exist a bounded function f in M and a bounded function g in \tilde{M} such that fg is not identically equal to zero. Since fg is in $H^{\infty}(m)$, it follows from [9; Theorem] that Z(f) and Z(g) are *m*-measure zero. Therefore, we see that both M and \tilde{M} have unitary functions by Corollary 3.2. Thus we have $|M| = |H^2(m)|$.

PROPOSITION 3.6. If g is a continuous function such that the zero set of g, Z(g), is of m-measure zero, then M_g contains a continuous function h such that $\log |h|$ is in $L^1(X, m)$.

PROOF. We may assume that m is a continuous measure and $||g||_{\infty}=1$. Since A is logmodular, for any positive real-valued continuous function p and any given $\varepsilon > 0$, we can find f in A such that $|||f| - p||_{\infty} < \varepsilon$. Let H_{k_n} and G_n be as in the proof of Theorem 3.1. Put $h_n = \min(n, |g|^{-1})$, so h_n is positive continuous function on X. Therefore there exists f_n in A such that $|||f_n| - h_n||_{\infty}$ $< 2^{-1}$. Since

$$||h_n|g| - |f_ng||_{\infty} < 2^{-1}$$
 and $|h_{n_k}g| = 1$ on G_k ,

we have $|f_{n_k}g| > 2^{-1}$ on G_k . On the other hand, $||f_ng||_{\infty} < 3/2$, so for any $\theta = (\theta_1, \theta_2, \dots)$ in T^{∞} ,

$$F_{\theta}(x) = \sum_{n=1}^{\infty} n^{-2} e^{i\theta_n} (f_n g)(x)$$

is a continuous function in M_g . And we can see $\log |F_{\theta}(x)|$ is in $L^1(X, m)$ for μ -almost all θ by the same way as in the proof of Theorem 3.1. This completes the proof.

REMARK. We put X=K, a compact abelian group, not a circle, which has an archimedean ordered dual, then there exists a continuous function f such that

$$\rho(f) = \int_{-\infty}^{\infty} \log |f(x+e_t)| \frac{1}{1+t^2} dt > -\infty$$

and $\log |f|$ is not in $L^{1}(K, \sigma)$. So M_{f} is simply invariant, for it is known that this is the case if and only if $\rho(f) > -\infty$ (cf. [5; Theorem 22]). By Proposition 3.6, we see that M_{f} contains a continuous function h such that $\log |h|$ is in $L^{1}(K, \sigma)$.

We can extend Theorem 3.1 to the case of w^* -Dirichlet algebras which were introduced by Srinivasan and Wang [10]. Recall that by definition a

 w^* -Dirichlet algebra is an algebra A of essentially bounded measurable function on a probability measure space (X, \mathfrak{B}, m) such that A contains constant functions, $A + \overline{A}$ is w^* -dense in $L^{\infty}(X, m)$, and m is multiplicative on A (cf. [10]). We define $H^p(m)$, 0 , and invariant subspaces in the same way as insection 2.

PROPOSITION 3.7. Let A be a w^{*}-Dirichlet algebra on a probability measure space (X, \mathfrak{B}, m) . If the zero-set of g in $L^2(X, m)$ is of m-measure zero, then M_g contains a function h in $L^2(X, m)$ such that $\log |h|$ is summable.

PROOF. We may regard $H^{\infty}(m)$ as a logmodular algebra on Ω which is the maximal ideal space of $L^{\infty}(X, m)$. On the other hand, the zero-set of Gelfand transform of g has \hat{m} -measure zero, where \hat{m} is the Radonization of m (cf. [10; 2.4]). Therefore Proposition 3.7 follows from Theorem 3.1.

§ 4. \mathcal{A} -continuous cocycles.

Let \mathcal{A} be the Banach algebra of all functions on K which have absolutely convergent Fourier series. A cocycle $A = \{A_t\}$ is a \mathcal{A}_H -cocycle if there exist a unitary function q in \mathcal{A} and a function m in \mathcal{A} with Fourier coefficient m_λ satisfying

$$\sum_{0 \leq \lambda \leq 1} |m_{\lambda} \log \lambda| < \infty$$

such that

$$A(t, x) = \exp\left\{i\int_{0}^{t} m(x+e_u)du\right\} \cdot q(x)\overline{q(x+e_t)}.$$

Note that \mathcal{A}_H -cocycle is an \mathcal{A} -continuous cocycle, i. e., $A_t \in \mathcal{A}$ for all t in R. Helson [5; Theorem 31] has shown that any simply invariant subspace corresponding to \mathcal{A}_H -cocycle has non-null elements of \mathcal{A} (cf. [11; Theorem 2]). In this section we shall show that non-trivial invariant subspaces of this sort are generated by elements of \mathcal{A} , and give some remarks on closed ideals in function algebra \mathfrak{A} which consists of all generalized analytic functions.

THEOREM 4.1. Let M be a simply invariant subspace corresponding to a nontrivial \mathcal{A}_H -cocycle. Then M is generated by two unitary functions in \mathcal{A} .

In order to prove Theorem 4.1, we need the following lemmas. The first one is a weaker version of [5; Theorem 32].

LEMMA 4.2. If f is an element of \mathcal{A} and non-vanishing on K (so log |f| is in $L^1(K, \sigma)$), then the unitary and outer factors of f are both in \mathcal{A} .

LEMMA 4.3. If f_1, \dots, f_n are continuous functions which have no common zeros on K, then there exist trigonometric polynomials p_1, \dots, p_n such that $p_1f_1 + \dots + p_nf_n$ is non-vanishing on K.

PROOF. C(K) denotes the space of all complex-valued continuous functions on K. Let J be the closed ideal of C(K) generated by f_1, \dots, f_n . Since f_1, \dots, f_n have no common zeros and the maximal ideal space of C(K) is K, J coincides with C(K). Since the set of all trigonometric polynomials is dense in C(K), it follows that there exist trigonometric polynomials p_1, \dots, p_n such that $p_1f_1 + \dots + p_nf_n$ is non-vanishing on K.

PROOF OF THEOREM 4.1. We can find g in M such that g is an element of \mathcal{A} and g is orthogonal to $\chi_{\tau} \cdot M$ for some positive τ in Γ (cf. [5; Theorem 31]). Since

$$x+K_0=\{x+e_t; t \text{ in } R\}$$

is dense in K, there exist t_1, \dots, t_n such that $g, T_{t_1}g, \dots, T_{t_n}g$ have no common zeros. Since

$$A_t T_t g = -\int_0^\tau e^{it\lambda} dP_\lambda g$$

for the orthogonal projection P_{λ} from $L^2(K, \sigma)$ to $\chi_{\lambda} \cdot M$, it follows that $A_{t_1}T_{t_1}g$, \cdots , $A_{t_n}T_{t_n}g$ are continuous functions in M. From Lemma 4.3, we have trigonometric polynomials p_0, \cdots, p_n such that

$$F' = p_0 g + p_1 A_{t_1} T_{t_1} g + \dots + p_n A_{t_n} T_{t_n} g$$

is non-vanishing on K. Since p_0, \dots, p_n are trigonometric polynomials, there exists a positive λ in Γ such that $\chi_{\lambda}p_0, \dots, \chi_{\lambda}p_n$ are analytic trigonometric polynomials. Hence $F = \chi_{\lambda} \cdot F'$ is an element of $\mathcal{A} \cap M$ which is orthogonal to $\chi_{\tau+\lambda} \cdot M$. We see that there exists a G in $\mathcal{A} \cap M$ such that G is orthogonal to $\chi_{\tau+\lambda} \cdot M$ and is not contained in $\chi_{\nu} \cdot M$ for any positive ν in Γ . In fact, if F is in $\chi_{\nu_1} \cdot M$ for some positive ν_1 in Γ , then there exists a positive μ_1 such that $F_1 = \bar{\chi}_{\mu_1} F$ is contained in M and not in $\chi_{\nu_1} \cdot M$. But F_1 may be contained in $\chi_{\nu_2} \cdot M$ where $0 < \nu_2 < (1/2)\nu_1$. Repeat the procedure to find a function F_2 in M and is not in $\chi_{\nu_2} \cdot M$. We continue in this way infinitely if necessary. $\|\cdot\|_{\mathcal{A}}$ denotes the norm of \mathcal{A} , and set

$$G = F + \sum_{n=1}^{\infty} a \cdot F_n 2^{-(n+1)} \|F_n\|_{\mathcal{A}}^{-1}$$

where $a=\min\{|F(x)|; x \text{ in } K\}$. Then it is not hard to see that G has the desired properties (cf. [11; Theorem 3]). Since $\log |G|$ is summable, G=qh where q is unitary and h is outer. By Lemma 4.2, q and h are both elements in \mathcal{A} . So $B(t, x)=A(t, x)\overline{q(x)}q(x+e_t)$ is an \mathcal{A} -continuous cocycle. By the same way as in the proof of [5; Theorem 26], we see that B(t, x) is a Blaschke cocycle such that the zeros of B(z, x) do not accumulate on the real axis for almost all x. From the proof of [5; Theorem 33], we can choose u in R such that q and A_uT_uq generate M. This completes the proof.

PROPOSITION 4.4. There exist non-trivial analytic (Blaschke type) \mathcal{A}_H -cocycles. PROOF. We can construct non-trivial \mathcal{A}_H -cocycles by a method similar to the one used in [6]. From the proof of Theorem 4.1, we have the existence of such cocycles.

COROLLARY 4.5. Let \mathfrak{A} be the function algebra which consists of all continuous analytic functions on K. Then there exists a closed ideal I in \mathfrak{A} such that the $L^2(K, \sigma)$ -closure of I has a non-trivial cocycle.

PROOF. Let $A = \{A_t\}$ be a non-trivial \mathcal{A}_H -cocycle which is analytic, and let M be the simply invariant subspace corresponding to $\overline{A} = \{\overline{A}_t\}$. Since A is analytic, M is contained in $H^2(\sigma)$ (cf. [5; Theorem 21]). On the other hand, M is generated by elements of \mathcal{A} by Theorem 4.1. We set I is the set of all continuous functions in M. Then I is a closed ideal of \mathfrak{A} which has desired properties.

REMARK. The closed ideals of the disc algebra are completely known (see [2]). But it must be difficult to describe the closed ideals of function algebra which consists of all generalized analytic functions by the similar way as in [2]. The corollary above shows that there exists an ideal whose $L^2(K, \sigma)$ -closure is a peculiar invariant subspace.

ACKNOWLEDGEMENT. The author wishes to express his sincere gratitude to the referee whose suggestions improved the paper very much.

References

- [1] T.W. Gamelin, Uniform algebras, Prentice Hall, Englewood Cliffs, N. J., 1969.
- [2] M. Hasumi and T.P. Srinivasan, Invariant subspaces of continuous functions, Canad. J. Math., 17 (1965), 643-651.
- [3] H. Helson, Compact groups with ordered duals, Proc. London Math. Soc., 14 A (1965), 144-156.
- [4] H. Helson, Compact groups with ordered duals IV, Bull. London Math. Soc., 5 (1973), 67-69.
- [5] H. Helson, Analyticity on compact abelian groups, Algebras in Analysis, Academic Press, 1975, 1-62.
- [6] H. Helson and J.-P. Kahane, Compact groups with ordered duals III, J. London Math. Soc., 4 (1972), 573-575.
- [7] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, N. J., 1962.
- [8] G.M. Leibowitz, Lectures on Complex Function Algebras, Scott-Foresman and Company, 1969.
- [9] P.S. Muhly, Maximal weak-* Dirichlet algebras, Proc. Amer. Math. Soc., 36 (1972), 515-518.
- [10] T. P. Srinivasan and J. Wang, Weak-* Dirichlet algebras, Function algebras, Scott-Foresman (Chicago), 1966, 216-249.
- [11] J. Tanaka, Simply invariant subspaces corresponding to continuous cocycles, preprint.

J. TANAKA

Jun-ichi TANAKA Department of Mathematics Tsuru University Tsuru, Yamanashi 402 Japan

Added in proof: After this paper was submitted, the author has found another proof of Theorem 3.1. For the proof, see our paper: A note on Helson's existence theorem, which will appear in Proc. Amer. Math. Soc.