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The purpose of this paper is to prove the following:
THEOREM A. Simple groups with Sylow 2-subgroups of type $Rd$ are iso-

morphic to $Rd$, where $Rd$ is the Rudvalis simple group of order $2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7\cdot 13$ .
$29^{**}$ .

This is a Corollary of the following result:
THEOREM B. Let $G$ be a finite group with Sylow 2-subgroup $T$ satisfying

the following condition:
(a) $T$ is of order at least $2^{14}$ ;
(b) $Z_{4}(T)$ is of order 16;
(c) $\Phi(W)$ is of order at most 8, where $W=C_{T}(Z_{3}(T))$ ;
(d) all subgroups of $W$ of index at most 16 contain $\Phi(W)$ .

Assume further that $G$ has no subgroup of index 2. Then one of the following
holds:

(1) $G/O(G)$ is isomorphic to the Rudvalis group.
(2) $O(G)W$ is normal in $G$ and $G/O(G)W$ is isomorphic to $GL(3,2)$ .
Our notation is standard and taken from [5].

1. Transfer.

Except for Lemma 1. 4, we assume that $G$ is a finite group with Sylow
2-subgroup $T$ satisfying the conditions (a) to (d) in Theorem $B$ and we set
$W=C_{T}(Z_{3}(T))$ .

LEMMA 1. 1. The following hold:
(1) $Z(W)\geqq W^{\prime}=\Phi(W)=Z_{3}(T)\cong Z_{2}^{3}$ ;
(2) $|T|=2^{14},$ $T/W\cong D_{8},$ $W/W^{\prime}\cong Z_{2}^{8},$ $T/W^{\prime}\cong Z_{2}$ ? $D_{8}$ ;
(3) $N_{G}(T)$ has a normal 2-complement;
(4) If $|W:W\cap T^{g}|\leqq 2$ for $g\in G$ , then $g\in N_{G}(W$ ‘

$)$ ;
(5) $W$ is weakly closed in $T$ with respect to $G$ .

*) Partially suPported by The Sakkokai Foundation.
**) This theorem is proved by Assa, too.
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PROOF. Clearly, $W^{\prime}\leqq\Phi(W)\leqq Z_{3}(T)\leqq C_{T}(W)$ and $Z_{3}(T)$ is of order 8.
Thus $\Phi(W)=Z_{i}(T)$ for some $i\leqq 3$ . Since $Z_{4}(T)$ is of order 16, $Z(T/\Phi(W))$ is
of order 2. Thus we have that $|W;\Phi(W)|\leqq 2^{|T.W|}$ . Since $|T;W|\leqq|Aut(Z_{3}(T))|_{2}$

$\leqq 8$ and $|T|\geqq 2^{14}$, we have that $|T$ : $W|=|\Phi(W)|=8$ and $|W;\Phi(W)|=2^{8}$ . In
particular, $\Phi(W)=Z_{3}(T)$ and $T$ is of order $2^{14}$ . Since all subgroups of $W$ of
index 4 contain $\Phi(W)$ by the condition (d) of Theorem $B$ , we see that $\Phi(W)$

$=W^{\prime}\leqq Z(W)$ . This implies that $W^{\prime}$ is elementary abelian. From $|Z(T/\Phi(W))|$

$=2$ , we have that $T/W^{\prime}$ is isomorphic to $Z_{2}$ ? $D_{8}$ . Hence (1) and (2) are proved.
It follows from an easy calculation that $T/W^{\prime}$ has no nontrivial automorphism
of odd order and so has $T$ . Thus (3) holds. We shall next show (4). Assume
that $g\in G$ and $|W:W\cap T^{g}|\leqq 2$ . We need to prove that $g\in N_{G}(W^{\prime})$ . Set
$V=W\cap T^{g}$ and $U=gVg^{-1}$ , so that $U$ is a subgroup of $T$ . Since $V$ is of index
at most 2 in $W$ and all subgroups of $W$ of index 16 contain $W^{\prime}$ , we have that
$U$ and $V$ have no quotient groups isomorphic to a dihedral group of order 8.
This implies that $|WU$ : $W|=|U$ : $U\cap W|\leqq 4$, so $U\cap W$ is of index at most 8
in $W$. By the condition (d) in Theorem $B$ for $W$, $\Phi(W)=\Phi(U\cap W)\leqq\Phi(U)=$

$g\Phi(W)g^{-1}$ . Thus $g\in N_{G}(W^{\prime})$ , proving (4). Suppose $g\in G$ and $W^{g}\leqq T$, so that
$g\in N_{G}(W^{\prime})$ by (4). Thus (5) follows from $C_{T}(W^{\prime})=W$. The lemma is proved.

LEMMA 1. 2. $N_{G}(W^{\prime})\cap O^{2}(G)=O^{2}(N_{G}(W^{\prime}))$ .
LEMMA 1. 3. Assume that $G$ has no subgroup of index 2. Then the follow-

ing hold:
(1) $N_{G}(W)$ covers $N_{G}(W^{\prime})/O(N_{G}(W^{\prime}))$ ;
(2) $N_{G}(W)/O(N_{G}(W))W$ is isomorphic to $GL(3,2)$ ;
(3) If $T\leqq H\leqq G$, then $N_{H}(W)\cap O^{2}(H)=O^{2}(A_{H}^{r}(W))$ .
We shall first show that Lemma 1. 2 implies Lemma 1. 3.

PROOF OF LEMMA 1. 3. Lemma 1. 2 yields that $N_{G}(W^{\prime})$ has no subgroup of
index 2. Since $N_{G}(W^{\prime})/C_{G}(W^{\prime})$ is isomorphic to a subgroup of $ GL(3,2)\cong$

Aut $(W^{\prime})$ which has no subgroup of index 2, we have that $N_{G}(W^{\prime})/C_{G}(W^{\prime})$ is
isomorphic to $GL(3,2)$ . Set $N=N_{G}(W)$ and $N_{1}=N_{G}(W^{\prime})$ . Since $W$ is a Sylow
2-subgroup of $C_{G}(W^{\prime})$ , it follows by Frattini argument that $N_{1}=C_{G}(W^{\prime})N$.
Thus $1V/C_{N}(W^{\prime})\cong N_{1}/C_{G}(W^{\prime})\cong GL(3,2)$ . To prove (1) and (2), it will suffice to
show that $C_{G}(W^{\prime})$ has a normal 2-complement. By the well-known Burnside
theorem, we see that it will suffice to show that $C_{G}(W^{\prime})/W^{\prime}\cap N_{G}(W)/W^{\prime}=$

$C_{N}(W^{\prime})/W^{\prime}$ has a normal 2-complement. Set $C=C_{N}(W^{\prime})$ and $\overline{N}=N/O(N)W$.
Then $\overline{C}=O(\overline{N}),\overline{N}/\overline{C}\cong GL(3,2)$ and $\overline{N}$ acts faithfully on $W/W^{\prime}\cong Z_{2}^{8}$ . Since $|\overline{N}|$

divides Aut $(W/W^{\prime})|=2^{28}\cdot 3^{5}\cdot 5^{2}\cdot 7^{2}\cdot 17\cdot 31\cdot 127$ , we have that the automorphism
group of each Sylow subgroup of $\overline{C}$ does not involve $GL(3,2)$ . Thus $\overline{C}\leqq Z(\overline{N})$

and so $\overline{C}$ normalizes $\overline{T}$ . By Lemma 1. 1 (3), we have that $\overline{C}=1$ . This implies
that $C$ has a normal 2-complement, as required. (1) and (2) are proved.
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Finally, let $H$ be a subgroup of $G$ containing $T$ . Then Lemma 1. 2 im-
plies that $N_{H}(W^{\prime})\cap O^{2}(H)=O^{2}(N_{H}(W^{\prime}))$ . Thus $ N_{H}(W)\cap O^{2}(H)=N_{H}(W)\cap$

$O^{2}(N_{H}(W^{\prime}))$ . To prove (3), we may assume that $W^{\prime}$ is normal in $H$. By (1),

$O(H)W$ is normal in H. (3) follows directly from this. Hence we see that
Lemma 1. 2 implies Lemma 1. 3.

Now we shall prove Lemma 1. 2. We shall introduce some notation. For
subsets $A$ and $B$ of a finite group, we set $A\backslash B=\{Ab|b\in B\}$ . Permutation
representations are always right permutation representations. Let $(G, \Omega)$ and
$(G, \Omega^{\prime})$ be two permutation representations of a finite group $G$ . Then the
notation $0(\Omega)$ denotes the set of all elements of $G$ which acts on $\Omega$ as an
odd permutations. When $(G, \Omega)$ and $(G, \Omega^{\prime})$ are equivalent as permutation
representations, we shall write $\Omega\sim\Omega^{\prime}c$ or simply $\Omega\sim\Omega^{\prime}$ .

Set $N_{1}=N_{G}(W^{\prime})$ . We will show that $T\cap G^{\prime}=T\cap N_{1}^{\prime}$ . Then by the
well-known Tate’s theorem Lemma 1. 2 follows. Suppose by the way of con-
tradiction that $T\cap G^{\prime}\neq T\cap N_{1}^{\prime}$ and take an element $x$ of $T\cap G^{\prime}$ –N\’i of
minimal order. Since $T^{\prime}=\Phi(T)$ , there is a normal subgroup $N_{2}$ of $N_{1}$ of
index 2 which does not contain $x$ . Since $x\in G^{\prime}$ , we have that $x$ acts on the
set $N_{2}\backslash G$ as an even permutation. Clearly, $x$ acts on $N_{2}\backslash N_{1}=\{N_{2}, N_{2}x\}$ as an
odd permutation, and thus there is an element $g$ of $G-N$ such that $ x\in$

$O(N_{2}\backslash N_{1}gT)$ . Since $N_{2}\triangleleft N_{1}=N_{2}+N_{2}x$ , we have that $N_{2}\backslash N_{2}gT^{T}\sim N_{2}\backslash N_{2}xgT$ .
Thus if $N_{2}gT\neq N_{2}xgT$, then $x$ acts on $N_{2}\backslash N_{1}gT=N_{2}\backslash N_{2}gT+N_{2}\backslash N_{2}xgT$ as
an even permutation, a contradiction, and so we see that $N_{2}gT=N_{2}xgT=$

$N_{1}gT$ . Set $S=T\cap N_{1}^{g}$ and $K=T\cap N_{A}^{g}$ . Then $K$ is of index 2 in $S$ and
$N_{2}\backslash N_{2}gT^{T}\sim IC\backslash T$, so $x\in O(K\backslash T)$ . By the minimality of the order of $x$ , we have
that $\langle x^{2}\rangle^{u}\cap S\subseteqq K$ for each $u\in T$ . As $g\in G-N_{1}$ , Lemma 1. 1 (4) yields that
$|W:W\cap S|\geqq 4$ . Thus to derive a contradiction, it will suffice to show the
following lemma:

LEMMA 1. 4. Let $T$ be a 2-group and $W$ a normal subgroup of $T$ such that
any subgroup of $W$ of index at most 8 contains $\Phi(W)$ . Let $S$ and $K$ be sub-
groups of $T$ and let $x$ be an element of T. Assume the following conditions:

(a) $K$ is a maximal subgroup of $S$ ;
(b) $x\in O(K\backslash T)$ ;
(c) $\langle x^{2}\rangle^{u}\cap S\subseteqq K$ for each $u\in T$ .

Then $|W$ : $W\cap S|\leqq 2$ .
PROOF. For any 2-group $T,$ $Sing(T)$ will denote the set of all triplets

$(S, K, x)$ which satisfy the assumptions (a), (b) and (c) of this lemma. Note
that for any $l\in T$ and any $u\in T,$ $(S^{t}, K^{t}, x^{u})\in Sing(T)$ . Now suppose by the
way of contradiction that the lemma is false and let $T$ be a counterexample
of minimal order to the lemma. Choose the subgroup $K$ of maximal order
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which violates the lemma. Then $K$ contains no nontrivial normal subgroup
of $T$ . We set $ X=\langle x\rangle$ and $ Y=\langle x^{2}\rangle$ .

We shall first show that if $x\in H\leqq T_{I}$, then there is $t\in T$ such that $(S^{t}\cap H$,
$K^{t}\cap H,$ $x$) $\in Sing(H)$ . As $x\in O(K\backslash T)$ , there is $t\in T$ such that $x\in O(K\backslash StH)$ .
Let $s$ be an element of $S-K$. Then $K\backslash KtH^{H}\sim K\backslash KstH$. Thus if $KtH\neq KstH$,

then $x$ acts on $K\backslash StH=K\backslash KtH+K\backslash KstH$ as an even permutation, a contradic-
tion, so $KtH=KstH=StH$, whence $|S^{t}\cap H;K^{t}\cap H|=2$ and $ K\backslash StH\sim K\backslash KtH\sim$

$K^{t}\cap H\backslash H$. In particular, $X\in O(K^{t}\cap H\backslash H)$ . By the condition (c), we have
that $Y^{u}\cap(S^{t}\cap H)\subseteqq K^{t}\cap H$ for each $u\in H$. Hence $(S^{t}\cap H, K^{t}\cap H, x)\in$

$Sing(H)$ , as required. Take $H=WX$ and suppose $H<T$, so that $|IV:W\cap S^{t}$

$\cap H|=|W;W\cap S|\leqq 2$ , a contradiction, and hence

(1) $T=WX$.

Next take $C=C_{T}(X)$ . Then there is $t\in T$ such that $(S^{t}\cap C, K^{t}\cap C, x)\in$

$Sing(C)$ . Set $L=K^{t}\cap C$. Since $x\in Z(C)$ , it follows that $x$ is represented as
the product of cyclic permutations of the same length on $L\backslash C$. As $x\in O(L\backslash C)$ ,
$x$ acts transitively on $L\backslash C$, and so $C=LX\underline{\triangleright}L$ . Suppose $|C;L|\geqq 4$, then there
is an even $i$ such that $x^{i}\in S^{t}\cap C-L\subseteqq S^{t}-K^{t}$ , contrary to the condition (c).

Hence we have that

(2) $S$ contains a conjugate of $C_{T}(x)$ .

We shall next show that $N_{T}(K)=S$ . Set $N=N_{T}(K)$ . As $x\in O(K\backslash T)$ ,
there is $t\in T$ such that $x\in O(K\backslash NtX)$ . Since $K$ is normal in $N$, we have that
$K\backslash KtX^{X}\sim K\backslash K\tau\iota tX$ for each $n\in N$. Thus $KtX=NtX$, as $x\in O(K\backslash NtX)$ , and so
$|N^{t}\cap X$ : $K^{t}\cap X|=|N;K|$ . If $N\neq S$ , then for some even $j,$ $x^{j}\in S^{t}-K^{t}$ . This
is a contradiction by the condition (c). Hence $N_{T}(K)=S$ .

Now let $R$ be a subgroup of $T$ which contains $S$ as a maximal subgroup.
Let $r$ be an element of $R-S$ and set $N=K\cap K^{r}$ . Since $N_{T}(K)=S$ , we have
that $R/N$ is dihedral of order 8 and $S/N$ is a four-group. Let $L$ be a sub-
group of $R$ such that $N<L\neq S$ and $L/N$ is a four-group. We may assume
that $r$ is in $L$ . We shall show that $(R, L, x)\in Sing(T)$ . Let $y\in Y^{u}\cap R$ .
$u\in T$ . Then $y^{2}\in Y^{u}\cap S\subseteqq K$ by the assumption (c). Similarly, $(y^{2})^{\gamma}\in K$.
Thus $y^{2}\in K\cap K^{r}=N$, and so $y\in S\cup L$ . If $y$ is in $S$, then it follows from (c)

that $y\in K\cap K^{r}=N\leqq L$, and thus $y\in L$ . Hence $Y^{u}\cap R\subseteqq L$ for each $u\in T$ .
We must next show that $x\in O(L\backslash T)$ . Since $x\in O(K\backslash T)$ , it will suffice to
show that for any $u\in T$, the following conditions are equivalent:

(3) $x\in O(L\backslash RuX)$ ;

(4) $x\in O(K\backslash RuX)$ .



Rudvalis group 467

If necessary replacing $x$ with $uxu^{-1}$ , we may assume that $u=1$ . Let $k$ be an
element of $K-N$ and set $s=[r, k]\in L\cap S-K$. Suppose first that $Rx\neq R$ .
If $Lx^{i}=Lk$ for some $i$, then $Rx^{i}=R$ , and so $i$ is even, as $x\not\in R$ . Thus $ x^{i}\in Y\cap$

$R\subseteqq L$ . This is a contradiction. Hence $LX\neq LkX$. In particular, $x$ is repre-
sented on $L\backslash RX=L\backslash LX+L\backslash LkX$ as the product of two nontrivial cyclic per-
mutations, and so $x$ acts on $L\backslash RX$ as an even permutation. If $Kx^{j}=Ks$ for
some $j$, then $Rx^{j}=R$ , so $j$ is even. Thus $x^{j}\in K$ by (c), a contradiction.
Thus $KX\neq KsX$. Since $rK=Krs$ , we have that $X$ is represented on $K\backslash RX$ as
the product of two or four nontrivial cyclic permutations, so $x$ acts on $K\backslash RX$

as an even permutation. Hence in case of $Rx\neq R$ , neither (3) nor (4) holds.
Suppose next that $Rx=R$ . Then $x$ is in $R$ . Since $x^{2}\in S$ , we have that $x^{2}\in N$

by (c), and so $x$ is in $SUL$ . Thus (3) is equivalent to

(3) $x\in S-L=N\langle s\rangle k$ .

It follows easily that any element of $S-L$ acts on $K\backslash R$ as an odd permutation.
Thus if (3) holds, then (4) also holds. Assume conversely that (4) holds.
Then $x$ fixes an element of $K\backslash R$ , and so $X\in K\cup K^{r}-N=S-N$. Thus (3) and
also (3) hold. Hence (3) and (4) are equivalent in this case. By the dePnition
of Sing $(T)$ , we conclude that $(R, L, x)\in Sing(T)$ . By the choice of $K$, we have
that $|W;W\cap R|\leqq 2$ . Thus we have that

(5) $|W:W\cap S|=4$ .
We can now complete the proof of this lemma. Since $W\cap K$ is of index

at most 8 in $W$, it follows from the properties of $W$ that $W\cap K$ contains
$\Phi(W)$ , and thus $W$ is elementary abelian. By (2), we may assume that $S$

contains $C_{T}(x)$ and also $x$ . Since $T=WX$, we have that $S$ is of index 4 in $T$ .
Thus $x^{2}$ acts trivially on the set $S\backslash T$, so that $x^{2}$ is contained in all conjugates
of $S$ . By (c), $x^{2}$ is also contained in all conjugates of $K$ Since $K$ contains
no nontrivial normal subgroup of $T$ , we have that $x$ is of order 2. Since $S$

contains $Z(T)$ and $Z(T)\cap K=1,$ $Z(T)$ is of order 2. Hence $W$ is of order at
most 4. This is a contradiction. The lemma is proved.

REMARK. The rewriting of the above proof by the use of the transfer
mapping is left as an exercise for the readers. The similar way as the above
yields the following transfer theorem:

If a Sylow 2-subgroup $T$ of a Pnite group $G$ has no quotient group iso-
morphic to $D_{8}$ , then $T\cap G^{2}G^{\prime}=T\cap N^{2}N^{\prime}$ , where $N=N_{G}(T)$ . See [7].
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2. The subgroups $W$ and $N_{G}(W)$ .
In the remainder of this paper, we assume that $G,$ $T$ and $W$ satisfy the

hypothesis of Theorem B. In this section, we consider the structures of $W$

and $N_{G}(W)$ . We set $N=N_{G}(W)$ and $\overline{N}=N/O(N)$ . We shall use the bar con-
vention. Then $O_{2}(\overline{N})=\overline{W}$. By Lemma 1. 2 and 1. 3, $\overline{N}/\overline{W}$ is isomorphic to
$GL(3,2)$ and acts faithfully on $W/W^{\prime}\cong Z_{2}^{8}$ and $W^{\prime}\cong Z_{2}^{3}$ . In the proof of the
following two lemmas, we shall use the modular representation theory of finite
groups and refer to [2] for the notation and the terminology. Note that there
is a subgroup $\overline{L}$ of $\overline{N}$ such that $\overline{L}\cap\overline{W}=\overline{W}^{\prime}$ and $\overline{L}/\overline{W}^{\prime}\cong GL(3,2)$ by the
well-known Gasch\"utz’s theorem.

LEMMA 2. 1. $\overline{N}/\overline{W}$ acts irreducibly on $W/W^{\prime}$ and $W^{\prime}$ .
PROOF. Set $\tilde{N}=\overline{N}/\overline{W}$. By Lemma 1. 3, the irreducibility of $\tilde{N}$ on $W^{\prime}$ is

clear. Considering the group $W/W^{\prime}$ as a $GF(2)[\tilde{N}]$ -module, $W/W^{\prime}$ is inde-
composable and projective. The group $GL(3,2)$ has four irreducible repre-
sentations over $GF(2)$ , that is, l-representation, two of degree 3 and one of
degree 8. These are all absolutely irreducible and the principal indecomposable
$GF(2)[GL(3,2)]$ -modules corresponding to them have degree 8, 16, 16, 8, re-
spectively. Therefore if $W/W^{\prime}$ is not irreducible, then $W/W^{\prime}$ is the principal
indecomposable $GF(2)[\tilde{N}]$ -module corresponding to l-representation and its
factor module by a maximal submodule is the trivial one. (See [2, p. 70]).

But this contradicts the fact that $N$ has no subgroup of index 2. The lemma
is proved.

LEMMA 2. 2. The structure of $W$ is uniquely determined.

PROOF. As in Lemma 2. 1, we regard $W/W^{\prime}$ and $W^{\prime}$ as $GF(2)[\tilde{N}]$ -modules,
where $\tilde{N}=\overline{N}/\overline{W}$. We define the mapping of $W/W^{\prime}\otimes W/W^{f}$ to $W^{\prime}$ by the
rule: $x\otimes y-[x, y]$ for $x,$ $y\in W/W^{\prime}$ . Since $W$ is special 2-group, this
mapping is a $GF(2)[\tilde{N}]$ -epimorphism. It is easily shown that the principal
indecomposable $GF(2)[\tilde{N}]$ -module which corresponds to the irreducible
$GF(2)[\tilde{N}]$ -module 1717i has the multiplicity 1 in a decomposition of $ 7\mathfrak{h}^{\gamma}/W^{\prime}\otimes$

$W/W^{\prime}$ into principal indecomposable modules. Therefore $W/W^{\prime}\otimes W/W^{\prime}$ has
a unique maximal submodule by which factor module is isomorphic to $TV^{\prime}$ and
the kernel of the above mapping is uniquely determined. So $[x, y]$ is also
uniquely determined for $x,$ $y\in W$. Next we consider the square mapping
$g$ : $W/W^{\prime}\rightarrow W^{\prime}$ . The mapping $g$ must satisfy the relation: $g(x+y)=g(x)+$
$g(y)+[x, y]$ for each $x,$ $y\in W/W^{\prime}$ . If there exists another mapping $h$ of
$W/W^{\prime}$ to $W^{\prime}$ which satisfies the above relation, then $g+h$ is a $GF(2)[\tilde{N}]-$

homomorphism from $W/W^{\prime}$ to $W^{\prime}$ and so a O-mapping by Lemma 2. 1. There-
fore we have $g=h$ . This means that the square mapping of $W/W^{\prime}$ to $W^{\prime}$ is
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also uniquely determined, and hence the uniqueness of the structure of $W$ is
proved.

REMARK. We can now prove that a Sylow 2-subgroup $T$ of the Rudvalis
group satisfies really the conditions of Theorem B. It follows from [1, Section
2, Lemma 2. 1, etc.] that (a), (b), (c) in Theorem $B$ and Lemma 2. 1 hold also
for the Rudvalis group. So $N$ acts transitively on the set of the four-subgroups
of $W^{\prime}$ . Since $W/Z_{2}(T)$ is extraspecial of order $2^{9}$, all subgroups of $W/Z_{2}(T)$

of index at most 16 contain $\Phi(W/Z_{2}(T))$ . From this, the condition (d)

follows.

LEMMA 2. 3. $m(W)=5$ and $W-W^{\prime}$ has exactly two N-conjugate classes of
involutions of which representatives are $u$ and $e$ such that $C_{\overline{N}}(\overline{u})$ is of order $2^{11}$

and $ C_{\overline{N}}(e\gamma$ is isomorPhic to the direct product of a $four-\Psi oup$ and the Sylow
2-normalizer of $Sz(8)$ . Furthermore, an element of $\overline{N}$ of order 3 acts faithfully
on $Z(C_{\overline{N}}(\overline{e}))\cong Z_{2}^{2}$ .

PROOF. By [1, Lemma 2. 8 and 2. 9], $m(W)=5$ and $W-W^{\prime}$ contains exactly
360 involutions. Let $u$ be an involution in $Z_{4}(T)-W^{\prime}$ , then $C_{T}(u)$ is of order
$2^{11}$ . By the irreducibility of $\overline{N}/\overline{W}$ on $W/W^{\prime}$ , we have that $|(uW^{\prime})^{N}|\geqq$

dim $(W/W^{\prime})=8$. This yields that $C_{\overline{N}}(\overline{u})$ is of order $2^{11}$ , and so $|u^{N}|=168$ . Let
$P$ be a Sylow 7-subgroup of $N$ and let $Q$ be a Sylow 3-subgroup of $N_{N}(P)$ .
By [1, Lemma 2. 1 and 2. 14], $C_{W}(P)$ is a four-group and $C_{W}(Q)$ is quaternion.
Take an involution $e$ in $C_{W}(P)$ . Then we have that $C_{\overline{N}}(\overline{e})$ is of order $2^{8}\cdot 7$, so
$|e^{N}|=192$ . Hence involutions of $W-W^{\prime}$ are conjugate to $u$ or $e$ in $N$. By the
uniqueness of the structure of $W,$ $C_{T}(e)$ is isomorphic to a direct product of a
four-group and a Sylow 2-subgroup of $Sz(8)$ . The proof of the remainder of
this lemma is easy. The lemma is proved.

LEMMA 2. 4. Let $\overline{F}$ be a subgroup of $\overline{N}$ of order 21. Then the structure of
$W$ as an F-admissible group is uniquely determined.

PROOF. Set $A=Aut(W)$ . It will suffice to show that any subgroup of $A$

isomorphic to $\overline{F}$ are conjugate to each other in $A$ . Set $B=C_{A}(W^{\prime})$ . Then $A/B$

is isomorphic to $GL(3,2)$ . Set $C=O_{2}(A)$ . By Lemma 2. 1, we have that $C$

stabilizes the chain: $1<W^{f}<W$, and so $C=C_{B}(W/W^{\prime})$ . We can regard $\overline{N}/\overline{W}^{\prime}$

as a subgroup of $A$ . Let $u$ and $e$ be involutions given in Lemma 2. 3. Set
$Z=Z(C_{W}(e))\cong Z_{2}^{5}$ . Since $u$ and $e$ are not conjugate in $A$ , we have that
$|(eW^{\prime})^{A}|=|(eW^{\prime})^{N}|=24$ . By Lemma 2. 3, we have that there exist exactly eight
A-conjugates of $Z$. Thus $A/C$ is isomorphic to a subgroup of $S_{8}$ , the symmetric
group of degree 8, since $(eW^{\prime})^{A}$ generate $W/W^{\prime}$ . From $O_{2}(B/C)=1$ and $ A/B\cong$

$GL(3,2)$ , it follows that $B=C$, and so $A/O_{2}(A)$ is isomorphic to $GL(3,2)$ .
The lemma follows directly from this.
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LEMMA 2. 5. The following hold:
(1) There is a subgroup $L$ of $N$ containing $O(N)W^{\prime}$ such that $L/O(N)W^{\prime}$

is isomorphjc to $GL(3,2)$ and $T\cap L$ is a Sylow 2-subgroup of $L$ .
(2) Set $V=T\cap O_{2^{\prime}2}(C_{L}(z))$ , where $ Z(T)=\langle z\rangle$ . Then $V$ is an extraspecial

maximal subgroup of $T\cap L$ . Furthermore, $O_{2}(C_{\overline{N}}(\overline{z}))=\overline{WV},$ $V\cap W=W^{\prime}$ and
$WV/W\cong Z_{2}^{2}$ .

(3) Let $s$ be an element of $N_{L}(V)$ such that $|\overline{s}|=3$ . Then $C_{\overline{N}}(\overline{z})$ is generated
by $\overline{T}$ and $\overline{s}$ . $C_{W}(s)$ is isomorphic to a quatemion group.

(4) Let $X$ be a subgroup of $W$ such that $X>W^{\prime}$ and $X/W^{f}=C_{W/W^{\prime}}(V/W^{\prime})$ .
Then $X$ is elementary of order 32 and s-invariant.

(5) Set $Y=C_{T}(X)$ . Then $Y\cong Z_{2}^{4}\times Q_{8},$ $Y=XC_{Y}(s),$ $C_{Y}(s)=C_{W}(s)$ , and $Y$ is
normal in $C_{N}(z)$ .

PROOF. (1) follows from Gasch\"utz’s Theorem. (2) and the first statement
of (3) follows from the consideration of the structure of $\overline{L\tau}$ By [1, Lemma
2.14], $C_{W}(s)$ is quaternion. By Lemma 1. 1 (2), $WV/W^{\prime}$ is isomorphic to $Z_{2}^{2}$ ? $Z_{2}^{2}$ .
Thus $X$ is of order 32. Clearly, $X$ is normal in $C_{N}(z)$ . So $X-W^{\prime}$ contains an
involution $u\in Z_{4}(T)-W^{\prime}$ . As $X$ is s-invariant, $X$ is elementary. By Lemma
2. 3 and [1, Lemma 2. 14], (5) holds. The lemma is proved.

LEMMA 2. 6. $N$ has exactly four conjugate classes of involutions represented
by $z,$ $u,$ $e,$

$t$, which satisfy the following conditions:
(1) $z$ is in $Z(T)$ and $C_{N}(Z)$ is of order $2^{14}\cdot 3$ .
(2) $u$ is in $Z_{4}(T)-W^{\prime}$ and $C_{\overline{N}}(\overline{u})$ is of order $2^{11}$ .
(3) $e$ is in $W-W^{\prime}$ and $C_{\overline{N}}(\overline{e})$ is of order $2^{8}\cdot 7$ .

Furthermore, $C_{\overline{N}}(\overline{e})$ is isomorphic to the direct pr0duct of a four-group and a
Sylow 2-normalizer in $Sz(8)$ and $C_{W}(e)$ is a Sylow 2-subgroup of $C_{N}(e)$ .

(4) $t$ is in $T^{\prime}W-W$ and $C_{\overline{N}}(\overline{t})$ is of order $2^{8}$ .
$C_{T}(t)$ is a Sylow 2-subgroup of $C_{N}(t),$ $t$ is commu tative with $u$ and $C_{T}(t)$ covers
$T/W$.

PROOF. We shall use the notation given by Lemma 2. 5. Since $V$ is ex-
traspecial, there is an involution $t$ in $V-W^{\prime}$ . Since $C_{\overline{L}}(\overline{z})/\overline{W}^{\prime}$ is isomorphic to
$S_{4}$ , we may assume that $t$ is in $(T\cap L)^{\prime}$ . Since $t$ normalizes the elementary
abelian subgroup $X$ and $t$ does not centralize $W^{\prime}$ , we have that $t$ centralizes
an involution $u$ in $Z_{4}(T)-W^{\prime}$ . We shall show that $C_{T}(t)$ is of order $2^{8}$ . Since
$|C_{W/W^{\prime}}(l)|=16$ and $C_{W^{\prime}}(t)=Z_{2}(T)$ , it will suffice to show that an involution of
$t(Z_{2}(T)-Z(T))$ is conjugate to $t$ in $T$ . By the well-known Baer’s theorem
and the structure of L. $\overline{t}$ inverts an element $\overline{r}$ of $\overline{L}$ of order 3. Set $W^{*}=$

$W/[W^{\prime},\overline{r}]$ . Then $W^{*}$ is extraspecial of order $2^{9}$ . $[W^{\prime}, r]$ does not contain
$Z_{2}(T)$ . By Lemma 2. 5 (5), we have that $C_{W^{*}}(r)$ is quaternion, and so $W^{*}$ is
the central product of the copies of four quaternion groups, whence $[W^{*}, r]$

is isomorphic to $Q_{8}*Q_{8}*Q_{8}$ . Since the centralizer of any elementary abelian



Rudvalis group 471

subgroup of order 8 in $[W^{*}, r]$ is isomorphic to $Z_{2}^{2}\times Q_{8}$ , there is a quaternion
subgroup of $[W^{*}, r]$ which is normalized by $r$ and $t$ . Thus $t$ inverts an
element of $W^{*}$ of order 4. Hence $t$ is conjugate to an element of $t(Z_{2}(T)-$

$Z(T))$ , as required. From this, we have that $C_{T}(t)$ covers $T/W$ and all in-
volutions in $tW$ are conjugate. (4) is proved. The remainder of this lemma
follows from Lemma 2. 3.

3. The proof of Theorem B.

In this section, we shall prove Theorem B. When $W^{\prime}$ is strongly closed
in $T$ with repect to $G$ , it follows from Goldschmidt [3] that $O(G)W^{f}$ is
normal in $G$ , and thus by Lemma 1. 3, we conclude that $O(G)W$ is normal in
$G$ and that $G/O(G)W$ is isomorphic to $GL(3,2)$ . Hence the theorem holds in
this case. So we assume that $W^{\prime}$ is not strongly closed in $T$ with respect to $G$

in the remainder of this section. We set $N=N_{G}(W)$ . Furthermore, we use
some notation defined in Section 2. The elements $z,$ $u,$ $e$ and $t$ are the involu-
tions given in Lemma 2. 6. The notation $L,$ $V,$ $X,$ $Y$ and $s$ denotes subgroups
and elements given by Lemma 2. 5. $\overline{L}$ is a subgroup of $\overline{N}=N/O(N)$ such that
$\overline{L}/\overline{W}^{\prime}$ is isomorphic to $GL(3,2)$ and $T\cap L$ is a Sylow 2-subgroup of L. $V=$

$T\cap O_{2^{\prime}2}(C_{L}(z)),$ $s$ is an element of $N_{L}(V)$ such that $\overline{s}$ is of order 3, and $X$ is
an elementary abelian normal subgroup of $C_{N}(z)$ of order 32. Furthermore,
$O_{2^{\prime}2}(C_{N}(z))\cap T=WV$ and $Y=C_{T}(X)$ .

LEMMA 3. 1. $z\sim u\prime Pe\# t$ .
PROOF. We shall first show that $e$ is not conjugate to $z$ or $u$ . Suppose

false, then there is an element $g$ in $G$ such that $e^{g}=z$ or $u$ and $C_{T}(e)^{g}\leqq T$ .
Set $C=C_{T}(e)$ and $D=C^{g}$ . $C$ is isomorphic to the direct product of a four-group
and a Sylow 2-subgroup of $Sz(8)$ . Thus $C^{\prime}=W^{\prime}\leqq Z(C)=\Omega_{1}(C)\cong Z_{2}^{5}$ and $C$ has
no dihedral quotient group of order 8. As $T/W$ is dihedral, we have that
$\Phi(D)\leqq W$ and $|DW:W|\leqq 4$ . Suppose $\Omega_{1}(D)\leqq W$. Since $m(W)=5$ by Lemma
2. 4, $\Omega_{1}(D)=Z(D)\geqq W^{\prime}=Z(W)$ . Thus $D\leqq C_{T}(W^{\prime})=W$, and so $W^{\prime}=C^{\prime}=D^{f}$ .
This means that $g\in N_{G}(W^{\prime})$ , contrary to Lemma 1. 2 (2) and Lemma 2. 6.
Hence there is an involution $d$ in $D-W$ and a subgroup $D_{0}$ of $D$ such that
$D=\langle d\rangle\times D_{0}$ and $|D_{0}W:W|\leqq 2$ . Since $D_{0}$ has no dihedral quotient group of
order 8, we have that $\Phi(D)=\Phi(D_{0})=\Phi(D_{0}\cap W)\leqq W^{\prime}$ . Thus $D\leqq C_{T}(W^{\prime})=W$,
a contradiction. Hence it is proved that $e$ is not conjugate to $z$ or $u$ .
Suppose next $e$ is conjugate to $t$ . By Lemma 2. 6, $C_{T}(e)$ and $C_{T}(t)$ are of same
order, so these are conjugate. But by Lemma 2. 6, $C_{T}(t)$ has a dihedral
quotient group of order 8 and $C_{T}(e)$ has not. This is a contradiction. Hence
$e\prime Pz,$ $u,$

$t$. We shall finally show that $z\sim u$ . Suppose false, so that $z\sim t$, since
$W^{\prime}$ is not strongly closed in $T$ . Take an element $g$ in $G$ such that $t^{g}=z$ and
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$C_{T}(t)^{g}\leqq T$ . By Lemma 2. 6, we have that $u\in C_{T}(t),$ $tu\sim t$ and $ u^{G}\cap T=u^{N}\subseteqq$

$W-W^{\prime}$ . Thus $i\sim(lu)^{g}=zu^{g}\in W-W^{\prime}$, so $t\sim u$ or $e$ , a contradiction. The
lemma is proved.

LEMMA 3. 2. Assume that $g\in G$ and $Y^{g}\leqq T$. Then $Y^{g}$ is contained in $W$

and is conjugate to $Y$ by an element of N. In partimlar, $T$ has exactly seven
conjugates of Y. Furthermore, $Y$ is weakly closed in $T$ with respect to $C_{G}(z)$ .

PROOF. Suppose first $Y^{g}$ does not contain $W^{\prime}$ . As $m(W)=m(Y^{g})=5$ , we
have that $Y^{g}-W$ has an involution $y$ . Then $Y^{g}\leqq C_{T}(y)$ . By Lemma 2. 6,
$C_{W}(y)$ is of order 32. Since $Y$ has no dihedral quotient group of order 8, we
see that $|Y^{g}$ : $Y^{g}\cap W|\leqq 4$, and so $|Y^{g}\cap W|\geqq 32$ . Thus $C_{W}(y)=Y^{g}\cap W$. By
$m(W)=5$ , $C_{W}(y)$ is not elementary. Thus $Y^{g}W^{f}/W^{\prime}$ is elementary of order
32. But $T/W^{\prime}$ is isomorphic to $Z_{2}$ ? $D_{8}$ and so for any elementary abelian sub-
group $U$ of $T/W^{\prime}$ of order 32, $|UW;W|\leqq 2$ . Thus $|Y^{g}$ : $Y^{g}\cap W|\leqq 2$ which
is a contradiction. Hence we have that $Y^{g}$ contains $W^{\prime}$ . So $Y^{g}\underline{\triangleleft}C_{T}(W^{\prime})=W$.
It follows from the weak closure of $W$ that $Y^{g}$ is conjugate to $Y$ by an
element of $N$, as required. Since $Y$ is normal in $C_{N}(z)$ , we have that
$|N;N_{N}(Y)|=7$ . So $T$ has seven conjugates of $Y$. The final statement follows
from the fact that $Y$ is the unique conjugate of $Y$ of which commutator
subgroup is $Y^{\prime}=Z(T)$ . The lemma is proved.

LEMMA 3. 3. Set $J=C_{T}$ ($X$ mod $Z(T)$ ). Then $|J|=2^{11},$ $J^{\prime}=X,$ $[X, J]=Z(T)$ ,
$C_{G}(Xmod Z(T))=O(N_{G}(X))J\underline{\triangleleft}N_{G}(X)$ , and $N_{G}(X)/O(N_{G}(X))J$ is isomorphic
to $S_{5}$ , the symmetric group of degree five.

PROOF. As $z$ and $u$ are conjugate in $G$ , there is $g$ in $G$ such that $u^{g}=z$

and $C_{T}(u)^{g}\leqq T$ . So $Y^{g}\leqq C_{T}(u)^{g}\leqq T$, and thus $g\in\Lambda^{T_{G}}(Y)N$ by Lemma 3. 2.
This implies that $u$ is conjugate to an involution of $W^{\prime}$ by an element of
$N_{G}(Y)$ . Thus all involutions of $X-Z(T)$ are conjugate to each other by

elements of $N_{G}(Y)\leqq C_{G}(z)$ . Set $M=N_{G}(X)$ . By Lemma 1. 2, $C_{M}$ ( $X$ mod $Z(T)$ ) $T$

has a normal 2-complement. Similarly, $C_{G}(X)$ and $C_{G}(Z_{2}(T))$ have normal
2-complements. Since $Y$ is a Sylow 2-subgroup of $C_{G}(X)$ and $Y^{\prime}=Z(T)$ , we
have that $M\leqq C_{G}(z)$ . Thus $C_{G}$ ($X$ mod $Z(T)$ ) $=O(N_{G}(X))J\triangleleft M$. Set $\overline{M}=M/C_{G}(X)$ .
Then $C_{\overline{M}}(Z_{2}(T))$ is of order 26 and so $\overline{M}$ is of order $30\times 2^{6}$ . Since $C_{VW}(s)=$

$C_{Y}(s)\cong Q_{8}$ , we have that $s$ acts on $VX/Z(T)$ as a fixed-point-free automorphism
of order 3. Furthermore $VX/Z(T)$ is of order $2^{\epsilon}$ and $t\in V-W^{f}$ is commute
with $u\in X-W^{\prime}$ . Thus an easy calculation derives that $VX/Z(T)$ is abelian,

and so $V$ is a subgroup of $J$. Since $WV/W^{\prime}$ is isomorphic to $Z_{2}^{2}$ ? $Z_{2}^{2}$ , we have
that $V[V, W]$ is a subgroup of $J$ of order $2^{11}$ . $J$ is s-invariant and $|W;W\cap J|$

$\geqq 4$, and hence $J=V[V, W]$ is of order $2^{11}$ . Thus we see that $M/C_{M}(X/Z(T))$

is of order 120 and isomorphic to $S_{5}$ . Hence $M/O(M)J$ is also isomorphic to
$S_{5}$ . Since $[W, V]$ is of index 4 in $W,$ $[W, V]^{\prime}=W^{\prime}$ by the assumption of
Theorem B. Thus $J^{\prime}\geqq W^{\prime}$ , so $J^{\prime}$ contains $X$ since $M/O(M)J\cong S_{5}$ acts ir-
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reducibly on $X/Z(T)$ . As $WV/W^{\prime}$ is isomorphic to $Z_{2}^{2}$ ? $Z_{2}^{2},$ $(J/W^{\prime})^{\prime}=[W,$ $V$,
$V]W^{\prime}/W^{\prime}$ is of order 4. Hence $J^{\prime}=X$. $[J, J, J]=[X, J]\neq 1$ , so [X, $J$] $=Z(T)$ .
The lemma is proved.

LEMMA 3. 4. $X$ is strongly closed in $T$ with respect to $C_{G}(z)$ .
PROOF. Set $H=C_{G}(z)$ . By Lemma 1.2, $H$ has a normal subgroup of index 2.

By Lemma 3. 3, $JW$ is a Sylow 2-subgroup of $O^{2}(H)$ . Since $J/Y\cong W/Y\cong Z_{2}^{4}$

and $s$ acts fixed-point-free on $WJ/Y$, we have that all involutions of $JW$ is
contained in $J\cup W$. Since $N_{G}(J)$ acts irreducibly on $J/Y\cong Z_{2}^{4}$ , any involution
of $J$ is conjugate to one of $W$ in $N_{G}(J)$ . Suppose $X$ is not strongly closed in
$T$ with respect to $H$. Then there is $w\in W-Y$ such that $w$ is conjugate to an
involution of $X$ in $H$. Take an element $g$ of $H$ such that $w^{g}\in X$ and $C_{T}(w)^{g}$

$\leqq T$ . As $w$ is conjugate to $u$ in $G,$ $C_{W}(w)$ contains a conjugate $Y_{1}$ of $Y$. If
$Y_{1}^{\prime}=Z(T)$ , then by Lemma 3. 2, $Y_{1}=Y$. So $w\in C_{T}(Y)=X$, a contradiction.
Thus $Y_{1}^{\prime}\neq Z(T)$ . Since $Y_{1}^{g}$ is conjugate to $Y_{1}$ by an element of $H\cap N$, we
may assume that $g\in N_{H}(Y_{1})\leqq N_{H}(Y_{1}^{\prime})$ . By Lemma 1. 2, $N_{G}(Z_{2}(T))$ has a
normal 2-complement and so has $A_{H}^{T}(Y$ \’i $)$ . This implies a contradiction. The
lemma is proved.

PROOF OF THEOREM B. We can now prove Theorem B. By Lemma 3. 4
and [3], we have that $H=C_{G}(z)=O(H)N_{G}(J)$ . In particular, $H$ is 2-constrained.
By the structure of $N_{G}(X)$ , we have that $t\sim z$ . $C_{T}(e)$ has a strongly closed
abelian subgroup with respect to $C_{G}(e)$ . Again by [3], we see that $C_{G}(e)$ is
solvable or $C_{G}(e)/O(C_{G}(e))$ is isomorphic to $Z_{2}^{2}\times Sz(8)$ . By Gorenstein-Walter’s
theorem [5], we have that $O(C_{G}(z))\leqq 0(G)$ and $O(C_{G}(e))\leqq O(G)$ . By [6] (or

[11]), we conclude that $G/O(G)$ is isomorphic to the Rudvalis group. Theorem
$B$ is proved.
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