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Introduction.

The first part (\S 1\sim \S 5) of this paper is devoted to describe the ordinary
$Z_{2}$ -homology theory from the viewpoint of the singular bordism theory developed
in [2].

Let $JC$ be the category whose objects are homogeneous finite simplicial
complexes which have mod 2 boundaries and whose morphisms are pl-imbed-
dings which take boundary into boundary.

Then we have our main result (Theorem 2 in \S 4) which shows that the
ordinary $Z_{2}$-homology theory is reconstructed with $JC$ by the analogous method
of [2].

The latter part (\S 6 and \S 7) is devoted to explain the relation of singular
complex theory and singular bordism theory.

For the purpose, we introduce notions of bordism category and (generalized)

singular bordism theory. Our bordism category is a generalization of both chain
complex and cobordism category defined by R. E. Stong [4] from the categorical
point of view. A bordism category defines a singular bordism theory if it is
regular, that is, it has finite sums and an initial object. Every chain complex
becomes a bordism category as discrete category, but unfortunately it is not
regular and induces no singular bordism theory. Therefore the classical singular
complex theory is not singular bordism theory.

On the other hand, our category $JC$ is a regular bordism category and
induces a singular bordism theory which defines the ordinary $Z_{2}$-homology theory.

\S 1. $Z_{2}$-complexes.

(1.1) SimPlicial comPlexes which we consider in this paper are finite simplicial
complexes in some Euclidean spaces. The underlying space of a simplicial
complex $K$ is denoted by $|K|$ as usual if it is necessary to distinguish them,
but we will often write $K$ for $|K|$ for convenience. We regard the empty set
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$\emptyset$ as a simplex so that $\emptyset\in K$ for any simplicial complex $K$. Also by the same
symbol $\emptyset$ we denote the complex which consists of only one simplex $\emptyset$ . For
two simplexes $s$ and $s^{\prime}$ of $K$, we write $s^{\prime}\prec s$, if $s^{\prime}$ is a face of $s$, so that $\emptyset\prec s$

and $s\prec s$ for any simplex $s$.

(1.2) A map from a simplicial complex $K$ to a simplicial complex $L$ is a con-
tinuous map $f:|K|\rightarrow|L|$ , and is denoted by $f:K\rightarrow L$ .

A subdivision $K^{\prime}$ of $K$ is a complex such that $|K^{\prime}|=|K|$ and each simplex
of $K^{\prime}$ is contained in a simplex of $K$. We write $K^{\prime}<K$ if $K^{\prime}$ is a subdivision
of $K$.

A map $f:K\rightarrow L$ between finite simplicial complexes is piecewise linear if
ther exists a subdivision $K^{\prime}$ of $K$ so that $f$ maps each simplex of $K^{\prime}$ linearly
into a simplex of $L$ .

(1.3) A simplicial complex $K$ is a n-dimensional $Z_{2}$-complex if $K$ is made up of
only finite $n$-simplexes and their faces. In particular empty complex $\emptyset$ is a
$Z_{2}$-complex. If $K$ is a n-dimensional $Z_{2}$-complex, then we may define the
boundary $\partial K$ of $K$ as follows. $\partial K$ is the subcomplex of $K$ which is made up of
$(n-1)$-simplexes which are faces of an odd number of n-simplexes of $K$, and
their faces. In particular we notice that $\partial K^{0}=\emptyset$ for any O-dimensional $Z_{2^{-}}$

complex $K^{0}$, and $\partial\emptyset=\emptyset$ . Then $\partial K$ is again a $Z_{2}$-complex.
An incidence number $[s^{m} : s^{m-1}]$ is an element of $Z_{2}$ such that

$[s^{m} : s^{m-1}]=1$ , if $s^{m-1}$ is a face of $s^{m}$ ,

$=0$ , if $s^{m-1}$ is not a face of $s^{m}$ .

In particular, $[s^{0} : \emptyset]=1$ .
The following properties are checked by the standard methods from our

definitions:
PROPOSITION 1.
(1) $s^{m- 1}\prec s^{m}$ if and only if $[s^{m} : s^{m-1}]=1$ .
(2) If $K$ is a n-dimensional $Z_{2}$-complex, then

$s^{n-1}\in\partial K$ if and only if $\sum_{s^{n}\in K}[s^{n} : s^{n-1}]=1(n\geqq 1)$ .

(3) For any pair of $s^{n}$ and $s^{n- 2}$ of $K$,

$\sum_{s^{n- 1}\in K}[s^{n} : s^{n-1}][s^{n- 1} : s^{n- 2}]=0(n\geqq 1)$ .

(4) $\partial\partial K=\emptyset$ for any $Z_{2}$-complex $K$.

(1.4) Since the composition of $pl$-imbeddings is a $pl$-imbedding, there exists a
category $c\chi$ whose objects are $Z_{2}$-complexes and whose morphisms are pl-imbed-
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dings which take boundary into boundary (cf. \S 7). This category $J$\langle has finite
sums by the disjoint union and has an initial object given by the empty complex
$\emptyset$ . By $K+L$ we dente an object which is a sum for $K$ and $L$ .

(1.5) Let $K$ and $L$ be $Z_{2}$-complexes.
If $K$ is simplicial isomorphic to $L$ , we write $K\cong L$, and if $K$ is piecewise
linear isomorphic to $L$ , we write $K\simeq L$ .

Then we have easily:
PROPOSITION 2.
(1) $K\cong L$ implies $K\simeq L$ .
(2) $K\simeq L$ implies that there are $K^{\prime}$ and $L^{\prime}$ such that $K^{\prime}<K,$ $L^{\prime}<L^{-\cap}and$

$K^{\prime}\cong L^{\prime}$ .
(3) $K^{\prime}<K$ implies $\partial K^{\prime}\simeq\partial K$. (4) $K\simeq L$ implies $\partial K\simeq\partial L$ .
PROOF. (1), (2) and (3) are well-known.

Proof of (4). Let $K\simeq L$ . From (2), there exist $K^{\prime}<K$ and $L^{\prime}<L$ such that
$K^{\prime}\cong L^{\prime}$ , therefore $\partial K^{\prime}\cong\partial L^{\prime}$ . From (3), $\partial K\simeq\partial K^{\prime}\cong\partial L^{\prime}\simeq\partial L$ .

\S 2. Bordism groups of the category $\mathcal{K}$ .

(2.1) A $Z_{2}$-complex $K$ is closed if $\partial K=\emptyset,$ $K$ bounds if there is a $Z_{2}$-complex $W$

with $\partial W$ piecewise linear isomorphic to $K$. Generally we say that two closed
$Z_{2}$-complexes $K$ and $L$ are bordant if there exists a $Z_{2}$-complex $W$ such that
$\partial W\simeq K+L$ . This will be written $K\sim L$ ; we refer to this relation as the bordism
relation.

We have easily:
PROPOSITION 3.
(1) $K$ closed and $K\simeq L$ implies $L$ closed.
(2) $K$ bounds and $K\simeq L$ imPlies $L$ bounds.
(3) $\sim is$ an equivalence relation on the closed $Z_{2}$-complexes.
PROOF. (1) and (2) are trivially verified.

Proof of (3). (i) Since $K$ is closed, we have $\partial(I\times K)\simeq K+K$. This implies
$K\sim K$. (ii) $K\sim L$ implies $\partial W\simeq K+L$ for some W. $K+L\simeq L+K$ implies $\partial W\simeq$

$L+K$. This means $L\sim K$. (iii) Let $\partial U\simeq K+L$ and $\partial V\simeq L+N$. We may suppose
that $L$ is a full subcomplex in $U$ and $V$ . Let $W=U6Vz$ be a complex obtained

from $U+V$ by identifying two subcomplexes of $U$ and $V$ which are $pl$-isomorphic
to $L$ . Then we have easily $W\in \mathcal{K}$ and $\partial W\simeq K+N$. This completes the proof.

(2.2) The bordism $relation\sim is$ an equivalence relation on the class of closed
n-dimensional $Z_{2}$-complexes. The resulting set $\Omega_{n}(x)$ of equivalence classes is
an abelian group with addition induced by disjoint union. Since $\partial(I\times K)\simeq K+K$

for each closed $Z_{2}$ -complex $K$, every element in $\Omega_{n}(\mathcal{K})$ has order two.
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(2.3) THEOREM 1.

$\Omega_{n}(JC)=\left\{\begin{array}{l}0 ifn\neq 0,\\Z_{2} ifn=0_{8}\end{array}\right.$

PROOF. Let $K$ be any closed n-dimensional $Z_{2}$-complex for $n>0$, and $v*K$

be the corn over $K$ (where $*denotes$ the join of a point $v$ and $K$ ), then we have
$\partial(v*K)=K$. This shows $\Omega_{n}(JC)=0$ for $n>0$. For $n=0$, any O-dimensional $Z_{2}-$

complex $K^{0}$ is closed by the definition. Now let $r$ be numbers of vertices of
$K^{0}$, then $\partial(v*K^{0})=K^{0}$ if $r$ is even, and $\partial(v*K^{0})=K^{0}+v$ if $r$ is odd, which shows

$W\sim O$ if $r$ is even, and

$K^{0}\sim v$ if $r$ is odd.

Since a point $v$ is closed, but not bounds, we have $\Omega_{0}(fC)=Z_{2}$ .

\S 3. Singular $Z_{2}$-complexes of pairs of spaces.

(3.1) Let (X, $A$) be a pair of a space $X$ and its subspace $A$ . A n-singular $Z_{2^{-}}$

complex in (X, $A$) is a pair $(K, f)$ consisting of a n-dimensional $Z_{2}$-complex $K$

and a continuous map $f:(K, \partial K)\rightarrow(X, A)$ . If $ A=\emptyset$ then of course $\partial K=\emptyset$ also.
Two singular $Z_{2}$-complexes $(K, f)$ and $(L, g)$ are equivalent, written $(K, f)$

$\simeq(L, g)$ , if there is a pl-homeomorphism $\psi:K\rightarrow L$ such that $ f=g\circ\psi$ .
A n-singular $Z_{2}$-complex $(K, f)$ in (X, $A$) is said to bord if and only if there

is $(n+1)$-dimensional $Z_{2}$-complex $W$ and a map $F:W\rightarrow X$ for which
(1) there is a n-dimensional $Z_{2}$-complex $K^{\prime}$ such that

$|K^{\prime}|\subset|\partial W|$ and $F(|\partial W|\backslash |K^{\prime}|)\subset A$ ,

(2) $(K^{\prime}, F|K^{\prime})\simeq(K, f)$ .
From two singular $Z_{2}$-complexes $(K, f)$ and $(L, g)$ in (X, $A$ ) a disjoint union

$(K+L, f+g)$ is defined where $K+L\simeq K\cup L,$ $K\cap L=\emptyset,$ $f+g|K=f$ and $f+g|L=g$.
A pair $(K, f)$ and $(L, g)$ of singular $Z_{2}$-complexes in (X, $A$) are bordant if

and only if the disjoint union $(K+L, f+g)$ bords in (X, $A$). This will be written
$(K, f)\equiv(L, g)$ .

By the definition we have easily:
LEMMA 1. $(K, f)\simeq(L, g)$ implies $(K, f)\equiv(L, g)$ .

In particular, $K^{\prime}<K$ and $f^{\prime}=f$ implies $(K^{\prime}, f^{\prime})\equiv(K, f)$ .
Combining Lemma 1 with the fact that if $|L|\subset|K|$ , then there are $L^{\prime}$ and

$K^{\prime}$ such that $L^{\prime}<L,$ $K^{\prime}<K$ and $L^{\prime}\subset K^{\prime}$ , we can say as follows:
$(K, f)$ bords in (X, $A$) if and only if there exists $(K^{\prime}, f^{\prime})$ with $(K^{\prime}, f^{\prime})\simeq(K, f)$

such that there is a $(n\perp 1)$-dimensional $Z_{2}$-complex $W^{\prime}$ and a map $F^{\prime}$ : $W^{\prime}\rightarrow X$

for which
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(1) $K^{\prime}\subset\partial W^{\prime}$ and $F^{\prime}(\partial W^{\prime}\backslash K^{\prime})\subset A$ ,
(2) $F^{\prime}|K^{\prime}=f^{\prime}$ .
PROPOSITION 4. = is an equivalence relation on the singular $Z_{2^{-}}complexes$ in

(X, $A$).

PROOF. In order to see that $(K, f)$ in (X, $A$) is bordant to itself, form the
$Z_{2}$-complex $I\times K$ where $I$ is the unit interval, and define a map $F:I\times K\rightarrow X$

by $F(t, x)=f(x)$ for $t\in I$ and $x\in K$. Then $0\times K\cup 1XK$ is a subcomplex of $\partial(I\times K)$

such that $F|0\times K\cup 1\times K=f+f$ and $F(\partial(I\times K)\backslash 0\times K\cup 1\times K)\subset A$ . Hence $(K+K$,
$f+f)$ bords.

The bordism relation $=$ is clearly symmetric. Finally for the proof of
transitivity, suppose $(K, f)=(L, g)$ and $(L, g)=(N, h)$ , where $K,$ $L$ and $N$ are
n-dimensional $Z_{2}$-complexes. Then there are $(n+1)$-dimensional $Z_{2}$-complexes
$W$ and $Z$ with maps $F:W\rightarrow X$ and $G:Z\rightarrow X$. We may suppose without loss
of generality that $L$ is full in $W$ and $Z$ respectively. Let $C$ be the complex
obtained from $W+Z$ by identifying two subcomplexes in $W$ and $Z$ which are
isomorphic to $L$ ; we write $C=W\bigoplus_{L}Z$. Then $C$ is a $(n+1)$-dimensional $Z_{2^{-}}com-$

plex, and we can construct a map $H:C\rightarrow X$ so that $(C, H)$ gives $(K, f)=(N, h)$ .

(3.2) LEMMA 2. Let $K$ be any n-dimensional $Z_{2}$-complex. SuPpose $P$ and $Q$ are
closed disjoint subsets of the space $|K|$ . Then there exists a $Z_{2}$-complex $L$ such
that

(1) $L$ is a n-dimensional subcomplex of an iterated barycentric subdivision
$Sd^{k}K$ of $K$.

(2) $P\subset|L|$ and $|L|\cap Q=\emptyset$ .
(3) $|\partial L|\cap P=|\partial K|\cap P$.
PROOF. Let $\rho$ be the distance of $P$ and $Q$ , then $\rho>0$ and mesh$(Sd^{k}K)<\rho$

for some large integer $k(\geqq 2)$ , where $Sd^{k}K$ is the $k^{th}$ barycentric subdivision of $K$.
For any point $x$ of $|Sd^{k}K|,$ $s(x)$ denotes the smallest simplex of $Sd^{k}K$ which

contain $x$ . Define $St(s(x))$ by

$St(s(x))=$ { $\sigma|\sigma\prec\tau$ and $s(x)\prec\tau\in Sd^{k}K$ }.

Clearly it is a n-dimensional $Z_{2}$-complex. Finally we define $St(P)$ as follows:

$St\langle P)=USt(s(x))x\in p$

$St(P)$ is also a n-dimensional $Z_{2}$-complex.
From the above constructions we can see easily that $P\subset|St(P)|$ and

$ Q\cap|St(P)|=\emptyset$ . To complete the proof of Lemma 2 is only necessary to verify
that $St(P)$ has the property (3). Let $L=St(P)$ . Then it is sufficient to show
that $|\partial L|\cap P=|\partial Sd^{k}K|\cap P$. Suppose given any point $x$ of $|\partial L|\cap P$. Then
$x\in|\partial L|$ implies $s(x)\in\partial L$ . Since $\partial L$ is a $Z_{2}$-complex, there is a $(n-1)$-simplex
$s^{n-1}$ such that $s(x)\prec s^{n-1}\in\partial L$ . It follows from $s^{n-1}\in\partial L$ that the number of n-
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simlexes $s^{n}$ in $L$ with $s^{n-1}\prec s^{n}$ is odd. And write them $s_{1}^{n},$ $\cdots$ , $s_{q}^{n}$ . Let $\tau^{n}$ be
any n-simplex of $Sd^{k}K$ with $ s^{n-1}\prec\tau$ . Then $s(x)\prec s^{n- 1}\prec\tau\in Sd^{k}K$. By the dePni-
tion of $St(P)$ , we have $\tau\in L=Si(P)$ . Therefore there is no other n-simplex $\tau$

with $s^{n-1}\prec\tau^{n}$ and $\tau^{n}\neq s_{1}^{n},$ $\cdots$ , $s_{q}^{n}$ . Thus we have $s^{n-1}\in\partial Sd^{k}K$. It follows that
$s(x)\in\partial Sd^{k}K$ which shows $x\in|\partial Sd^{k}K|$ . Since $x\in P$, we have $x\in|\partial Sd^{k}K|\cap P$ .
This proves that $|\partial L|\cap P\subset|\partial Sd^{k}K|\cap P$. Finally we must prove that $|\partial L|\cap P$

$\supset|\partial Sd^{k}K|\cap P$ . Suppose given $x$ of $|\partial Sd^{k}K|\cap P$ . Then $x\in|\partial Sd^{k}K|$ implies
$s(x)\in\partial Sd^{k}K$. Since $\partial Sd^{k}K$ is a $Z_{2}$-complex, there is a $(n-1)$-simplex $s^{n-1}$ with
$s(x)\prec s^{n-1}$ . $s^{n-1}\in\partial Sd^{k}K$ implies that the number of n-simplexes $s^{n}$ with $s^{n-1}\prec s^{n}$

is odd. We denote them by $s_{1}^{n},$ $\cdots$ , $s_{q}^{n}$ . Then $x\in P,$ $s(x)\prec s_{1}^{n},$ $\cdots$ , $s_{q}^{n}\in Sd^{k}K$. From
the definition of $L=St(P)$ , it follows that $s_{1}^{n},$ $\cdots$ , $s_{Q}^{n}\in L$ . Thus we have $s^{n-1}\in\partial L$,
so that $s(x)\in\partial L$ . Hence $x\in|\partial L|$ . This completes the proof of Lemma 2.

\S 4. The singular bordism groups of pairs of spaces.

(4.1) Denote the bordism class of $(K^{n}, f)$ by $[K^{n}, f]$ , and the collection of all
such bordism classes by $\mathcal{H}_{n}(X, A)$ . An abelian group structure is imposed on
$\mathcal{H}_{n}(X, A)$ by disjoint union; that is, $[K_{1}^{n}, f_{1}]+[K_{2}^{n}, f_{2}]=[K_{1}^{n}+K_{2}^{n}, f_{1}+f_{2}]$ . It is
seen that the class of all $(K^{n}, f)$ which bord forms the zero element. Let
$\mathcal{H}_{*}(X, A)$ be the weak direct sum $\sum \mathcal{H}_{n}(X, A)$ .

Given a map $\psi$ : (X, $A$ ) $\rightarrow(Y, B)$ there is associated a natural homomorphism
$\psi_{*};$ $\mathcal{H}_{n}(X, A)\rightarrow \mathcal{H}_{n}(Y, B)$ given by $\psi_{*}[K^{n}, f]=[K^{n}, \psi\circ f]$ . There is also a
homomorphism $\tilde{\partial}_{n}$ : $\mathcal{H}_{n}(X, A)\rightarrow \mathcal{H}_{n-1}(A, \emptyset)$ given by $\tilde{\partial}_{n}[K^{n}, f]=[\partial K^{n}, f|\partial K^{n}]$ .
It is easy to see that $\tilde{\partial}_{n}$ is well dePned and associative.

The following proposition is trivially verified:
PROPOSITION 5.
(1) If $i:(X, A)\rightarrow(X, A)$ is the identity map then

$i_{*}:$ $\mathcal{H}_{n}(X, A)\rightarrow \mathcal{H}_{n}(X, A)$ is the identity automorphism.
(2) If $\psi:(X_{1}, A_{1})\rightarrow(X_{2}, A_{2})$ and $\theta:(X_{2}, A_{2})\rightarrow(X_{\mathfrak{Z}}, A_{3})$ , then $(\theta\circ\psi)_{*}=\theta_{*}\circ\psi*\cdot$

(3) For any map $\psi:(X, A)\rightarrow(Y, B)$ the diagram

$\mathcal{H}_{n}(Y,B)-\rightarrow \mathcal{H}_{n-1}(B,\emptyset)\mathcal{H}_{n}(X,A)\rightarrow \mathcal{H}_{n-1}(A,0)\downarrow\tilde{\partial}_{n}\tilde{\partial}_{n}$

is commutative.
Proposition 5 shows $\{\mathcal{H}_{n}( , ), \tilde{\partial}_{n}\}$ is a covariant functor on the category

of pairs of spaces, and $\tilde{\partial}_{n}$ is a natural transformation.

(4.2) Our main theorem is the following, which will be proved in the next
section.
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THEOREM 2. On the category of pairs of spaces and maps the singular bord-
ism functors

$\{\mathcal{H}_{*}(X, A), \psi*,\tilde{\partial}_{*}\}$

satisfies the Eilenberg-Steenrod axioms for a homology theory. For a single point
$pt.$ , we have

$\mathcal{H}_{n}(pt., \emptyset)\approx\Omega_{n}(JC)\approx\{Z_{2}0$ $n\neq 0n=0’$

.

\S 5. The Eilenberg-Steenrod axioms.

(5.1) $\mathcal{H}_{n}(pt., \emptyset)\approx\Omega_{n}(JC)$ .
PROOF. For any closed $Z_{2}$-complex $K^{n}$, a map $f:K^{n}\rightarrow pt$. is unique. In-

versely given any singular $Z_{2}$-complex $(K^{n}, f)$ in (pt., $\emptyset$), $K^{n}$ is closed. Therefore
there is a one to one correspondence between closed $Z_{2}$-complexes and singular
$Z_{2}$-complexes in (pt., $\emptyset$), which shows $\mathcal{H}_{n}(pt., \emptyset)\approx\Omega_{n}(JC)$ .

(5.2) If $\psi_{0},$ $\psi_{1}$ : $(X, A)\rightarrow(Y, B)$ are homotopic, then $\psi_{0*}=\psi_{1*}$ .
PROOF. Let $h:(I\times X, I\times A)\rightarrow(Y, B)$ be a homotopy joining $\psi_{0}$ and $\psi_{1}$ .

For $(K^{n}, f)$ a singular $Z_{2}$-complex in (X, $A$) define $\theta:I\times K\rightarrow Y$ by $\theta(t, x)$

$=h(t, f(x))$ ; then $\theta(0, x)=\psi_{0}\circ f(x)$ and $\theta(1, x)=\psi_{1}\circ f(x)$ . Now $I\times K^{n}$ is a $(n+1)-$

dimensional $Z_{2}$-complex and $\partial(I\times K^{n})=(\partial I\times K^{n})\cup(I\times\partial K^{n})$ . Thus $1\times K^{n}\cup 0\times K^{n}$

is a subcomplex of $\partial(I\times K^{n})$ , and $\theta(I\times\partial K^{n})\subset B$ . Hence $[K^{n}, \psi_{0}\circ f]=[K^{n}, \psi_{1}\circ f]$ .

(5.3) We need a lemma before proving exactness.
LEMMA 3. Let $L$ be a n-dimensional $Z_{2}$-complex and a subcomplex of a closed

n-dimensional $Z_{2}$-complex K. If $f:K\rightarrow X$ is a map with $f(K\backslash L)\subset A$ , then $[K, f]$

$=[L, f|L]$ in $\mathcal{H}_{n}(X, A)$ .
PROOF. Define $F:I\times K^{n}\rightarrow X$ by $F(t, x)=f(x)$ . Now $\partial(I\times K^{n})=\partial I\times K^{n}$ and

$1\times L^{n}\cup 0\times K^{n}$ is a subcomplex of $\partial(I\times K^{n})$ , for $K^{n}$ is closed. Since $F(1\times(K^{n}\backslash L^{n}))$

$\subset A$ then $[K^{n}, f]=[L^{n}, f|L^{n}]$ .

(5.4) PROPOSITION 6. For every pair(X, $A$) the sequence

$...\rightarrow^{\partial\tilde}\mathcal{H}_{n}(A, \emptyset)\rightarrow^{i_{*}}\mathcal{H}_{n}(X, \emptyset)\rightarrow \mathcal{H}_{n}(Xj_{*}A)\rightarrow^{\partial\tilde}\mathcal{H}_{n-1}(A, \emptyset)\rightarrow\cdots$

is exact.

PROOF. (5.4.1) $\tilde{\partial}j_{*}=0$ .
If $[K^{n}, f]\in \mathcal{H}_{n}(X, \emptyset)$ , then $\partial K=\emptyset$ and $\tilde{\partial}j_{*}[K^{n}, f]=[\partial K^{n}, jf|\partial K^{n}]=[\emptyset, \phi]=0$ .

(5.4.2) ${\rm Im} j_{*}\supset Ker\tilde{\partial}$ .
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Consider $[K^{n}, f]\in \mathcal{H}_{n}(X, A)$ in the kernel of $\tilde{\partial}$ ; then $\tilde{\partial}[K^{n}, f]=[\partial K^{n}, f|\partial K^{n}]=0$

in $\mathcal{H}_{n-1}(A, \emptyset)$ .
By Lemma 1 we may suppose that $\partial K^{n}$ is full in $K^{n}$ . Since $[\partial K^{n}, f|\partial K]=0$

in $\mathcal{H}_{n-1}(A, \emptyset)$ , there is a $Z_{2}$-complex $W^{n}$ and a map $F:W^{n}\rightarrow A$ with $\partial K^{n}=\partial W^{n}$

and $F|\partial K^{n}=f|\partial K^{n}$ . It is also no loss of generality to suppose that $\partial W^{n}$ is
full in $W^{n}$ . Construct a complex $Z^{n}$ identifying the boundary $\partial W^{n}$ of $W^{n}$

with the boundary $\partial K^{n}$ of $K^{n}$ from the disjoint sum $W^{n}+K^{n}$ ; we write $Z^{n}=$

$W\bigoplus_{\partial W\equiv\partial K}K$. Then $Z^{n}$ is a closed $Z_{2}$-complex. Define $g:Z^{n}\rightarrow X$ by $g|W=F$

and $g|K=f$, then $[Z^{n}, g]\in \mathcal{H}_{n}(X, \emptyset)$ and $j_{*}[Z^{n}, g]=[Z^{n}, jg]$ coincides with
$[K^{n}, f]$ by Lemma 3.

(5.4.3) $j_{*}i_{*}=0$ .
If $[K^{n}, f]\in \mathcal{H}_{n}(A, \emptyset)$ , then $\partial K^{n}=\emptyset,$ $f:K^{n}\rightarrow A$ and $j_{*}i_{*}[K^{n}, f]=[K^{n}, jif]$ .
Define $F:I\times K^{n}\rightarrow X$ by $F(t, x)=f(x)$ , then $0\times K^{n}$ is a subcomplex of $\partial(I\times K^{n})$ ,
$F|0\times K^{n}=f$ and $F(\partial(I\times K^{n})\backslash 0\times K^{n})\subset A$ . Hence $[K^{n}, f]=0$ in $\mathcal{H}_{n}(X, A)$ .

\langle 5.4.4) ${\rm Im} i_{*}\supset Kerj_{*}$ .

Let $[K^{n}, f]$ be an element of $\mathcal{H}_{n}(X, \emptyset)$ with $j_{*}[K^{n}, f]=0$ in $\mathcal{H}_{n}(X, A)$ . Then
we may find a representative $(K, f)$ for which there is a $Z_{2}$-complex $W^{n+1}$ and
a map $F:W^{n+1}\rightarrow X$ such that

(1) $K^{n}\subset\partial W^{n+1}$ ,

(2) $F|K^{n}=f$ and $F(\partial W^{n+1}\backslash K^{n})\subset A$ .
Let $Z^{n+1}$ be the complex obtained from the disjoint sum $W^{n+1}+(I\times K^{n})$ by
identifying the subcomplex $K^{n}$ of $W^{n+1}$ with the subcomplex $1\times K^{n}$ of $I\times K^{n}$ ,
$i$ . $e$ . $Z^{n+1}=W^{n+1}\bigoplus_{K\cong 1\times K}I\times K^{n}$ .
Define $G:Z^{n+1}\rightarrow X$ by $G|W^{n+1}=F$ and $G(t, x)=f(x)$ for $t\in Iandx\in K$. Denote
$0\times K^{n}$ by $K^{n}$, then

(3) $K^{n}\subset\partial Z^{n+1}$ ,

(4) $G|K^{n}=f$ and $G(\partial Z^{n+1}\backslash K^{n})\subset A$ .
Let $L^{n}=\partial Z^{n+1}\backslash K^{n}$, then by the construction $\partial L^{n}=\emptyset$, $ L^{n}\cap K^{n}=\emptyset$ and $\partial Z^{n+1}=$

$L^{n}+K^{n}$ . Hence $G|K^{n}\cup L^{n}=f\cup G|L^{n}$ . Since $[L^{n}, G|L^{n}]\in \mathcal{H}_{n}(A, \emptyset),$ $i_{*}[L^{n}, G|L^{n}]$

coincides with $[K^{n}, f]$ in $\mathcal{H}_{n}(X, \emptyset)$ .
\langle 5.4.5) $i_{*}\tilde{\partial}=0$ .
Let $[K^{n}, f]$ be an element of $\mathcal{H}_{n}(X, A)$ such that $i_{*}\tilde{\partial}[K^{n}, f]=[\partial K^{n}, if|\partial K^{n}]=0$

in $\mathcal{H}_{n-1}(X, \emptyset)$ . Since $\partial K$ is the boundary of $K^{n}$ and $f|\partial K^{n}$ is a restriction of
$f:K^{n}\rightarrow X$, the singular $Z_{2}$-complex $(\partial K^{n}, f|\partial K^{n})$ bords in (X, Q).



$Z_{2}$-homology and singular bordism 441

(5.4.6) ${\rm Im}\tilde{\partial}\supset Keri_{*}$ .

Let $[K^{n-1}, f]$ be an element of $\mathcal{H}_{n-1}(A, \emptyset)$ such that $i_{*}[K^{n-1}, f]=[K^{n-1}, if]=0$

in $\mathcal{H}_{n-1}(X, \emptyset)$ . Since $f:K^{n-1}\rightarrow A\subset X,$ $\partial K^{n-1}=\emptyset$ and $[K^{n-1}, f]=0$ in $\mathcal{H}_{n-1}(X, \emptyset)$ ,
we may find a representative $(K, f)$ for which there is a $Z_{2}$-complex $W^{n}$ and
a map $F:W^{n}\rightarrow X$ with $K^{n-1}=\partial W^{n}$ and $F|K^{n-1}=f$. Then $ F:(W^{n}, \partial W^{n})\rightarrow$

(X, $A$), $[W^{n}, F]\in \mathcal{H}_{n}(X, A)$ and $\tilde{\partial}[W^{n}, F]=[\partial W^{n}, F|\partial W^{n}]=[K^{n-1}, f]$ in
$\mathcal{H}_{n-1}(A, \emptyset)$ .

(5.5) PROPOSITION 7.
If $U$ is an oPen set with $\overline{U}\subset IntA$ , then the inclusion $i:(X\backslash U, A\backslash U)\rightarrow(X, A)$

induces an isomorphism $i_{*}:$ $\mathcal{H}_{n}(X\backslash U, A\backslash U)\approx \mathcal{H}_{n}(X, A)$ .
PROOF. (5.5.1) $i^{*}$ is an epimorphism.

Let $(K^{n}, f)$ be a singular $Z_{2}$-complex in (X, $A$) $;f:(K^{n}, \partial K^{n})\rightarrow(X, A)$ . Let
$P=f^{-1}(X\backslash IntA),$ $Q=f^{-1}(\overline{U})$ . There exists, by Lemma 2, a $Z_{2}$-complex $L^{n}$ with
$P\subset|L^{n}|$ and $ Q\cap|L^{n}|=\emptyset$ . Furthermore $L^{n}$ is a subcomplex of a sufficiently
fine barycentric subdivision $K^{\prime n}$ of $K^{n}$ . Now we show that $f(\partial L)\subset A$ . Let $x$

be any point of $|\partial L|$ . In the case $x\not\in P$, it follows from the definition of $P$

that $f(x)\in A$ . In the case when $x\in P$, we know from Lemma 2 that $x\in|\partial L|\cap P$

$=|\partial K|\cap P$. Therefor $x\in|\partial K|$ . Since $f(\partial K)\subset A$ , we know that $f(x)\in A$ . Thus
$[L^{n}, f|L^{n}]\in \mathcal{H}_{n}(X\backslash U, A\backslash U)$ .

Define $F:I\times K^{\prime n}\rightarrow X$ by $F(t, x)=f(x)$ . Then $1\times L^{n}\cup 0\times K^{\prime n}$ is a subcomplex
of $\partial(I\times K^{\prime n})=\partial I\times K^{\prime n}\cup I\times\partial K^{\prime n}$ and $F(\partial(I\times K^{\prime n})\backslash 1\times L^{n}\cup 0\times K^{\prime n})\subset A$ . Hence
$[L^{n}, f|L^{n}]=[K^{\prime n}, f]=[K^{n}, f]$ in $\mathcal{H}_{n}(X, A)$ .
(5.5.2) $i_{*}$ is a monomorphism.
Let $[K^{n}, f]$ be any element of the kernel of $i_{*};$

$(K^{n}, \partial K)\frac{f}{\sim}(X\backslash UA\backslash U)if(X,A)|i$

and $i_{*}[K^{n}, f]=[K^{n}, if]=0$ in $\mathcal{H}_{n}(X, A)$ .
Let $P_{1}=f^{-1}(X\backslash IntA)$ and $Q_{1}=f^{-1}(\overline{U})$ , then there exists, by Lemma 2, a $Z_{2^{-}}$

complex $K_{1}^{n}$ such that it is a subcomplex of a sufficiently fine barycentric
subdivision $K^{\prime n}$ of $K^{n}$ with $P_{1}\subset|K_{1}^{n}|$ and $ Q_{1}\cap|K_{1}^{n}|=\emptyset$ .

Consider $F_{1}$ : $(I\times K^{\prime n})\rightarrow X\backslash U$ by $F_{1}(t, x)=f(x)$, then

$F_{1}|K_{1}\cup K^{\prime}=f|K_{1}\cup f$ and $F_{1}(\partial(I\times K^{\prime n})\backslash K_{1}\cup K^{\prime})\subset A\backslash U$ .
Hence $[K_{1}, f|K_{1}]=[K, f]$ in $\mathcal{H}_{n}(X\backslash U, A\backslash U)$ . Let $f|K_{1}=f_{1}$ , then $ f_{1}(K_{1})\cap\overline{U}=\emptyset$ .
Since $[K_{1}, f_{1}]=[K, f]=0$ in $\mathcal{H}_{n}(X, A)$, we may find a representative $(K_{1}, f_{1})$

for which there is a $Z_{2}$-complex $W^{n+1}$ and a map $F:W^{n+1}\rightarrow X$ such that
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(1) $K_{1}\subset\partial W^{n+1}$ ,

(2) $F|K_{1}=f_{1}$ and $F(\partial W\backslash K_{1})\subset A$ .

Let $P^{\prime}=F^{-1}(X\backslash IntA)$ and $Q=F^{-1}(\overline{U})$ , then $P^{\prime}$ and $Q$ are closed sets with
$ P^{\prime}\cap Q=\emptyset$ . Now let $P=P^{\prime}\cup K_{1}$ , then $P$ is also a closed set. Since $ K_{1}\cap Q=\emptyset$

by the construction of $K_{1},$ $P$ and $Q$ are closed sets with $ P\cap Q=\emptyset$ . By Lemma
2, there exists a $Z_{2}$-complex $W_{1}\subset W$ with $P\subset|W_{1}|$ and $ Q\cap|W_{1}|=\emptyset$ . Since
$K_{1}\subset W_{1}\subset W,$ $K_{1}\subset P$ and $|\partial W|\cap P=|\partial W_{1}|\cap P$, we know that $K_{1}\subset\partial W_{1}$ .

Next we show that $F(\partial W_{1}\backslash K_{1})\subset A$ . Let $x\in|\partial W_{1}\backslash K_{1}|$ . In the case when
$x\not\in P$, we know that $x\not\in F^{-1}(X\backslash IntA)$ . It follows that $F(x)\not\in(X\backslash IntA)$ which
shows $F(x)\in A$ . In the case when $x\in P$, we see that $x\in|\partial W_{1}|\cap P=|\partial W|\cap P$.
$x\in|\partial W|$ and $x\not\in K_{1}$ implies $x\in|\partial W\backslash K_{1}|$ . Since $F(\partial W\backslash K_{1})\subset A$, we know
$F(x)\in A$ . This completes the proof of $F(\partial W_{1}\backslash K_{1})\subset A$ . Since $K_{1}\subset\partial W_{1}$ ,
$F(\partial W_{1}\backslash K_{1})\subset A\backslash U$ and $F|W_{1}$ : $W_{1}\rightarrow X\backslash U$, then $[K_{1}, f_{1}]=0$ in $\mathcal{H}_{n}(X\backslash U, A\backslash U)$ .

\S 6. Bordism categories.

(6.1) A category with sum $ C=\langle C, +, \emptyset\rangle$ is a category $C$ with a bifunctor $+$ :
$C\times C\rightarrow C$, an object $\emptyset$ of $C$ and following three natural isomorphisms;

(1) $A+B\simeq B+A$ ,

(2) $(A+B)+C\simeq A+(B+C)$ ,

(3) $\emptyset+A\simeq A$ .
Notice that every category with sum is a monoidal category in the sense of
S. MacLane [3].

(6.2) A bordism category $ C=\langle C, \partial, +, \emptyset\rangle$ is a category with sum $\langle C, +, \emptyset\rangle$ , a
functor $\partial$ : $C\rightarrow C$ and following three natural isomorphisms;

(1) $\partial\circ\partial A\simeq\emptyset$ for any object $A$ of $C$,

(2) $\partial(A+B)\simeq\partial A+\partial B$,

(3) $\partial\emptyset\simeq\emptyset$ .

(6.3) If $ C=\langle C, \partial, +, 0\rangle$ is a bordism category, we say that the objects $A$ and
$B$ are bordant if there exist objects $U$ and $V$ of $C$ such that $A+\partial U\simeq B+\partial V$.
This will be written $A\equiv B$ . Then we have easily that $\equiv$ is an equivalence rela-
tion on the objects of $C$. Denote the equivalence class of $A$ by $[A]$ and define
the sum $[A]+[B]$ by $[A+B]$ . An object $A$ is closed if $\partial A\simeq\emptyset$ and $A$ is bounds
if $ A\equiv\emptyset$ .
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(6.4) The bordism semi-group $\Omega(C)$ of the bordism category $C$ is the set of
equivalence classes of closed objects of $C$ with the operation induced by the
sum in $C$. Indeed $\Omega(C)$ is a commutative semi-group with a unit.

(6.5) A graded bordism category $c=\{\langle C_{n}, +_{n}, \emptyset_{n}\rangle, \partial_{n}\}_{n\in Z}$ is a sequence
$\{\langle C_{n}, +_{n}, \emptyset_{n}\rangle\}_{n\in Z}$ of categories with sum, a sequence $\{\partial_{n}\}$ of functors $\partial_{n}$ : $C_{n}$

$\rightarrow C_{n-1}$ and following natural isomorphisms;

(1) $\partial_{n}(A+B)\simeq\partial_{n}A+\partial_{n}B$ ,

(2) $\partial_{n-1}\circ\partial_{n}A\simeq\emptyset_{n-2}$ ,

(3) $\partial_{n}\emptyset_{n}\simeq\emptyset_{n-1}$ .
Then $\langle C, \partial, +, \emptyset\rangle=\langle\{C_{n}\}, \{\partial_{n}\}, \{+n\}, \{\emptyset_{n}\}\rangle$ is a bordism category. Objects of $C_{n}$

and morphisms in $C_{n}$ will be called respectively n-objects of $C$ and n-morphisms
in C. n-objects $A$ and $B$ of $C$ are bordant if there exist $(n+1)$-objects $U$ and
$V$ of $C$ such that $A+\partial U\simeq B+\partial V$ . This will be written $A\equiv nB$ . Then we may
define a n-dimensional bordism semi-group $\Omega_{n}(C)$ for each $n\in Z$ as the set of
equivalence classes of closed n-objects of $C$, and we have $\Omega(C)\approx\{\Omega_{n}(C)\}_{n\in Z}$ .

(6.6) A category is discrete when every morphism is an identity. Every set $C$

is the set of objects of a discrete category (just add one identity morphism
$c\rightarrow c$ for each $c\in C$), and every discrete category is so determined by its set
of objects. For every abelian group $C$ with an operation $+and$ a unit $0$,
$\langle C, +, 0\rangle$ is regarded as a discrete category with sum.
For every chain complex $(C, d),$ $\langle C, d, +, 0\rangle$ is a discrete bordism category. We
have easily:

THEOREM 3. Every chain complex is a discrete graded bordism category, and
its homology groups coincide with its bordism groups.

\S 7. Singular bordism theories.

(7.1) A category with sum $ C=\langle C, +, \emptyset\rangle$ is regular, when $+is$ the finite sums
in $C$ and $\emptyset$ is an initial object of $C$. A bordism category $\langle C, \partial, +, \emptyset\rangle$ is
regular, if $\langle C, +, \emptyset\rangle$ is regular.
(7.2) Let $\mathfrak{X}=\langle \mathfrak{X}, +, \emptyset\rangle$ be a regular category with sum. A singular bordism
theory $\langle C, F, 1\rangle$ on $\mathfrak{X}$ is a triple in which;

(1) $ C=\langle C, \partial, +, \emptyset\rangle$ is a regular bordism category,
(2) $F:C\rightarrow \mathfrak{X}$ is a functor such that

i) $F(A+B)=F(A)+F(B)$ ,

ii) $ F(\emptyset)=\emptyset$ ,
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(3) 1: $F\circ\partial\rightarrow F$ is a natural transfcrmation.

(7.3) Let $\langle C, F, 1\rangle$ is a singular bordism theory on $\mathfrak{X}$ . For any object $X$ of
$\mathfrak{X}$ , form a category $C/X$ whose objects are pairs $(A, f)$ with A an object of $C$

and $f\in Mor_{\mathfrak{X}}(F(A), X)$ and whose morphisms are given by letting $Mor_{C/X}((A, f)$ ,
$(B, g))$ be the set of morphisms $\psi\in Mor_{C}(A, B)$ such that the diagram

$F(A)\frac{F(\psi)}{\backslash _{X}f\nearrow g}F(B)$

commutes.
If $(A, f)$ and $(B, g)$ are objects of $C/X$ and $A+B$ is a finite sum for $A$ and

$B$ in $C$, then $F(A+B)$ is a finite sum for $F(A)$ and $F(B)$ in $\mathfrak{X}$ . The morphisms
$f$ and $g$ give a unique morphism $f+g:F(A)+F(B)\rightarrow X$, and $(A, f)+(B\sim, g)=(A$

$+B,$ $f+g$) is the sum of $(A, f)$ and $(B, g)$ in $C/X$. If $\emptyset$ is an initial object of $C$

and $\phi$ : $F(\emptyset)\rightarrow X$ is the unique morphism, then $\sim\emptyset=(\emptyset, \phi)$ is an initial object of
$C/X$. From our definitions and regularity of $\mathfrak{X}$ and $C$, we have:

PROPOSITION 8. $\langle C/X, +\sim\sim\emptyset\rangle$ is a regular category with sum.

(7.4) Let $\tilde{\partial}(A, f)=(\partial A, f\circ l_{A})$ and $\tilde{\partial}(\emptyset, \phi)=(\emptyset, \phi)$, then $\tilde{\partial}\tilde{\partial}(A, f)=(\partial\partial A, f\circ l_{A}\circ l_{\partial_{A}})$

$\simeq(\emptyset, \phi)$ .
If $\tilde{\psi}:(A, f)\rightarrow(B, g)$ is a morphism in $C/X$, then there exists a morphism

$\psi:A\rightarrow B$ in $C$ such that the diagram

commutes.
Let $\tilde{\partial}(\tilde{\psi})=\partial\psi$ to define the functor $\tilde{\partial}$ : $C/X\rightarrow C/X$. It is easily checked

that the functor $\tilde{\partial}$ : $C/X\rightarrow C/X$ has properties (1), (2) and (3) of (6.2).

PROPOSITION 9. $\langle C/X,\tilde{\partial}, +\sim\emptyset\rangle\sim$ is a regular bordism category.

(7.5) Define $F;C/X\rightarrow \mathfrak{X}$ by $F(A, f)=F(A)$ for any object $(A, f)$ of $C/X$ and
$F(\tilde{\psi})=F(\psi)$ for any morphism $\tilde{\psi}:(A, f)\rightarrow(B, g)$ such that $\tilde{\psi}=\psi:A\rightarrow B$ . Then
$F\{(A, f)\sim+(B, g)\}=F\{(A+B, f+g)\}=F(A+B)=F(A, f)+F(B, g)$ and $F(\emptyset, \phi)$

$=F(\emptyset)=\emptyset$ .
Define the natural transformation $\sim l:F\tilde{\partial}\rightarrow F$ by $l_{(Af)}=l_{A}$ :$F(\partial A)\sim,\rightarrow F(A)$ for

an object $(A, f)$ of $C/X$. From the above definitions and Proposition 9, we have
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following theorem;
THEOREM 4. If $\langle C, F, 1\rangle$ is a singular bordism theory on $\mathfrak{X}$ then $\langle C/X,\tilde{F}, l\rangle\sim$

is also a singular bordism theory on $\mathfrak{X}$ for any object $X$ of $\mathfrak{X}$ .

(7.6) Let $JC$ be the category whose n-objects are $7l$-dimensional $Z_{2}$-complexes
and whose n-morphisms are $pl$-imbeddings which take boundary into boundary.
This category $JC$ has finite $sums+given$ by the disjoint union and has an initial
object $\emptyset$ given by the empty $Z_{2}$-complex, so that $\langle JC, \partial, +, \emptyset\rangle$ is a regular
graded bordism category.

Let $\mathfrak{X}$ be the category of topological spaces and continuous maps, then $\mathcal{X}$

has finite sums $+given$ by the disjoint union and an initial object $\emptyset$ given by
the empty space, so that \langle X, $+,$ $\emptyset\rangle$ is a regular category with sum. Let $F$ :
$J\zeta\rightarrow \mathfrak{X}$ be the forgetful functor, then the natural transformation 1: $F\partial\rightarrow F$ are
given by the inclusion $l_{K}$ : $|\partial K|\rightarrow|K|$ in $\mathfrak{X}$ for each object Kof $eX$ . $\langle JC, F, 1\rangle$

is a singular bordism theory on $\mathfrak{X}$ and this singular bordism theory defines the
ordinary $Z_{2}$-homology theory on $\mathfrak{X}$ .

$\pi$

For any space $X,$ $\langle JC/X,\tilde{F}, l^{\sim}\rangle$ is also a singular bordism theory on $\mathfrak{X}$ , and
$\Omega_{n}(JC/X)\approx H_{n}(X;Z_{2}),$ $\Omega_{n}(JC/X/Y)\approx H_{n}(X\times Y;Z_{2})$ .

REMARK 1) We may consider the oriented case by a suitable generalization
of the notion of orientation.

REMARK 2) Given two singular bordism theories on X, there exists their
product singular bordism theory on $\mathfrak{X}$ .

(7.7) Other examples are classical bordism theories (cf. [2] and [4]). Let $\mathcal{D}_{0}$

be the graded category whose n-objects are oriented n-dimensional compact
differential manifolds and whose n-morphisms are orientation preserving dif-
ferential imbeddings which take boundary into boundary. Let $F$ be the forgetful
functor $F:\mathcal{D}_{0}\rightarrow \mathfrak{X}$ , then there exists a natural transformation 1: $F\partial\rightarrow F$ and
$\langle \mathcal{D}_{0}, F, 1\rangle$ is the singular bordism theory on $\mathfrak{X}$ which define a generalized ho-
mology theory on $\mathfrak{X}$ .
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