On transitive groups in which the maximal number of fixed points of involutions is five

By Yutaka Hiramine

(Received July 7, 1975)
(Revised Aug. 20, 1977)

§ 1. Introduction.

Let t and μ be integers such that $t \geqq 1, \mu \geqq 0$. A finite permutation group (G, Ω) of even order is said to be a (t, μ)-group if G is t-transitive on Ω and μ is the maximal number of the fixed points of involutions in G. All $(2, \mu)$ groups with $\mu \leqq 4$ have been classified; for $\mu=0$ and $\mu=1$ by Bender [2][3], for $\mu=2$ by Hering [12], for $\mu=3$ by King [14] and for $\mu=4$ by Noda [15] and Buekenhout [4]. The (1,3)-groups have been classified by Buekenhout [5] and (1, 4)-groups have been studied by Rowlinson and Buekenhout [6][20]. In [18][19], Rowlinson has shown that a simple ($1, \mu$)-group with one conjugate class of involutions is one of the known simple groups when $1 \leqq \mu \leqq 7$.

In this paper we shall consider primitive $(1,5)$-groups. Let (\tilde{G}, Ω) be a primitive (1,5)-group and G be a minimal normal subgroup of \tilde{G}.

If G is solvable, G is an elementary abelian p-group for some prime p. In this case we can easily show that $p=5$. Moreover \tilde{G} is a group of automorphisms of an affine space satisfying one of the following:
(1) Dimension of the affine space is 2 or 3.
(2) If T is a Sylow 2 -subgroup of $\tilde{G}_{\alpha}(\alpha \in \Omega)$ then T is cyclic or generalized quaternion and $\left|C_{G}(z)\right|=5$ where z is a unique involution in T.
If G is not solvable, G is a direct product of r isomorphic nonabelian simple groups. In this case, the permutation group (G, Ω) is a ($1, \mu$)-group where μ $\in\{1,3,5\}$ and we can easily show that $r=1$, with the exception of the following case

$$
G=G_{1} \times G_{2} \cong A_{5} \times A_{5}
$$

where $G_{i}(1 \leqq i \leqq 2)$ is isomorphic to the alternating group of degree 5 and G is a permutation group on the set $\{(i, j) \mid 1 \leqq i, j \leqq 5\}$, which is defined by $(i, j)^{g}=$ $\left(i^{g_{1}}, j^{g_{2}}\right)$ for $g=g_{1} \cdot g_{2} \in G$ with $g_{i} \in G_{i}(1 \leqq i \leqq 2)$. Thus we have Aut $(G) \geqq \tilde{G} \geqq G$, where G is a simple ($1, \mu$)-group ($\mu \in\{1,3,5\}$) or the group isomorphic to A_{5} $\times A_{5}$. Since simple (1,1)-groups and (1, 3)-groups are known simple groups by Bender [3], Buekenhout [5] and Rowlinson [18], we may consider simple (1, 5)-
groups to classify the primitive (1, 5)-groups.
The purpose of this paper is to prove the following theorem.
Theorem 1. Let (G, Ω) be a $(1,5)$-group and T be a Sylow 2-subgroup of $O^{2}(G)$. Then we have one of the following;
(1) $|T| \leqq 2^{8}$.
(2) T has a cyclic subgroup of index 4 .
(3) $O^{2}(G)$ has a unique conjugate class of involutions.

Here $O^{2}(G)$ is the subgroup of G generated by all elements of odd order.
In our theorem let G be simple. A simple (1,5)-group satisfying (2) or (3) is known ([7], [18]). In order to classify simple (1, 5)-groups satisfying (1), we shall prove in $\S 5$ the following lemma.

Lemma 2. Let G be a simple (1,5)-group which satisfies (1) of Theorem 1. Then G has a unique conjugate class of involutions or G has sectional 2-rank at most 4. (A group G is said to have sectional 2 -rank k if every section of G has 2 -rank at most k and some section of G has 2 -rank equal to k.)

Simple groups with sectional 2 -rank at most 4 were decided recently by D. Gerenstein and K. Harada [10]. Thus we shall obtain the following theorem.

TheOrem 3. Let G be a simple (1,5)-group. Then G is isomorphic to one of the simple groups in the following list.
(1) $L_{2}\left(2^{n}\right), n \equiv 0(\bmod 4)$, degree $=2^{n} \times 5+5 . \quad G_{\alpha}$ is a (unique) subgroup of $N_{G}(T)$ of index 5 , where T is a Sylow 2-subgroup of G.
(2) $U_{3}\left(2^{n}\right), n \equiv 0(\bmod 2)$ degree $=2^{3 n} \times 5+5 . \quad G_{\alpha}$ is a (unique) subgroup of $N_{G}(T)$ of index 5.
(3) $L_{2}(7)$, degree $=21, G_{\alpha} \cong T$.
(4) $L_{2}(9)$, degree $=45, G_{\alpha} \cong T$.
(5) $\quad L_{2}(19)$, degree $=285, G_{\alpha} \cong A_{4}$.
(6) $L_{2}(19)$, degree $=57, G_{\alpha} \cong A_{5}$.
(7) $L_{2}(25)$, degree $=65, G_{\alpha} \cong P G L(2,5)$.
(8) $L_{3}(4)$, degree $=21$, (2-transitive).
(9) $L_{3}(3)$, degree $=13$, (2-transitive).
(10) A_{7}, degree $=21, G_{\alpha} \cong S_{5}$.
(11) A_{9}, degree $=9$, (7-transitive).
(12) J_{1}, degree $=1045, G_{\alpha} \cong N_{G}(T)$.

By Theorem 3, [3], [14] and [21], we obtain
Theorem 4. Let (G, Ω) be a $(2,5)$-group. Then we have the following:
(1) A Sylow 2-subgroup of G is cyclic or generalized quaternion, or G is one of the following groups:
(2) A subgroup of automorphisms of the affine space of dimension 3 over $G F(5)$ such that

$$
G=G_{\alpha} \cdot N \triangleright N \cong Z_{5} \times Z_{5} \times Z_{5}, G_{\alpha}=S L(3,5) .
$$

(3) A subgroup of automorphisms of the affine space of dimension 2 over GF(5) such that

$$
G=G_{\alpha} \cdot N \triangleright N \cong Z_{5} \times Z_{5}, G_{\alpha}=G L(2,5) .
$$

(4) A subgroup of (3) of index 2 containing $S L(2,5)$.
(5) A subgroup of (3) such that $G=G_{\alpha} \cdot N \triangleright N \cong Z_{5} \times Z_{5}, G_{\alpha}=N_{G L(2,5)}(Q), Q \in$ $S y l_{.2}(S L(2,5))\left|G_{\alpha}\right|=2^{5} \cdot 3$.
(6) A subgroup of (5) of index 2 containing $N_{S L(2,5)}(Q)$.
(7) $\operatorname{Aut}\left(L_{2}(16)\right),|\Omega|=17$.
(8) A subgroup of (7) of index 2.
(9) $\operatorname{Aut}\left(U_{3}(4)\right),|\Omega|=65$.
(10) A subgroup of (9) of index 2.
(11) $S_{7},|\Omega|=7$.
(12) $L_{3}(3),|\Omega|=13$.
(13) $L_{3}(4),|\Omega|=21$.
(14) A subgroup G of $N_{S_{21}}\left(L_{3}(4)\right)$ such that $\left|G: L_{3}(4)\right|=3,|\Omega|=21$.
(15) $A_{9},|\Omega|=9$.

In $\S 3$ and $\S 4$, we shall prove Theorem 1. In the Theorem let us remark that $O^{2}(G)$ is also transitive on Ω.

If $O^{2}(G)$ contains no involution, then (1) of Theorem 1 holds. If $O^{2}(G)$ has an involution, $\left(O^{2}(G), \Omega\right)$ is a ($1, \mu$)-group where $\mu \in\{1,3,5\}$. When $\mu=1$ or 3 , we can easily show that either (2) or (3) of the theorem holds. Hence we may assume $O^{2}(G)=G$.

The proof is divided into two cases;
Case 1: $Z(T)$ contians no 5 -involution.
Case 2: $Z(T)$ contains a 5 -involution.
Here an involution is called a μ-involution if it fixes exactly $\mu(\mu=0,1,2 \cdots)$ points.

In the first case, we have
Proposition A. Let (G, Ω) be a $(1,5)$-group with no subgroup of index 2 . If the center of a Sylow 2-subgroup T of G contains no 5 -involution, then the order of T is at most 2^{8}.

In the second case, we have
Proposition B. Let (G, Ω) be a $(1,5)$-group with no subgroup of index 2. If the center of a Sylow 2-subgroup T of G contains a 5-involution, then one of the following holds.
(1) $|T| \leqq 2^{8}$.
(2) T has a cyclic subgroup of index 4 .
(3) G has a unique conjugate class of involutions.

We use the standard notation of [9] except the following;
$F(X)$: the set of fixed points of a nonempty subset X of G.
$c c l_{G}(x)$: the G-conjugate class containing an element $x \in G$.
$|H|_{2}$: maximal power of 2 dividing the order of a subgroup H of G.
$\left.G\right|_{\Delta}$: the restriction of G on a subset Δ of Ω.

§ 2. Preliminary results.

We list now some results that will be required in the proof of the theorems.
(2.1) (Rowlinson [20] Lemma 1) Let V be the semi-direct product of a 2 group Y by a four-group $\left\{1, t_{1}, t_{2}, t_{3}\right\}$. If $\left|C_{Y}\left(t_{i}\right)\right| \leqq 4(i=1,2,3)$, then $|Y| \leqq 2^{5}$.
(2.2) (Hobby, Satz 7.8 (b), III [13]) Let P be a p-group for some prime p. If $Z(\Phi(P))$ is cyclic, then $\Phi(P)$ is also cyclic.
(2.3) (Buekenhout and Rowlinson [6] Lemma 2) Let T be a Sylow 2subgroup of G with $O^{2}(G)=G$ and v be an element of T of order 2^{m}. If X is a subgroup of T of index 2^{m}, then X contains a G-conjugate of the involution $v^{2 m-1}$.
(2.4) Let G be a transitive permutation group on Ω and H be a stabilizer of a point in Ω. For any element $x \in H$, we have

$$
|F(x)|=\left|C_{G}(x)\right| \cdot\left|c c l_{G}(x) \cap H\right| /|H| .
$$

Proof. Set $M=\left\{(y, \alpha) \mid c c l_{G}(x) \ni y, F(y) \ni \alpha\right\}$ and $M_{\beta}=\{z \in G \mid F(z) \ni \beta, z \in$ $\left.c c l_{G}(x)\right\}$. By transitivity of G, we have $\left|M_{\beta}\right|=\left|M_{\gamma}\right|$ for all $\beta, \gamma \in \Omega$. Now we count the number of elements of M in two ways and get

$$
\left|G: C_{G}(x)\right| \cdot|F(x)|=|\Omega| \cdot\left|M_{\alpha}\right| \quad(\alpha \in \Omega)
$$

We may assume $H=G_{\alpha}$. Hence we have $\left|M_{\alpha}\right|=\left|c c l_{G}(x) \cap H\right|$. Thus we get (2.4).

As a corollary of (2.4), we have
(2.5) Let Δ be a set and T be a 2-group acting transitively and faithfully on Δ. If x is an element of T with $|F(x)| \neq 0$, we have

$$
\left|C_{T}(x)\right| \leqq|F(x)|_{2} \cdot|T| /|\Delta|
$$

(2.6) Let Ω be a finite set with $|\Omega|$ odd and G be a transitive permutation group on Ω of even order. Assume $F(x)=F(y)$ for all involutions with $|F(x)|$ $>1,|F(y)|>1$ in a fixed Sylow 2-subgroup of G. Then all involutions lying in a fixed Sylow 2-subgroup of G have the same set of fixed points, G has a unique conjugate class of involutions and G has a strongly embedded subgroup. (Hence if G is a simple group, G is isomorphic to a simple group of Bender type ([3]).)

Proof. Let u be a 1 -involution and x be an involution with $|F(x)|>1$. By transitivity, we may assume $F(u) \subseteq \Omega-F(x)$. The element u is not conjugate to x in G, hence $O(u x)$ is even. There exists a unique involution $y \in\langle u x\rangle$ with
$[u, y]=[x, y]=1$.
When y is a 1-involution, it follows that $F(u)=F(y)$ and $F(y) \subseteq F(x)$, hence $F(u) \subseteq F(x)$, a contrandiction. When y is not a 1 -involution, by assumption we get $F(x)=F(y)$ and $F(u) \subseteq F(y)$, hence $F(u) \subseteq F(x)$, a contradiction. Thus the first statement is proved.

Let x, y be involutions with $F(x) \neq F(y)$. Then $O(x y)$ is odd. For otherwise, there exists a unique involution $z \in\langle x y\rangle$ with $[x, z]=[y, z]=1$. By the first statement of (2.6), we have $F(x)=F(z)$ and $F(y)=F(z)$, hence $F(x)=F(y)$, a contradiction. From this, G has a unique conjugate class of involutions.

Let z be an involution and H be a global stabilizer of $F(z)$. If x is an involution contained in H, x centralizes an involution y contained in the kernel of the action of H on $F(z)$. Since $O(x y)(=2)$ is even, it follows that $F(x)$ $=F(y)$ by the preceding paragraph. Hence H is a strongly embedded subgroup of G.
(2.7) Let P be an elementary abelian 2-group of order 2^{n} and ϕ be an automorphism of P of order 2. Then we have

$$
\left|C_{P}(\phi)\right| \geqq 2^{\frac{1}{2} n} .
$$

Proof. Set $P=\sum_{i=1}^{r} C_{P}(\phi) \cdot x_{i}$ (the coset decomposition). Then $x_{i}^{\phi} x_{i}$ is an element of $C_{P}(\phi)$ for each $i(1 \leqq i \leqq r)$ and $x_{i}^{\phi} x_{i}$ is not equal to $x_{j}^{\phi} x_{j}$ for $i \neq j(1 \leqq i$, $j \leqq r)$, hence $r \leqq\left|C_{P}(\phi)\right|$. Since $r=\left|P: C_{P}(\phi)\right|$, we have $|P| \leqq\left|C_{P}(\phi)\right|^{2}$, which gives $(2,7)$.
(2.8) Let G be a finite group and x be an element of G. Then we have $\left|c c l_{G}(x)\right| \leqq\left|G^{\prime}\right|$.

Proof. If y is an element of $c c l_{G}(x)$, there exists $g \in G$ with $y=g^{-1} x g$. Since $x^{-1} x^{g}=[x, g] \in G^{\prime}$, we have $x^{g} \in x G^{\prime}$. Hence we have $\left|c c l_{G}(x)\right| \leqq\left|x G^{\prime}\right|=\left|G^{\prime}\right|$.

§ 3. Proof of Proposition A.

Since G has a 5 -involution, $|\Omega|$ is odd. Hence there exists $\alpha \in \Omega$ with T $\leqq G_{\alpha}$. Set $M^{*}=M-\{\alpha\}$ for any subset M of Ω. If G has a 3 -involution, then G has an odd permutation and hence $G \neq O^{2}(G)$. Thus G has no 3 -involution and $Z(T)$ acts semi-regularly on Ω^{*}.

Now we suppose $|T| \geqq 2^{9}$ and show this leads to a contradiction.
(3.1) If a subgroup R of T is contained in T_{β} for some $\beta \in \Omega^{*}$, then $R=1$ or R is not normal in T.

Proof. By semi-regularity of $Z(T)$ on $\Omega^{*}, Z(T) \cap R=1$, so (3.1) holds.
(3.2) $|\Omega| \equiv 1(\bmod 8)$.

Proof. We assume $\left|T: T_{\beta}\right| \leqq 4$ for some $\beta \in \Omega^{*}$. Since $|T|>4, T_{\beta} \neq 1$. Hence by (3.1), T_{β} is not normal in T. In particular $\left|T: T_{\beta}\right|=4,\left|T: N_{T}\left(T_{\beta}\right)\right|$
=2. Hence ${ }_{\alpha}^{\nabla} c c l_{T}\left(T_{\beta}\right)=\left\{T_{\beta}, T_{\beta}^{t}\right\}$ for $t \in T-N_{T}\left(T_{\beta}\right)$ and $T \triangleright T_{\beta} \cap T_{\beta}^{t},\left|T: T_{\beta} \backslash \backslash T_{\beta}^{t}\right|$ $=8$. By (3.1) $\left|T_{\beta} \cap T_{\beta}^{\ell}\right|=1$ and so $|T|=2^{3}$, a contradiction. Thus $\left|T: T_{\beta}\right| \geqq 8$ for any $\beta \in \Omega^{*}$, which implies $\left|\Omega^{*}\right| \equiv 0(\bmod 8)$.
(3.3) $|Z(T)|=2$ or 2^{2}.

Proof. Since T has a 5 -involution, semi-regularity of $Z(T)$ on Ω^{*} gives $|Z(T)| \leqq 2^{2}$.
(3.4) If a subgroup U of T satisfies $|F(U)|=5$, then U has order at most 4 . Proof. U acts semi-regularly on $\Omega-F(U)$. If (3.4) is false, $|\Omega-F(U)| \equiv 0$ $(\bmod 8)$, which is contrary to (3.2).
(3.5) If the center of a subgroup V of T has a 5 -involution, then $|V| \leqq 2^{5}$. Proof. Let x be a 5 -involution contained in $Z(V) . V$ acts on the set $F(x)^{*}$. Let U be the kernel of this action, then the factor group V / U is isomorphic to a subgroup of S_{4}, hence V / U is isomorphic to a subgroup of D_{8}, the dihedral group of order 8 , therefore $|V / U| \leqq 2^{3}$. On the other hand $|U| \leqq 2^{2}$ by (3.4). Thus we obtain $|V| \leqq 2^{5}$.

Remark. (3.1)-(3.5) hold if T has order at least 2^{4}.
(3.6) For any $\beta \in \Omega^{*}$, the 2 -rank of T_{β} is at most 1 .

Proof. Suppose T_{β} contains a four-group Q for some $\beta \in \Omega^{*}$.
First we assume $|Z(T)|=2$. By considering the class equation for T, there exists $x \in T-Z(T)$ with $\left|T: C_{T}(x)\right|=2$. Since G has no subgroup of index 2 , $C_{T}(x)$ contains a 5 -involution by (2.3). If $\left|Z\left(C_{T}(x)\right)\right| \geqq 8$, then $Z\left(C_{T}(x)\right)$ contains a 5 -involution and so by (3.5) we get $\left|C_{T}(x)\right| \leqq 2^{5}$, contrary to $|T| \geqq 2^{9}$. Thus $\left|Z\left(C_{T}(x)\right)\right|=4$ holds.
$C_{T}(x)$ has no element y with $\left|C_{T}(x): C_{T}(x) \cap C(y)\right|=2$. Suppose false. Since $\left|Z\left(C_{T}(x) \cap C(y)\right)\right| \geqq|<Z(T), x, y>| \geqq 8$ and $\left|C_{T}(x) \cap C(y)\right| \geqq 2^{7}$, it follows that $C_{T}(x) \cap C(y)$ contains no 5 -involution, which clearly means $C_{T}(x) \cap C(y)$ acts semiregularly on Ω^{*}. There exists a normal subgroup S of T such that $|T: S| \leqq 2^{3}$ and $S \leqq C_{T}(x) \cap C(y)$ as $\left|T: C_{T}(x) \cap c(y)\right|=4$. Applying (2.1) to Q and S, we see that $|S| \leqq 2^{5}$, hence $|T| \leqq 2^{8}$, a contradiction. Thus the number of $C_{T}(x)$-conjugate classes which consist of four elements is odd. On the other hand, T normalizes $C_{T}(x)$, so that at least one of these, say $\operatorname{ccl}_{C_{T}(x)}(y)$ is T-invariant. It follows that $c c l_{T}(y)=c c l_{C_{T}(x)}(y)$ and so $\left|T: C_{T}(y)\right|=4$. Let $c c l_{T}(y)=\{y=$ $\left.y_{1}, y_{2}, y_{3}, y_{4}\right\}$.

If $T>C_{T}(y)$, then since $\left|Z\left(C_{T}(y)\right)\right| \geqq 8$, we get a contradiction as before. Therefore $C_{T}(y)$ is not normal in T. We may assume $C_{T}\left(y_{1}\right)=C_{T}\left(y_{3}\right) \neq C_{T}\left(y_{2}\right)$ $=C_{T}\left(y_{4}\right)$. Evidently T normalizes $C_{T}\left(y_{1}\right) \cap C_{T}\left(y_{2}\right)=C_{T}\left(y_{3}\right) \cap C_{T}\left(y_{4}\right) . \quad C_{T}\left(y_{1}\right) \cap C_{T}\left(y_{2}\right)$ contains a 5 -involution, otherwise applying (2.1) again, we get $\left|C_{T}\left(y_{1}\right) \cap C_{T}\left(y_{2}\right)\right|$ $\leqq 2^{5}$. Hence $|T| \leqq 2^{8}$, a contradiction.

We have $\left|Z\left(C_{T}\left(y_{1}\right)\right)\right|=4$ as above. Thus $Z\left(C_{T}\left(y_{1}\right)\right)=\left\{y_{1}, y_{3}, z, 1\right\} \cong Z\left(C_{T}\left(y_{2}\right)\right)$ $=\left\{y_{2}, y_{4}, z, 1\right\}$ acts semi-regularly on Ω^{*}, where $\langle z\rangle=Z(T)$.

Let t be a 5 -involution in $C_{T}\left(y_{1}\right) \cap C_{T}\left(y_{2}\right)$. The restriction of $Z\left(C_{T}\left(y_{1}\right)\right)$ on $F\left(t^{u}\right)^{*}$ is regular for every $u \in T$ and is isomorphic to the restriction of $Z\left(C_{T}\left(y_{2}\right)\right)$ on $F\left(t^{u}\right)^{*}$. By regularity of $Z\left(C_{T}\left(y_{1}\right)\right)$ on $F\left(t^{u}\right)^{*}$ with $u \in T$, it follows that either $F\left(t^{u}\right)=F\left(t^{v}\right)$ or $F\left(t^{u}\right)^{*} \cap F\left(t^{v}\right)^{*}=\phi$ holds for $u, v \in T$. We can easily show that $\left|\beta^{T}\right| \geqq 16$ for $\beta \in F(t)^{*}$ and so $\left|\left\{F\left(t^{u}\right)^{*} \mid u \in T\right\}\right| \geqq 4$. Considering the permutation representation of y_{1} and $Z\left(C_{T}\left(y_{2}\right)\right)$, it follows that $y_{1}=w$ on at least two blocks in $\left\{F\left(t^{u}\right)^{*} \mid u \in T\right\}$ for some w in $Z\left(C_{T}\left(y_{2}\right)\right)$. This implies $y_{1} w^{-1} \in T$ fixes at least 8 points on Ω^{*}, hence by assumption, $y_{1} w^{-1}=1$ and y_{1} is contained in $Z\left(C_{T}\left(y_{2}\right)\right)$, a contradiction.

Assume next that $|Z(T)|=4$. In this case, the class equation for T shows that T contains an element $x \in T-Z(T)$ with $\left|T: C_{T}(x)\right| \leqq 4$. Since $\left|Z\left(C_{T}(x)\right)\right| \geqq 8$, $C_{T}(x)$ contains no 5 -involution, hence $|T| \leqq 2^{8}$ as before, which is a contradiction.

$$
\text { (3.7) }\left|T: T^{\prime}\right| \geqq 8
$$

Proof. If $\left|T: T^{\prime}\right|=4, T$ is of maximal class. Hence T is dihedral, semidihedral, generalized quaternion or cyclic by Theorem 5.4.5 [9]. Since G has no subgroup of index $2, G$ has a unique conjugate class of involutions, but G has a 1 -involution, a contradiction.
(3.8) $\left|T_{\beta}\right|=1$ or 2 for all $\beta \in \Omega^{*}$.

PROOF. By (3.6) T_{β} is cyclic or generalized quaternion. Suppose T_{β} contains an element v of order 8. From (3.2) and the cycle structure of v, we have $\left|F\left(v^{4}\right)\right| \geqq 9$, whence v^{4} is a μ-involution ($\mu \geqq 9$), contrary to the assumption that (G, Ω) is a (1,5)-group. Thus $T_{\beta} \cong Q_{8}$, the quaternion group of order 8 or T_{β} is cyclic of order at most 4.

In the first case, we have $\left|F\left(T_{\beta}\right)\right|=3$ by (3.2). Let $F\left(T_{\beta}\right)=\{\alpha, \beta, \gamma\}$. There exists a subset Δ of $\Omega-F\left(T_{\beta}\right)$ such that $\Delta^{T \beta}=\Delta,|\Delta|=4$. Since T_{β} acts faithfully on Δ, T_{β} is isomorphic to a subgroup of S_{4}, so that $Q_{8} \cong D_{8}$, a contradiction.

To complete the proof, we need only show that T_{β} is not isomorphic to Z_{4}. Suppose $T_{\beta}=\langle v\rangle$ with $o(v)=4$ for some $\beta \in \Omega^{*}$. Since G does not contain an odd permutation, it follows that $\left|F\left(T_{\beta}\right)\right|=3$ by (3.2). Then $|Z(T)|=2$, and so T has an element x with $\left|T: C_{T}(x)\right|=2$. Considering the T-orbit which contains β, we get $\left|C_{T}(v)\right|=8=\left|C_{T}\left(v^{3}\right)\right|$ by (2.5), whence $\left|T: T^{\prime}\right|=8$ by (2.8) and (3.7) and so $c c l_{T}(v)=T^{\prime} v, c c l_{T}\left(v^{3}\right)=T^{\prime} v^{3}$. If $T^{\prime} v=T^{\prime} v^{3}$, then $v \sim v^{3}$, whence we have $\left|C_{T}(v)\right| \leqq 4$ by (2.4), which is contrary to $\left|C_{T}(v)\right|=8$. Thus $T^{\prime} v \neq T^{\prime} v^{3}$, consequently $\langle v\rangle \cap T^{\prime}=1$.

Let $N_{G}(T)=N \cdot T$ where N is a Hall 2^{\prime}-subgroup of $N_{G}(T)$. We argue that N normalizes $C_{T}(x)$. Since T / T^{\prime} is isomorphic to $Z_{2} \times Z_{4}$, the Frattini subgroup $\Phi(T)$ of T is $T^{\prime}\left\langle v^{2}\right\rangle$ and $T / \Phi(T) \cong Z_{2} \times Z_{2}$. If N does not normalize $C_{T}(x)$, the whole maximal subgroups of T are $C_{T}(x), C_{T}\left(x^{a}\right)$ and $C_{T}\left(x^{a^{2}}\right)$ for some $a \in N$. Since $T \neq\langle v\rangle, v$ is contained in one of these. Without loss of generality, we may assume v is contained in $C_{T}(x)$. Furthermore, $Z\left(C_{T}(x)\right)$ acts semi-regularly
on Ω^{*}, for otherwise we get $\left|C_{T}(x)\right| \leqq 2^{5}$ by (3.5), which implies $|T| \leqq 2^{6}$, a contradiction. Since $\left|F(v)^{*}\right|=2$ and $v \in C_{T}(x)$, the semi-regularity of $Z\left(C_{T}(x)\right)$ on Ω^{*} gives $\left|Z\left(C_{T}(x)\right)\right| \leqq 2$, a contradiction. Hence N normalizes $C_{T}(x)$.

Thus N acts trivially on $T / \Phi(T)$, so we have $[N, T]=1$ by Theorem 5.1.4 [9]. By Grün's theorem ([9] Theorem 7.4.2), the focal subgroup $T \cap G^{\prime}=\langle T \cap$ $N(T)^{\prime}, T \cap\left(T^{\prime}\right)^{g}|g \in G\rangle$. Hence we have $T \cap G^{\prime}=\left\langle T \cap\left(T^{\prime}\right)^{g} \mid g \in G\right\rangle$. Since $\langle v\rangle \cap T^{\prime}$ $=1$, it follows that $T / T^{\prime}=\left\langle T^{\prime} v, T^{\prime} w\right\rangle$ for some $w \in T-T^{\prime}\langle v\rangle$ with $w^{2} \in T^{\prime}$. The groups $T^{\prime}\langle w\rangle$ and $T^{\prime}\left\langle v^{2} w\right\rangle$ are normal subgroups of T of index 4. We denote one of these X. By (2.3), we can take $u \in c c l_{G}\left(v^{2}\right) \cap X$. If $T_{\gamma} \neq\langle u\rangle$ for some $\gamma \in F(u)^{*}$, then $T_{\gamma}=\left\langle u_{0}\right\rangle$ with $u_{0} \in T$ and $u_{0}^{2}=u$. Since $\left\langle u_{0}\right\rangle \cap T^{\prime}=1$, we have $u \notin T^{\prime}$. On the other hand u is containd in $\Phi(T) \cap X=T^{\prime}$, a contradiction. Hence it follows that $T_{r}=\langle u\rangle$ for all $\gamma \in F(u)^{*}$. Thus there exist elements u_{1}, $u_{2} \in T$ such that $c c l_{T}\left(u_{1}\right)=T^{\prime} w, c c l_{T}\left(u_{2}\right)=T^{\prime} v^{2} w$ by (2.5). If T^{\prime} contains a 5involution x, it follows that $T_{\gamma}=\langle x\rangle$ for $\gamma \in F(x)^{*}$. For otherwise, there exists $y \in$ T such taht $T_{\gamma}=\langle y\rangle, y^{2}=x$ and $\langle y\rangle \cap T^{\prime}=1$, hence $x \notin T^{\prime}$, a contradiction. Thus $\left|C_{T}(x)\right| \leqq 8$ by (2.5). Since $\left|T: T^{\prime}\right|=8, c c l_{T}(x)=T^{\prime} x=T^{\prime}$ by (2.8), a contradiction. Hence T^{\prime} acts semi-regularly on Ω^{*}. From this, we have $T \cap\left(T^{\prime}\right)^{g} \leqq T-\left\{T^{\prime} v\right.$, $\left.T^{\prime} v^{3}, T^{\prime} u_{1}, T^{\prime} u_{2}\right\}=T^{\prime}\langle v w\rangle<T$ for all $g \in G$, which implies that the focal subgroup $T \cap G^{\prime}$ is a proper subgroup of T, contrary to $O^{2}(G)=G$.
(3.9) If u is a 5 -involution in T, then $\left|C_{T}(u)\right|=8, c c l_{T}(u)=T^{\prime} u$ and u inverts every element of T^{\prime}.

Proof. Let β be a fixed point of u with $\beta \neq \alpha$. Now $T_{\beta}=\langle u\rangle$ by (3.8), hence $\left|C_{T}(u)\right| \leqq 8$ by (2.5). Thus (3.9) holds by (3.7) and (2.8).
(3.10) T / T^{\prime} is an elementary abelian 2 -group of order 8 .

Proof. Suppose false. There exists $\bar{v} \in T / T^{\prime}$ with $O(\bar{v})=4$. Since $\left|T: T^{\prime}\langle v\rangle\right|$ $=2$, by (2.3), $T^{\prime}\langle v\rangle$ contains a 5 -involution, say u. By (3.9), we have $u \notin T^{\prime} v \cup$ $T^{\prime} v^{3}$, hence $u \in T^{\prime} v^{2}$. Again by (3.9), v^{2} is contained in $c c l_{T}(u)$ and so v^{2} is a 5 -involution. Considering the cycle structure of v, we get $\left|F(v)^{*}\right| \neq 0$, contrary to (3.8).
(3.11) Contradiction.

Each subgroup of T of index 2 contains a 5 -involution, whence T has at least three conjugate classes of 5 -involutions, say $T^{\prime} u_{i} 1 \leqq i \leqq 3$ by (3.10). If $T^{\prime} u_{i} u_{j}$ contains a 5 -involution, say u_{4}, we have $c c l_{T}\left(u_{4}\right)=T^{\prime} u_{i} u_{j}$ by (3.9) and so $u_{i} u_{j}$ is a 5 -involution. Hence $\left|C_{T}\left(u_{i} u_{j}\right)\right|=8$ by (3.9). On the other hand u_{i} and u_{j} invert T^{\prime} by (3.9) and so $u_{i} u_{j}$ centralizes T^{\prime}. Hence $\left|T^{\prime}\right| \leqq\left|C_{T}\left(u_{i} u_{j}\right)\right|=8$, which implies $|T| \leqq 2^{6}$, a contradiction. Thus $T^{\prime} u_{i} u_{j}$ contains no 5 -involution for $i, j \in\{1,2,3\}$. Hence the subgroup $\left\{T^{\prime}, T^{\prime} u_{1} u_{2}, T^{\prime} u_{2} u_{3}, T^{\prime} u_{3} u_{1}\right\}$ of T of index 2 "contains no 5 -involution, a contradiction. Thus Proposition A is proved.

§ 4. Proof of Proposition B.

To prove Proposition B, we assume the following three Hypotheses:
(1) G has at least two conjugate classes of involutions.
(2) T does not have a cyclic subgroup of index 4.
(3) $|T|=2^{n} \geqq 2^{9}$
and show these lead to a contradiction.
Since G has a 5 -involution, $|\Omega|$ is odd, hence T is contained in G_{α} for some $\alpha \in \Omega$. Let z be a 5 -involution in $Z(T)$, so T acts on $F(z)^{*}=F(z)-\{\alpha\}$. Let K be the kernel of this action, then T / K is a subgroup of D_{8}. K acts semi-regularly on $\Omega-F(z)$. By Hypothesis (3), $|K| \geqq 2^{6}>8$, hence we have
(4.1) $|\Omega| \equiv 5(\bmod |K|)$ where $|K|>8$.

By Hypothesis (1) and (2.6), we have
(4.2) There exists a 5 -involution x_{1} in $T-K$.
(4.3) $|T / K|=2$ or 4 .

Proof. By (4.2) we get $|T / K| \neq 1$. To prove (4.3), it will suffice to show that T / K is not isomorphic to D_{8}. Suppose $T / K \cong D_{8}$. Then there exists an element $x \in T$ such that x is 2-cycle on $F(z)^{*}$.

Assume x is not an involution. Considering the cycle structure of $x, o(x)$ $=|\Omega-F(z)|_{2} \geqq|K|=2^{n-3}$ because x is an odd permutation on $\Omega-F(z)$. By Hypothesis (2), $o(x)=2^{n-3}$ and so $|\Omega-F(K)|_{2}=|K|$, whence x stabilizes a K orbit, say $\Omega_{0} \subseteq \Omega-F(z)$. The group $K\langle x\rangle$ is transitive on Ω_{0}. Since $|K|=\left|\Omega_{0}\right|$, there exists an element $k x$ such that $k \in K$ and $F(k x) \cap \Omega_{0} \neq \emptyset$, and then $k x$ is a 5 -involution. On the other hand $k x \equiv x$ on $F(z)^{*}$. Thus we may assume x is a 5 -involution.

Since $\left|F(x)^{*} \cap F(z)\right|=2, F(x) \cap(\Omega-F(z))=\{\beta, \gamma\}$ for some $\beta, \gamma \in \Omega$. Now $C_{T}(x)$ acts on $\{\beta, \gamma\}$. The kernel K_{0} of this action does not contain a fourgroup by (2.1). Hence x is a unique involution in K_{0}, which is an odd permutation on $\Omega-F(z)$ so that K_{0} contains no element of order 4 and so $K_{0}=\langle x\rangle$, whence $\left|C_{T}(x)\right| \leqq 4$. This implies that $\left|T: T^{\prime}\right|=4$ and T is dihedral or semidihedral ([9] Theorem 5.4.5), which is contrary to Hypothesis (1) by (2.3).
(4.4) For all $\beta \in \Omega-F(z), T_{\beta}$ is cyclic of order at most 4.

Proof. Since $T_{\beta} \cap K=1$, we have $\left|T_{\beta}\right| \leqq 4$ by (4.3). If T_{β} is isomorphic to $Z_{2} \times Z_{2}$, we get $|K| \leqq 2^{5}$ by (2.1), contrary to Hypothesis (3).
(4.5) T / K is not isomorphic to Z_{2}.

Proof. We assume $T / K \cong Z_{2}$. By (4.2), we can take a 5 -involution $x_{1} \in T$ with $F\left(x_{1}\right) \neq F(K)$. There exists an extremal element z_{0} of T in G with $z_{0} \in$ $c c l_{G}\left(x_{1}\right)$. Here an element z_{0} is said to be an extremal element of T in G if $\left|C_{T}\left(z_{0}\right)\right| \geqq\left|C_{T}(u)\right|$ holds for any $u \in T \cap c c l_{G}\left(x_{1}\right)$. Let u be an arbitrary 5 -involution in $T-K$. Then we obtain $\left|C_{T}(u)\right|=\left|\langle u\rangle C_{K}(u)\right| \leqq 8$. Hence we may assume
$z_{0} \in K$ by Hypothesis (1) and (2.3). There exists an element $g \in G$ such that $x_{1}^{g}=z_{0},\left(C_{T}\left(x_{1}\right)\right)^{g} \leqq C_{T}\left(z_{0}\right)$. It follows that $\left(C_{K}\left(x_{1}\right)\right)^{g} \leqq T$ and $\left(C_{K}\left(x_{1}\right)\right)^{g} \cap K=1$ since $F\left(x_{1}\right) \neq F\left(z_{0}\right)=F(K)$. Hence $\left|C_{K}\left(x_{1}\right)\right|=2$ and $\left|C_{T}\left(x_{1}\right)\right|=4$, which means T is of maximal class, contrary to Hypothesis (1) by (2.3).
(4.6) T / K is not isomorphic to Z_{4}.

Proof. Suppose $T / K \cong Z_{4}$. Set $T / K=\langle K y\rangle$. Since y is an odd permutation on $F(K)$ and G has no odd permutation on Ω, y is an odd permutation on Ω $F(K)$. If $O(y) \neq 4$, we have $O(y)=|\Omega-F(K)|_{2} \geqq|K|$, contrary to Hypothesis (2). Hence $O(y)=4$ and y^{2} is a 5 -involution. Set $y^{2}=x$. By (2.3), we obtain $c c l_{G}(x)$ $\cap K \neq \emptyset$. Let $u \in c c l_{G}(x) \cap K$.

We shall argue that there exists an involution in $K \cap c c l_{G}(x)$ which is an extremal element of T in G. Suppose false. Then we have $u \notin Z(T)$. Let v be an extremal element with $v \in \operatorname{cll}_{G}(x) \cap T$. There exists an element $g \in G$ such that $u^{g}=v$ and $\left(C_{T}(u)\right)^{s} \leqq C_{T}(v)$. Since $F(v) \neq F(u)$, we have $\left(C_{K}(u)\right)^{g} \cap K=1$ and $\left(C_{K}(u)\right)^{g}$ $\leqq T$. On the other hand, $C_{K}(u)$ contains a four group because $u \notin Z(T)$. Hence we have $T / K \cong Z_{2} \times Z_{2}$, a contradiction. Thus we may assume that v is contained in K.

There exists an element $h \in G$ such that $x^{h}=v$ and $\left(C_{T}(x)\right)^{h} \leqq C_{T}(v)$. Since $F(x) \neq F(v)=F(K)$, we have $\left(C_{K}(x)\right)^{h} \cap K=1$ and $\left(C_{K}(x)\right)^{h} \leqq T$. Hence $C_{K}(x) \cong Z_{4}$ because $C_{K}(x) \nsubseteq Z_{2}$ by Hypothesis (2). Since x is a square of y, x is contained in $\Phi(T)$. Since $\left|C_{T}(x)\right|=16$, we get $\left|T: T^{\prime}\right| \leqq 16$ by (2.8). Clearly $x \notin Z(\Phi(T))$. If follows that $Z(\Phi(T)) \leqq C_{\langle x\rangle K}(x)=\langle x\rangle \times C_{K}(x) \cong Z_{2} \times Z_{4}$. Hence $Z(\Phi(T))$ is cyclic, whence $\Phi(T)$ is also cyclic by (2.2), which means $x \in K$, a contradiction.

Remark. By the proof of (4.6), we know that in the case $T / K \cong Z_{4}$, there exists an element $y \in T-K$ such that $O(y)=4, y^{2} \in T-K$ and $\left|F\left(y^{2}\right)\right|=5$.

By (4.3), (4.5) and (4.6), we have
(4.7) $T / K \cong Z_{2} \times Z_{2}$.
(4.8) $\left|T_{\beta}\right|=1$ or 2 for $\beta \in \Omega-F(z) . \quad\left|C_{T}\left(x_{0}\right)\right|=8$ for any 5 -involution $x_{0} \in$ $T-K$, whence $\left|T: T^{\prime}\right|=8, c c l_{T}\left(x_{0}\right)=T^{\prime} x_{0}$.

Proof. T_{B} is cyclic of order at most 4 by (4.4). Since $T / K \cong Z_{2} \times Z_{2}$ and $T_{\beta} \cap K=1$, we get $\left|T_{\beta}\right| \neq 4$. Hence $\left|T_{\beta}\right|=1$ or 2 and (2.5) gives the latter statement.
(4.9) There exists a conjugate class of 5 -involutions $c c l_{T}\left(x_{2}\right)=T^{\prime} x_{2}$ contained in $T-\left\langle x_{1}\right\rangle K$.

Proof. Suppose false. Let N be a Hall 2 '-subgroup of $N_{G}(T) . N$ stabilizes the following normal series: $T / T^{\prime} \triangleright K\left\langle x_{1}\right\rangle / T^{\prime} \triangleright K / T^{\prime} \triangleright \overline{1}$. Hence $[T, N]=1$ by Theorems 5.1.4. and 5.3.2. of [9]. Thus we have $T \cap G^{\prime}=\left\langle T \cap N(T)^{\prime}, T \cap\left(T^{\prime}\right)^{g}\right.$ | $g \in G\rangle=\left\langle T \cap\left(T^{\prime}\right)^{g} \mid g \in G\right\rangle \leqq K\left\langle x_{1}\right\rangle$, whence $T \cap G^{\prime}$ is a proper subgroup of T, contrary to $O^{2}(G)=G$.
(4.10) There is no 1 -involution in $T-K$.

Proof. Suppose false. Let u be a 1 -involution in T. Since $\left\{T^{\prime}, T^{\prime} x_{1}, T^{\prime} x_{2}\right.$, $T^{\prime} x_{1} x_{2}$ \} is a subgroup of T of index $2, u$ is conjugate to some element in $T^{\prime} x_{1} x_{2}$.

We may assume $x_{1} x_{2}$ is a 1 -involution. Hence a four-group $\left\{1, x_{1}, x_{2}, x_{1} x_{2}\right\}$ has trivial intersection with K. By (4.8), $C_{T}\left(x_{1}\right)=\left\{1, x_{1}, x_{2}, x_{1} x_{2}\right\} \times\langle z\rangle$, and so $C_{K}\left(x_{1}\right)=\langle z\rangle$. Hence $\left|C_{\left.K<x_{1}\right\rangle}\left(x_{1}\right)\right|=\left|x_{1} C_{K}\left(x_{1}\right)\right|=4$ and $K\left\langle x_{1}\right\rangle$ is of maximal class, which is contrary to Hypothesis (2).
(4.11) The group T^{\prime} is an abelian 2-group of 2-rank 2.

Proof. Since $c c l_{T}\left(x_{1}\right)=T^{\prime} x_{1}$, an involution x_{1} inverts T^{\prime}, hence T^{\prime} is abelian. Furthermore $\left|C_{T^{\prime}}\left(x_{1}\right)\right| \leqq\left|C_{K}\left(x_{1}\right)\right| \leqq 4$ and so the 2 -rank of T^{\prime} is at most 2. Suppose the 2-rank of T^{\prime} is 1 , that is, $T^{\prime}=\langle d\rangle$ for some $d \in T^{\prime}$. Since $x_{1} x_{2} \notin T^{\prime}$, it follows that $\left(x_{1} x_{2}\right)^{2} \in T^{\prime}$ and $\left(x_{1} x_{2}\right)^{2} \in\left\langle d^{2}\right\rangle$, for otherwise $O\left(x_{1} x_{2}\right)=2 \cdot O(d)=2^{n-2}$, contrary to Hypothesis (2). Hence for some $d_{1} \in\langle d\rangle$ we have $\left(x_{1} x_{2}\right)^{2}=d^{2}$. Since $\left[x_{1} x_{2}, T^{\prime}\right]=1,\left(x_{1} x_{2} d^{-1}\right)^{2}=1$. Hence $x_{1} x_{2} d^{-1}$ is a 5 -involution contained in $T-K$ by (4.10). Thus $x_{1} x_{2} d^{-1}$ also inverts T^{\prime}, hence $\left|T^{\prime}\right|=2$, contrary to Hypothesis (3). (4.12) $c c l_{G}\left(x_{1}\right) \cap T^{\prime} \neq \emptyset$.

Proof. Suppose false. Let y be an element in $K-T^{\prime}$. Since $\left\{T^{\prime}, T^{\prime} x_{1} x_{2}\right.$, $\left.T^{\prime} x_{1} y, T^{\prime} x_{2} y\right\}$ is a subgroup of T of index 2 and $c c l_{G}\left(x_{1}\right) \cap T^{\prime}=c c l_{G}\left(x_{1}\right) \cap T^{\prime} x_{1} x_{2}$ $=\emptyset$, there exists an element $t x_{i} y \in \operatorname{ccl}_{G}\left(x_{1}\right) \cap T^{\prime} x_{i} y$ for some $i \in\{1,2\}$ and $t \in T^{\prime}$. If y is an involution, then $\left[t x_{i}, y\right]=1$. Hence $C_{K}\left(t x_{i}\right)=C_{T^{\prime}<y>}\left(t x_{i}\right)=\Omega_{1}\left(T^{\prime}\right)\langle y\rangle$, whence $\left|C_{K}\left(t x_{i}\right)\right|=8$ by (4.11), which imples that $\left|F\left(t x_{i}\right)\right| \geqq 9$, a contradiction. Thus there is no involution in $K-T^{\prime}$ and so $c c l_{G}\left(x_{1}\right) \cap T^{\prime} y=\emptyset$. Since $\left\{T^{\prime}, T^{\prime} y\right.$, $\left.T^{\prime} x_{1} x_{2}, T^{\prime} x_{1} x_{2} y\right\}$ is a subgroup of T of index 2 and $c c l_{G}\left(x_{1}\right) \cap T^{\prime}=c c l_{G}\left(x_{1}\right) \cap T^{\prime} y$ $=c c l_{G}\left(x_{1}\right) \cap T^{\prime} x_{1} x_{2}=\emptyset$, there exists a 5-involution $s x_{1} x_{2} y \in c c l_{G}\left(x_{1}\right) \cap T^{\prime} x_{1} x_{2} y$ for some $s \in T^{\prime}$, hence $s x_{1} x_{2} y$ inverts T^{\prime}. Since $s x_{1}$ and x_{2} invert $T^{\prime}, s x_{1} x_{2}$ centralizes T^{\prime} and so y inverts T^{\prime}. On the other hand, $t x_{i} y$ and $t x_{i}$ invert T^{\prime}, hence y centralizes T^{\prime}. Thus $T^{\prime}=\Omega_{1}\left(T^{\prime}\right)$ and we have $|T|=2^{5}$ by (4.8) and (4.11), contrary to Hypothesis (3).
(4.13) Contradiction

By (4.8) and (4.12), there exists in K an extremal element z_{0} of T in G with $z_{0} \in c c l_{G}\left(x_{1}\right)$. Hence there exists an element $g \in G$ such that $\left(C_{T}\left(x_{1}\right)\right)^{g} \leqq C_{T}\left(z_{0}\right)$ and $x_{1}^{g}=z_{0}$. Since $F\left(x_{1}\right) \neq F\left(z_{0}\right)=F\left(x_{1}\right)^{g}$, the element g does not stabilize $F(K)$ as a set, hence there exists $\beta \in(\Omega-F(K)) \cap F(K)^{g}$. Clearly we have $C_{T}\left(x_{1}\right)$ $\geqq C_{K}\left(x_{1}\right) \geqq \Omega_{1}\left(T^{\prime}\right) \cong Z_{2} \times Z_{2}$ by (4.11). Hence $T_{\beta} \geqq \Omega_{1}\left(T^{\prime}\right)^{g} \cong Z_{2} \times Z_{2}$, contrary to (4.8). Thus Proposition B is proved.

§ 5. Proof of Lemma 2.

Throughout this section we assume the following :
(1) G is a simple (1,5)-group with $|G|_{2} \leqq 2^{8}$.
(2) G has at least two conjugate classes of involutions.
(3) Let T be a Sylow 2-subgroup of G. There exist subgroups T_{1}, T_{2} of T with $T_{1} \triangleright T_{2}, T_{1} / T_{2} \cong E_{2^{5}}$.
and show these lead to a contradiction.
We shall often use the following theorem to prove Lemma 2.
Theorem (K. Harada [11]). If 2-group S has a subgroup A of order 8 with $C_{S}(A) \leqq A$, then the sectional 2 -rank of S is at most 4 .
(5.1) Let Q be a subgroup of T with $Q \cong Z_{2} \times Z_{2}$. If $\left|F\left(q_{1}\right)^{*} \cap F\left(q_{2}\right)^{*}\right|=2$ for some $q_{1}, q_{2} \in Q^{\#}$, then the sectional 2 -rank of T is at most 4 .

Proof. $C_{T}(Q)$ acts on $\Delta_{0}=F\left(q_{1}\right)^{*} \cap F\left(q_{2}\right)^{*}, \Delta_{1}=F\left(q_{1}\right)^{*}-\Delta_{0}$ and $\Delta_{2}=F\left(q_{2}\right)^{*}-\Delta_{0}$. If $\left|C_{T}(Q)\right| \geqq 16$, the kernel of this action is not trivial, a contradiction. Hence we have $\left|C_{T}(Q)\right| \leqq 8$. Let A be a subgroup of T of order 8 containing $C_{T}(Q)$. Then $C_{T}(A) \leqq C_{T}(Q) \leqq A$ because A contains Q. By Harada's theorem, the sectinal 2 -rank of T is at most 4 , which is contrary to (3).

We note that T has order at least 2^{5} by the assumption (3), hence in the case that $Z(T)$ has no 5 -involution, (3.1)-(3.5) hold (see Remark in (3.5)).
(5.2) Suppose $Z(T)$ contains no 5 -involution. If U is a subgroup of T such that $Z(U)$ has a 5 -involution u, U is semi-regular on $F(u)^{*}$ and $|U| \leqq 2^{4}$.

Proof. Let u be a 5 -involution in $Z(U)$. By (3.5), $|U| \leqq 2^{5}$. Hence we have only to show $|U| \neq 2^{5}$. Assume $|U|=2^{5}$. Then there exists $v \in U$ with $\left.v\right|_{F(u)^{*}}=(\beta)(\gamma)(\delta \varepsilon)$ where $F(u)^{*}=\{\beta, \gamma, \delta, \varepsilon\}$. By (5.1), o(v) $\neq 2$, so (3.2) gives $o(v)=4 . C_{T}(v)$ acts on $\{\beta, \gamma\}$ and $\{\delta, \varepsilon\}$. Let K_{0} be the kernel of this action. Since $|\Omega| \equiv 1(\bmod 8), K_{0}$ stabilizes a $\langle v\rangle$-orbit of length 4 . Since $\left[K_{0}, v\right]=1, K_{0}$ is isomorphic to a subgroup of Z_{4}. Since G contains no odd permutation, K_{0} $¥ Z_{4}$, hence $\left|C_{T}(v)\right|=8$, which is contrary to (3) by Harada's theorem.
(5.3) Suppose $Z(T)$ contains no 5 -involution. Then $T_{\beta} \cong 1$ or $T_{\beta} \cong Z_{2} \times Z_{2}$ holds for every $\beta \in \Omega^{*}$.

Proof. We take an involution $v \in Z\left(T_{B}\right)$. Then $\left.C_{T}(v)\right|_{F(v)^{*}}$ is semi-regular, by (5.2). We have $\left|C_{T}(v)\right| \geqq 16$ by (3) and Harada's theorem. Thus $\left|C_{T}(v)\right|_{F(v)} \cdot \mid$ $=4, T_{\beta} \cong Z_{2} \times Z_{2}$.
(5.4) Let T_{0} be a subgroup of T containing T_{1}. Then T_{0} does not contain a cyclic subgroup of index 8 .

Proof. Let x be an element of T_{0} with $\left|T_{0}:\langle x\rangle\right|=8$. If T_{1} is a subgroup of T_{0} of index 2^{n}, an element $x^{2^{n}}$ is contained in T_{1} and $\left|T_{1}:\left\langle x^{2^{2}}\right\rangle\right|=8$, which is contrary to $T_{1} / T_{2} \cong E_{25}$.
(5.5) Suppose $Z(T)$ contains no 5 -involution. Then T_{1} acts semi-regularly on Ω^{*}.

Proof. If T_{1} contains a 5 -involution $u,\left|T_{1}: C_{T_{1}}(u)\right|=\left|c c l_{T_{1}}(u)\right| \leqq\left|T_{1}^{\prime}\right| \leqq$ $\frac{1}{2^{5}}\left|T_{1}\right|$ by (2.8). Hence $\left|C_{T_{1}}(u)\right| \geqq 2^{5}$, contrary to (5.2).

First we consider the case that $Z(T)$ has no 5 -involution. Next we show
that the same argument can apply to the case that $Z(T)$ has a 5 -involution.
If $Z(T)$ has no 5 -involution, we have $|T|=2^{7}$ or 2^{8} by (5.3) and (5.5). Suppose $|T|=2^{7}$, then $T_{1} \cong E_{2^{5}}$ and $T_{2}=1$. There exists a 5 -involution x such that x normalizes T_{1}. By (5.4) and (5.5), we get $\left|T_{1}\langle x\rangle:\left(T_{1}\langle x\rangle\right)^{\prime}\right|=8$ and x inverts $\left(T_{1}\langle x\rangle\right)^{\prime}$. Since $\left(T_{1}\langle x\rangle\right)^{\prime} \leqq T_{1} \cong E_{25}, x$ centralizes $\left(T_{1}\langle x\rangle\right)^{\prime}$. Thus $\left|\left(T_{1}\langle x\rangle\right)^{\prime}\right| \leqq 4$ and we have $|T| \leqq 2^{6}$, a contradiction. Next we suppose $|T|=2^{8}$. By (5.3) and (5.4), $\left|T: T_{1}\right|=2^{2}$ or 2^{3} and $\left|T_{2}\right|=2$ or 1 , respectively. If $N_{T}\left(T_{1}\right)$ contains a 5involution x, we have $\left|T: T_{1}\right|=2^{2}$ and $T_{2} \cong Z_{2}$ by (2.7) and (5.5). Since $\mid T_{1}\langle x\rangle$: ($\left.T_{1}\langle x\rangle\right)^{\prime} \mid=8$ and x inverts $\left(T_{1}\langle x\rangle\right)^{\prime}\left(\leqq T_{1}\right.$), we have $\left(T_{1}\langle x\rangle\right)^{\prime} \cong Z_{4} \times Z_{4}$ by (5.4) and (5.5), contrary to $T_{1} / T_{2} \cong E_{25}$ and $T_{2} \cong Z_{2}$. Hence $N_{T}\left(T_{1}\right)$ acts semi-regularly on Ω^{*}. By (5.3), we get $\left|T: N_{T}\left(T_{1}\right)\right|=2^{2},\left|T: T_{1}\right|=2^{3}$ and $T_{2}=1$. There exists a 5 -involution x which normalizes $N_{T}\left(T_{1}\right)$. As above x inverts ($\left.\langle x\rangle N_{T}\left(T_{1}\right)\right)^{\prime}$. Hence we have $\left(\langle x\rangle N_{T}\left(T_{1}\right)\right)^{\prime} \cong Z_{4} \times Z_{4}$ since $\left(\langle x\rangle N_{T}\left(T_{1}\right)\right)^{\prime} \leqq N_{T}\left(T_{1}\right) \triangleright T_{1} \cong E_{25}$ and $\Omega_{1}\left(\left(\langle x\rangle N_{T}\left(T_{1}\right)\right)^{\prime}\right) \cong Z_{2} \times Z_{2}$. But since $\left|N_{T}\left(T_{1}\right): T_{1}\right|=2$ and $T_{1} \cong E_{2^{5}}, N_{T}\left(T_{1}\right)$ does not contain a subgroup isomorphic to $Z_{4} \times Z_{4}$. Thus we get a contradiction.

We now consider the case $Z(T)$ has a 5 -involution z. If $\left.T\right|_{F(z)}$. is isomorphic to D_{8}, in the same way as in the proof of (4.3), T has a cyclic subgroup of index 8 , contrary to (5.4). Suppose $\left.T\right|_{F(z)} \cong Z_{4}$. There exists an element $y \in T-K$ such that $O(y)=4$ and y^{2} is a 5 -involution in $T-K$ (see Remark in (4.6)). Set $y^{2}=x$. By (2.3), we have $K \cap c c l_{G}(x) \neq \emptyset$. Since $\left|K\langle x\rangle:(K\langle x\rangle)^{\prime}\right|=8$ and $C_{K}(x) \cong Z_{4},(K\langle x\rangle)^{\prime}$ is a cyclic subgroup of $K\langle x\rangle$ of index 8 . Hence T_{1} is not contained in $K\langle x\rangle$. Take y_{1} in $T_{1}-K\langle x\rangle$. Clearly $O\left(y_{1}\right)=4$ and y^{2} is a 5involution. Since $\left|T_{1}: C_{T_{1}}\left(y_{1}\right)\right|=\left|c c l_{T_{1}}\left(y_{1}\right)\right| \leqq\left|T_{1}^{\prime}\right| \leqq \frac{1}{2^{5}}\left|T_{1}\right|$, it follows that $\left|C_{T_{1}}\left(y_{1}\right)\right| \geqq 2^{5} . \quad C_{T_{1}}\left(y_{1}\right)$ acts on $F\left(y_{1}^{2}\right)^{*}(\cong \Omega-F(z))$. Let K_{1} be the kernel of this action. Since $|\Omega| \equiv 5(\bmod 8)$, we have $\left|C_{T_{1}}\left(y_{1}\right)\right|=2^{5}$ and $C_{T_{1}}\left(y_{1}\right) / K_{1} \cong D_{8}$ There exists an element $u \in C_{T_{1}}\left(y_{1}\right)$ such that $\left.u\right|_{F\left(y_{1}^{2}\right)}=(\beta)(\gamma)(\delta \varepsilon)$ where $F\left(y_{1}^{2}\right)^{*}=\{\beta, \gamma$, $\delta, \varepsilon\}$. Considering the cycle structure of u, we get $O(u)=2$, contrary to (5.1). Hence we have $T / K \cong Z_{2} \times Z_{2}$ and $\left.T\right|_{F(K)}$ * is semi-regular. From this, (5.1)(5.5) hold for $T_{\Omega-F(K)}$. Thus we obtain a similar contradiction.

§ 6. Proof of Theorem 3.

By Theorem 1, Lemma 2 and the Fong's theorem [7], we know any simple (1, 5)-group G satisfies one of the following:
(1) G has a unique conjugate class of involutions.
(2) G has sectional 2-rank at most 4 and a Sylow 2-subgroup of G has order at most 2^{8}.
By Rowlinson's Theorem of [18], these are equivalent to the following:
(i) G is a simple group of Bender type.
(ii) $G \cong L_{2}(q)(q \equiv 1(\bmod 2))$.
(iii) A Sylow 2-subgroup of G is semi-dihedral.
(iv) G is not of type (i)-(iii) and has sectional 2-rank at most 4, moreover $|G|_{2} \leqq 2^{8}$.
CASE (i). We prove the followihg Lemma.
Lemma 5. Let G be a simple group of Bender type and T be a Sylow 2subgroup of G.
(1) If H is a (unique) subgroup of $N_{G}(T)$ of index μ where μ is odd, then G is a simple $(1, \mu)$-group as a permutation group on the cosets G / H.
(2) If G is a simple ($1, \mu$)-group on a set Ω where μ is odd, then (G, Ω) is equivalent to a permutation representation obtained by (1).

Proof. (1) Since $N_{G}(T)$ is isomorphic to one point stabilizer as a $(1,1)$-permutation representation of $G, N_{G}(T)$ is a strongly embedded subgroup of G (cf. [3]).

Set $G=\bigcup_{i} N_{G}(T) X_{i}$ and $N_{G}(T)=\bigcup_{j=1}^{\mu} H y_{j}$, the left coset decomposition. We can look on G as permutation group on the cosets $\bigcup_{i, j} H y_{j} x_{i}$. Let z be an arbitrary element contained in $T^{\#}$. Then we have $\left(H y_{j} x_{i}\right) z=H y_{j} x_{i}$ if and only if $z \in H^{y^{x_{i}}}$. Since H is a normal subgroup of $N_{G}(T)$, we have $z \in H^{y_{j} x_{i}}$ if and only if $z \in(N(T))^{y_{j x i}}=(N(T))^{x_{i}}$. Since $N_{G}(T)$ is a strongly embedded subgroup of G, we have $z \in\left(N_{G}(T)\right)^{x_{i}}$ if and only if $x_{i} \in N_{G}(T)$. Thus z fixes exactly μ cosets $\bigcup_{j=1}^{\mu} H y_{j} x_{i}$, whence $(G, G / H)$ is a ($1, \mu$)-group.
(2) Let (G, Ω) be as in (2) and H be a stabilizer of a point $\alpha \in \Omega$. Since G have a μ-involution and μ is odd, it follows that $|\Omega|$ is odd, hence H contains a Sylow 2 -subgorup T of G. By the structure of G, H is 2-closed. Let x be an involution in T. By (2.4), we have $\mu=|F(x)|=\left|C_{G}(x)\right| \cdot\left|c c l_{G}(x) \cap H\right| /|H|$. Since H is 2-closed and G has a unique conjugate class of involutions, we have $\left|c c l_{G}(x) \cap H\right|=\left|c c l_{G}(x) \cap N_{G}(T)\right|$, hence

$$
\mu=|F(x)|=\left(\left|C_{G}(x)\right| \cdot\left|c c l_{G}(x) \cap N_{G}(T)\right| /\left|N_{G}(T)\right|\right) \times\left(\left|N_{G}(T)\right| /|H|\right)=\left|N_{G}(T): H\right| .
$$

From this, it follows that a simple (1, 5)-group of type (i) is (1) or (2) of Theorem 3,

CASE (ii).
Lemma 6. A simple (1,5)-group of type (ii) is one of the groups listed in (3)-(7) of Theorem 3.

Proof. Let p be an odd prime and $q=p^{n}>3$. Suppose G is a (1,5)-group on a set Ω which is isomorphic to $L_{2}(q)$. If H is a stabilizer of a point in Ω. Since $|\Omega|$ is odd, H contains a Sylow 2 -subgorup of G. Hence by the Dickson's Theorem ([13] p. 213), H is isomorphic to one of the following:
(a) Dihedral group of order $2 z$ where $z \mid(q-\varepsilon) / 2, q \equiv \varepsilon \in\{-1,1\}(\bmod 4)$.
(b) $A_{4}, q \equiv 3$ or $5(\bmod 8)$.
(c) $S_{4}, q^{2}-1 \equiv 0(\bmod 16)$.
(d) $A_{5}, q \equiv 3$ or $5(\bmod 8)$ or $p=5$ or $q^{2}-1 \equiv 0(\bmod 5)$.
(e) $\operatorname{PSL}\left(2, p^{m}\right), n=m t$ and $1 \neq t \equiv 1(\bmod 2)$.
(f) $P G L\left(2, p^{m}\right), n=2 m t$ and $t \equiv 1(\bmod 2)$.

We note a centralizer of an involution of $L_{2}(q)$ with q odd has order ($q-\varepsilon$) and $L_{2}(q)$ has a unique conjugate class of involutions.

If H is of type (a), by (2.4), we nave

$$
5=\frac{(q-\varepsilon)(z+1)}{2 z}=\frac{(q-\varepsilon) / 2}{z} \cdot(z+1) .
$$

Hence $z+1=5$ and $\frac{(q-\varepsilon) / 2}{z}=1$, whence $q=7$ or 3^{2}. Thus (3) or (4) of Theorem 3 holds.

If H is of type (b), we have

$$
5=\frac{(q-\varepsilon) \cdot 3}{\left|A_{4}\right|}=\frac{q-\varepsilon}{4} .
$$

Thus (5) of Theorem 3 holds.
If H is of type (c), we have

$$
5=\frac{(q-\varepsilon) \cdot 9}{\left|S_{4}\right|}=\frac{(q-\varepsilon) \cdot 3}{8}, \text { which can not occur. }
$$

If H is of type (d), we have

$$
5=\frac{(q-\varepsilon) \cdot 15}{\left|A_{5}\right|}=\frac{q-\varepsilon}{4} .
$$

Hence (6) of Theorem 3 holds.
If H is of type (e), we have

$$
5=\frac{(q-\varepsilon) \cdot\left|P S L\left(2, p^{m}\right)\right| /\left(p^{m}-\varepsilon\right)}{\left|P S L\left(2, p^{m}\right)\right|}=\frac{p^{m t}-\varepsilon}{p^{m}-\varepsilon},
$$

which can not occur since $p^{m}, t \geqq 3$ and $\varepsilon \in\{-1,1\}$.
If H is of type (f), we have

$$
\begin{aligned}
5 & =\frac{(q-1) \cdot\left(p^{m}\right)^{2}}{\left|P G L\left(2, p^{m}\right)\right|} \\
& =\frac{\left\{\left(p^{m}\right)^{t-1}+\cdots+\left(p^{m}\right)+1\right\} \cdot\left\{\left(p^{m}\right)^{t-1}-\left(p^{m}\right)^{t-2}+\cdots-\left(p^{m}\right)+1\right\} \cdot p^{2 m}}{p^{m}} .
\end{aligned}
$$

Hence we get $t=1$ and $p^{m}=5$. Thus (7) of Theorem 3 holds.
Case (iii).
Lemma 7. Let G be a group isomorphic to $L_{3}(q)$ or $U_{3}(q)$ for q odd. If q $\neq 3,5$ then G has no (1,5)-permutation representation.

Proof. Suppose false. Let (G, Ω) be a (1,5)-group and T be a Sylow 2 -
subgroup of G_{α} with $\alpha \in \Omega$. Since T is semi-dihedral or wreathed, G has a unique conjugate class of involutions ([1]). Hence an involution z contained in $Z(T)$ is a 5 -involution. $C_{G}(z)$ is isomorphic to a quotient of either $G L(2, q)$ or $G U(2, q)$ by a central subgroup Z of order ($q-\varepsilon, 3$) where $\varepsilon=1$ or -1 , respectively ([1]). Hence $G_{G}(Z)$ has a normal subgroup N of index $q-\varepsilon /(q-\varepsilon, 3)$ isomorphic to $S L(2, q)$.

Let K_{0} be the kernel of the action of $C_{G}(z)$ on $F(z)$. Since $q>5$ and $z \in K_{0}$, N is contained in K_{0} and so $C_{G}(z) / K_{0}$ is isomorphic to a subgroup of Z_{r} with $r=q-\varepsilon /(q-\varepsilon, 3)$. Set $K=K_{0} \cap T$. By (2.6), we have $T \neq K$ and so T / K is isomorphic to Z_{2} or Z_{4}. Hence $|K|^{2}>T$ because T is semi-dihedral or wreathed. Thus K is a weakly closed subgroup of T and so $N_{G}(K)$ is transitive on $F(z)$ by the Witt's Theorem. Since $|F(K)|=5$, there exists a 5-element x in $N_{G}(K)$ such taht $\langle x\rangle$ is transitive on $F(K)=F(z)$. By the structure of T, x centralizes $\Omega_{1}(Z(K))$, which contains z. Hence x is contained in $C_{G}(z)$. Thus $C_{G}(z) / K_{0}$ contains a cyclic subgroup of order $2 \cdot 5$, contrary to $|F(z)|=|F(K)|=5$.

Simple group with semi-dihedral Sylow 2 -subgroups are $L_{3}(q)(q \equiv-1(\bmod 4))$, M_{11} or $U_{3}(q)(q \equiv 1(\bmod 4))$ by Third Main Theorem of [1]. By Lemma 7, we can prove that a simple (1,5)-group of type (iii) is (9) of Theorem 3.

CASE (iv)
Lemma 8. Let G be a $(1,5)$-group on Ω with $O^{2}(G)=G$ and z be a central involution such that
(*) $\quad C_{G}(z)=L_{1} \cdot L_{2}\langle u\rangle$,

$$
\begin{aligned}
& L_{1} \cong S L\left(2, q_{1}\right), L_{2} \cong S L\left(2, q_{2}\right), u^{2}=1, \\
& {\left[L_{1}, L_{2}\right]=1, Z\left(L_{1}\right)=Z\left(L_{2}\right)=L_{1} \cap L_{2}=\langle z\rangle,} \\
& u^{-1} L_{1} \cdot L_{2} u=L_{1} \cdot L_{2} .
\end{aligned}
$$

Then one of the following holds:
(a) $q_{1} \leqq 5$ or $q_{2} \leqq 5$.
(b) z is not a 5-involution.

Proof. Suppose false. Let T be a Sylow 2-subgroup of G such that $z \in$ $Z(T)$ and $u \in T$. Since $|\Omega|$ is odd, there exists $\alpha \in \Omega$ with $T \leqq G_{\alpha}$.

Let K_{0} be the kernel of the action of $C_{G}(z)$ on $F(z)$. Since $|F(z)|=5, q_{1}$ $>5, q_{2}>5$ and z is contained in K_{0}, it follows that L_{1} and L_{2} are contained in K_{0}. Hence we have $|T: K| \leqq 2$ where $K=T \cap K_{0}$. By (2.6), we have $T \neq K$ and so $T / K \cong Z_{2}$, $u \notin K$. Since the 2-group T is not of maximal class, we have $\left|C_{T}(u)\right| \geqq 8$, hence $\left|C_{K}(u)\right| \geqq 4$. On the other hand we have $\left|C_{K}(u)\right| \leqq 4$ because K acts semi-regularly on $\Omega-F(K)$, hence $\left|C_{T}(u)\right|=8$. By (2.3), we get $c c l_{G}(u)$ $\cap K \neq \emptyset$. Clearly there exists an extremal element w of T in G with $w \in K \cap$ $c c l_{G}(u)$. There exists $g \in G$ such that $u^{g}=w$ and $\left(C_{T}(u)\right)^{g} \leqq C_{T}(w)$. Since $F(u)$ $\neq F(w)=F(K)$, we get $\left(C_{K}(u)\right)^{g} \cap K=1$. Thus $\left|C_{K}(u)\right|=\left|\left(C_{K}(u)\right)^{g}\right| \leqq 2$, a contra-
diction.
Lemma 9. Let G be a finite group isomorphic to $G_{2}(q), D_{\mathrm{i}}^{2}(q)$ or $P S_{p}(4, q)$ for q odd. If q is not equal to 3 or 5 , then G has no (1,5)-permutation representation.

Proof. Suppose false. We note that a centralizer of a central involution in the groups $G_{2}(q), D_{4}^{2}(q)$ and $P S_{p}(4, q)$ for $q(>5)$ odd is of type (*) of Lemma 8 ([8]]. Moreover $G_{2}(q)$ and $D_{4}^{2}(q)$ for q odd have a unique conjugate class of involutions and so Lemma 8 shows that $G_{2}(q)$ and $D_{4}^{2}(q)(q>5)$ have no (1,5)permutation representation. Since $P S_{p}(4, q)$ for $q(>5)$ odd has two conjugate classes of involutions, G is isomorphic to $P S_{p}(4, q)$ for some q with $q(>5)$ odd and central involutions are 1 -involutions. Hence noncentral involutions are 5involutions and $|\Omega| \equiv 1(\bmod 8)$ by (3.2). Let z be a central involution of G. Then the following holds ([22]):

$$
\begin{aligned}
& C_{G}(z)=L_{1} L_{2}\langle u\rangle \quad\left[L_{1}, L_{2}\right]=1 \quad u^{2}=1 \\
& L_{1}^{u}=L_{2} \quad L_{1} \cong L_{2} \cong S L(2, q) \\
& L_{1} \cap L_{2}=Z\left(L_{1}\right)=Z\left(L_{2}\right)=\langle z\rangle \quad c c l_{G}(z) \varsubsetneqq u .
\end{aligned}
$$

From this, $M=\left\{x x^{u} \mid x \in L_{1}\right\}$ is a subgroup of $C_{G}(u)$ and isomorphic to $L_{2}(q)$ with $\langle u\rangle \cap M=1$. Let K_{0} be the kernel of the action of $L_{1} \cdot L_{1}\langle u\rangle \cap C_{G}(u)$ on $F(u)$. Since $|F(u)|=5$ and $q>5, M$ is contained in K_{0}, hence $\langle u\rangle \times M \leqq K_{0}$. Thus we have $|\Omega| \equiv 5(\bmod 8)$ because $|\langle u\rangle \times M|_{2} \geqq 8$, which is contray to $|\Omega| \equiv 1(\bmod 8)$.

Lemma 10. Let $q(>5)$ be equal to an odd power of 3 . Re(q) has no $(1,5)$ permutation representation. (Here $\operatorname{Re}(q)$ is a group of Ree type.)

Proof. Suppose false. Let z be an involution of $\operatorname{Re}(q)$. The centralizer of z in $\operatorname{Re}(q)$ is equal to $\langle z\rangle \times L$ where L is isomorphic to $L_{2}(q)$. Since $\operatorname{Re}(q)$ has a unique conjugate class of involutions, z is a 5 -involution. Let K_{0} be the kernel of the action of $\langle z\rangle \times L$ on $F(z)$. Then $L \leqq K_{0}$ because $|F(z)|=5$ and q $\geqq 3^{3}$. Hence $\langle z\rangle \times L=K_{0}$, which is contrary to (2.6).

Lemma 11. Let q be a power of an odd prime and G be a finite group isomorphic to $U_{4}(q)(q \neq 7(\bmod 8))$ or $L_{4}(q)(q \neq 1(\bmod 8))$. If $q>5, G$ has no $(1,5)-$ permutation representation.

Proof. We can easily show that a Sylow 2-subgroup of G has order at least 2^{9} when $q \equiv 1,7(\bmod 8)$. Moreover $U_{4}(q)$ with $q \equiv 3(\bmod 8)$ and $L_{4}(q)$ with $q \equiv 5(\bmod 8)$ have a unique conjugate class of involutions. Hence by Theorem 1 and Theorem of [18], G has no (1,5)-permutation representation with the exception of $U_{4}(q)$ with $q \equiv 5(\bmod 8)$ and $L_{4}(q)$ with $q \equiv 3(\bmod 8)$. From this, if the lemma is false, G is isomorphic to $U_{4}(q)$ with $q \equiv 5(\bmod 8)$ or $L_{4}(q)$ with $q \equiv 3(\bmod 8)$. Let z be a central involution of G and $q \equiv \varepsilon \in\{-1,1\}(\bmod 4)$. Then $C_{G}(z)$ has the following structure ([16], [17]):
(a) $C_{G}(z)=L_{1} L_{2}\langle u, w\rangle \triangleright L_{1} L_{2}$

$$
\begin{aligned}
& L_{1} \cong L_{2} \cong S L(2, q),\left[L_{1}, L_{2}\right]=1 \\
& L_{1} \cap L_{2}=Z\left(L_{1}\right)=Z\left(L_{2}\right)=\langle z\rangle, L_{1} L_{2} \cap\langle v, w\rangle=1 \\
& \langle v, w\rangle \cong \text { the dihedral group of order } 2(q+\varepsilon) \\
& u^{2}=1, w^{u}=w^{-1}, L_{1}^{u}=L_{2} .
\end{aligned}
$$

(b) G has two conjugate classes of involutions:

$$
\begin{aligned}
& u \sim z \nsim u z \\
& \begin{aligned}
C_{G}(z) \cap C(u) & =C_{G}(z) \cap C(u z) \\
& \geqq\langle u\rangle \times\left\langle x_{1} x_{1}^{u} \mid x_{1} \in L_{1}\right\rangle,\langle u z\rangle \times\left\langle x_{1} x_{1}^{u} \mid x_{1} \in L_{1}\right\rangle .
\end{aligned}
\end{aligned}
$$

First we consider the case that z is a 5 -involution. Let K_{0} be the kernel of the action of $C_{G}(z)$ on $F(z)$. Since $q>5$ and $|F(z)|=5$, we have $L_{1} L_{2} \leqq K_{0}$. Set $q+\varepsilon=2^{n} \cdot d$ with q odd. Since $q \equiv \varepsilon \in\{-1,1\}(\bmod 4), n$ is equal to 1 , hence $v=w^{d}$ is an involution and $|\langle u, w\rangle|_{2}=|\langle u, v\rangle|$. Let T be a Sylow 2 -subgroup of $C_{G}(z)$ with $T \geqq\langle u, v\rangle$. Set $K=T \cap K_{0}$. If $u \in K_{0}$, we have $|T: K|=2$. In this case, v is a 5 -involution, hence $\left|C_{K}(v)\right| \leqq 4$. On the other hand, we have $\langle z, u\rangle$ $\leqq C_{K}(v)$, hence $\left|C_{K}(v)\right|=4$. There exists an extremal element v_{0} of T in G with $v_{0} \in K \cap c c l_{G}(v)$. There exists $g \in G$ such that $v^{g}=v_{0}$ and $\left(C_{T}(v)\right)^{g} \leqq C_{T}\left(v_{0}\right)$. Since $F(v) \neq F(K)=F\left(v_{0}\right)$, we have $\left(C_{K}(v)\right)^{g} \cap K=1$. Thus $\left|C_{K}(v)\right|=\left|\left(C_{K}(v)\right)^{g}\right|=2$, a contradiction. If $u \notin K_{0}$, we have $F(u) \neq F(z)$. Since $\left\langle x_{1} x_{1}^{u} \mid x_{1} \in L_{1}\right\rangle$ is a subgroup of K_{0} isomorphic to $L_{2}(q)$, the set $F\left(\langle z\rangle \times\left\langle x_{1} x_{1}^{u} \mid x_{1} \in L_{1}\right\rangle\right)$ is equal to $F(K)$, which shows $|F(u)| \geqq 2^{3}+1$, a contradiction.

Now we consider the case that z is a 1 -involution. In this case $u z$ is a 5 involution by (b). Since $\langle u z\rangle \times\left\langle x_{1} x_{1}^{u} \mid x_{1} \in L_{1}\right\rangle$ is isomorphic to $Z_{2} \times L_{2}(q)$ with $q>5$, we get $\left|F\left(\langle u z\rangle \times\left\langle x_{1} x_{1}^{u} \mid x_{1} \in L_{1}\right\rangle\right)\right|=|F(\langle u z\rangle)|=5$, hence $|\Omega-F(u z)| \equiv 0$ $(\bmod 8)$, which is contrary to (3.2).

By Lemma 7-11, Theorem 1 and Harada's Theorem ([10]), we can easily show that a simple (1,5)-group of type (iv) is one of the groups listed in (8) (10) (11) and (12) of Theorem 3 and the others in the Harada's list of Main Theorem of [10] have no (1,5)-permutation representation.

§ 7. Proof of Theorem 4.

Let (G, Ω) be a $(2,5)$-group and N be a minimal normal subgroup of G.
First we suppose N is an elementary abelian p-group for some prime p and G is not of type (1) of Theorem 4. Clearly p is equal to 5 and G is a subgroup of automorphisms of an affine space over $G F(5)$ of dimension 2 or 3 because G_{α} contains a four group whose involutions have 1 or 5 fixed points. In the case of $|N|=5^{3}, G$ has no 1 -involution.
(7.1) If N is isomorphic to $Z_{5} \times Z_{5} \times Z_{5}$ and G is not of type (1) of Theorem 4, then (2) of Theorem 4 holds.

Proof. Let G_{α} be a stabilizer of a point $\alpha \in \Omega$. We may assume G_{α} is a subgroup of $G L(3,5)$. Since G_{α} is transitive on $\Omega-\{\alpha\},|\Omega|-1=2^{2} \cdot 31$ divides $\left|G_{\alpha}\right|$ and any element of order 31 has a unique fixed point.

If G_{α} has an elementary abelian normal subgroup A of odd order, we have $|A|=31$ and A acts semi-regularly on $\Omega-\{\alpha\}$. By assumption, G_{α} contains a four group B, which normalizes A, hence some involution $x \in B$ centralizes A. Since $\left|C_{v}(y)\right|=5$ for any $y \in B$, we have $|F(x)|=5$ and A acts on $F(x)$. Hence A is not semi-regular on $\Omega-\{\alpha\}$, a contradiction.

If G_{α} has an elementary abelian normal subgroup A of even order, an element $v \in G_{\alpha}$ of order 31 centralizes A. By semi-regularity of v on $\Omega-\{\alpha\}$, every involution in A have a unique fixed point α, a contradiction.

Thus a minimal normal subgroup A of G_{α} is the direct product of isomorphic non abelian simple groups. Since A is a subgroup of $G L(3,5), A$ is a simple group. The order of A is divisible by 31 because A is $\frac{1}{2}$-transitive on $\Omega-\{\alpha\}$. Hence A is contained in $S L(3,5)$. Let Q be a Sylow 31-subgroup of A. By Sylow's theorem, we have $\left|A: N_{A}(Q)\right|=2^{5}$ or $2^{5} 5^{3}$ and so a Sylow 2 -subgroup of A is isomorphic to that of $S L(3,5)$. Since $A \leqq S L(3,5)$, we get $A=S L(3,5)$. If A is a proper subgroup of G_{α}, it follows that the element $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$ is contained in G_{α}, which is a 25 -involuton, a contradiction. Hence $G_{\alpha}=A=S L(3,5)$, which shows (7.1).
(7.2) If N is isomorphic to $Z_{5} \times Z_{5}$, then we have (3), (4), (5) or (6) of Theorem 4.

Proof. Let G_{α} be the stabilizer of a point $\alpha \in \Omega$. We may assume G_{α} is a subgroup of $G L(2,5)$. Since G_{α} is transitive on $\Omega-\{\alpha\},\left|G_{\alpha}\right|$ is divisible by $|\Omega-\{\alpha\}|=2^{3} \cdot 3$. The order of $G_{\alpha \beta}$ for $\beta \in \Omega-\{\alpha\}$ is even because $G_{\alpha \beta}$ contains a 5 -involution, hence $\left|G_{\alpha}\right|$ is divisible by $2^{4} 3$.

If $\left|G_{\alpha}\right|$ is divisible by 5 , it follows that $G_{\alpha}=G L(2,5)$ or a subgroup of $G L(2,5)$ of index 2 containing $S L(2,5)$. An involution in $G L(2,5)$ fixes one or five points and $S L(2,5)$ contains no 5 -involution, hence we have (3) or (4) of Theorem 4.

If $\left|G_{\alpha}\right|$ is not divisible by 5 , we have $\left|G_{\alpha}\right|=2^{4} \cdot 3$ or $2^{5} \cdot 3$. The normalizer of a Sylow 3-subgroup of $G L(2,5)$ has order $2^{3} \cdot 3$, hence $O\left(G_{\alpha}\right)=1$ and $O_{2}\left(G_{\alpha}\right)$ $\neq 1$. Since $O\left(G_{\alpha}\right)=1$, an element of order 3 can not centralize $O_{2}\left(G_{\alpha}\right)$, hence it can not stabilize the following normal series: $O_{2}\left(G_{\alpha}\right) \triangleright O_{2}\left(G_{\alpha}\right) \cap S L(2,5) \triangleright 1$. Since the factor group $O_{2}\left(G_{\alpha}\right) / O_{2}\left(G_{\alpha}\right) \cap S L(2,5)$ is cyclic and a Sylow 2-subgroup of $S L(2,5)$ is quaternion of order 8 , it follows that $O_{2}\left(G_{\alpha}\right) \cap S L(2,5)$ is a Sylow

2-subgroup of $S L(2,5)$. Set $P=O_{2}\left(G_{\alpha}\right) \cap S L(2,5) . \quad G_{\alpha}$ is contained in $N_{G L(2,5)}(P)$, which is a subgroup of $G L(2,5)$ of index 5 . Hence we obtain (5) or (6) of Theorem 4.

Next we assume that N is not solvable. In this case N is a simple ($1, \mu$)group where $\mu \in\{1,3,5\}$ or N is isomorphic to $A_{5} \times A_{5}$ and G is a subgroup of $\operatorname{Aut}(N)$ containing N. We note N_{α} is $\frac{1}{2}$-transitive on $\Omega-\{\alpha\}$ for $\alpha \in \Omega$ because G_{α} is transitive on $\Omega-\{\alpha\}$ and $G_{\alpha} \triangleright N_{\alpha}$. From this N is not isomorphic to $A_{5} \times A_{5}$.
(7.3) If N is a simple (1, 1)-group, then (7), (8), (9) or (10) of Theorem 4 holds.

Proof. If N is a simple (1,1)-group, N is isomorphic to one of the following groups in its usual representation: $L_{2}\left(2^{n}\right), S_{Z}\left(2^{n}\right), U_{3}\left(2^{n}\right)(n \geqq 2)$. Since N is 2 -transitive on Ω, it will suffice to consider that G is a (1,5)-group or not. Let T be a Sylow 2 -subgroup of $N_{\alpha}(\alpha \in \Omega)$ and x be a 5 -involution in G_{α}. Since N_{α} is 2-closed ([3]), x normalizes T and also $Z(T)$, which is an elementary abelian 2-group. We have $\left|C_{Z(T)}(x)\right| \leqq 2^{2}$ by semi-regularity of T on $\Omega-\{\alpha\}$ and so $|Z(T)| \leqq 2^{4}$ by (2.7), hence $2 \leqq n \leqq 4$. From this we can verify (7.3) by [21].
(7.4) If N is a simple (1,3)-group, G is isomorhic to S_{7} in its usual representation, that is, (11) of Theorem 4 holds.

Proof. Let M be the subgroup which consists of all even permutations in G. Since a 3 -involution is a even permutation in this case and G contains a 5 -involution, we have $|G: M|=2$ and involutions in M are 3 -involutions. Since $G_{\alpha \beta}$ contains a 5 -involution for $\alpha \neq \beta \in \Omega$, it follows that $\left|G_{\alpha \beta}: M_{\alpha \beta}\right|=\mid G_{\alpha \beta} \cdot M$: $M \mid=2$ and so M is a (2, 3)-group. By King's Theorem ([14]), M is isomorphic to (a), (b), (f), (g), (h) or (i) of his list. Hence we can easily verify (7.4).
(7.5) If N is a simple (1,5)-group, then (12), (13), (14) or (15) of Theorem 4 holds.

Proof. If N is of type (1) or (2) of Theorem 3, any element in $T^{\#}$ has the same set of fixed points (see the proof of Lemma 5). Here T is a unique Sylow 2-subgroup of $N_{\alpha}(\alpha \in \Omega)$. Since T is characteristic in N_{α}, T is a normal subgroup of G_{α}, hence T fixes $\Omega-\{\alpha\}$ pointwise, a contradiction.

The automorphism groups of the simple groups (3)-(12) of Theorem 3 are known. Hence we can verify (7.5).

References

[1] J.L. Alperin, R. Brauer and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2 -subgroups, Trans. Amer. Math. Soc., 151 (1970), 1-261.
[2] H. Bender, Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben, Math. Z., 104 (1968), 175-204.
[3] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau
einen Punkt festläst, J. Algebra, 17 (1971), 527-554.
[4] F. Buekenhout, Doubly transitive groups in which the maximum number of fixed points of involutions is four, to appear.
[5] F. Buekenhout, Transitive groups in which involutions fix one or three points, J. Algebra, 23 (1972), 438-451.
[6] F. Buekenhout and P. Rowlinson, On (1, 4)-groups II, to appear.
[7] P. Fong, Sylow 2-subgroups of small order, to appear.
[8] P. Fong and W. J. Wong, A characterization of the finite simple groups $P S_{p}(4, q)$, $G_{2}(q), D_{4}{ }^{2}(q)$ I, Nagoya Math. J., 36 (1969), 143-184.
[9] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
[10] D. Gorenstein and K. Harada, Finite groups whose 2 -subgroup are generated by at most 4 elements, to appear.
[11] K. Harada, On finite groups having self-centralizing 2-subgroups of small order, J. Algebra, 33 (1975), 144-160.
[12] C. Hering, Zweifach transitive Permutationsgruppen, in denen 2 die maximal Anzahl von Fixpunkten von Involutionen ist, Math. Z., 104 (1968), 150-174.
[13] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1968.
[14] J.D. King, Doubly transitive groups in which involutions fix one or three points, Math. Z., 111 (1969), 311-321.
[15] R. Noda, Doubly transitive groups in which the maximal number of fixed points of involutions is four, Osaka J. Math., 8 (1971), 77-90.
[16] K. W. Phan, A characterization of four-dimensional unimodular groups, J. Algebra, 15 (1970), 252-279.
[17] K. W. Phan, A characterization of the unitary groups $\operatorname{PSU}\left(4, q^{2}\right), q$ odd, J. Algebra, 17 (1971), 132-148.
[18] P. Rowlinson, Simple permutation groups in which an involution fixes a small number of points, J. London Math. Soc., (2) 4 (1972), 655-661.
[19] P. Rowlinson, Simple permutation groups in which an involution fixes a small number of points II, to appear.
[20] P. Rowlinson, On (1, 4)-groups I, to appear.
[21] R. Steinburg, Automorphisms of finite linear groups, Canadian J. of Math., 12 (1960), 606-615.
[22] W. J. Wong, A characterization of the finite projective symplectic groups $P S_{p_{4}}$ (q), J. Algebra, 14 (1970), 1-35.

Yutaka Hiramine
Department of Mathematics Osaka Kyoiku University
Minamikawabori, Tennoji-ku
Osaka, Japan

