On transitive groups in which the maximal number of fixed points of involutions is five

By Yutaka HIRAMINE

(Received July 7, 1975) (Revised Aug. 20, 1977)

§1. Introduction.

Let t and μ be integers such that $t \ge 1$, $\mu \ge 0$. A finite permutation group (G, Ω) of even order is said to be a (t, μ) -group if G is t-transitive on Ω and μ is the maximal number of the fixed points of involutions in G. All $(2, \mu)$ -groups with $\mu \le 4$ have been classified; for $\mu=0$ and $\mu=1$ by Bender [2][3], for $\mu=2$ by Hering [12], for $\mu=3$ by King [14] and for $\mu=4$ by Noda [15] and Buekenhout [4]. The (1, 3)-groups have been classified by Buekenhout [5] and (1, 4)-groups have been studied by Rowlinson and Buekenhout [6][20]. In [18][19], Rowlinson has shown that a simple $(1, \mu)$ -group with one conjugate class of involutions is one of the known simple groups when $1 \le \mu \le 7$.

In this paper we shall consider primitive (1, 5)-groups. Let (\tilde{G}, Ω) be a primitive (1, 5)-group and G be a minimal normal subgroup of \tilde{G} .

If G is solvable, G is an elementary abelian p-group for some prime p. In this case we can easily show that p=5. Moreover \tilde{G} is a group of automorphisms of an affine space satisfying one of the following:

- (1) Dimension of the affine space is 2 or 3.
- (2) If T is a Sylow 2-subgroup of \widetilde{G}_{α} ($\alpha \in \Omega$) then T is cyclic or generalized quaternion and $|C_G(z)|=5$ where z is a unique involution in T.

If G is not solvable, G is a direct product of r isomorphic nonabelian simple groups. In this case, the permutation group (G, Ω) is a $(1, \mu)$ -group where $\mu \in \{1, 3, 5\}$ and we can easily show that r=1, with the exception of the following case

$$G = G_1 \times G_2 \cong A_5 \times A_5$$

where G_i $(1 \le i \le 2)$ is isomorphic to the alternating group of degree 5 and G is a permutation group on the set $\{(i, j) | 1 \le i, j \le 5\}$, which is defined by $(i, j)^g =$ (i^{g_1}, j^{g_2}) for $g = g_1 \cdot g_2 \in G$ with $g_i \in G_i$ $(1 \le i \le 2)$. Thus we have Aut $(G) \ge \tilde{G} \ge G$, where G is a simple $(1, \mu)$ -group $(\mu \in \{1, 3, 5\})$ or the group isomorphic to A_5 $\times A_5$. Since simple (1, 1)-groups and (1, 3)-groups are known simple groups by Bender [3], Buckenhout [5] and Rowlinson [18], we may consider simple (1, 5)-

groups to classify the primitive (1, 5)-groups.

The purpose of this paper is to prove the following theorem.

THEOREM 1. Let (G, Ω) be a (1, 5)-group and T be a Sylow 2-subgroup of $O^2(G)$. Then we have one of the following;

 $(1) |T| \leq 2^{8}.$

(2) T has a cyclic subgroup of index 4.

(3) $O^2(G)$ has a unique conjugate class of involutions.

Here $O^{2}(G)$ is the subgroup of G generated by all elements of odd order.

In our theorem let G be simple. A simple (1, 5)-group satisfying (2) or (3) is known ([7], [18]). In order to classify simple (1, 5)-groups satisfying (1), we shall prove in § 5 the following lemma.

LEMMA 2. Let G be a simple (1, 5)-group which satisfies (1) of Theorem 1. Then G has a unique conjugate class of involutions or G has sectional 2-rank at most 4. (A group G is said to have sectional 2-rank k if every section of G has 2-rank at most k and some section of G has 2-rank equal to k.)

Simple groups with sectional 2-rank at most 4 were decided recently by D. Gerenstein and K. Harada [10]. Thus we shall obtain the following theorem.

THEOREM 3. Let G be a simple (1, 5)-group. Then G is isomorphic to one of the simple groups in the following list.

(1) $L_2(2^n)$, $n \equiv 0 \pmod{4}$, degree= $2^n \times 5+5$. G_α is a (unique) subgroup of $N_G(T)$ of index 5, where T is a Sylow 2-subgroup of G.

(2) $U_{\mathfrak{s}}(2^n)$, $n \equiv 0 \pmod{2}$ degree $= 2^{\mathfrak{s}n} \times 5 + 5$. G_{α} is a (unique) subgroup of $N_G(T)$ of index 5.

(3) $L_2(7)$, degree=21, $G_{\alpha} \cong T$.

(4) $L_2(9)$, degree=45, $G_{\alpha} \cong T$.

(5) $L_2(19)$, degree=285, $G_{\alpha} \cong A_4$.

(6) $L_2(19)$, degree=57, $G_{\alpha} \cong A_5$.

(7) $L_2(25)$, degree=65, $G_{\alpha} \cong PGL(2, 5)$.

(8) $L_{3}(4)$, degree=21, (2-transitive).

(9) $L_{3}(3)$, degree=13, (2-transitive).

(10) A_7 , degree=21, $G_{\alpha} \cong S_5$.

(11) A_9 , degree=9, (7-transitive).

(12) J_1 , degree=1045, $G_{\alpha} \cong N_G(T)$.

By Theorem 3, [3], [14] and [21], we obtain

THEOREM 4. Let (G, Ω) be a (2, 5)-group. Then we have the following:

(1) A Sylow 2-subgroup of G is cyclic or generalized quaternion, or G is one of the following groups:

(2) A subgroup of automorphisms of the affine space of dimension 3 over GF(5) such that

 $G = G_{\alpha} \cdot N \triangleright N \cong Z_{5} \times Z_{5} \times Z_{5}, \ G_{\alpha} = SL(3, 5).$

 $\mathbf{216}$

(3) A subgroup of automorphisms of the affine space of dimension 2 over GF(5) such that

$$G = G_{\alpha} \cdot N \triangleright N \cong Z_5 \times Z_5, \ G_{\alpha} = GL(2, 5).$$

(4) A subgroup of (3) of index 2 containing SL(2, 5).

(5) A subgroup of (3) such that $G = G_{\alpha} \cdot N \triangleright N \cong Z_5 \times Z_5$, $G_{\alpha} = N_{GL(2,5)}(Q)$, $Q \in Syl_2(SL(2, 5)) | G_{\alpha}| = 2^5 \cdot 3$.

(6) A subgroup of (5) of index 2 containing $N_{SL(2,5)}(Q)$.

(7) Aut $(L_2(16))$, $|\Omega| = 17$.

(8) A subgroup of (7) of index 2.

(9) Aut $(U_3(4))$, $|\Omega| = 65$.

(10) A subgroup of (9) of index 2.

(11) S_7 , $|\Omega| = 7$.

(12) $L_3(3)$, $|\Omega| = 13$.

(13) $L_3(4)$, $|\Omega| = 21$.

(14) A subgroup G of
$$N_{S_{21}}(L_3(4))$$
 such that $|G: L_3(4)| = 3$, $|\Omega| = 21$.

(15) A_{9} , $|\Omega| = 9$.

In § 3 and § 4, we shall prove Theorem 1. In the Theorem let us remark that $O^2(G)$ is also transitive on Ω .

If $O^2(G)$ contains no involution, then (1) of Theorem 1 holds. If $O^2(G)$ has an involution, $(O^2(G), \Omega)$ is a $(1, \mu)$ -group where $\mu \in \{1, 3, 5\}$. When $\mu=1$ or 3, we can easily show that either (2) or (3) of the theorem holds. Hence we may assume $O^2(G)=G$.

The proof is divided into two cases;

Case 1: Z(T) contians no 5-involution.

Case 2: Z(T) contains a 5-involution.

Here an involution is called a μ -involution if it fixes exactly μ (μ =0, 1, 2…) points.

In the first case, we have

PROPOSITION A. Let (G, Ω) be a (1, 5)-group with no subgroup of index 2. If the center of a Sylow 2-subgroup T of G contains no 5-involution, then the order of T is at most 2^8 .

In the second case, we have

PROPOSITION B. Let (G, Ω) be a (1, 5)-group with no subgroup of index 2. If the center of a Sylow 2-subgroup T of G contains a 5-involution, then one of the following holds.

 $(1) |T| \leq 2^{8}.$

(2) T has a cyclic subgroup of index 4.

(3) G has a unique conjugate class of involutions.

We use the standard notation of [9] except the following;

F(X): the set of fixed points of a nonempty subset X of G.

 $ccl_G(x)$: the G-conjugate class containing an element $x \in G$. $|H|_2$: maximal power of 2 dividing the order of a subgroup H of G. $G|_A$: the restriction of G on a subset Δ of Ω .

§ 2. Preliminary results.

We list now some results that will be required in the proof of the theorems.

(2.1) (Rowlinson [20] Lemma 1) Let V be the semi-direct product of a 2group Y by a four-group {1, t_1 , t_2 , t_3 }. If $|C_Y(t_i)| \leq 4$ (i=1, 2, 3), then $|Y| \leq 2^5$.

(2.2) (Hobby, Satz 7.8 (b), III [13]) Let P be a p-group for some prime p. If $Z(\Phi(P))$ is cyclic, then $\Phi(P)$ is also cyclic.

(2.3) (Buekenhout and Rowlinson [6] Lemma 2) Let T be a Sylow 2-subgroup of G with $O^2(G)=G$ and v be an element of T of order 2^m . If X is a subgroup of T of index 2^m , then X contains a G-conjugate of the involution $v^{2^{m-1}}$.

(2.4) Let G be a transitive permutation group on Ω and H be a stabilizer of a point in Ω . For any element $x \in H$, we have

$$|F(x)| = |C_G(x)| \cdot |ccl_G(x) \cap H| / |H|.$$

PROOF. Set $M = \{(y, \alpha) | ccl_G(x) \ni y, F(y) \ni \alpha\}$ and $M_\beta = \{z \in G | F(z) \ni \beta, z \in ccl_G(x)\}$. By transitivity of G, we have $|M_\beta| = |M_\gamma|$ for all $\beta, \gamma \in \Omega$. Now we count the number of elements of M in two ways and get

$$|G: C_G(x)| \cdot |F(x)| = |\Omega| \cdot |M_{\alpha}| \qquad (\alpha \in \Omega).$$

We may assume $H = G_{\alpha}$. Hence we have $|M_{\alpha}| = |ccl_{G}(x) \cap H|$. Thus we get (2.4).

As a corollary of (2.4), we have

(2.5) Let Δ be a set and T be a 2-group acting transitively and faithfully on Δ . If x is an element of T with $|F(x)| \neq 0$, we have

$$|C_T(x)| \leq |F(x)|_2 \cdot |T| / |\varDelta|.$$

(2.6) Let Ω be a finite set with $|\Omega|$ odd and G be a transitive permutation group on Ω of even order. Assume F(x)=F(y) for all involutions with |F(x)|>1, |F(y)|>1 in a fixed Sylow 2-subgroup of G. Then all involutions lying in a fixed Sylow 2-subgroup of G have the same set of fixed points, G has a unique conjugate class of involutions and G has a strongly embedded subgroup. (Hence if G is a simple group, G is isomorphic to a simple group of Bender type ([3]).)

PROOF. Let u be a 1-involution and x be an involution with |F(x)| > 1. By transitivity, we may assume $F(u) \subseteq \Omega - F(x)$. The element u is not conjugate to x in G, hence O(ux) is even. There exists a unique involution $y \in \langle ux \rangle$ with [u, y] = [x, y] = 1.

When y is a 1-involution, it follows that F(u)=F(y) and $F(y)\subseteq F(x)$, hence $F(u)\subseteq F(x)$, a contrandiction. When y is not a 1-involution, by assumption we get F(x)=F(y) and $F(u)\subseteq F(y)$, hence $F(u)\subseteq F(x)$, a contradiction. Thus the first statement is proved.

Let x, y be involutions with $F(x) \neq F(y)$. Then O(xy) is odd. For otherwise, there exists a unique involution $z \in \langle xy \rangle$ with [x, z] = [y, z] = 1. By the first statement of (2.6), we have F(x) = F(z) and F(y) = F(z), hence F(x) = F(y), a contradiction. From this, G has a unique conjugate class of involutions.

Let z be an involution and H be a global stabilizer of F(z). If x is an involution contained in H, x centralizes an involution y contained in the kernel of the action of H on F(z). Since O(xy) (=2) is even, it follows that F(x) = F(y) by the preceding paragraph. Hence H is a strongly embedded subgroup of G.

(2.7) Let P be an elementary abelian 2-group of order 2^n and ϕ be an automorphism of P of order 2. Then we have

$$|C_P(\phi)| \ge 2^{\frac{1}{2}n}.$$

PROOF. Set $P = \sum_{i=1}^{r} C_P(\phi) \cdot x_i$ (the coset decomposition). Then $x_i^{\phi} x_i$ is an element of $C_P(\phi)$ for each $i \ (1 \le i \le r)$ and $x_i^{\phi} x_i$ is not equal to $x_j^{\phi} x_j$ for $i \ne j \ (1 \le i, j \le r)$, hence $r \le |C_P(\phi)|$. Since $r = |P: C_P(\phi)|$, we have $|P| \le |C_P(\phi)|^2$, which gives (2,7).

(2.8) Let G be a finite group and x be an element of G. Then we have $|ccl_G(x)| \leq |G'|$.

PROOF. If y is an element of $ccl_G(x)$, there exists $g \in G$ with $y=g^{-1}xg$. Since $x^{-1}x^g = [x,g] \in G'$, we have $x^g \in xG'$. Hence we have $|ccl_G(x)| \leq |xG'| = |G'|$.

§ 3. Proof of Proposition A.

Since G has a 5-involution, $|\Omega|$ is odd. Hence there exists $\alpha \in \Omega$ with $T \leq G_{\alpha}$. Set $M^* = M - \{\alpha\}$ for any subset M of Ω . If G has a 3-involution, then G has an odd permutation and hence $G \neq O^2(G)$. Thus G has no 3-involution and Z(T) acts semi-regularly on Ω^* .

Now we suppose $|T| \ge 2^9$ and show this leads to a contradiction.

(3.1) If a subgroup R of T is contained in T_{β} for some $\beta \in \Omega^*$, then R=1 or R is not normal in T.

PROOF. By semi-regularity of Z(T) on Ω^* , $Z(T) \cap R=1$, so (3.1) holds. (3.2) $|\Omega| \equiv 1 \pmod{8}$.

PROOF. We assume $|T: T_{\beta}| \leq 4$ for some $\beta \in \Omega^*$. Since |T| > 4, $T_{\beta} \neq 1$. Hence by (3.1), T_{β} is not normal in T. In particular $|T: T_{\beta}| = 4$, $|T: N_T(T_{\beta})|$ =2. Hence $T_{\beta} ccl_T(T_{\beta}) = \{T_{\beta}, T_{\beta}^t\}$ for $t \in T - N_T(T_{\beta})$ and $T \triangleright T_{\beta} \cap T_{\beta}^t$, $|T: T_{\beta} \cap T_{\beta}^t| = 8$. By (3.1) $|T_{\beta} \cap T_{\beta}^t| = 1$ and so $|T| = 2^3$, a contradiction. Thus $|T: T_{\beta}| \ge 8$ for any $\beta \in \Omega^*$, which implies $|\Omega^*| \equiv 0 \pmod{8}$.

(3.3) |Z(T)| = 2 or 2^2 .

PROOF. Since T has a 5-involution, semi-regularity of Z(T) on Ω^* gives $|Z(T)| \leq 2^2$.

(3.4) If a subgroup U of T satisfies |F(U)| = 5, then U has order at most 4.

PROOF. U acts semi-regularly on $\Omega - F(U)$. If (3.4) is false, $|\Omega - F(U)| \equiv 0 \pmod{8}$, which is contrary to (3.2).

(3.5) If the center of a subgroup V of T has a 5-involution, then $|V| \leq 2^5$.

PROOF. Let x be a 5-involution contained in Z(V). V acts on the set $F(x)^*$. Let U be the kernel of this action, then the factor group V/U is isomorphic to a subgroup of S_4 , hence V/U is isomorphic to a subgroup of D_8 , the dihedral group of order 8, therefore $|V/U| \leq 2^3$. On the other hand $|U| \leq 2^2$ by (3.4). Thus we obtain $|V| \leq 2^5$.

REMARK. (3.1)-(3.5) hold if T has order at least 2^4 .

(3.6) For any $\beta \in \Omega^*$, the 2-rank of T_β is at most 1.

PROOF. Suppose T_{β} contains a four-group Q for some $\beta \in \Omega^*$.

First we assume |Z(T)|=2. By considering the class equation for T, there exists $x \in T-Z(T)$ with $|T: C_T(x)|=2$. Since G has no subgroup of index 2, $C_T(x)$ contains a 5-involution by (2.3). If $|Z(C_T(x))| \ge 8$, then $Z(C_T(x))$ contains a 5-involution and so by (3.5) we get $|C_T(x)| \le 2^5$, contrary to $|T| \ge 2^9$. Thus $|Z(C_T(x))|=4$ holds.

 $C_T(x)$ has no element y with $|C_T(x): C_T(x) \cap C(y)| = 2$. Suppose false. Since $|Z(C_T(x) \cap C(y))| \ge | < Z(T), x, y > | \ge 8$ and $|C_T(x) \cap C(y)| \ge 2^{7}$, it follows that $C_T(x) \cap C(y)$ contains no 5-involution, which clearly means $C_T(x) \cap C(y)$ acts semiregularly on Ω^* . There exists a normal subgroup S of T such that $|T:S| \le 2^{3}$ and $S \le C_T(x) \cap C(y)$ as $|T: C_T(x) \cap c(y)| = 4$. Applying (2.1) to Q and S, we see that $|S| \le 2^{5}$, hence $|T| \le 2^{8}$, a contradiction. Thus the number of $C_T(x)$ -conjugate classes which consist of four elements is odd. On the other hand, T normalizes $C_T(x)$, so that at least one of these, say $ccl_{C_T(x)}(y)$ is T-invariant. It follows that $ccl_T(y) = ccl_{C_T(x)}(y)$ and so $|T: C_T(y)| = 4$. Let $ccl_T(y) = \{y = y_1, y_2, y_3, y_4\}$.

If $T > C_T(y)$, then since $|Z(C_T(y))| \ge 8$, we get a contradiction as before. Therefore $C_T(y)$ is not normal in T. We may assume $C_T(y_1)=C_T(y_3)\neq C_T(y_2)$ $=C_T(y_4)$. Evidently T normalizes $C_T(y_1)\cap C_T(y_2)=C_T(y_3)\cap C_T(y_4)$. $C_T(y_1)\cap C_T(y_2)$ contains a 5-involution, otherwise applying (2.1) again, we get $|C_T(y_1)\cap C_T(y_2)|$ $\le 2^5$. Hence $|T| \le 2^8$, a contradiction.

We have $|Z(C_T(y_1))|=4$ as above. Thus $Z(C_T(y_1))=\{y_1, y_3, z, 1\}\cong Z(C_T(y_2))$ = $\{y_2, y_4, z, 1\}$ acts semi-regularly on Ω^* , where $\langle z \rangle = Z(T)$. Let t be a 5-involution in $C_T(y_1) \cap C_T(y_2)$. The restriction of $Z(C_T(y_1))$ on $F(t^u)^*$ is regular for every $u \in T$ and is isomorphic to the restriction of $Z(C_T(y_2))$ on $F(t^u)^*$. By regularity of $Z(C_T(y_1))$ on $F(t^u)^*$ with $u \in T$, it follows that either $F(t^u) = F(t^v)$ or $F(t^u)^* \cap F(t^v)^* = \phi$ holds for $u, v \in T$. We can easily show that $|\beta^T| \ge 16$ for $\beta \in F(t)^*$ and so $|\{F(t^u)^*|u \in T\}| \ge 4$. Considering the permutation representation of y_1 and $Z(C_T(y_2))$, it follows that $y_1 = w$ on at least two blocks in $\{F(t^u)^*|u \in T\}$ for some w in $Z(C_T(y_2))$. This implies $y_1w^{-1} \in T$ fixes at least 8 points on Ω^* , hence by assumption, $y_1w^{-1} = 1$ and y_1 is contained in $Z(C_T(y_2))$, a contradiction.

Assume next that |Z(T)|=4. In this case, the class equation for T shows that T contains an element $x \in T - Z(T)$ with $|T: C_T(x)| \leq 4$. Since $|Z(C_T(x))| \geq 8$, $C_T(x)$ contains no 5-involution, hence $|T| \leq 2^8$ as before, which is a contradiction.

(3.7) $|T:T'| \ge 8.$

PROOF. If |T:T'|=4, T is of maximal class. Hence T is dihedral, semidihedral, generalized quaternion or cyclic by Theorem 5.4.5 [9]. Since G has no subgroup of index 2, G has a unique conjugate class of involutions, but G has a 1-involution, a contradiction.

(3.8) $|T_{\beta}|=1$ or 2 for all $\beta \in \Omega^*$.

PROOF. By (3.6) T_{β} is cyclic or generalized quaternion. Suppose T_{β} contains an element v of order 8. From (3.2) and the cycle structure of v, we have $|F(v^4)| \ge 9$, whence v^4 is a μ -involution ($\mu \ge 9$), contrary to the assumption that (G, Ω) is a (1,5)-group. Thus $T_{\beta} \cong Q_8$, the quaternion group of order 8 or T_{β} is cyclic of order at most 4.

In the first case, we have $|F(T_{\beta})|=3$ by (3.2). Let $F(T_{\beta})=\{\alpha, \beta, \gamma\}$. There exists a subset Δ of $\Omega - F(T_{\beta})$ such that $\Delta^{T_{\beta}} = \Delta$, $|\Delta|=4$. Since T_{β} acts faithfully on Δ , T_{β} is isomorphic to a subgroup of S_4 , so that $Q_8 \cong D_8$, a contradiction.

To complete the proof, we need only show that T_{β} is not isomorphic to Z_4 . Suppose $T_{\beta} = \langle v \rangle$ with o(v) = 4 for some $\beta \in \Omega^*$. Since G does not contain an odd permutation, it follows that $|F(T_{\beta})| = 3$ by (3.2). Then |Z(T)| = 2, and so T has an element x with $|T: C_T(x)| = 2$. Considering the T-orbit which contains β , we get $|C_T(v)| = 8 = |C_T(v^3)|$ by (2.5), whence |T: T'| = 8 by (2.8) and (3.7) and so $ccl_T(v) = T'v$, $ccl_T(v^3) = T'v^3$. If $T'v = T'v^3$, then $v \sim v^3$, whence we have $|C_T(v)| \leq 4$ by (2.4), which is contrary to $|C_T(v)| = 8$. Thus $T'v \neq T'v^3$, consequently $\langle v \rangle \cap T' = 1$.

Let $N_G(T) = N \cdot T$ where N is a Hall 2'-subgroup of $N_G(T)$. We argue that N normalizes $C_T(x)$. Since T/T' is isomorphic to $Z_2 \times Z_4$, the Frattini subgroup $\Phi(T)$ of T is $T'\langle v^2 \rangle$ and $T/\Phi(T) \cong Z_2 \times Z_2$. If N does not normalize $C_T(x)$, the whole maximal subgroups of T are $C_T(x)$, $C_T(x^a)$ and $C_T(x^{a^2})$ for some $a \in N$. Since $T \neq \langle v \rangle$, v is contained in one of these. Without loss of generality, we may assume v is contained in $C_T(x)$. Furthermore, $Z(C_T(x))$ acts semi-regularly on Ω^* , for otherwise we get $|C_T(x)| \leq 2^5$ by (3.5), which implies $|T| \leq 2^6$, a contradiction. Since $|F(v)^*| = 2$ and $v \in C_T(x)$, the semi-regularity of $Z(C_T(x))$ on Ω^* gives $|Z(C_T(x))| \leq 2$, a contradiction. Hence N normalizes $C_T(x)$.

Thus N acts trivially on $T/\Phi(T)$, so we have [N, T]=1 by Theorem 5.1.4 [9]. By Grün's theorem ([9] Theorem 7.4.2), the focal subgroup $T \cap G' = \langle T \cap G' \rangle$ $N(T)', T \cap (T')^g | g \in G \rangle$. Hence we have $T \cap G' = \langle T \cap (T')^g | g \in G \rangle$. Since $\langle v \rangle \cap T'$ =1, it follows that $T/T' = \langle T'v, T'w \rangle$ for some $w \in T - T' \langle v \rangle$ with $w^2 \in T'$. The groups $T'\langle w \rangle$ and $T'\langle v^2 w \rangle$ are normal subgroups of T of index 4. We denote one of these X. By (2.3), we can take $u \in ccl_G(v^2) \cap X$. If $T_T \neq \langle u \rangle$ for some $\gamma \in F(u)^*$, then $T_{\gamma} = \langle u_0 \rangle$ with $u_0 \in T$ and $u_0^2 = u$. Since $\langle u_0 \rangle \cap T' = 1$, we have $u \! \in \! T'$. On the other hand u is containd in $\varPhi(T) \cap X \! = \! T'$, a contradiction. Hence it follows that $T_r = \langle u \rangle$ for all $\gamma \in F(u)^*$. Thus there exist elements u_1 , $u_2 \in T$ such that $ccl_T(u_1) = T'w$, $ccl_T(u_2) = T'v^2w$ by (2.5). If T' contains a 5involution x, it follows that $T_{\gamma} = \langle x \rangle$ for $\gamma \in F(x)^*$. For otherwise, there exists $y \in Y$ T such that $T_r = \langle y \rangle$, $y^2 = x$ and $\langle y \rangle \cap T' = 1$, hence $x \in T'$, a contradiction. Thus $|C_T(x)| \leq 8$ by (2.5). Since |T:T'|=8, $ccl_T(x)=T'x=T'$ by (2.8), a contradiction. Hence T' acts semi-regularly on Ω^* . From this, we have $T \cap (T')^g \leq T - \{T'v, t\}$ $T'v^3$, $T'u_1$, $T'u_2$ = $T'\langle vw \rangle < T$ for all $g \in G$, which implies that the focal subgroup $T \cap G'$ is a proper subgroup of T, contrary to $O^2(G) = G$.

(3.9) If u is a 5-involution in T, then $|C_T(u)|=8$, $ccl_T(u)=T'u$ and u inverts every element of T'.

PROOF. Let β be a fixed point of u with $\beta \neq \alpha$. Now $T_{\beta} = \langle u \rangle$ by (3.8), hence $|C_T(u)| \leq 8$ by (2.5). Thus (3.9) holds by (3.7) and (2.8).

(3.10) T/T' is an elementary abelian 2-group of order 8.

PROOF. Suppose false. There exists $\bar{v} \in T/T'$ with $O(\bar{v})=4$. Since $|T:T'\langle v \rangle| = 2$, by (2.3), $T'\langle v \rangle$ contains a 5-involution, say u. By (3.9), we have $u \notin T'v \cup T'v^3$, hence $u \in T'v^2$. Again by (3.9), v^2 is contained in $ccl_T(u)$ and so v^2 is a 5-involution. Considering the cycle structure of v, we get $|F(v)^*| \neq 0$, contrary to (3.8).

(3.11) Contradiction.

Each subgroup of T of index 2 contains a 5-involution, whence T has at least three conjugate classes of 5-involutions, say $T'u_i$ $1 \le i \le 3$ by (3.10). If $T'u_iu_j$ contains a 5-involution, say u_4 , we have $ccl_T(u_4)=T'u_iu_j$ by (3.9) and so u_iu_j is a 5-involution. Hence $|C_T(u_iu_j)|=8$ by (3.9). On the other hand u_i and u_j invert T' by (3.9) and so u_iu_j centralizes T'. Hence $|T'| \le |C_T(u_iu_j)|=8$, which implies $|T| \le 2^6$, a contradiction. Thus $T'u_iu_j$ contains no 5-involution for $i, j \in \{1, 2, 3\}$. Hence the subgroup $\{T', T'u_1u_2, T'u_2u_3, T'u_3u_1\}$ of T of index 2 contains no 5-involution, a contradiction. Thus Proposition A is proved.

§4. Proof of Proposition B.

To prove Proposition B, we assume the following three Hypotheses:

- (1) G has at least two conjugate classes of involutions.
- (2) T does not have a cyclic subgroup of index 4.
- $(3) |T| = 2^n \ge 2^9$

and show these lead to a contradiction.

Since G has a 5-involution, $|\Omega|$ is odd, hence T is contained in G_{α} for some $\alpha \in \Omega$. Let z be a 5-involution in Z(T), so T acts on $F(z)^* = F(z) - \{\alpha\}$. Let K be the kernel of this action, then T/K is a subgroup of D_s . K acts semi-regularly on $\Omega - F(z)$. By Hypothesis (3), $|K| \ge 2^6 > 8$, hence we have

(4.1) $|\mathcal{Q}| \equiv 5 \pmod{|K|}$ where |K| > 8.

By Hypothesis (1) and (2.6), we have

(4.2) There exists a 5-involution x_1 in T-K.

(4.3) |T/K| = 2 or 4.

PROOF. By (4.2) we get $|T/K| \neq 1$. To prove (4.3), it will suffice to show that T/K is not isomorphic to D_8 . Suppose $T/K \cong D_8$. Then there exists an element $x \in T$ such that x is 2-cycle on $F(z)^*$.

Assume x is not an involution. Considering the cycle structure of x, $o(x) = |\Omega - F(z)|_2 \ge |K| = 2^{n-3}$ because x is an odd permutation on $\Omega - F(z)$. By Hypothesis (2), $o(x) = 2^{n-3}$ and so $|\Omega - F(K)|_2 = |K|$, whence x stabilizes a K-orbit, say $\Omega_0 \subseteq \Omega - F(z)$. The group $K \langle x \rangle$ is transitive on Ω_0 . Since $|K| = |\Omega_0|$, there exists an element kx such that $k \in K$ and $F(kx) \cap \Omega_0 \neq \emptyset$, and then kx is a 5-involution. On the other hand $kx \equiv x$ on $F(z)^*$. Thus we may assume x is a 5-involution.

Since $|F(x)^* \cap F(z)| = 2$, $F(x) \cap (\Omega - F(z)) = \{\beta, \gamma\}$ for some $\beta, \gamma \in \Omega$. Now $C_T(x)$ acts on $\{\beta, \gamma\}$. The kernel K_0 of this action does not contain a fourgroup by (2.1). Hence x is a unique involution in K_0 , which is an odd permutation on $\Omega - F(z)$ so that K_0 contains no element of order 4 and so $K_0 = \langle x \rangle$, whence $|C_T(x)| \leq 4$. This implies that |T: T'| = 4 and T is dihedral or semidihedral ([9] Theorem 5.4.5), which is contrary to Hypothesis (1) by (2.3).

(4.4) For all $\beta \in \Omega - F(z)$, T_{β} is cyclic of order at most 4.

PROOF. Since $T_{\beta} \cap K=1$, we have $|T_{\beta}| \leq 4$ by (4.3). If T_{β} is isomorphic to $Z_2 \times Z_2$, we get $|K| \leq 2^5$ by (2.1), contrary to Hypothesis (3).

(4.5) T/K is not isomorphic to Z_2 .

PROOF. We assume $T/K \cong Z_2$. By (4.2), we can take a 5-involution $x_1 \in T$ with $F(x_1) \neq F(K)$. There exists an extremal element z_0 of T in G with $z_0 \in ccl_G(x_1)$. Here an element z_0 is said to be an extremal element of T in G if $|C_T(z_0)| \ge |C_T(u)|$ holds for any $u \in T \cap ccl_G(x_1)$. Let u be an arbitrary 5-involution in T-K. Then we obtain $|C_T(u)| = |\langle u \rangle C_K(u)| \le 8$. Hence we may assume

 $z_0 \in K$ by Hypothesis (1) and (2.3). There exists an element $g \in G$ such that $x_1^g = z_0$, $(C_T(x_1))^g \leq C_T(z_0)$. It follows that $(C_K(x_1))^g \leq T$ and $(C_K(x_1))^g \cap K=1$ since $F(x_1) \neq F(z_0) = F(K)$. Hence $|C_K(x_1)| = 2$ and $|C_T(x_1)| = 4$, which means T is of maximal class, contrary to Hypothesis (1) by (2.3).

(4.6) T/K is not isomorphic to Z_4 .

PROOF. Suppose $T/K \cong Z_4$. Set $T/K \equiv \langle Ky \rangle$. Since y is an odd permutation on F(K) and G has no odd permutation on Ω , y is an odd permutation on $\Omega - F(K)$. If $O(y) \neq 4$, we have $O(y) = |\Omega - F(K)|_2 \ge |K|$, contrary to Hypothesis (2). Hence O(y) = 4 and y^2 is a 5-involution. Set $y^2 = x$. By (2.3), we obtain $ccl_G(x) \cap K \neq \emptyset$. Let $u \in ccl_G(x) \cap K$.

We shall argue that there exists an involution in $K \cap ccl_G(x)$ which is an extremal element of T in G. Suppose false. Then we have $u \notin Z(T)$. Let v be an extremal element with $v \in ccl_G(x) \cap T$. There exists an element $g \in G$ such that $u^g = v$ and $(C_T(u))^g \leq C_T(v)$. Since $F(v) \neq F(u)$, we have $(C_K(u))^g \cap K = 1$ and $(C_K(u))^g \leq T$. On the other hand, $C_K(u)$ contains a four group because $u \notin Z(T)$. Hence we have $T/K \cong Z_2 \times Z_2$, a contradiction. Thus we may assume that v is contained in K.

There exists an element $h \in G$ such that $x^h = v$ and $(C_T(x))^h \leq C_T(v)$. Since $F(x) \neq F(v) = F(K)$, we have $(C_K(x))^h \cap K = 1$ and $(C_K(x))^h \leq T$. Hence $C_K(x) \cong Z_4$ because $C_K(x) \cong Z_2$ by Hypothesis (2). Since x is a square of y, x is contained in $\Phi(T)$. Since $|C_T(x)| = 16$, we get $|T: T'| \leq 16$ by (2.8). Clearly $x \in Z(\Phi(T))$. If follows that $Z(\Phi(T)) \leq C_{\langle x \rangle K}(x) = \langle x \rangle \times C_K(x) \cong Z_2 \times Z_4$. Hence $Z(\Phi(T))$ is cyclic, whence $\Phi(T)$ is also cyclic by (2.2), which means $x \in K$, a contradiction.

REMARK. By the proof of (4.6), we know that in the case $T/K \cong Z_4$, there exists an element $y \in T-K$ such that O(y)=4, $y^2 \in T-K$ and $|F(y^2)|=5$.

By (4.3), (4.5) and (4.6), we have

 $(4.7) \quad T/K \cong Z_2 \times Z_2.$

(4.8) $|T_{\beta}|=1$ or 2 for $\beta \in \Omega - F(z)$. $|C_T(x_0)|=8$ for any 5-involution $x_0 \in T-K$, whence |T:T'|=8, $ccl_T(x_0)=T'x_0$.

PROOF. T_{β} is cyclic of order at most 4 by (4.4). Since $T/K \cong Z_2 \times Z_2$ and $T_{\beta} \cap K = 1$, we get $|T_{\beta}| \neq 4$. Hence $|T_{\beta}| = 1$ or 2 and (2.5) gives the latter statement.

(4.9) There exists a conjugate class of 5-involutions $ccl_T(x_2) = T'x_2$ contained in $T - \langle x_1 \rangle K$.

PROOF. Suppose false. Let N be a Hall 2'-subgroup of $N_G(T)$. N stabilizes the following normal series: $T/T' \triangleright K\langle x_1 \rangle / T' \triangleright K/T' \triangleright \overline{1}$. Hence [T, N] = 1 by Theorems 5.1.4. and 5.3.2. of [9]. Thus we have $T \cap G' = \langle T \cap N(T)', T \cap (T')^g | g \in G \rangle = \langle T \cap (T')^g | g \in G \rangle \leq K \langle x_1 \rangle$, whence $T \cap G'$ is a proper subgroup of T, contrary to $O^2(G) = G$.

(4.10) There is no 1-involution in T-K.

224

PROOF. Suppose false. Let u be a 1-involution in T. Since $\{T', T'x_1, T'x_2, T'x_1x_2\}$ is a subgroup of T of index 2, u is conjugate to some element in $T'x_1x_2$.

We may assume x_1x_2 is a 1-involution. Hence a four-group $\{1, x_1, x_2, x_1x_2\}$ has trivial intersection with K. By (4.8), $C_T(x_1) = \{1, x_1, x_2, x_1x_2\} \times \langle z \rangle$, and so $C_K(x_1) = \langle z \rangle$. Hence $|C_{K < x_1 >}(x_1)| = |x_1C_K(x_1)| = 4$ and $K \langle x_1 \rangle$ is of maximal class, which is contrary to Hypothesis (2).

(4.11) The group T' is an abelian 2-group of 2-rank 2.

PROOF. Since $ccl_{T}(x_{1})=T'x_{1}$, an involution x_{1} inverts T', hence T' is abelian. Furthermore $|C_{T'}(x_{1})| \leq |C_{K}(x_{1})| \leq 4$ and so the 2-rank of T' is at most 2. Suppose the 2-rank of T' is 1, that is, $T'=\langle d \rangle$ for some $d \in T'$. Since $x_{1}x_{2} \notin T'$, it follows that $(x_{1}x_{2})^{2} \in T'$ and $(x_{1}x_{2})^{2} \in \langle d^{2} \rangle$, for otherwise $O(x_{1}x_{2})=2 \cdot O(d)=2^{n-2}$, contrary to Hypothesis (2). Hence for some $d_{1} \in \langle d \rangle$ we have $(x_{1}x_{2})^{2}=d^{2}$. Since $[x_{1}x_{2}, T']=1$, $(x_{1}x_{2}d^{-1})^{2}=1$. Hence $x_{1}x_{2}d^{-1}$ is a 5-involution contained in T-K by (4.10). Thus $x_{1}x_{2}d^{-1}$ also inverts T', hence |T'|=2, contrary to Hypothesis (3). (4.12) $ccl_{G}(x_{1}) \cap T' \neq \emptyset$.

PROOF. Suppose false. Let y be an element in K-T'. Since $\{T', T'x_1x_2, T'x_1y, T'x_2y\}$ is a subgroup of T of index 2 and $ccl_G(x_1) \cap T' = ccl_G(x_1) \cap T'x_1x_2 = \emptyset$, there exists an element $tx_iy \in ccl_G(x_1) \cap T'x_iy$ for some $i \in \{1, 2\}$ and $t \in T'$. If y is an involution, then $[tx_i, y] = 1$. Hence $C_K(tx_i) = C_{T' < y >}(tx_i) = \Omega_1(T') < y >$, whence $|C_K(tx_i)| = 8$ by (4.11), which imples that $|F(tx_i)| \ge 9$, a contradiction. Thus there is no involution in K-T' and so $ccl_G(x_1) \cap T'y = \emptyset$. Since $\{T', T'y, T'x_1x_2, T'x_1x_2y\}$ is a subgroup of T of index 2 and $ccl_G(x_1) \cap T' = ccl_G(x_1) \cap T'y$ $= ccl_G(x_1) \cap T'x_1x_2 = \emptyset$, there exists a 5-involution $sx_1x_2y \in ccl_G(x_1) \cap T'x_1x_2y$ for some $s \in T'$, hence sx_1x_2y inverts T'. Since sx_1 and x_2 invert T', sx_1x_2 centralizes T' and so y inverts T'. On the other hand, tx_iy and tx_i invert T', hence y centralizes T'. Thus $T' = \Omega_1(T')$ and we have $|T| = 2^5$ by (4.8) and (4.11), contrary to Hypothesis (3).

(4.13) Contradiction

By (4.8) and (4.12), there exists in K an extremal element z_0 of T in G with $z_0 \in ccl_G(x_1)$. Hence there exists an element $g \in G$ such that $(C_T(x_1))^g \leq C_T(z_0)$ and $x_1^g = z_0$. Since $F(x_1) \neq F(z_0) = F(x_1)^g$, the element g does not stabilize F(K)as a set, hence there exists $\beta \in (\Omega - F(K)) \cap F(K)^g$. Clearly we have $C_T(x_1) \geq C_K(x_1) \geq \Omega_1(T') \cong Z_2 \times Z_2$ by (4.11). Hence $T_\beta \geq \Omega_1(T')^g \cong Z_2 \times Z_2$, contrary to (4.8). Thus Proposition B is proved.

§ 5. Proof of Lemma 2.

Throughout this section we assume the following:

- (1) G is a simple (1, 5)-group with $|G|_2 \leq 2^8$.
- (2) G has at least two conjugate classes of involutions.

(3) Let T be a Sylow 2-subgroup of G. There exist subgroups T_1 , T_2 of T with $T_1 \triangleright T_2$, $T_1/T_2 \cong E_{2^5}$.

and show these lead to a contradiction.

We shall often use the following theorem to prove Lemma 2.

THEOREM (K. Harada [11]). If 2-group S has a subgroup A of order 8 with $C_s(A) \leq A$, then the sectional 2-rank of S is at most 4.

(5.1) Let Q be a subgroup of T with $Q \cong Z_2 \times Z_2$. If $|F(q_1)^* \cap F(q_2)^*| = 2$ for some $q_1, q_2 \in Q^*$, then the sectional 2-rank of T is at most 4.

PROOF. $C_T(Q)$ acts on $\mathcal{A}_0 = F(q_1)^* \cap F(q_2)^*$, $\mathcal{A}_1 = F(q_1)^* - \mathcal{A}_0$ and $\mathcal{A}_2 = F(q_2)^* - \mathcal{A}_0$. If $|C_T(Q)| \ge 16$, the kernel of this action is not trivial, a contradiction. Hence we have $|C_T(Q)| \le 8$. Let A be a subgroup of T of order 8 containing $C_T(Q)$. Then $C_T(A) \le C_T(Q) \le A$ because A contains Q. By Harada's theorem, the sectinal 2-rank of T is at most 4, which is contrary to (3).

We note that T has order at least 2^5 by the assumption (3), hence in the case that Z(T) has no 5-involution, (3.1)-(3.5) hold (see Remark in (3.5)).

(5.2) Suppose Z(T) contains no 5-involution. If U is a subgroup of T such that Z(U) has a 5-involution u, U is semi-regular on $F(u)^*$ and $|U| \leq 2^4$.

PROOF. Let u be a 5-involution in Z(U). By (3.5), $|U| \leq 2^5$. Hence we have only to show $|U| \neq 2^5$. Assume $|U| = 2^5$. Then there exists $v \in U$ with $v|_{F(u)^*} = (\beta)(\gamma)(\delta \varepsilon)$ where $F(u)^* = \{\beta, \gamma, \delta, \varepsilon\}$. By (5.1), $o(v) \neq 2$, so (3.2) gives o(v) = 4. $C_T(v)$ acts on $\{\beta, \gamma\}$ and $\{\delta, \varepsilon\}$. Let K_0 be the kernel of this action. Since $|\Omega| \equiv 1 \pmod{8}$, K_0 stabilizes a $\langle v \rangle$ -orbit of length 4. Since $[K_0, v] = 1$, K_0 is isomorphic to a subgroup of Z_4 . Since G contains no odd permutation, $K_0 \approx Z_4$, hence $|C_T(v)| = 8$, which is contrary to (3) by Harada's theorem.

(5.3) Suppose Z(T) contains no 5-involution. Then $T_{\beta} \cong 1$ or $T_{\beta} \cong Z_2 \times Z_2$ holds for every $\beta \in \Omega^*$.

PROOF. We take an involution $v \in Z(T_{\beta})$. Then $C_T(v)|_{F(v)^*}$ is semi-regular, by (5.2). We have $|C_T(v)| \ge 16$ by (3) and Harada's theorem. Thus $|C_T(v)|_{F(v)^*}|$ =4, $T_{\beta} \cong Z_2 \times Z_2$.

(5.4) Let T_0 be a subgroup of T containing T_1 . Then T_0 does not contain a cyclic subgroup of index 8.

PROOF. Let x be an element of T_0 with $|T_0:\langle x\rangle|=8$. If T_1 is a subgroup of T_0 of index 2^n , an element x^{2^n} is contained in T_1 and $|T_1:\langle x^{2^n}\rangle|=8$, which is contrary to $T_1/T_2\cong E_{2^5}$.

(5.5) Suppose Z(T) contains no 5-involution. Then T_1 acts semi-regularly on Ω^* .

PROOF. If T_1 contains a 5-involution u, $|T_1: C_{T_1}(u)| = |ccl_{T_1}(u)| \leq |T'_1| \leq \frac{1}{2^5} |T_1|$ by (2.8). Hence $|C_{T_1}(u)| \geq 2^5$, contrary to (5.2).

First we consider the case that Z(T) has no 5-involution. Next we show

226

that the same argument can apply to the case that Z(T) has a 5-involution.

If Z(T) has no 5-involution, we have $|T| = 2^{\tau}$ or 2^{8} by (5.3) and (5.5). Suppose $|T| = 2^{\tau}$, then $T_{1} \cong E_{2^{5}}$ and $T_{2} = 1$. There exists a 5-involution x such that x normalizes T_{1} . By (5.4) and (5.5), we get $|T_{1}\langle x \rangle : (T_{1}\langle x \rangle)'| = 8$ and x inverts $(T_{1}\langle x \rangle)'$. Since $(T_{1}\langle x \rangle)' \leq T_{1} \cong E_{2^{5}}$, x centralizes $(T_{1}\langle x \rangle)'$. Thus $|(T_{1}\langle x \rangle)'| \leq 4$ and we have $|T| \leq 2^{6}$, a contradiction. Next we suppose $|T| = 2^{8}$. By (5.3) and (5.4), $|T:T_{1}|=2^{2}$ or 2^{3} and $|T_{2}|=2$ or 1, respectively. If $N_{T}(T_{1})$ contains a 5-involution x, we have $|T:T_{1}|=2^{2}$ and $T_{2}\cong Z_{2}$ by (2.7) and (5.5). Since $|T_{1}\langle x \rangle : (T_{1}\langle x \rangle)'| = 8$ and x inverts $(T_{1}\langle x \rangle)' (\leq T_{1})$, we have $(T_{1}\langle x \rangle)' \cong Z_{4} \times Z_{4}$ by (5.4) and (5.5), contrary to $T_{1}/T_{2}\cong E_{2^{5}}$ and $T_{2}\cong Z_{2}$. Hence $N_{T}(T_{1})$ acts semi-regularly on \mathcal{Q}^{*} . By (5.3), we get $|T: N_{T}(T_{1})| = 2^{2}$, $|T: T_{1}| = 2^{3}$ and $T_{2} = 1$. There exists a 5-involution x which normalizes $N_{T}(T_{1})$. As above x inverts $(\langle x \rangle N_{T}(T_{1}))'$. Hence we have $(\langle x \rangle N_{T}(T_{1}))' \cong Z_{4} \times Z_{4}$ since $(\langle x \rangle N_{T}(T_{1}))' \subseteq N_{T}(T_{1}) > T_{1} \cong E_{2^{5}}$ and $\mathcal{Q}_{1}((\langle x \rangle N_{T}(T_{1}))') \cong Z_{2} \times Z_{2}$. But since $|N_{T}(T_{1}): T_{1}| = 2$ and $T_{1} \cong E_{2^{5}}$, $N_{T}(T_{1})$ does not contain a subgroup isomorphic to $Z_{4} \times Z_{4}$. Thus we get a contradiction.

We now consider the case Z(T) has a 5-involution z. If $T|_{F(z)}$ is isomorphic to D_s , in the same way as in the proof of (4.3), T has a cyclic subgroup of index 8, contrary to (5.4). Suppose $T|_{F(z)} \cong Z_4$. There exists an element $y \in T-K$ such that O(y)=4 and y^2 is a 5-involution in T-K (see Remark in (4.6)). Set $y^2=x$. By (2.3), we have $K \cap ccl_G(x) \neq \emptyset$. Since $|K\langle x \rangle : (K\langle x \rangle)'|=8$ and $C_K(x)\cong Z_4$, $(K\langle x \rangle)'$ is a cyclic subgroup of $K\langle x \rangle$ of index 8. Hence T_1 is not contained in $K\langle x \rangle$. Take y_1 in $T_1-K\langle x \rangle$. Clearly $O(y_1)=4$ and y^2 is a 5-involution. Since $|T_1: C_{T_1}(y_1)| = |ccl_{T_1}(y_1)| \leq |T_1'| \leq \frac{1}{2^5} |T_1|$, it follows that $|C_{T_1}(y_1)| \geq 2^5$. $C_{T_1}(y_1)$ acts on $F(y_1^2)^* (\subseteq \Omega - F(z))$. Let K_1 be the kernel of this action. Since $|\Omega| \equiv 5 \pmod{8}$, we have $|C_{T_1}(y_1)| = 2^5$ and $C_{T_1}(y_1)/K_1 \cong D_8$ There exists an element $u \in C_{T_1}(y_1)$ such that $u|_{F(y_1^2)} = (\beta)(\gamma)(\delta\varepsilon)$ where $F(y_1^2)^* = \{\beta, \gamma, \delta, \varepsilon\}$. Considering the cycle structure of u, we get O(u)=2, contrary to (5.1). Hence we have $T/K \cong Z_2 \times Z_2$ and $T|_{F(K)}$ is semi-regular. From this, (5.1)-(5.5) hold for $T_{Q-F(K)}$. Thus we obtain a similar contradiction.

§6. Proof of Theorem 3.

By Theorem 1, Lemma 2 and the Fong's theorem [7], we know any simple (1, 5)-group G satisfies one of the following:

- (1) G has a unique conjugate class of involutions.
- (2) G has sectional 2-rank at most 4 and a Sylow 2-subgroup of G has order at most 2^8 .
- By Rowlinson's Theorem of [18], these are equivalent to the following:
- (i) G is a simple group of Bender type.
- (ii) $G \cong L_2(q) \ (q \equiv 1 \pmod{2})$.

- (iii) A Sylow 2-subgroup of G is semi-dihedral.
- (iv) G is not of type (i)—(iii) and has sectional 2-rank at most 4, moreover $|G|_2 \leq 2^8$.

CASE (i). We prove the following Lemma.

LEMMA 5. Let G be a simple group of Bender type and T be a Sylow 2-subgroup of G.

(1) If H is a (unique) subgroup of $N_G(T)$ of index μ where μ is odd, then G is a simple $(1, \mu)$ -group as a permutation group on the cosets G/H.

(2) If G is a simple $(1, \mu)$ -group on a set Ω where μ is odd, then (G, Ω) is equivalent to a permutation representation obtained by (1).

PROOF. (1) Since $N_G(T)$ is isomorphic to one point stabilizer as a (1, 1)-permutation representation of G, $N_G(T)$ is a strongly embedded subgroup of G (cf. [3]).

Set $G = \bigcup_i N_G(T)X_i$ and $N_G(T) = \bigcup_{j=1}^{\mu} Hy_j$, the left coset decomposition. We can look on G as permutation group on the cosets $\bigcup_{i,j} Hy_jx_i$. Let z be an arbitrary element contained in T^* . Then we have $(Hy_jx_i)z = Hy_jx_i$ if and only if $z \in H^{y_jx_i}$. Since H is a normal subgroup of $N_G(T)$, we have $z \in H^{y_jx_i}$ if and only if $z \in (N(T))^{y_jx_i} = (N(T))^{x_i}$. Since $N_G(T)$ is a strongly embedded subgroup of G, we have $z \in (N_G(T))^{x_i}$ if and only if $x_i \in N_G(T)$. Thus z fixes exactly μ cosets $\bigcup_{j=1}^{\mu} Hy_jx_i$, whence (G, G/H) is a $(1, \mu)$ -group.

(2) Let (G, Ω) be as in (2) and H be a stabilizer of a point $\alpha \in \Omega$. Since G have a μ -involution and μ is odd, it follows that $|\Omega|$ is odd, hence H contains a Sylow 2-subgorup T of G. By the structure of G, H is 2-closed. Let x be an involution in T. By (2.4), we have $\mu = |F(x)| = |C_G(x)| \cdot |ccl_G(x) \cap H| / |H|$. Since H is 2-closed and G has a unique conjugate class of involutions, we have $|ccl_G(x) \cap H| = |ccl_G(x) \cap N_G(T)|$, hence

 $\mu = |F(x)| = (|C_G(x)| \cdot |ccl_G(x) \cap N_G(T)| / |N_G(T)|) \times (|N_G(T)| / |H|) = |N_G(T): H|.$

From this, it follows that a simple (1, 5)-group of type (i) is (1) or (2) of Theorem 3.

CASE (ii).

LEMMA 6. A simple (1, 5)-group of type (ii) is one of the groups listed in (3)-(7) of Theorem 3.

PROOF. Let p be an odd prime and $q=p^n>3$. Suppose G is a (1, 5)-group on a set Ω which is isomorphic to $L_2(q)$. If H is a stabilizer of a point in Ω . Since $|\Omega|$ is odd, H contains a Sylow 2-subgorup of G. Hence by the Dickson's Theorem ([13] p. 213), H is isomorphic to one of the following:

(a) Dihedral group of order 2z where $z|(q-\varepsilon)/2, q \equiv \varepsilon \in \{-1, 1\} \pmod{4}$.

(b) A_4 , $q \equiv 3 \text{ or } 5 \pmod{8}$.

(c) S_4 , $q^2 - 1 \equiv 0 \pmod{16}$.

228

On transitive groups

- (d) A_5 , $q \equiv 3 \text{ or } 5 \pmod{8}$ or $p = 5 \text{ or } q^2 1 \equiv 0 \pmod{5}$.
- (e) $PSL(2, p^m)$, n=mt and $1 \neq t \equiv 1 \pmod{2}$.
- (f) $PGL(2, p^m)$, n=2mt and $t\equiv 1 \pmod{2}$.

We note a centralizer of an involution of $L_2(q)$ with q odd has order $(q-\varepsilon)$ and $L_2(q)$ has a unique conjugate class of involutions.

If H is of type (a), by (2.4), we nave

$$5 = \frac{(q-\varepsilon)(z+1)}{2z} = \frac{(q-\varepsilon)/2}{z} \cdot (z+1) \,.$$

Hence z+1=5 and $\frac{(q-\varepsilon)/2}{z}=1$, whence q=7 or 3^2 . Thus (3) or (4) of Theorem

3 holds.

If H is of type (b), we have

$$5=\frac{(q-\varepsilon)\cdot 3}{|A_4|}=\frac{q-\varepsilon}{4}.$$

Thus (5) of Theorem 3 holds.

If H is of type (c), we have

$$5 = \frac{(q-\varepsilon)\cdot 9}{|S_4|} = \frac{(q-\varepsilon)\cdot 3}{8}$$
, which can not occur.

If H is of type (d), we have

$$5 = \frac{(q-\varepsilon)\cdot 15}{|A_5|} = \frac{q-\varepsilon}{4}.$$

Hence (6) of Theorem 3 holds.

If H is of type (e), we have

$$5 = \frac{(q-\varepsilon) \cdot |PSL(2, p^m)| / (p^m - \varepsilon)}{|PSL(2, p^m)|} = \frac{p^{mt} - \varepsilon}{p^m - \varepsilon},$$

which can not occur since p^m , $t \ge 3$ and $\varepsilon \in \{-1, 1\}$.

If H is of type (f), we have

$$5 = \frac{(q-1) \cdot (p^{m})^{2}}{|PGL(2, p^{m})|}$$

=
$$\frac{\{(p^{m})^{t-1} + \dots + (p^{m}) + 1\} \cdot \{(p^{m})^{t-1} - (p^{m})^{t-2} + \dots - (p^{m}) + 1\} \cdot p^{2m}}{p^{m}}.$$

Hence we get t=1 and $p^m=5$. Thus (7) of Theorem 3 holds.

CASE (iii).

LEMMA 7. Let G be a group isomorphic to $L_3(q)$ or $U_3(q)$ for q odd. If q \neq 3, 5 then G has no (1, 5)-permutation representation.

PROOF. Suppose false. Let (G, Ω) be a (1, 5)-group and T be a Sylow 2-

subgroup of G_{α} with $\alpha \in \Omega$. Since T is semi-dihedral or wreathed, G has a unique conjugate class of involutions ([1]). Hence an involution z contained in Z(T) is a 5-involution. $C_G(z)$ is isomorphic to a quotient of either GL(2, q) or GU(2, q) by a central subgroup Z of order $(q-\varepsilon, 3)$ where $\varepsilon=1$ or -1, respectively ([1]). Hence $G_G(Z)$ has a normal subgroup N of index $q-\varepsilon/(q-\varepsilon, 3)$ isomorphic to SL(2, q).

Let K_0 be the kernel of the action of $C_G(z)$ on F(z). Since q > 5 and $z \in K_0$, N is contained in K_0 and so $C_G(z)/K_0$ is isomorphic to a subgroup of Z_r with $r=q-\varepsilon/(q-\varepsilon, 3)$. Set $K=K_0\cap T$. By (2.6), we have $T \neq K$ and so T/K is isomorphic to Z_2 or Z_4 . Hence $|K|^2 > T$ because T is semi-dihedral or wreathed. Thus K is a weakly closed subgroup of T and so $N_G(K)$ is transitive on F(z)by the Witt's Theorem. Since |F(K)|=5, there exists a 5-element x in $N_G(K)$ such taht $\langle x \rangle$ is transitive on F(K)=F(z). By the structure of T, x centralizes $\mathcal{Q}_1(Z(K))$, which contains z. Hence x is contained in $C_G(z)$. Thus $C_G(z)/K_0$ contains a cyclic subgroup of order 2.5, contrary to |F(z)|=|F(K)|=5.

Simple group with semi-dihedral Sylow 2-subgroups are $L_3(q)$ $(q \equiv -1 \pmod{4})$, M_{11} or $U_3(q)$ $(q \equiv 1 \pmod{4})$ by Third Main Theorem of [1]. By Lemma 7, we can prove that a simple (1, 5)-group of type (iii) is (9) of Theorem 3.

CASE (iv)

LEMMA 8. Let G be a (1, 5)-group on Ω with $O^2(G)=G$ and z be a central involution such that

(*) $C_G(z) = L_1 \cdot L_2 \langle u \rangle$,

$$L_1 \cong SL(2, q_1), \ L_2 \cong SL(2, q_2), \ u^2 = 1,$$

 $[L_1, \ L_2] = 1, \ Z(L_1) = Z(L_2) = L_1 \cap L_2 = \langle z \rangle,$
 $u^{-1}L_1 \cdot L_2 u = L_1 \cdot L_2.$

Then one of the following holds:

- (a) $q_1 \leq 5 \text{ or } q_2 \leq 5.$
- (b) z is not a 5-involution.

PROOF. Suppose false. Let T be a Sylow 2-subgroup of G such that $z \in Z(T)$ and $u \in T$. Since $|\Omega|$ is odd, there exists $\alpha \in \Omega$ with $T \leq G_{\alpha}$.

Let K_0 be the kernel of the action of $C_G(z)$ on F(z). Since |F(z)|=5, $q_1 > 5$, $q_2 > 5$ and z is contained in K_0 , it follows that L_1 and L_2 are contained in K_0 . Hence we have $|T:K| \leq 2$ where $K=T \cap K_0$. By (2.6), we have $T \neq K$ and so $T/K \cong Z_2$, $u \in K$. Since the 2-group T is not of maximal class, we have $|C_T(u)| \geq 8$, hence $|C_K(u)| \geq 4$. On the other hand we have $|C_K(u)| \leq 4$ because K acts semi-regularly on $\Omega - F(K)$, hence $|C_T(u)| = 8$. By (2.3), we get $ccl_G(u) \cap K \neq \emptyset$. Clearly there exists an extremal element w of T in G with $w \in K \cap ccl_G(u)$. There exists $g \in G$ such that $u^g = w$ and $(C_T(u))^g \leq C_T(w)$. Since $F(u) \neq F(w) = F(K)$, we get $(C_K(u))^g \cap K = 1$. Thus $|C_K(u)| = |(C_K(u))^g| \leq 2$, a contra-

diction.

LEMMA 9. Let G be a finite group isomorphic to $G_2(q)$, $D_4^2(q)$ or $PS_p(4, q)$ for q odd. If q is not equal to 3 or 5, then G has no (1, 5)-permutation representation.

PROOF. Suppose false. We note that a centralizer of a central involution in the groups $G_2(q)$, $D_4^2(q)$ and $PS_p(4, q)$ for q (>5) odd is of type (*) of Lemma 8 ([8]). Moreover $G_2(q)$ and $D_4^2(q)$ for q odd have a unique conjugate class of involutions and so Lemma 8 shows that $G_2(q)$ and $D_4^2(q)$ (q>5) have no (1, 5)permutation representation. Since $PS_p(4, q)$ for q (>5) odd has two conjugate classes of involutions, G is isomorphic to $PS_p(4, q)$ for some q with q (>5) odd and central involutions are 1-involutions. Hence noncentral involutions are 5involutions and $|\mathcal{Q}| \equiv 1 \pmod{8}$ by (3.2). Let z be a central involution of G. Then the following holds ([22]):

$$C_{G}(z) = L_{1}L_{2}\langle u \rangle \qquad [L_{1}, L_{2}] = 1 \qquad u^{2} = 1$$
$$L_{1}^{u} = L_{2} \qquad L_{1} \cong L_{2} \cong SL(2, q)$$
$$L_{1} \cap L_{2} = Z(L_{1}) = Z(L_{2}) = \langle z \rangle \qquad ccl_{G}(z) \equiv u.$$

From this, $M = \{xx^u | x \in L_1\}$ is a subgroup of $C_G(u)$ and isomorphic to $L_2(q)$ with $\langle u \rangle \cap M = 1$. Let K_0 be the kernel of the action of $L_1 \cdot L_1 \langle u \rangle \cap C_G(u)$ on F(u). Since |F(u)| = 5 and q > 5, M is contained in K_0 , hence $\langle u \rangle \times M \leq K_0$. Thus we have $|\Omega| \equiv 5 \pmod{8}$ because $|\langle u \rangle \times M|_2 \geq 8$, which is contray to $|\Omega| \equiv 1 \pmod{8}$.

LEMMA 10. Let q (>5) be equal to an odd power of 3. Re(q) has no (1, 5)-permutation representation. (Here Re(q) is a group of Ree type.)

PROOF. Suppose false. Let z be an involution of Re(q). The centralizer of z in Re(q) is equal to $\langle z \rangle \times L$ where L is isomorphic to $L_2(q)$. Since Re(q)has a unique conjugate class of involutions, z is a 5-involution. Let K_0 be the kernel of the action of $\langle z \rangle \times L$ on F(z). Then $L \leq K_0$ because |F(z)| = 5 and q $\geq 3^3$. Hence $\langle z \rangle \times L = K_0$, which is contrary to (2.6).

LEMMA 11. Let q be a power of an odd prime and G be a finite group isomorphic to $U_4(q)$ $(q \equiv 7 \pmod{8})$ or $L_4(q)$ $(q \equiv 1 \pmod{8})$. If q > 5, G has no (1, 5)permutation representation.

PROOF. We can easily show that a Sylow 2-subgroup of G has order at least 2⁹ when $q\equiv 1, 7 \pmod{8}$. Moreover $U_4(q)$ with $q\equiv 3 \pmod{8}$ and $L_4(q)$ with $q\equiv 5 \pmod{8}$ have a unique conjugate class of involutions. Hence by Theorem 1 and Theorem of [18], G has no (1, 5)-permutation representation with the exception of $U_4(q)$ with $q\equiv 5 \pmod{8}$ and $L_4(q)$ with $q\equiv 3 \pmod{8}$. From this, if the lemma is false, G is isomorphic to $U_4(q)$ with $q\equiv 5 \pmod{8}$ or $L_4(q)$ with $q\equiv 3 \pmod{8}$. Let z be a central involution of G and $q\equiv \epsilon\in \{-1, 1\} \pmod{4}$. Then $C_G(z)$ has the following structure ([16], [17]):

(a) $C_G(z) = L_1 L_2 \langle u, w \rangle \triangleright L_1 L_2$

$$L_1 \cong L_2 \cong SL(2, q), [L_1, L_2] = 1$$

$$L_1 \cap L_2 = Z(L_1) = Z(L_2) = \langle z \rangle, \ L_1 L_2 \cap \langle v, w \rangle = 1$$

$$\langle v, w \rangle \cong \text{the dihedral group of order } 2(q+\varepsilon)$$

$$u^2 = 1, \ w^u = w^{-1}, \ L_1^u = L_2.$$

(b) G has two conjugate classes of involutions:

 $u \sim z \not\sim uz$

$$C_G(z) \cap C(u) = C_G(z) \cap C(uz)$$

$$\geq \langle u \rangle \times \langle x_1 x_1^u | x_1 \in L_1 \rangle, \ \langle uz \rangle \times \langle x_1 x_1^u | x_1 \in L_1 \rangle.$$

First we consider the case that z is a 5-involution. Let K_0 be the kernel of the action of $C_G(z)$ on F(z). Since $q \ge 5$ and |F(z)| = 5, we have $L_1L_2 \le K_0$. Set $q+\varepsilon=2^n \cdot d$ with q odd. Since $q \equiv \varepsilon \in \{-1, 1\} \pmod{4}$, n is equal to 1, hence $v=w^d$ is an involution and $|\langle u, w \rangle|_2 = |\langle u, v \rangle|$. Let T be a Sylow 2-subgroup of $C_G(z)$ with $T \ge \langle u, v \rangle$. Set $K=T \cap K_0$. If $u \in K_0$, we have |T:K|=2. In this case, v is a 5-involution, hence $|C_K(v)| \le 4$. On the other hand, we have $\langle z, u \rangle$ $\le C_K(v)$, hence $|C_K(v)|=4$. There exists an extremal element v_0 of T in G with $v_0 \in K \cap ccl_G(v)$. There exists $g \in G$ such that $v^g = v_0$ and $(C_T(v))^g \le C_T(v_0)$. Since $F(v) \ne F(K) = F(v_0)$, we have $(C_K(v))^g \cap K=1$. Thus $|C_K(v)| = |(C_K(v))^g| = 2$, a contradiction. If $u \notin K_0$, we have $F(u) \ne F(z)$. Since $\langle x_1 x_1^u | x_1 \in L_1 \rangle$ is a subgroup of K_0 isomorphic to $L_2(q)$, the set $F(\langle z \rangle \times \langle x_1 x_1^u | x_1 \in L_1 \rangle)$ is equal to F(K), which shows $|F(u)| \ge 2^3 + 1$, a contradiction.

Now we consider the case that z is a 1-involution. In this case uz is a 5-involution by (b). Since $\langle uz \rangle \times \langle x_1 x_1^u | x_1 \in L_1 \rangle$ is isomorphic to $Z_2 \times L_2(q)$ with q > 5, we get $|F(\langle uz \rangle \times \langle x_1 x_1^u | x_1 \in L_1 \rangle)| = |F(\langle uz \rangle)| = 5$, hence $|\Omega - F(uz)| \equiv 0 \pmod{8}$, which is contrary to (3.2).

By Lemma 7-11, Theorem 1 and Harada's Theorem ([10]), we can easily show that a simple (1, 5)-group of type (iv) is one of the groups listed in (8) (10) (11) and (12) of Theorem 3 and the others in the Harada's list of Main Theorem of [10] have no (1, 5)-permutation representation.

§7. Proof of Theorem 4.

Let (G, Ω) be a (2, 5)-group and N be a minimal normal subgroup of G.

First we suppose N is an elementary abelian p-group for some prime p and G is not of type (1) of Theorem 4. Clearly p is equal to 5 and G is a subgroup of automorphisms of an affine space over GF(5) of dimension 2 or 3 because G_{α} contains a four group whose involutions have 1 or 5 fixed points. In the case of $|N| = 5^3$, G has no 1-involution.

232

(7.1) If N is isomorphic to $Z_5 \times Z_5 \times Z_5$ and G is not of type (1) of Theorem 4, then (2) of Theorem 4 holds.

PROOF. Let G_{α} be a stabilizer of a point $\alpha \in \Omega$. We may assume G_{α} is a subgroup of GL(3, 5). Since G_{α} is transitive on $\Omega - \{\alpha\}$, $|\Omega| - 1 = 2^2 \cdot 31$ divides $|G_{\alpha}|$ and any element of order 31 has a unique fixed point.

If G_{α} has an elementary abelian normal subgroup A of odd order, we have |A|=31 and A acts semi-regularly on $\Omega - \{\alpha\}$. By assumption, G_{α} contains a four group B, which normalizes A, hence some involution $x \in B$ centralizes A. Since $|C_N(y)|=5$ for any $y \in B$, we have |F(x)|=5 and A acts on F(x). Hence A is not semi-regular on $\Omega - \{\alpha\}$, a contradiction.

If G_{α} has an elementary abelian normal subgroup A of even order, an element $v \in G_{\alpha}$ of order 31 centralizes A. By semi-regularity of v on $\Omega - \{\alpha\}$, every involution in A have a unique fixed point α , a contradiction.

Thus a minimal normal subgroup A of G_{α} is the direct product of isomorphic non abelian simple groups. Since A is a subgroup of GL(3, 5), A is a simple group. The order of A is divisible by 31 because A is $\frac{1}{2}$ -transitive on $\Omega - \{\alpha\}$. Hence A is contained in SL(3, 5). Let Q be a Sylow 31-subgroup of A. By Sylow's theorem, we have $|A: N_A(Q)| = 2^5$ or 2^55^3 and so a Sylow 2-subgroup of A is isomorphic to that of SL(3, 5). Since $A \leq SL(3, 5)$, we get A = SL(3, 5). If A is a proper subgroup of G_{α} , it follows that the element $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ is contained in G_{α} , which is a 25-involuton, a contradiction. Hence

 $G_{\alpha} = A = SL(3, 5)$, which shows (7.1).

(7.2) If N is isomorphic to $Z_5 \times Z_5$, then we have (3), (4), (5) or (6) of Theorem 4.

PROOF. Let G_{α} be the stabilizer of a point $\alpha \in \Omega$. We may assume G_{α} is a subgroup of GL(2, 5). Since G_{α} is transitive on $\Omega - \{\alpha\}$, $|G_{\alpha}|$ is divisible by $|\Omega - \{\alpha\}| = 2^3 \cdot 3$. The order of $G_{\alpha\beta}$ for $\beta \in \Omega - \{\alpha\}$ is even because $G_{\alpha\beta}$ contains a 5-involution, hence $|G_{\alpha}|$ is divisible by 2^43 .

If $|G_{\alpha}|$ is divisible by 5, it follows that $G_{\alpha}=GL(2, 5)$ or a subgroup of GL(2, 5) of index 2 containing SL(2, 5). An involution in GL(2, 5) fixes one or five points and SL(2, 5) contains no 5-involution, hence we have (3) or (4) of Theorem 4.

If $|G_{\alpha}|$ is not divisible by 5, we have $|G_{\alpha}|=2^4\cdot 3$ or $2^5\cdot 3$. The normalizer of a Sylow 3-subgroup of GL(2, 5) has order $2^3\cdot 3$, hence $O(G_{\alpha})=1$ and $O_2(G_{\alpha})$ $\neq 1$. Since $O(G_{\alpha})=1$, an element of order 3 can not centralize $O_2(G_{\alpha})$, hence it can not stabilize the following normal series: $O_2(G_{\alpha}) \supset O_2(G_{\alpha}) \cap SL(2, 5) \supset 1$. Since the factor group $O_2(G_{\alpha})/O_2(G_{\alpha}) \cap SL(2, 5)$ is cyclic and a Sylow 2-subgroup of SL(2, 5) is quaternion of order 8, it follows that $O_2(G_{\alpha}) \cap SL(2, 5)$ is a Sylow 2-subgroup of SL(2, 5). Set $P = O_2(G_\alpha) \cap SL(2, 5)$. G_α is contained in $N_{GL(2,5)}(P)$, which is a subgroup of GL(2, 5) of index 5. Hence we obtain (5) or (6) of Theorem 4.

Next we assume that N is not solvable. In this case N is a simple $(1, \mu)$ group where $\mu \in \{1, 3, 5\}$ or N is isomorphic to $A_5 \times A_5$ and G is a subgroup of Aut(N) containing N. We note N_{α} is $\frac{1}{2}$ -transitive on $\Omega - \{\alpha\}$ for $\alpha \in \Omega$ because G_{α} is transitive on $\Omega - \{\alpha\}$ and $G_{\alpha} \triangleright N_{\alpha}$. From this N is not isomorphic to $A_5 \times A_5$.

(7.3) If N is a simple (1, 1)-group, then (7), (8), (9) or (10) of Theorem 4 holds.

PROOF. If N is a simple (1, 1)-group, N is isomorphic to one of the following groups in its usual representation: $L_2(2^n)$, $S_Z(2^n)$, $U_3(2^n)$ $(n \ge 2)$. Since N is 2-transitive on Ω , it will suffice to consider that G is a (1, 5)-group or not. Let T be a Sylow 2-subgroup of N_{α} ($\alpha \in \Omega$) and x be a 5-involution in G_{α} . Since N_{α} is 2-closed ([3]), x normalizes T and also Z(T), which is an elementary abelian 2-group. We have $|C_{Z(T)}(x)| \le 2^2$ by semi-regularity of T on $\Omega - \{\alpha\}$ and so $|Z(T)| \le 2^4$ by (2.7), hence $2 \le n \le 4$. From this we can verify (7.3) by [21].

(7.4) If N is a simple (1, 3)-group, G is isomorphic to S_7 in its usual representation, that is, (11) of Theorem 4 holds.

PROOF. Let M be the subgroup which consists of all even permutations in G. Since a 3-involution is a even permutation in this case and G contains a 5-involution, we have |G:M|=2 and involutions in M are 3-involutions. Since $G_{\alpha\beta}$ contains a 5-involution for $\alpha \neq \beta \in \Omega$, it follows that $|G_{\alpha\beta}: M_{\alpha\beta}| = |G_{\alpha\beta} \cdot M: M|=2$ and so M is a (2, 3)-group. By King's Theorem ([14]), M is isomorphic to (a), (b), (f), (g), (h) or (i) of his list. Hence we can easily verify (7.4).

(7.5) If N is a simple (1, 5)-group, then (12), (13), (14) or (15) of Theorem 4 holds.

PROOF. If N is of type (1) or (2) of Theorem 3, any element in T^* has the same set of fixed points (see the proof of Lemma 5). Here T is a unique Sylow 2-subgroup of N_{α} ($\alpha \in \Omega$). Since T is characteristic in N_{α} , T is a normal subgroup of G_{α} , hence T fixes $\Omega - \{\alpha\}$ pointwise, a contradiction.

The automorphism groups of the simple groups (3)-(12) of Theorem 3 are known. Hence we can verify (7.5).

References

- [1] J.L. Alperin, R. Brauer and D. Gorenstein, Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc., 151 (1970), 1-261.
- [2] H. Bender, Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben, Math. Z., 104 (1968), 175-204.
- [3] H. Bender, Transitive Gruppen gerader Ordnung, in denen jede Involution genau

einen Punkt festläst, J. Algebra, 17 (1971), 527-554.

- [4] F. Buekenhout, Doubly transitive groups in which the maximum number of fixed points of involutions is four, to appear.
- [5] F. Buekenhout, Transitive groups in which involutions fix one or three points, J. Algebra, 23 (1972), 438-451.
- [6] F. Buekenhout and P. Rowlinson, On (1, 4)-groups II, to appear.
- [7] P. Fong, Sylow 2-subgroups of small order, to appear.
- [8] P. Fong and W. J. Wong, A characterization of the finite simple groups $PS_p(4, q)$, $G_2(q)$, $D_4^2(q)$ I, Nagoya Math. J., **36** (1969), 143-184.
- [9] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- [10] D. Gorenstein and K. Harada, Finite groups whose 2-subgroup are generated by at most 4 elements, to appear.
- K. Harada, On finite groups having self-centralizing 2-subgroups of small order, J. Algebra, 33 (1975), 144-160.
- [12] C. Hering, Zweifach transitive Permutationsgruppen, in denen 2 die maximal Anzahl von Fixpunkten von Involutionen ist, Math. Z., 104 (1968), 150-174.
- [13] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1968.
- [14] J.D. King, Doubly transitive groups in which involutions fix one or three points, Math. Z., 111 (1969), 311-321.
- [15] R. Noda, Doubly transitive groups in which the maximal number of fixed points of involutions is four, Osaka J. Math., 8 (1971), 77-90.
- [16] K. W. Phan, A characterization of four-dimensional unimodular groups, J. Algebra, 15 (1970), 252-279.
- [17] K. W. Phan, A characterization of the unitary groups PSU(4, q²), q odd, J. Algebra, 17 (1971), 132-148.
- [18] P. Rowlinson, Simple permutation groups in which an involution fixes a small number of points, J. London Math. Soc., (2) 4 (1972), 655-661.
- [19] P. Rowlinson, Simple permutation groups in which an involution fixes a small number of points II, to appear.
- [20] P. Rowlinson, On (1, 4)-groups I, to appear.
- [21] R. Steinburg, Automorphisms of finite linear groups, Canadian J. of Math., 12 (1960), 606-615.
- [22] W.J. Wong, A characterization of the finite projective symplectic groups PS_{p_4} (q), J. Algebra, 14 (1970), 1-35.

Yutaka HIRAMINE Department of Mathematics Osaka Kyoiku University Minamikawabori, Tennoji-ku Osaka, Japan