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\S 1. Introduction.

Let $t$ and $\mu$ be integers such that $t\geqq 1,$ $\mu\geqq 0$ . A finite permutation group
$(G, \Omega)$ of even order is said to be a $(t, \mu)$-group if $G$ is t-transitive on $\Omega$ and
$\mu$ is the maximal number of the fixed points of involutions in $G$ . All $(2, \mu)-$

groups with $\mu\leqq 4$ have been classified; for $\mu=0$ and $\mu=1$ by Bender $[2][3]$ ,
for $\mu=2$ by Hering [12], for $\mu=3$ by King [14] and for $\mu=4$ by Noda [15]

and Buekenhout [4]. The $(1, 3)$-groups have been classified by Buekenhout [5]

and $(1, 4)$-groups have been studied by Rowlinson and Buekenhout $[6][20]$ . In
[18][19], Rowlinson has shown that a simple $(1, \mu)$-group with one conjugate
class of involutions is one of the known simple groups when $1\leqq\mu\leqq 7$ .

In this paper we shall consider primitive $(1, 5)$-groups. Let $(\tilde{G}, \Omega)$ be a
primitive $(1, 5)$-group and $G$ be a minimal normal subgroup of $\tilde{G}$ .

If $G$ is solvable, $G$ is an elementary abelian p-group for some prime $p$ . In
this case we can easily show that $p=5$ . Moreover $\tilde{G}$ is a group of automor-
phisms of an affine space satisfying one of the following:

(1) Dimension of the affine space is 2 or 3.
(2) If $T$ is a Sylow 2-subgroup of $G_{\alpha}(\alpha\in\Omega)$ then $T$ is cyclic or generalized

quaternion and $|C_{G}(z)|=5$ where $z$ is a unique involution in $T$.
If $G$ is not solvable, $G$ is a direct product of $r$ isomorphic nonabelian simple

groups. In this case, the permutation group $(G, \Omega)$ is a $(1, \mu)$-group where $\mu$

$\in\{1,3,5\}$ and we can easily show that $r=1$ , with the exception of the follow-
ing case

$G=G_{1}\times G_{2}\cong A_{5}\times A_{5}$

where $G_{i}(1\leqq i\leqq 2)$ is isomorphic to the alternating group of degree 5 and $G$ is
a permutation group on the set $\{(i, j)|1\leqq i, j\leqq 5\}$ , which is defined by $(i, j)^{g}=$

$(i^{g_{1}}, j^{g_{2}})$ for $g=g_{1}\cdot g_{2}\in G$ with $g_{i}\in G_{i}(1\leqq i\leqq 2)$ . Thus we have Aut $(G)\geqq\tilde{G}\geqq G$ ,
where $G$ is a simple $(1, \mu)$-group $(\mu\in\{1,3,5\})$ or the group isomorphic to $A_{5}$

$\times A_{5}$ . Since simple $(1, 1)$-groups and $(1, 3)$-groups are known simple groups by
Bender [3], Buekenhout [5] and Rowlinson [18], we may consider simple $(1, 5)-$
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groups to classify the primitive $(1, 5)$-groups.
The purpose of this paper is to prove the following theorem.
THEOREM 1. Let $(G, \Omega)$ be a $(1, 5)$-group and $T$ be a Sylow 2-subgroup of

$O^{2}(G)$ . Then we have one of the following;
(1) $|T|\leqq 2^{8}$ .
(2) $T$ has a cyclic subgroup of index 4.
(3) $O^{2}(G)$ has a unique conjugate class of involutions.
Here $O^{2}(G)$ is the subgroup of $G$ generated by all elements of odd order.
In our theorem let $G$ be simple. A simple $(1, 5)$-group satisfying (2) or (3)

is known ([7], [18]). In order to classify simple $(1, 5)$-groups satisfying (1), we
shall prove in \S 5 the following lemma.

LEMMA 2. Let $G$ be a simple $(1, 5)$-group which satisfies (1) of Theorem 1.
Then $G$ has a unique conjugate class of involutions or $G$ has sectional 2-rank at
most 4. (A group $G$ is said to have sectional 2-rank $k$ if every section of $G$ has
2-rank at most $k$ and some section of $G$ has 2-rank equal to $k.$)

Simple groups with sectional 2-rank at most 4 were decided recently by D.
Gerenstein and K. Harada [10]. Thus we shall obtain the following theorem.

THEOREM 3. Let $G$ be a simple $(1, 5)- grouP$ . Then $G$ is isomorphic to one
of the simple groups in the following list.

(1) $L_{2}(2^{n}),$ $n\equiv 0$ (mod4), degree $=2^{n}\times 5+5$ . $G_{a}$ is a (unique) subgroup of
$N_{G}(T)$ of index 5, where $T$ is a Sylow 2-subgroup of $G$ .

(2) $U_{3}(2^{n}),$ $n\equiv 0(mod 2)$ deg $ree=2^{3n}\times 5+5$ . $G_{\alpha}$ is a (unique) subgroup of
$N_{G}(T)$ of index 5.

(3) $L_{2}(7)$ , degree$=21,$ $G_{\alpha}\cong T$.
(4) $L_{2}(9)$ , degree$=45,$ $G_{\alpha}\cong T$.
(5) $L_{2}(19)$ , degree$=285,$ $G_{\alpha}\cong A_{4}$ .
(6) $L_{2}(19)$ , degree$=57,$ $G_{\alpha}\cong A_{5}$ .
(7) $L_{2}(25)$ , degree$=65,$ $G_{\alpha}\cong PGL(2,5)$ .
(8) $L_{3}(4)$ , degree$=21$ , (2-transitive).
(9) $L_{3}(3)$ , degree$=13$ , (2-transitive).

(10) $A_{7}$ , degree$=21,$ $G_{\alpha}\cong S_{5}$ .
(11) $A_{9}$ , degree $=9$, (7-transitive).
(12) $J_{1}$ , degree$=1045,$ $G_{\alpha}\cong N_{G}(T)$ .
By Theorem 3, [3], [14] and [21], we obtain
THEOREM 4. Let $(G, \Omega)$ be a $(2, 5)-\Psi ouP$ . Then we have the following:
(1) A Sylow 2-subgroup of $G$ is cyclic or generalized quaternion, or $G$ is

one of the following groups:
(2) A subgroup of automorphisms of the affine space of dimension 3 over

$GF(5)$ such that
$G=G_{\alpha}\cdot N\triangleright N\cong Z_{6}\times Z_{5}\times Z_{6},$ $G_{\alpha}=SL(3,5)$ .
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(3) A subgroup of automorphisms of the affine space of dimension 2 over
$GF(5)$ such that

$G=G_{\alpha}\cdot N\triangleright N\cong Z_{5}\times Z_{5},$ $G_{\alpha}=GL(2,5)$ .
(4) A subgroup of (3) of index 2 containing $SL(2,5)$ .
(5) A subgroup of (3) such that $G=G_{\alpha}\cdot N\triangleright N\cong Z_{5}\times Z_{5},$ $G_{\alpha}=N_{GL(2,5)}(Q),$ $ Q\in$

$Syl_{2}(SL(2,5))|G_{\alpha}|=2^{5}\cdot 3$ .
(6) A subgroup of (5) of index 2 containing $N_{SL(2,5)}(Q)$ .
(7) Aut $(L_{2}(16)),$ $|\Omega|=17$ .
(8) A subgroup of (7) of index 2.
(9) Aut $(U_{3}(4)),$ $|\Omega|=65$ .

(10) A subgroup of (9) of index 2.
(11) $S_{7},$ $|\Omega|=7$ .
(12) $L_{3}(3),$ $|\Omega|=13$ .
(13) $L_{3}(4),$ $|\Omega|=21$ .
(14) A $sub\Psi ouPG$ of $N_{S21}(L_{3}(4))$ such that $|G:L_{3}(4)|=3,$ $|\Omega|=21$ .
(15) $A_{9},$ $|\Omega|=9$ .

In \S 3 and \S 4, we shall prove Theorem 1. In the Theorem let us remark
that $O^{2}(G)$ is also transitive on $\Omega$ .

If $O^{2}(G)$ contains no involution, then (1) of Theorem 1 holds. If $O^{2}(G)$ has
an involution, $(O^{2}(G), \Omega)$ is a $(1, \mu)$-group where $\mu\in\{1,3,5\}$ . When $\mu=1$ or 3,
we can easily show that either (2) or (3) of the theorem holds. Hence we may
assume $O^{2}(G)=G$ .

The proof is divided into two cases;
Case 1: $Z(T)$ contians no 5-involution.
Case 2: $Z(T)$ contains a 5-involution.
Here an involution is called a $\mu$-involution if it fixes exactly $\mu(\mu=0,1,2\cdots)$

points.
In the first case, we have
PROPOSITION A. Let $(G, \Omega)$ be a $(1, 5)$-group with no subgroup of index 2.

If the center of a Sylow 2-subgroup $T$ of $G$ contains no 5-involution, then the
order of $T$ is at most $2^{8}$ .

In the second case, we have
PROPOSITION B. Let $(G, \Omega)$ be a $(1, 5)$-group with no subgroup of index 2.

If the center of a Sylow 2-subgroup $T$ of $G$ contains a 5-involution, then one of
the following holds.

(1) $|T|\leqq 2^{8}$ .
(2) $T$ has a cyclic subgroup of index 4.
(3) $G$ has a unique conjugate class of involutions.
We use the standard notation of [9] except the following;
$F(X)$ : the set of fixed points of a nonempty subset $X$ of $G$ .
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$ccl_{G}(x)$ : the G-conjugate class containing an element $x\in G$ .
$|H|_{2}$ : maximal power of 2 dividing the order of a subgroup $H$ of $G$ .

$G|_{\Delta}$ : the restriction of $G$ on a subset $\Delta$ of $\Omega$ .

\S 2. Preliminary results.

We list now some results that will be required in the proof of the theorems.
(2.1) (Rowlinson [20] Lemma 1) Let $V$ be the semi-direct product of a 2-

group $Y$ by a four-group $\{1, t_{1}, t_{2}, t_{3}\}$ . If $|C_{Y}(t_{i})|\leqq 4(i=1,2,3)$ , then $|Y|\leqq 2^{5}$ .
(2.2) (Hobby, Satz 7.8 (b), III [13]) Let $P$ be a $P$-group for some prime $p$ .

If $Z(\Phi(P))$ is cyclic, then $\Phi(P)$ is also cyclic.
(2.3) (Buekenhout and Rowlinson [6] Lemma 2) Let $T$ be a Sylow 2-

subgroup of $G$ with $O^{2}(G)=G$ and $v$ be an element of $T$ of order $2^{m}$ . If $X$ is
a subgroup of $T$ of index $2^{m}$, then $X$ contains a G-conjugate of the involution
$v^{2}m- 1$

(2.4) Let $G$ be a transitive permutation group on $\Omega$ and $H$ be a stabilizer
of a point in $\Omega$ . For any element $x\in H$, we have

$|F(x)|=|C_{G}(x)|\cdot|ccl_{G}(x)\cap H|/|H|$ .
PROOF. Set $M=\{(y, \alpha)|ccl_{G}(x)\ni y, F(y)\ni\alpha\}$ and $M_{\beta}=\{z\in G|F(z)\ni\beta,$ $ z\in$

$ccl_{G}(x)\}$ . By transitivity of $G$ , we have $|M_{\beta}|=|M_{\gamma}|$ for all $\beta,$ $\gamma\in\Omega$ . Now we
count the number of elements of $M$ in two ways and get

$|G$ : $C_{G}(x)|\cdot|F(x:)|=|\Omega|\cdot|M_{\alpha}|$ $(\alpha\in\Omega)$ .

We may assume $H=G_{\alpha}$ . Hence we have $|M_{a}|=|ccl_{G}(x)\cap H|$ . Thus we get
(2.4).

As a corollary of (2.4), we have
(2.5) Let $\Delta$ be a set and $T$ be a 2-group acting transitively and faithfully

on $\Delta$ . If $x$ is an element of $T$ with $|F(x)|\neq 0$ , we have

$|C_{T}(x)|\leqq|F(x)|_{2}\cdot|T|/|\Delta|$ .

(2.6) Let $\Omega$ be a finite set with $|\Omega|$ odd and $G$ be a transitive permutation
group on $\Omega$ of even order. Assume $F(x)=F(y)$ for all involutions with $|F(x)|$

$>1,$ $|F(y)|>1$ in a fixed Sylow 2-subgroup of $G$ . Then all involutions lying
in a fixed Sylow 2-subgroup of $G$ have the same set of fixed points, $G$ has a
unique conjugate class of involutions and $G$ has a strongly embedded subgroup.
(Hence if $G$ is a simple group, $G$ is isomorphic to a simple group of Bender
type ([3]).)

PROOF. Let $u$ be a l-involution and $x$ be an involution with $|F(x)|>1$ .
By transitivity, we may assume $F(u)\subseteq\Omega-F(x)$ . The element $u$ is not conjugate
to $x$ in $G$, hence $O(ux)$ is even. There exists a unique involution $ y\in\langle ux\rangle$ with
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$[u, y]=[x, y]=1$ .
When $y$ is a l-involution, it follows that $F(u)=F(y)$ and $F(y)\subseteq F(x)$ , hence

$F(u)\subseteq F(x)$ , a contrandiction. When $y$ is not a l-involution, by assumption we
get $F(x)=F(y)$ and $F(u)\subseteq F(y)$ , hence $F(u)\subseteq F(x)$ , a contradiction. Thus the
first statement is proved.

Let $x,$ $y$ be involutions with $F(x)\neq F(y)$ . Then $0(xy)$ is odd. For otherwise,
there exists a unique involution $ z\in\langle xy\rangle$ with $[x, z]=[y, z]=1$ . By the Prst
statement of (2.6), we have $F(x)=F(z)$ and $F(y)=F(z)$ , hence $F(x)=F(y)$ , a
contradiction. From this, $G$ has a unique conjugate class of involutions.

Let $z$ be an involution and $H$ be a global stabilizer of $F(z)$ . If $x$ is an
involution contained in $H,$ $x$ centralizes an involution $y$ contained in the kernel
of the action of $H$ on $F(z)$ . Since $0(xy)(=2)$ is even, it follows that $F(x)$

$=F(y)$ by the preceding paragraph. Hence $H$ is a strongly embedded subgroup
of $G$ .

(2.7) Let $P$ be an elementary abelian 2-group of order $2^{n}$ and $\phi$ be an
automorphism of $P$ of order 2. Then we have

$|C_{P}(\phi)|\geqq 2^{\frac{1}{2}n}$

PROOF. Set $P=\sum_{i=1}^{r}C_{P}(\phi)\cdot x_{i}$ (the coset decomposition). Then $x^{(p_{i}}x_{i}$ is an

element of $C_{P}(\phi)$ for each $i(1\leqq i\leqq r)$ and $x_{i}^{\rho)}x_{i}$ is not equal to $x_{f}^{\prime p}x_{j}$ for $i\neq j(1\leqq i$ ,
$j\leqq r)$ , hence $r\leqq|C_{P}(\phi)|$ . Since $r=|P:C_{P}(\phi)|$ , we have $|P|\leqq|C_{P}(\phi)|^{2}$ , which
gives $(2,7)$ .

(2.8) Let $G$ be a finite group and $x$ be an element of $G$ . Then we have
$|ccl_{G}(x)|\leqq|G^{\prime}$ .

PROOF. If $y$ is an element of $ccl_{G}(x)$ , there exists $g\in G$ with $y=g^{-1}xg$.
Since $x^{-1}x^{g}=[x, g]\in G^{\prime}$ , we have $x^{g}\in xG^{\prime}$ . Hence we have $|ccl_{G}(x)|\leqq|xG^{\prime}|=|G^{\prime}$ .

\S 3. Proof of Proposition A.

Since $G$ has a 5-involution, $|\Omega|$ is odd. Hence there exists $\alpha\in\Omega$ with $T$

$\leqq G_{a}$ . Set $M^{*}=M-\{\alpha\}$ for any subset $M$ of $\Omega$ . If $G$ has a 3-involution, then
$G$ has an odd permutation and hence $G\neq 0^{2}(G)$ . Thus $G$ has no 3-involution
and $Z(T)$ acts semi-regularly on $\Omega^{*}$ .

Now we suppose $|T|\geqq 2^{9}$ and show this leads to a contradiction.
(3.1) If a subgroup $R$ of $T$ is contained in $T_{\beta}$ for some $\beta\in\Omega^{*}$ , then $R=1$

or $R$ is not normal in $T$.
PROOF. By semi-regularity of $Z(T)$ on $\Omega^{*},$ $Z(T)\cap R=1$ , so (3.1) holds.
(3.2) $|\Omega|\equiv 1(mod 8)$ .
PROOF. We assume $|T:T_{\beta}|\leqq 4$ for some $\beta\in\Omega^{*}$ . Since $|T|>4,$ $T_{\beta}\neq 1$ .

Hence by (3.1), $T_{\beta}$ is not normal in $T$. In particular $|T:T_{\beta}|=4,$ $|T:N_{T}(T_{\beta})|$
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$=2$ . $Hence_{A}^{v}ccl_{T}(T_{\beta})=\{T_{\beta}, T_{\beta}^{\ell}\}$ for $t\in T-N_{T}(T_{\beta})$ and $T\triangleright T_{\beta}\cap T_{\beta}^{t},$ $|T:\tau_{\beta}r_{1}T_{\beta}^{t}|$

$=8$ . By (3.1) $|T_{\beta}\cap T_{\beta^{t}}|=1$ and so $|T|=2^{3}$ , a contradiction. Thus $|T:T_{\beta}|\geqq 8$

for any $\beta\in\Omega^{*}$ , which implies $|\Omega^{*}|\equiv 0(mod 8)$ .
(3.3) $|Z(T)|=2$ or $2^{2}$ .
PROOF. Since $T$ has a 5-involution, semi-regularity of $Z(T)$ on $\Omega^{*}$ gives

$|Z(T)|\leqq 2^{2}$ .
(3.4) If a subgroup $U$ of $T$ satisfies $|F(U)|=5$ , then $U$ has order at most 4.
PROOF. $U$ acts semi-regularly on $\Omega-F(U)$ . If (3.4) is false, $|\Omega-F(U)|\equiv 0$

$(mod 8)$ , which is contrary to (3.2).
(3.5) If the center of a subgroup $V$ of $T$ has a 5-involution, then $|V|\leqq 2^{5}$ .
PROOF. Let $x$ be a 5-involution contained in $Z(V)$ . $V$ acts on the set $F(x)^{*}$ .

Let $U$ be the kernel of this action, then the factor group $V/U$ is isomorphic to
a subgroup of $S_{4}$ , hence $V/U$ is isomorphic to a subgroup of $D_{8}$ , the dihedral
group of order 8, therefore $|V/U|\leqq 2^{3}$ . On the other hand $|U|\leqq 2^{2}$ by (3.4).

Thus we obtain $|V|\leqq 2^{5}$ .
REMARK. $(3.1)-(3.5)$ hold if $T$ has order at least $2^{4}$ .
(3.6) For any $\beta\in\Omega^{*}$ , the 2-rank of $T_{\beta}$ is at most 1.
PROOF. Suppose $T_{\beta}$ contains a four-group $Q$ for some $\beta\in\Omega^{*}$ .
First we assume $|Z(T)|=2$ . By considering the class equation for $T$, there

exists $x\in T-Z(T)$ with $|T:C_{T}(x)|=2$ . Since $G$ has no subgroup of index 2,
$C_{T}(x)$ contains a 5-involution by (2.3). If $|Z(C_{T}(x))|\geqq 8$ , then $Z(C_{T}(x))$ contains
a 5-involution and so by (3.5) we get $|C_{T}(x)|\leqq 2^{5}$ , contrary to $|T|\geqq 2^{9}$ . Thus
$|Z(C_{T}(x))|=4$ holds.

$C_{T}(x)$ has no element $y$ with $|C_{T}(x):C_{T}(x)\cap C(y)|=2$ . Suppose false. Since
$|Z(C_{T}(x)\cap C(y))|\geqq|<Z(T),$ $x,$ $y>|\geqq 8$ and $|C_{T}(x)\cap C(y)|\geqq 2^{7}$ , it follows that
$C_{T}(x)\cap C(y)$ contains no 5-involution, which clearly means $C_{T}(x)\cap C(y)$ acts semi-
regularly on $\Omega^{*}$ . There exists a normal subgroup $S$ of $T$ such that $|T:S|\leqq 2^{3}$

and $S\leqq C_{T}(x)\cap|C(y)$ as $|T:C_{T}(x)\cap c(y)|=4$ . Applying (2.1) to $Q$ and $S$, we see
that $|S|\leqq 2^{5}$ , hence $|T|\leqq 2^{8}$ , a contradiction. Thus the number of $C_{T}(x)$-con-
jugate classes which consist of four elements is odd. On the other hand, $T$

normalizes $C_{T}(x)$ , so that at least one of these, say $ccl_{c_{\tau^{(x)}}}(y)$ is T-invariant.
It follows that $ccl_{T}(y)=ccl_{c_{\tau^{(x)}}}(y)$ and so $|T:C_{T}(y)|=4$ . Let $ccl_{T}(y)=\{y=$

$y_{1},$ $y_{2},$ $y_{3},$ $y_{4}$}.
If $T>C_{T}(y)$ , then since $|Z(C_{T}(y))|\geqq 8$, we get a contradiction as before.

Therefore $C_{T}(y)$ is not normal in $T$. We may assume $C_{T}(y_{1})=C_{T}(y_{3})\neq C_{T}(y_{2})$

$=C_{T}(y_{4})$ . Evidently $T$ normalizes $C_{T}(y_{1})\cap C_{T}(y_{2})=C_{T}(y_{3})\cap C_{T}(y_{4})$ . $C_{T}(y_{1})\cap C_{T}(y_{2})$

contains a 5-involution, otherwise applying (2.1) again, we get $|C_{T}(y_{1})\cap C_{T}(y_{2})|$

$\leqq 2^{5}$ . Hence $|T|\leqq 2^{8}$ , a contradiction.
We have $|Z(C_{T}(y_{1}))|=4$ as above. Thus $Z(C_{T}(y_{1}))=\{y_{1}, y_{3}, z, 1\}\cong Z(C_{T}(y_{2}))$

$=\{y_{2}, y_{4}, z, 1\}$ acts semi-regularly on $\Omega^{*}$ , where $\langle z\rangle=Z(T)$ .



On transitive groups 221

Let $t$ be a 5-involution in $C_{T}(y_{1})\cap C_{T}(y_{2})$ . The $re$striction of $Z(C_{T}(y_{1}))$ on
$F(t^{u})^{*}$ is regular for every $u\in T$ and is isomorphic to the restriction of $Z(C_{T}(y_{2}))$

on $F(t^{u})^{*}$ . By regularity of $Z(C_{T}(y_{1}))$ on $F(t^{u})^{*}$ with $u\in T$, it follows that either
$F(t^{u})=F(t^{v})$ or $ F(t^{u})^{*}\cap F(t^{v})^{*}=\phi$ holds for $u,$ $v\in T$ . We can easily show that
$|\beta^{T}|\geqq 16$ for $\beta\in F(t)^{*}$ and so $|\{F(t^{u})^{*}|u\in T\}|\geqq 4$ . Considering the permutation
representation of $y_{1}$ and $Z(C_{T}(y_{2}))$, it follows that $y_{1}=w$ on at least two blocks
in $\{F(t^{u})^{*}|u\in T\}$ for some $w$ in $Z(C_{T}(y_{2}))$ . This implies $y_{1}w^{-1}\in T$ fixes at least
8 points on $\Omega^{*}$ , hence by assumption, $y_{1}w^{-1}=1$ and $y_{1}$ is contained in $Z(C_{T}(y_{2}))$ ,
a contradiction.

Assume next that $|Z(T)|=4$ . In this case, the class equation for $T$ shows
that $T$ contains an element $x\in T-Z(T)$ with $|T:C_{T}(x)|\leqq 4$ . Since $|Z(C_{T}(x))|\geqq 8$,
$C_{T}(x)$ contains no 5-involution, hence $|T|\leqq 2^{8}$ as before, which is a contradiction.

(3.7) $|T:T^{\prime}|\geqq 8$ .
PROOF. If $|T:T^{\prime}|=4,$ $T$ is of maximal class. Hence $T$ is dihedral, semi-

dihedral, generalized quaternion or cyclic by Theorem 5.4.5 [9]. Since $G$ has
no subgroup of index 2, $G$ has a unique conjugate class of involutions, but $G$

has a l-involution, a contradiction.
(3.8) $|T_{\beta}|=1$ or 2 for all $\beta\in\Omega^{*}$ .
PROOF. By (3.6) $T_{\beta}$ is cyclic or generalized quaternion. Suppose $T_{\beta}$ con-

tains an element $v$ of order 8. From (3.2) and the cycle structure of $v$ , we
have $|F(v^{4})|\geqq 9$ , whence $v^{4}$ is a $\mu$-involution $(\mu\geqq 9)$ , contrary to the assumption
that $(G, \Omega)$ is a $(1,5)$-group. Thus $T_{\beta}\cong Q_{8}$ , the quaternion group of order 8 or
$T_{\beta}$ is cyclic of order at most 4.

In the first case, we have $|F(T_{\beta})|=3$ by (3.2). Let $F(T_{\beta})=\{\alpha, \beta, \gamma\}$ . There
exists a subset $\Delta$ of $\Omega-F(T_{\beta})$ such that $\Delta^{T}\beta=\Delta,$ $|\Delta|=4$ . Since $T_{\beta}$ acts faith-
fully on $\Delta,$ $T_{\beta}$ is isomorphic to a subgroup of $S_{4}$ , so that $Q_{8}\cong D_{8}$ , a contradiction.

To complete the proof, we need only show that $T_{\beta}$ is not isomorphic to $Z_{4}$ .
Suppose $ T_{\beta}=\langle v\rangle$ with $o(v)=4$ for some $\beta\in\Omega^{*}$ . Since $G$ does not contain an
odd permutation, it follows that $|F(T_{\beta})|=3$ by (3.2). Then $|Z(T)|=2$ , and so
$T$ has an element $x$ with $|T:C_{T}(x)|=2$ . Considering the T-orbit which contains
$\beta$, we get $|C_{T}(v)|=8=|C_{T}(v^{3})|$ by (2.5), whence $|T:T^{\prime}|=8$ by (2.8) and (3.7)

and so $ccl_{T}(v)=T^{\prime}v,$ $ccl_{T}(v^{3})=T^{\prime}v^{3}$ . If $T^{\prime}v=T^{\prime}v^{3}$ , then $v\sim v^{3}$ , whence we have
$|C_{T}(v)|\leqq 4$ by (2.4), which is contrary to $|C_{T}(v)|=8$ . Thus $T^{\prime}v\neq T^{\prime}v^{3}$ , conse-
quently $\langle v\rangle\cap T^{\prime}=1$ .

Let $N_{G}(T)=N\cdot T$ where $N$ is a Hall 2’-subgroup of $N_{G}(T)$ . We argue that
$N$ normalizes $C_{T}(x)$ . Since $T/T^{\prime}$ is isomorphic to $Z_{2}\times Z_{4}$ , the Frattini subgroup
$\Phi(T)$ of $T$ is $ T^{\prime}\langle v^{2}\rangle$ and $T/\Phi(T)\cong Z_{2}\times Z_{2}$ . If $N$ does not normalize $C_{T}(x)$ , the
whole maximal subgroups of $T$ are $C_{T}(x),$ $C_{T}(x^{a})$ and $C_{T}(x^{a^{2}})$ for some $a\in N$.
Since $T\neq\langle v\rangle,$ $v$ is contained in one of these. Without loss of generality, we
may assume $v$ is contained in $C_{T}(x)$ . Furthermore, $Z(C_{T}(x))$ acts semi-regularly
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on $\Omega^{*}$ , for otherwise we get $|C_{T}(x)|\leqq 2^{6}$ by (3.5), which implies $|T|\leqq 2^{6}$ , a
contradiction. Since $|F(v)^{*}|=2$ and $v\in C_{T}(x)$ , the semi-regularity of $Z(C_{T}(x))$

on $\Omega^{*}$ gives $|Z(C_{T}(x))|\leqq 2$ , a contradiction. Hence $N$ normalizes $C_{T}(x)$ .
Thus $N$ acts trivially on $T/\Phi(T)$ , so we have $[N, T]=1$ by Theorem 5.1.4

[9]. By Gr\"un’s theorem ([9] Theorem 7.4.2), the focal subgroup $ T\cap G^{\prime}=\langle T\cap$

$N(T)^{\prime},$ $ T\cap(T^{\prime})^{g}|g\in G\rangle$ . Hence we have $ T\cap G^{\prime}=\langle T\cap(T^{\prime})^{g}|g\in G\rangle$ . Since $\langle v\rangle\cap T^{\prime}$

$=1$ , it follows that $ T/T^{\prime}=\langle T^{\prime}v, T^{\prime}w\rangle$ for some $ w\in T-T^{\prime}\langle v\rangle$ with $\iota u^{2}\in T^{\prime}$ . The
groups $ T^{\prime}\langle w\rangle$ and $ T^{\prime}\langle v^{2}w\rangle$ are normal subgroups of $T$ of index 4. We denote
one of these $X$. By (2.3), we can take $u\in ccl_{G}(v^{2})\cap X$. If $ T_{\gamma}\neq\langle u\rangle$ for some
$\gamma\in F(u)^{*}$ , then $ T_{\gamma}=\langle u_{0}\rangle$ with $u_{0}\in T$ and $u_{0}^{2}=u$ . Since $\langle u_{0}\rangle\cap T^{\prime}=1$ , we have
$u\not\in T^{\prime}$ . On the other hand $u$ is containd in $\Phi(T)\cap X=T^{\prime}$ , a contradiction.
Hence it follows that $ T_{\gamma}=\langle u\rangle$ for all $\gamma\in F(u)^{*}$ . Thus there exist elements $u_{1}$ ,
$u_{2}\in T$ such that $ccl_{T}(u_{1})=T^{\prime}w,$ $ccl_{T}(u_{2})=T^{\prime}v^{2}w$ by (2.5). If $T^{\prime}$ contains a 5-
involution $x$, it follows that $ T_{\gamma}=\langle x\rangle$ for $\gamma\in F(x)^{*}$ . For otherwise, there exists $ y\in$

$T$ such taht $T_{\gamma}=\langle y\rangle,$ $y^{2}=x$ and $\langle y\rangle\cap T^{\prime}=1$ , hence $x\not\in T^{\prime}$ , a contradiction. Thus
$|C_{T}(x)|\leqq 8$ by (2.5). Since $|T:T^{\prime}|=8,$ $ccl_{T}(x)=T^{\prime}x=T^{\prime}$ by (2.8), a contradiction.
Hence $T^{\prime}$ acts semi-regularly on $\Omega^{*}$ . From this, we have $T\cap(T^{\prime})^{g}\leqq T-\{T^{\prime}v$,
$T^{\prime}v^{3},$ $T^{\prime}u_{1},$ $T^{\prime}u_{2}$ } $=T^{\prime}\langle vw\rangle<T$ for all $g\in G$ , which implies that the focal subgroup
$T\cap G^{\prime}$ is a proper subgroup of $T$ , contrary to $O^{2}(G)=G$ .

(3.9) If $u$ is a 5-involution in $T$, then $|C_{T}(u)|=8,$ $ccl_{T}(u)=T^{\prime}u$ and $u$ inverts
every element of $T^{\prime}$ .

PROOF. Let $\beta$ be a fixed point of $u$ with $\beta\neq\alpha$ . Now $ T_{\beta}=\langle u\rangle$ by (3.8),
hence $|C_{T}(u)|\leqq 8$ by (2.5). Thus (3.9) holds by (3.7) and (2.8).

(3.10) $T/T^{\prime}$ is an elementary abelian 2-group of order 8.
PROOF. Suppose false. There exists $\overline{v}\in T/T^{\prime}$ with $O(\overline{v})=4$ . Since $|T:T^{\prime}\langle v\rangle|$

$=2$ , by (2.3), $ T^{\prime}\langle v\rangle$ contains a 5-involution, say $u$ . By (3.9), we have $ u\not\in T^{\prime}v\cup$

$T^{\prime}v^{3}$ , hence $u\in T^{\prime}v^{2}$ . Again by (3.9), $v^{2}$ is contained in $ccl_{T}(u)$ and so $v^{2}$ is a
5-involution. Considering the cycle structure of $v$, we get $|F(v)^{*}|=0$ , contrary
to (3.8).

(3.11) Contradiction.
Each subgroup of $T$ of index 2 contains a 5-involution, whence $T$ has at

least three conjugate classes of 5-involutions, say $T^{\prime}u_{i}1\leqq i\leqq 3$ by (3.10). If
$T^{\prime}u_{i}u_{j}$ contains a 5-involution, say $u_{4}$ , we have $ccl_{T}(u_{4})=T^{\prime}u_{i}u_{j}$ by (3.9) and so
$u_{i}u_{j}$ is a 5-involution. Hence $|C_{T}(u_{i}u_{j})|=8$ by (3.9). On the other hand $u_{i}$ and
$u_{j}$ invert $T^{\prime}$ by (3.9) and so $u_{i}u_{j}$ centralizes $T^{\prime}$ . Hence $|T^{\prime}|\leqq|C_{T}(u_{i}u_{j})|=8$,
which implies $|T|\leqq 2^{6}$ , a contradiction. Thus $T^{\prime}u_{i}u_{j}$ contains no 5-involution
for $i,$ $j\in\{1,2,3\}$ . Hence the subgroup $\{T^{\prime}, T^{\prime}u_{1}u_{2}, T^{\prime}u_{2}u_{3}, T^{\prime}u_{3}u_{1}\}$ of $T$ of index
$2_{A}^{*}contains$ no 5-involution, a contradiction. Thus Proposition A is proved.
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\S 4. Proof of Proposition B.

To prove Proposition $B$ , we assume the following three Hypotheses:
(1) $G$ has at least two conjugate classes of involutions.
(2) $T$ does not have a cyclic subgroup of index 4.
(3) $|T|=2^{n}\geqq 2^{9}$

and show these lead to a contradiction.
Since $G$ has a 5-involution, $|\Omega|$ is odd, hence $T$ is contained in $G_{\alpha}$ for some

$\alpha\in\Omega$ . Let $z$ be a 5-involution in $Z(T)$ , so $T$ acts on $F(z)^{*}=F(z)-\{\alpha\}$ . Let $K$

be the kernel of this action, then $T/K$ is a subgroup of $D_{8}$ . $K$ acts semi-regularly
on $\Omega-F(z)$ . By Hypothesis (3), $|K|\geqq 2^{6}>8$, hence we have

(4.1) $|\Omega|\equiv 5$ (mod $|K|$ ) where $|K|>8$ .
By Hypothesis (1) and (2.6), we have
(4.2) There exists a 5-involution $x_{1}$ in $T-K$.
(4.3) $|T/K|=2$ or 4.
PROOF. By (4.2) we get $|T/K|\neq 1$ . To prove (4.3), it will suffice to show

that $T/K$ is not isomorphic to $D_{8}$ . Suppose $T/K\cong D_{8}$ . Then there exists an
element $x\in T$ such that $x$ is 2-cycle on $F(z)^{*}$ .

Assume $x$ is not an involution. Considering the cycle structure of $x,$ $o(x)$

$=|\Omega-F(z)|_{2}\geqq|K|=2^{n-3}$ because $x$ is an odd permutation on $\Omega-F(z)$ . By
Hypothesis (2), $o(x)=2^{n-3}$ and so $|\Omega-F(K)|_{2}=|K|$ , whence $x$ stabilizes a K-
orbit, say $\Omega_{0}\subseteqq\Omega-F(z)$ . The group $ K\langle x\rangle$ is transitive on $\Omega_{0}$ . Since $|K|=|\Omega_{0}|$ ,
there exists an element $kx$ such that $k\in K$ and $ F(kx)\cap\Omega_{0}\neq\emptyset$ , and then $kx$ is a
5-involution. On the other hand $kx\equiv x$ on $F(z)^{*}$ . Thus we may assume $\chi$ is a
5-involution.

Since $|F(x)^{*}\cap F(z)|=2,$ $F(x)\cap(\Omega-F(z))=\{\beta, \gamma\}$ for some $\beta,$ $\gamma\in\Omega$ . Now
$C_{T}(x)$ acts on $\{\beta, \gamma\}$ . The kernel $K_{0}$ of this action does not contain a four-
group by (2.1). Hence $x$ is a unique involution in $K_{0}$ , which is an odd permuta-
tion on $\Omega-F(z)$ so that $K_{0}$ contains no element of order 4 and so $ K_{0}=\langle x\rangle$ ,
whence $|C_{T}(x)|\leqq 4$ . This implies that $|T:T^{\prime}|=4$ and $T$ is dihedral or semi-
dihedral ([9] Theorem 5.4.5), which is contrary to Hypothesis (1) by (2.3).

(4.4) For all $\beta\in\Omega-F(z),$ $T_{\beta}$ is cyclic of order at most 4.
PROOF. Since $T_{\beta}\cap K=1$ , we have $|T_{\beta}|\leqq 4$ by (4.3). If $T_{\beta}$ is isomorphic to

$Z_{2}\times Z_{2}$ , we get $|K|\leqq 2^{5}$ by (2.1), contrary to Hypothesis (3).
(4.5) $T/K$ is not isomorphic to $Z_{2}$ .
PROOF. We assume $T/K\cong Z_{2}$ . By (4.2), we can take a 5-involution $x_{1}\in T$

with $F(x_{1})\neq F(K)$ . There exists an extremal element $z_{0}$ of $T$ in $G$ with $ z_{0}\in$

$ccl_{G}(x_{1})$ . Here an element $z_{0}$ is said to be an extremal element of $T$ in $G$ if
$|C_{T}(z_{0})|\geqq|C_{T}(u)|$ holds for any $u\in T\cap ccl_{G}(x_{1})$ . Let $u$ be an arbitrary 5-involu-
tion in $T-K$. Then we obtain $|C_{T}(u)|=|\langle u\rangle C_{K}(u)|\leqq 8$ . Hence we may assume
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$z_{0}\in K$ by Hypothesis (1) and (2.3). There exists an element $g\in G$ such that
$x_{1}^{g}=z_{0},$ $(C_{T}(x_{1}))^{g}\leqq C_{T}(z_{0})$ . It follows that $(C_{K}(x_{1}))^{g}\leqq T$ and $(C_{K}(x_{1}))^{g}\cap K=1$ since
$F(x_{1})\neq F(z_{0})=F(K)$ . Hence $|C_{K}(x_{1})|=2$ and $|C_{T}(x_{1})|=4$ , which means $T$ is of
maximal class, contrary to Hypothesis (1) by (2.3).

(4.6) $T/K$ is not isomorphic to $Z_{4}$ .
PROOF. Suppose $T/K\cong Z_{4}$ . Set $ T/K=\langle Ky\rangle$ . Since $y$ is an odd permutation

on $F(K)$ and $G$ has no odd permutation on $\Omega,$
$y$ is an odd permutation on $\Omega-$

$F(K)$ . If $0(y)\neq 4$ , we have $O(y)=|\Omega-F(K)|_{2}\geqq|K|$ , contrary to Hypothesis (2).

Hence $0(y)=4$ and $y^{2}$ is a 5-involution. Set $y^{2}=x$ . By (2.3), we obtain $ccl_{G}(x)$

$\cap K\neq\emptyset$ . Let $u\in ccl_{G}(x)\cap K$

We shall argue that there exists an involution in $K\cap ccl_{G}(x)$ which is an
extremal element of $T$ in $G$ . Suppose false. Then we have $u\not\in Z(T)$ . Let $v$ be
an extremal element with $v\in ccl_{G}(x)\cap T$. There exists an element $g\in G$ such that
$u^{g}=v$ and $(C_{T}(u))^{g}\leqq C_{T}(v)$ . Since $F(v)\neq F(u)$ , we have $(C_{K}(u))^{g}\cap K=1$ and $(C_{K}(u))^{g}$

$\leqq T$. On the other hand, $C_{K}(u)$ contains a four group because $u\not\in Z(T)$ . Hence
we have $T/K\cong Z_{2}\times Z_{2}$ , a contradiction. Thus we may assume that $v$ is con-
tained in $K$.

There exists an element $h\in G$ such that $x^{h}=v$ and $(C_{T}(x))^{h}\leqq C_{T}(v)$ . Since
$F(x)\neq F(v)=F(K)$ , we have $(C_{K}(x))^{h}\cap K=1$ and $(C_{K}(x))^{h}\leqq T$. Hence $C_{K}(x)\cong Z_{4}$

because $C_{K}(x)\not\cong Z_{2}$ by Hypothesis (2). Since $x$ is a square of $y,$ $x$ is contained
in $\Phi(T)$ . Since $|C_{T}(x)|=16$, we get $|T:T^{\prime}|\leqq 16$ by (2.8). Clearly $\chi\not\in Z(\Phi(T))$ .
If follows that $Z(\Phi(T))\leqq C<x>K(x)=\langle x\rangle\times C_{K}(x)\cong Z_{2}\times Z_{4}$ . Hence $Z(\Phi(T))$ is cyclic,
whence $\Phi(T)$ is also cyclic by (2.2), which means $x\in K$, a contradiction.

REMARK. By the proof of (4.6), we know that in the case $T/K\cong Z_{4}$ , there
exists an element $y\in T-K$ such that $0(y)=4,$ $y^{2}\in T-K$ and $|F(y^{2})|=5$ .

By (4.3), (4.5) and (4.6), we have
(4.7) $T/K\cong Z_{2}\times Z_{2}$ .
(4.8) $|T_{\beta}|=1$ or 2 for $\beta\in\Omega-F(z)$ . $|C_{T}(x_{0})|=8$ for any 5-involution $ x_{0}\in$

$T-K$, whence $|T:T^{\prime}|=8,$ $ccl_{T}(x_{0})=T^{\prime}x_{0}$ .
PROOF. $T_{8}$ is cyclic of order at most 4 by (4.4). Since $T/K\cong Z_{2}\times Z_{2}$ and

$T_{\beta}\cap K=1$ , we get $|T_{\beta}|\neq 4$ . Hence $|T_{\beta}|=1$ or 2 and (2.5) gives the latter
statement.

(4.9) There exists a conjugate class of 5-involutions $ccl_{T}(x_{2})=T^{\prime}x_{2}$ contained
in $T-\langle x_{1}\rangle K$.

PROOF. Suppose false. Let $N$ be a Hall 2’-subgroup of $N_{G}(T)$ . $N$ stabilizes
the following normal series: $T/T^{\prime}\triangleright K\langle x_{1}\rangle/T^{\prime}\triangleright K/T^{\prime}\triangleright\overline{1}$ . Hence $[T, N]=1$ by
Theorems 5.1.4. and 5.3.2. of [9]. Thus we have $T\cap G^{\prime}=\langle T\cap N(T)^{\prime},$ $T\cap(T^{\prime})^{g}|$

$ g\in G\rangle=\langle T\cap(T^{\prime})^{g}|g\in G\rangle\leqq K\langle x_{1}\rangle$ , whence $T\cap G^{\prime}$ is a proper subgroup of $T$,
contrary to $O^{2}(G)=G$ .

(4.10) There is no l-involution in $T-K$.
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PROOF. Suppose false. Let $u$ be a l-involution in $T$. Since $\{T^{\prime},$ $T^{\prime}x_{1},$ $T^{\prime}x_{2}$ ,
$T^{\prime}x_{1}x_{2}\}$ is a subgroup of $T$ of index 2, $u$ is conjugate to some element in $T^{\prime}x_{1}x_{2}$ .

We may assume $x_{1}x_{2}$ is a l-involution. Hence a four-group $\{1, \chi_{1}, x_{2}, x_{1}x_{2}\}$

has trivial intersection with $K$. By (4.8), $ C_{T}(x_{1})=\{1, x_{1}, x_{2}, x_{1}x_{2}\}\times\langle z\rangle$ , and so
$ C_{K}(x_{1})=\langle z\rangle$ . Hence $|C_{K<x_{1}>}(x_{1})|=|x_{1}C_{K}(x_{1})|=4$ and $ K\langle x_{1}\rangle$ is of maximal class,
which is contrary to Hypothesis (2).

(4.11) The group $T^{\prime}$ is an abelian 2-group of 2-rank 2.
PROOF. Since $ccl_{T}(x_{1})=T^{\prime}x_{1}$ , an involution $x_{1}$ inverts $T^{\prime}$ , hence $T^{\prime}$ is abelian.

Furthermore $|C_{T^{J}}(x_{1})|\leqq|C_{K}(x_{1})|\leqq 4$ and so the 2-rank of $T^{\prime}$ is at most 2. Sup-
pose the 2-rank of $T^{\prime}$ is 1, that is, $ T^{\prime}=\langle d\rangle$ for some $d\in T^{\prime}$ . Since $x_{1}x_{2}\not\in T^{\prime}$ , it
follows that $(x_{1}x_{2})^{2}\in T^{\prime}$ and $(x_{1}x_{2})^{2}\in\langle d^{2}\rangle$ , for otherwise $O(x_{1}x_{2})=2\cdot O(d)=2^{n-2}$ ,
contrary to Hypothesis (2). Hence for some $ d_{1}\in\langle d\rangle$ we have $(x_{1}x_{2})^{2}=d^{2}$ . Since
$[x_{1}x_{2}, T^{\prime}]=1,$ $(x_{1}x_{2}d^{-1})^{2}=1$ . Hence $x_{1}x_{2}d^{-1}$ is a 5-involution contained in $T-K$ by
(4.10). Thus $x_{1}x_{2}d^{-1}$ also inverts $T^{\prime}$ , hence $|T^{\prime}|=2$ , contrary to Hypothesis (3).

(4.12) $ ccl_{G}(x_{1})\cap T^{\prime}\neq\emptyset$ .
PROOF. Suppose false. Let $y$ be an element in $K-T^{\prime}$ . Since $\{T^{\prime},$ $T^{\prime}x_{1}x_{2}$ ,

$T^{\prime}x_{1}y,$ $T^{\prime}x_{2}y$ } is a subgroup of $T$ of index 2 and $ccI_{G}(x_{1})\cap T^{\prime}=ccl_{G}(x_{1})\cap T^{\prime}x_{1}x_{2}$

$=\emptyset$, there exists an element $tx_{i}y\in ccl_{G}(x_{1})\cap T^{\prime}x_{i}y$ for some $i\in\{1,2\}$ and $t\in T^{\prime}$ .
If $y$ is an involution, then $[tx_{i}, y]=1$ . Hence $ C_{K}(tx_{i})=C_{T^{\prime}<y>}(tx_{i})=\Omega_{1}(T^{\prime})\langle y\rangle$ ,

whence $|C_{K}(tx_{i})|=8$ by (4.11), which imples that $|F(tx_{i})|\geqq 9$ , a contradiction.
Thus there is no involution in $K-T^{\prime}$ and so $ ccl_{G}(x_{1})\cap T^{\prime}y=\emptyset$ . Since $\{T^{\prime},$ $T^{\prime}y$ ,
$T^{\prime}x_{1}x_{2},$ $T^{\prime}x_{1}x_{2}y$ } is a subgroup of $T$ of index 2 and $ccl_{G}(x_{1})\cap T^{\prime}=ccl_{G}(x_{1})\cap T^{\prime}y$

$=ccl_{G}(x_{1})\cap T^{\prime}x_{1}x_{2}=\emptyset$, there exists a 5-involution $sx_{1}x_{2}y\in ccl_{G}(x_{1})\cap T^{\prime}x_{1}x_{2}y$ for
some $s\in T^{\prime}$ , hence $sx_{1}x_{2}y$ inverts $T^{\prime}$ . Since $sx_{1}$ and $\chi_{2}$ invert $T^{\prime},$

$sx_{1}x_{2}$ centralizes
$T^{\prime}$ and so $y$ inverts $T^{\prime}$ . On the other hand, $ix_{i}y$ and $tx_{i}$ invert $T^{\prime}$ , hence
$y$ centralizes $T^{\prime}$ . Thus $T^{\prime}=\Omega_{1}(T^{\prime})$ and we have $|T|=2^{5}$ by (4.8) and (4.11),
contrary to Hypothesis (3).

(4.13) Contradiction
By (4.8) and (4.12), there exists in $K$ an extremal element $z_{0}$ of $T$ in $G$

with $z_{0}\in ccl_{G}(x_{1})$ . Hence there exists an element $g\in G$ such that $(C_{T}(x_{1}))^{g}\leqq C_{T}(z_{0})$

and $x_{1}^{g}=z_{0}$ . Since $F(x_{1})\neq F(z_{0})=F(x_{1})^{g}$ , the element $g$ does not stabilize $F(K)$

as a set, hence there exists $\beta\in(\Omega-F(K))\cap F(K)^{g}$ . Clearly we have $C_{T}(x_{1})$

$\geqq C_{K}(x_{1})\geqq\Omega_{1}(T^{\prime})\cong Z_{2}\times Z_{2}$ by (4.11). Hence $T_{\beta}\geqq\Omega_{1}(T^{\prime})^{g}\cong Z_{2}\times Z_{2}$ , contrary to
(4.8). Thus Proposition $B$ is proved.

\S 5. Proof of Lemma 2.

Throughout this section we assume the following:
(1) $G$ is a simple $(1, 5)$-group with $|G|_{2}\leqq 2^{8}$ .
(2) $G$ has at least two conjugate classes of involutions.
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(3) Let $T$ be a Sylow 2-subgroup of $G$ . There exist subgroups $T_{1},$ $T_{2}$ of
$T$ with $T_{1}\triangleright T_{2},$ $T_{1}/T_{2}\cong E_{2^{5}}$ .

and show these lead to a contradiction.
We shall often use the following theorem to prove Lemma 2.
THEOREM (K. Harada [11]). If 2-group $S$ has a subgroupA of order 8 with

$C_{S}(A)\leqq A$ , then the sectional 2-rank of $S$ is at most 4.
(5.1) Let $Q$ be a subgroup of $T$ with $Q\cong Z_{2}\times Z_{2}$ . If $|F(q_{1})^{*}\cap F(q_{2})^{*}|=2$

for some $q_{1},$ $q_{2}\in Q^{\#}$ , then the sectional 2-rank of $T$ is at most 4.
PROOF. $C_{T}(Q)$ acts on $\Delta_{0}=F(q_{1})^{*}\cap F(q_{2})^{*},$ $\Delta_{1}=F(q_{1})^{*}-\Delta_{0}$ and $\Delta_{2}=F(q_{2})^{*}-\Delta_{0}$ .

If $|C_{T}(Q)|\geqq 16$, the kernel of this action is not trivial, a contradiction. Henc $e$

we have $|C_{T}(Q)|\leqq 8$ . Let $A$ be a subgroup of $T$ of order 8 containing $C_{T}(Q)$ .
Then $C_{T}(A)\leqq C_{T}(Q)\leqq A$ because $A$ contains $Q$ . By Harada’s theorem, the sec-
tinal 2-rank of $T$ is at most 4, which is contrary to (3).

We note that $T$ has order at least $2^{5}$ by the assumption (3), hence in the
case that $Z(T)$ has no 5-involution, $(3.1)-(3.5)$ hold (see Remark in (3.5)).

(5.2) Suppose $Z(T)$ contains no 5-involution. If $U$ is a subgroup of $T$

such that $Z(U)$ has a 5-involution $u,$ $U$ is semi-regular on $F(u)^{*}$ and $|U|\leqq 2^{4}$ .
PROOF. Let $u$ be a 5-involution in $Z(U)$ . By (3.5), $|U|\leqq 2^{5}$ . Hence we

have only to show $|U|\neq 2^{5}$ . Assume $|U|=2^{5}$ . Then there exists $v\in U$ with
$v|_{F(u)^{*=}}(\beta)(\gamma)(\delta\epsilon)$ where $F(u)^{*}=\{\beta, \gamma, \delta, \epsilon\}$ . By (5.1), $o(v)\neq 2$ , so (3.2) gives
$o(v)=4$ . $C_{T}(v)$ acts on $\{\beta, \gamma\}$ and $\{\delta, \epsilon\}$ . Let $K_{0}$ be the kernel of this action.
Since $|\Omega|\equiv 1(mod 8),$ $K_{0}$ stabilizes a $\langle v\rangle$ -orbit of length 4. Since $[K_{0}, v]=1,$ $K_{0}$

is isomorphic to a subgroup of $Z_{4}$ . Since $G$ contains no odd permutation, $K_{0}$

$\not\cong Z_{4}$ , hence $|C_{T}(v)|=8$, which is contrary to (3) by Harada’s theorem.
(5.3) Suppose $Z(T)$ contains no 5-involution. Then $T_{\beta}\cong 1$ or $T_{\beta}\cong Z_{2}\times Z_{2}$

holds for every $\beta\in\Omega^{*}$ .
PROOF. We take an involution $v\in Z(T_{9})$ . Then $C_{T}(v)|_{F(v)}$ . is semi-regular,

by (5.2). We have $|C_{T}(v)|\geqq 16$ by (3) and Harada’s theorem. Thus $|C_{T}(v)|_{F(v)}.|$

$=4,$ $T_{\beta}\cong Z_{2}\times Z_{2}$ .
(5.4) Let $T_{0}$ be a subgroup of $T$ containing $T_{1}$ . Then $T_{0}$ does not contain

a cyclic subgroup of index 8.
PROOF. Let $x$ be an element of $T_{0}$ with $|T_{0}$ : $\langle x\rangle|=8$ . If $T_{1}$ is a subgroup

of $T_{0}$ of index $2^{n}$ , an element $X^{2}n$ is contained in $T_{1}$ and $|T_{1}$ : $\langle x^{2^{n}}\rangle|=8$, which
is contrary to $T_{1}/T_{2}\cong E_{2^{5}}$ .

(5.5) Suppose $Z(T)$ contains no 5-involution. Then $T_{1}$ acts semi-regularly
on $\Omega^{*}$ .

PROOF. If $T_{1}$ contains a 5-involution $u,$ $|T_{1}$ : $ C_{\tau_{1}}(u)|=|ccl_{\tau_{1}}(u)|\leqq|T_{1}^{\prime}|\leqq$

$\frac{1}{2^{5}}|T_{1}|$ by (2.8). Hence $|C_{T_{1}}(u)|\geqq 2^{5}$ , contrary to (5.2).

First we consider the case that $Z(T)$ has no 5-involution. Next we show



On transitive grouPs 227

that the same argument can apply to the case that $Z(T)$ has a 5-involution.
If $Z(T)$ has no 5-involution, we have $|T|=2^{7}$ or $2^{8}$ by (5.3) and (5.5). Suppose

$|T|=2^{7}$ , then $T_{1}\cong E_{2^{5}}$ and $T_{2}=1$ . There exists a 5-involution $x$ such that $x$

normalizes $T_{1}$ . By (5.4) and (5.5), we get $|T_{1}\langle x\rangle:(T_{1}\langle x\rangle)^{\prime}|=8$ and $x$ inverts
$(T_{1}\langle x\rangle)^{\prime}$ . Since $(T_{1}\langle x\rangle)^{\prime}\leqq T_{1}\cong E_{2^{5}},$ $x$ centralizes $(T_{1}\langle x\rangle)^{\prime}$ . Thus $|(T_{1}\langle x\rangle)^{\prime}|\leqq 4$

and we have $|T|\leqq 2^{6}$ , a contradiction. Next we suppose $|T|=2^{8}$ . By (5.3) and
(5.4), $|T:T_{1}|=2^{2}$ or $2^{3}$ and $|T_{2}|=2$ or 1, respectively. If $N_{T}(T_{1})$ contains a 5-
involution $x$, we have $|T:T_{1}|=2^{2}$ and $T_{2}\cong Z_{2}$ by (2.7) and (5.5). Since $|T_{1}\langle x\rangle$ :
$(T_{1}\langle x\rangle)^{\prime}|=8$ and $x$ inverts $(T_{1}\langle x\rangle)^{\prime}(\leqq T_{1})$ , we have $(T_{1}\langle x\rangle)^{\prime}\cong Z_{4}\times Z_{4}$ by (5.4) and
(5.5), contrary to $T_{1}/T_{2}\cong E_{2^{6}}$ and $T_{2}\cong Z_{2}$ . Hence $N_{T}(T_{1})$ acts semi-regularly on
$\Omega^{*}$ . By (5.3), we get $|T:N_{T}(T_{1})|=2^{2},$ $|T:T_{1}|=2^{3}$ and $T_{2}=1$ . There exists a
5-involution $\chi$ which normalizes $N_{T}(T_{1})$ . As above $x$ inverts $(\langle x\rangle N_{T}(T_{1}))^{\prime}$ .
Hence we have $(\langle x\rangle N_{T}(T_{1}))^{\prime}\cong Z_{4}\times Z_{4}$ since $(\langle x\rangle N_{T}(T_{1}))^{\prime}\leqq N_{T}(T_{1})\triangleright T_{1}\cong E_{2^{5}}$ and
$\Omega_{1}((\langle x\rangle N_{T}(T_{1}))^{\prime})\cong Z_{2}\times Z_{2}$ . But since $|N_{T}(T_{1}):T_{1}|=2$ and $T_{1}\cong E_{2^{5}},$ $N_{T}(T_{1})$ does
not contain a subgroup isomorphic to $Z_{4}\times Z_{4}$ . Thus we get a contradiction.

We now consider the case $Z(T)$ has a 5-involution $z$ . If $T|_{F(z)}$ . is isomor-
phic to $D_{8}$ , in the same way as in the proof of (4.3), $T$ has a cyclic subgroup
of index 8, contrary to (5.4). Suppose $T|_{F(z)}.\cong Z_{4}$ . There exists an element
$y\in T-K$ such that $0(y)=4$ and $y^{2}$ is a 5-involution in $T-K$ (see Remark in
(4.6)). Set $y^{2}=x$ . By (2.3), we have $ K\cap ccl_{G}(x)\neq\emptyset$ . Since $|K\langle x\rangle$ : $(K\langle x\rangle)^{\prime}|=8$

and $C_{K}(x)\cong Z_{4},$ $(K\langle x\rangle)^{\prime}$ is a cyclic subgroup of $ K\langle x\rangle$ of index 8. Hence $T_{1}$ is
not contained in $ K\langle x\rangle$ . Take $y_{1}$ in $ T_{1}-K\langle x\rangle$ . Clearly $O(y_{1})=4$ and $y^{2}$ is a 5-

involution. Since $|T_{1}$ : $C_{T_{1}}(y_{1})|=|ccl_{T_{1}}(y_{1})|\leqq|T_{1}^{\prime}|\leqq\frac{1}{2^{5}}|T_{1}|$ , it follows that

$|C_{T_{1}}(y_{1})|\geqq 2^{\overline{o}}$ . $C_{T_{1}}(y_{1})$ acts on $F(y_{1}^{2})^{*}(\subseteqq\Omega-F(z))$ . Let $K_{1}$ be the kernel of this
action. Since $|\Omega|\equiv 5(mod 8)$ , we have $|C_{T_{1}}(y_{1})|=2^{5}$ and $C_{T_{1}}(y_{1})/K_{1}\cong D_{8}$ There
exists an element $u\in C_{T_{1}}(y_{1})$ such that $u|_{F(y_{1}^{2})}.=(\beta)(\gamma)(\delta\epsilon)$ where $F(y_{1}^{2})^{*}=\{\beta,$

$\gamma$,
$\delta,$

$\epsilon$}. Considering the cycle structure of $u$ , we get $O(u)=2$ , contrary to (5.1).

Hence we have $T/K\cong Z_{2}\times Z_{2}$ and $T|_{F(K)}$ . is semi-regular. From this, $(5.1)-$

(5.5) hold for $T_{9-F(K)}$ . Thus we obtain a similar contradiction.

\S 6. Proof of Theorem 3.

By Theorem 1, Lemma 2 and the Fong’s theorem [7], we know any simple
$(1, 5)$-group $G$ satisfies one of the following:

(1) $G$ has a unique conjugate class of involutions.
(2) $G$ has sectional 2-rank at most 4 and a Sylow 2-subgroup of $G$ has

order at most $2^{8}$ .
By Rowlinson’s Theorem of [18], these are $e$quivalent to the following:

(i) $G$ is a simple group of Bender type.
(ii) $G\cong L_{2}(q)(q\equiv 1(mod 2))$ .
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(iii) A Sylow 2-subgroup of $G$ is semi-dihedral.
(iv) $G$ is not of type $(i)-(iii)$ and has sectional 2-rank at most 4, moreover

$|G|_{2}\leqq 2^{8}$ .
CASE (i). We prove the followihg Lemma.
LEMMA 5. Let $G$ be a simple group of Bender type and $T$ be a Sylow 2-

subgroup of $G$ .
(1) If $H$ is a (unique) subgroup of $N_{G}(T)$ of index $\mu$ where $\mu$ is odd, then

$G$ is a simple $(1, \mu)$-group as a permutation group on the cosets $G/H$.
(2) If $G$ is a simple $(1, \mu)$-grouP on a set $\Omega$ where $\mu$ is odd, then $(G, \Omega)$ is

equivalent to a permutation representation obtained by (1).

PROOF. (1) Sinc$eN_{G}(T)$ is isomorphic to one point stabilizer as a $(1, 1)$-permu-
tation representation of $G,$ $N_{G}(T)$ is a strongly embedded subgroup of $G$ (cf. [3]).

Set $G=\bigcup_{i}N_{G}(T)X_{i}$ and $N_{G}(T)=_{j=1}^{\mu}UHy_{j}$ , the left coset decomposition. We

can look on $G$ as permutation group on the cosets $UHy_{j}x_{i}i,j$ Let $z$ be an
arbitrary element contained in $T^{*}$ . Then we have $(Hy_{j}x_{i})z=Hy_{j}x_{i}$ if and only
if $z\in H^{yJ^{x_{i}}}$ . Since $H$ is a normal subgroup of $N_{G}(T)$ , we have $z\in H^{yj^{x}i}$ if and
only if $z\in(N(T))^{yJ^{x_{i}}}=(N(T))^{x_{i}}$ . Since $N_{G}(T)$ is a strongly embedded subgroup
of $G$ , we have $z\in(N_{G}(T))^{x_{i}}$ if and only if $x_{i}\in N_{G}(T)$ . Thus $z$ fixes exactly $\mu$

cosets $\cup^{\mu}Hy_{j}x_{i}$ , whence $(G, G/H)$ is a $(1, \mu)$-group.
$j=1$

(2) Let $(G, \Omega)$ be as in (2) and $H$ be a stabilizer of a point $\alpha\in\Omega$ . Since
$G$ have a $\mu$-involution and $\mu$ is odd, it follows that $|\Omega|$ is odd, hence $H$ con-
tains a Sylow 2-subgorup $T$ of $G$ . By the structure of $G,$ $H$ is 2-closed. Let
$x$ be an involution in $T$. By (2.4), we have $\mu=|F(x)|=|C_{G}(x)|\cdot|ccl_{G}(x)\cap H|/|H|$ .
Since $H$ is 2-closed and $G$ has a unique conjugate class of involutions, we have
$|ccl_{G}(x)\cap H|=|ccl_{G}(x)\cap N_{G}(T)|$ , hence

$\mu=|F(x)|=(|C_{G}(x)|\cdot|ccl_{G}(x)\cap N_{G}(T)|/|N_{G}(T)|)\times(|N_{G}(T)|/|H|)=|N_{G}(T):H|$ .

From this, it follows that a simple $(1, 5)$-group of type (i) is (1) or (2) of
Theorem 3.

CASE (ii).

LEMMA 6. A simple $(1, 5)$-group of type (ii) is one of the $g\gamma oups$ listed in
(3) $-(7)$ of Theorem 3.

PROOF. Let $P$ be an odd prime and $q=p^{n}>3$ . Suppose $G$ is a $(1, 5)$-group
on a set $\Omega$ which is isomorphic to $L_{2}(q)$ . If $H$ is a stabilizer of a point in $\Omega$ .
Sinc$e|\Omega|$ is odd, $H$ contains a Sylow 2-subgorup of $G$ . Hence by the Dickson’s
Theorem ([13] p. 213), $H$ is isomorphic to one of the following:

(a) Dihedral group of order $2z$ where $z|(q-\epsilon)/2,$ $q\equiv\epsilon\in\{-1,1\}(mod 4)$ .
(b) $A_{4},$ $T---3$ or 5 $(mod 8)$ .
(c) $S_{4},$ $q^{2}-1\equiv 0(mod 16)$ .
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(d) $A_{5},$ $q\equiv 3$ or 5 $(mod 8)$ or $p=5$ or $q^{2}-1\equiv 0(mod 5)$ .
(e) $PSL(2, p^{m}),$ $n=mt$ and $1\neq t\equiv 1(mod 2)$ .
(f) $PGL(2, p^{m}),$ $n=2mt$ and $t\equiv 1(mod 2)$.
We note a centralizer of an involution of $L_{2}(q)$ with $q$ odd has order $(q-\epsilon)$

and $L_{2}(q)$ has a uniqu $e$ conjugate class of involutions.
If $H$ is of type (a), by (2.4), we nave

$5=\frac{(q-\epsilon)(z+1)}{2z}=\frac{(q-\epsilon)/2}{z}$ . $(z+1)$ .

Henc$ez+1=5$ and $\frac{(q-\epsilon)/2}{z}=1$ , whence $q=7$ or $3^{2}$ . Thus (3) or (4) of Theorem

3 holds.
If $H$ is of type (b), we have

$5=\frac{(q-\epsilon)\cdot 3}{|A_{4}|}=\frac{q-\epsilon}{4}$ .
Thus (5) of Theorem 3 holds.

If $H$ is of type (c), we have

$5=\frac{(q-\epsilon)\cdot 9}{|S_{4}|}=\frac{(q-\epsilon)\cdot 3}{8}$ , which can not occur.

If $H$ is of type (d), we have

$5=\frac{(q-\epsilon)\cdot 15}{|A_{5}|}=\frac{q-\epsilon}{4}$ .

Hence (6) of Theorem 3 holds.
If $H$ is of type (e), we have

$5=\frac{(q-\epsilon)\cdot|PSL(2,p^{m})|/(p^{m}-\epsilon)}{|PSL(2,p^{m})|}=\frac{p^{mt}-\epsilon}{p^{m}-\epsilon}$ ,

which can not occur sinc $ep^{m},$ $t\geqq 3$ and $\epsilon\in\{-1,1\}$ .
If $H$ is of type (f), we have

$5=\frac{(q-1)\cdot(p^{m})^{2}}{|PGL(2,p^{m})|}$

$=_{p^{m}}\ovalbox{\tt\small REJECT}\{(p^{m})^{t-1}+\cdots+(p^{m})+1\}\cdot\{(p^{m})^{t-1}-(p^{m})^{t-2}+\cdots-(p^{m})+1\}\cdot p^{2m}$ .

Henc $e$ we get $t=1$ and $p^{m}=5$ . Thus (7) of Theorem 3 holds.
CASE (iii).

LEMMA 7. Let $G$ be a grouP isomorPhic $loL_{3}(q)$ or $U_{3}(q)$ for $q$ odd. If $q$

$\neq 3,5$ then $G$ has no $(1, 5)$-permutation representation.
PROOF. Suppose false. Let $(G, \Omega)$ be a $(1, 5)$-group and $T$ be a Sylow 2-
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subgroup of $G_{\alpha}$ with $\alpha\in\Omega$ . Since $T$ is semi-dihedral or wreathed, $G$ has a
uniqu $e$ conjugate class of involutions ([1]). Hence an involution $z$ contained in
$Z(T)$ is a 5-involution. $C_{G}(z)$ is isomorphic to a quotient of either $GL(2, q)$ or
$GU(2, q)$ by a central subgroup $Z$ of order $(q-\epsilon, 3)$ where $\epsilon=1$ or $-1$ , respec-
tively ([1]). Henc$eG_{G}(Z)$ has a normal subgroup $N$ of index $q-\epsilon/(q-\epsilon, 3)$

isomorphic to $SL(2, q)$ .
Let $K_{0}$ be the kernel of the action of $C_{G}(z)onF(z)$ . Since $q>5$ and $z\in K_{0}$ ,

$N$ is contained in $K_{0}$ and so $C_{G}(z)/K_{0}$ is isomorphic to a subgroup of $Z_{r}$ with
$r=q-\epsilon/(q-\epsilon, 3)$ . Set $K=K_{0}\cap T$. By (2.6), we have $T\neq K$ and so $T/K$ is iso-
morphic to $Z_{2}$ or $Z_{4}$ . Hence $|K|^{2}>T$ because $T$ is semi-dihedral or wreathed.
Thus $K$ is a weakly closed subgroup of $T$ and so $N_{G}(K)$ is transitive on $F(z)$

by the Witt’s Theorem. Since $|F(K)|=5$ , there exists a 5-element $x$ in $N_{G}(K)$

such taht $\langle x\rangle$ is transitive on $F(K)=F(z)$ . By the structure of $T,$ $x$ centralizes
$\Omega_{1}(Z(K))$ , which contains $z$ . Hence $x$ is contained in $C_{G}(z)$ . Thus $C_{G}(z)/K_{0}$

contains a cyclic subgroup of order 2 $\cdot 5$ , contrary to $|F(z)|=|F(K)|=5$ .
Simple group with semi-dihedral Sylow 2-subgroups are $L_{3}(q)(q\equiv-1(mod 4))$ ,

$M_{11}$ or $U_{3}(q)$ ( $q\equiv 1$ (mod4)) by Third Main Theorem of [1]. By Lemma 7, we
can prove that a simple $(1, 5)$-group of type (iii) is (9) of Theorem 3.

CASE (iv)

LEMMA 8. Let $G$ be a $(1, 5)$-group on $\Omega$ with $O^{2}(G)=G$ and $z$ be a central
involution such that

$(*)$ $ C_{G}(z)=L_{1}\cdot L_{2}\langle u\rangle$ ,

$L_{1}\cong SL(2, q_{1}),$ $L_{2}\cong SL(2, q_{2}),$ $u^{2}=1$ ,

$[L_{1}, L_{2}]=1,$ $ Z(L_{1})=Z(L_{2})=L_{1}\cap L_{2}=\langle z\rangle$ ,

$u^{-1}L_{1}\cdot L_{2}u=L_{1}\cdot L_{2}$ .

Then one of the following holds:
(a) $q_{1}\leqq 5$ or $q_{2}\leqq 5$ .
(b) $z$ is not a 5-involution.
PROOF. Suppose false. Let $T$ be a Sylow 2-subgroup of $G$ such that $ z\in$

$Z(T)$ and $u\in T$. Since $|\Omega|$ is odd, there exists $\alpha\in\Omega$ with $T\leqq G_{\alpha}$.
Let $K_{0}$ be the kernel of the action of $C_{G}(z)$ on $F(z)$ . Since $|F(z)|=5,$ $q_{1}$

$>5,$ $q_{2}>5$ and $z$ is contained in $K_{0}$ , it follows that $L_{1}$ and $L_{2}$ are contained in
$K_{0}$ . Hence we have $|T:K|\leqq 2$ where $K=T\cap K_{0}$ . By (2.6), we have $T\neq K$ and
so $T/K\cong Z_{2},$ $u\not\in K$. Sinc $e$ the 2-group $T$ is not of maximal class, we have
$|C_{T}(u)|\geqq 8$, henc$e|C_{K}(u)|\geqq 4$ . On the other hand we have $|C_{K}(u)|\leqq 4$ because
$K$ acts semi-regularly on $\Omega-F(K)$ , hence $|C_{T}(u)|=8$. By (2.3), we get $ccl_{G}(u)$

$\cap K\neq\emptyset$ . Clearly there exists an extremal element $w$ of $T$ in $G$ with $ w\in K\cap$

$ccl_{G}(u)$ . There exists $g\in G$ such that $u^{g}=w$ and $(C_{T}(u))^{g}\leqq C_{T}(w)$ . Since $F(u)$

$\neq F(w)=F(K)$ , we get $(C_{K}(u))^{g}\cap K=1$ . Thus $|C_{K}(u)|=|(C_{K}(u))^{g}|\leqq 2$ , a contra-
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diction.
LEMMA 9. Let $G$ be a finite group isomorphic to $G_{2}(q),$ $D_{4}^{2}(q)$ or $PS_{p}(4, q)$ for

$q$ odd. If $q$ is not equal to 3 or 5, then $G$ has no $(1, 5)$-permutati0n represen-
tation.

PROOF. Suppose false. We note that a centralizer of a central involution
in the groups $G_{2}(q),$ $D_{4}^{2}(q)$ and $PS_{p}(4, q)$ for $q(>5)$ odd is of type $(*)$ of Lemma
8 ([8]). Moreover $G_{2}(q)$ and $D_{4}^{2}(q)$ for $q$ odd have a unique conjugate class of
involutions and so Lemma 8 shows that $G_{2}(q)$ and $D_{4}^{2}(q)(q>5)$ have no $(1, 5)-$

permutation representation. Since $PS_{p}(4, q)$ for $q(>5)$ odd has two conjugate
classes of involutions, $G$ is isomorphic to $PS_{p}(4, q)$ for some $q$ with $q(>5)$ odd
and central involutions are l-involutions. Henc $e$ noncentral involutions are 5-
involutions and $|\Omega|\equiv 1(mod 8)$ by (3.2). Let $z$ be a central involution of $G$ .
Then the following holds ([22]):

$ C_{G}(z)=L_{1}L_{2}\langle u\rangle$ $[L_{1}, L_{2}]=1$ $u^{2}=1$

$L_{1}^{u}=L_{2}$ $L_{1}\cong L_{2}\cong SL(2, q)$

$ L_{1}\cap L_{2}=Z(L_{1})=Z(L_{2})=\langle z\rangle$ $ccl_{G}(z)\exists\ni u$ .
From this, $M=\{xx^{u}|x\in L_{1}\}$ is a subgroup of $C_{G}(u)$ and isomorphic to $L_{2}(q)$ with
$\langle u\rangle\cap M=1$ . Let $K_{0}$ be the kernel of the action of $L_{1}\cdot L_{1}\langle u\rangle\cap C_{G}(u)$ on $F(u)$ .
Since $|F(u)|=5$ and $q>5,$ $M$ is contained in $K_{0}$ , hence $\langle u\rangle\times M\leqq K_{0}$ . Thus we
have $|\Omega|\equiv 5(mod 8)$ because $|\langle u\rangle\times M|_{2}\geqq 8$, which is contray to $|\Omega|\equiv 1(mod 8)$ .

LEMMA 10. Let $q(>5)$ be equal to an odd pOwer of 3. $Re(q)$ has no $(1, 5)-$

pemutation representation. (Here $Re(q)$ is a group of Ree type.)

PROOF. Suppose false. Let $z$ be an involution of $Re(q)$ . The centralizer
of $z$ in $Re(q)$ is equal to $\langle z\rangle\times L$ where $L$ is isomorphic to $L_{2}(q)$ . Since $Re(q)$

has a unique conjugate class of involutions, $z$ is a 5-involution. Let $K_{0}$ be the
kernel of the action of $\langle z\rangle\times L$ on $F(z)$ . Then $L\leqq K_{0}$ because $|F(z)|=5$ and $q$

$\geqq 3^{3}$ . Hence $\langle z\rangle\times L=K_{0}$ , which is contrary to (2.6).

LEMMA 11. Let $q$ be a pOwer of an odd pnme and $G$ be a finite group
isomorphic to $U_{4}(q)(q\not\equiv 7(mod 8))orL_{4}(q)(q\not\equiv 1(mod 8))$ . If $q>5,$ $G$ has no $(1, 5)-$

permutation representation.
PROOF. We can $e$asily show that a Sylow 2-subgroup of $G$ has order at

least $2^{9}$ when $q\equiv 1,7(mod 8)$ . Moreover $U_{4}(q)$ with $q\equiv 3(mod 8)$ and $L_{4}(q)$ with
$q\equiv 5(mod 8)$ have a unique conjugate class of involutions. Hence by Theorem
1 and Theorem of [18], $G$ has no $(1, 5)$-permutation representation with the
exception of $U_{4}(q)$ with $q\equiv 5(mod 8)$ and $L_{4}(q)$ with $q\equiv 3(mod 8)$ . From this,
if the lemma is false, $G$ is isomorphic to $U_{4}(q)$ with $q\equiv 5(mod 8)$ or $L_{4}(q)$ with
$q\equiv 3(mod 8)$ . Let $z$ be a central involution of $G$ and $q\equiv\epsilon\in\{-1,1\}$ (mod4).
Then $C_{G}(z)$ has the following structure ([16], [17]):

(a) $C_{G}(z)=L_{1}L_{2}\langle u, w\rangle\triangleright L_{1}L_{2}$
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$L_{1}\cong L_{2}\cong SL(2, q),$ $[L_{1}, L_{2}]=1$

$L_{1}\cap L_{2}=Z(L_{1})=Z(L_{2})=\langle z\rangle,$ $L_{1}L_{2}\cap\langle v, w\rangle=1$

$\langle v, w\rangle\cong the$ dihedral group of order $2(q+\epsilon)$

$u^{2}=1,$ $w^{u}=w^{-1},$ $L_{1}^{u}=L_{2}$ .
(b) $G$ has two conjugate classes of involutions:

$u\sim z\theta uz$

$C_{G}(z)\cap C(u)=C_{G}(z)\cap C(uz)$

$\geqq\langle u\rangle\times\langle x_{1}x_{1}^{u}|x_{1}\in L_{1}\rangle,$ $\langle uz\rangle\times\langle x_{1}x_{1}^{u}|x_{1}\in L_{1}\rangle$ .
First we consider the case that $z$ is a 5-involution. Let $K_{0}$ be the kernel

of the action of $C_{G}(z)$ on $F(z)$ . Since $q>5$ and $|F(z)|=5$ , we have $L_{1}L_{2}\leqq K_{0}$ .
Set $q+\epsilon=2^{n}\cdot d$ with $q$ odd. Since $q\equiv\epsilon\in\{-1,1\}$ (mod4), $n$ is equal to 1, hence
$v=w^{d}$ is an involution and $|\langle u, w\rangle|_{2}=|\langle u, v\rangle|$ . Let $T$ be a Sylow 2-subgroup
of $C_{G}(z)$ with $ T\geqq\langle u, v\rangle$ . Set $K=T\cap K_{0}$ . If $u\in K_{0}$ , we have $|T:K|=2$ . In this
case, $v$ is a 5-involution, hence $|C_{K}(v)|\leqq 4$ . On the other hand, we have $\langle z, u\rangle$

$\leqq C_{K}(v)$ , hence $|C_{K}(v)|=4$ . There exists an extremal element $v_{0}$ of $T$ in $G$

with $v_{0}\in K\cap ccl_{G}(v)$ . There exists $g\in G$ such that $v^{g}=v_{0}$ and $(C_{T}(v))^{g}\leqq C_{T}(v_{0})$ .
Since $F(v)\neq F(K)=F(v_{0})$ , we have $(C_{K}(v))^{g}\cap K=1$ . Thus $|C_{K}(v)|=|(C_{K}(v))^{g}|=2$ ,
a contradiction. If $u\not\in K_{0}$ , we have $F(u)\neq F(z)$ . Since $\langle x_{1}x_{1}^{u}|x_{1}\in L_{1}\rangle$ is a sub-
group of $K_{0}$ isomorphic to $L_{2}(q)$ , the set $F(\langle z\rangle\times\langle x_{1}x_{1}^{u}|x_{1}\in L_{1}\rangle)$ is equal to $F(K)$ ,
which shows $|F(u)|\geqq 2^{3}+1$ , a contradiction.

Now we consider the case that $z$ is a l-involution. In this case $uz$ is a 5-
involution by (b). Since $\langle uz\rangle\times\langle\chi_{1}\chi_{1}^{u}|x_{1}\in L_{1}\rangle$ is isomorphic to $Z_{2}\times L_{2}(q)$ with
$q>5$, we get $|F(\langle uz\rangle\times\langle x_{1}x_{1}^{u}|x_{1}\in L_{1}\rangle)|=|F(\langle uz\rangle)|=5$ , hence $|\Omega-F(uz)|\equiv 0$

$(mod 8)$ , which is contrary to (3.2).
By Lemma 7-11, Theorem 1 and Harada’s Theorem ([10]), we can easily

show that a simple $(1, 5)$-group of type (iv) is one of the groups listed in (8)
(10) (11) and (12) of Theorem 3 and the others in the Harada’s list of Main
Theorem of [10] have no $(1, 5)$-permutation representation.

\S 7. Proof of Theorem 4.

Let $(G, \Omega)$ be a $(2, 5)$-group and $N$ be a minimal normal subgroup of $G$ .
First we suppose $N$ is an elementary abelian p-group for some prime $P$ and

$G$ is not of type (1) of Theorem 4. Clearly $p$ is equal to 5 and $G$ is a sub-
group of automorphisms of an affine spac $e$ over $GF(5)$ of dimension 2 or 3
because $G_{\alpha}$ contains a four group whose involutions have 1 or 5 fixed points.
In the case of $|N|=5^{3},$ $G$ has no l-involution.
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(7.1) If $N$ is isomorphic to $Z_{5}\times Z_{5}\times Z_{5}$ and $G$ is not of type (1) of Theorem
4, then (2) of Theorem 4 holds.

PROOF. Let $G_{\alpha}$ be a stabilizer of a point $\alpha\in\Omega$ . We may assume $G_{\alpha}$ is a
subgroup of $GL(3,5)$ . Since $G_{\alpha}$ is transitive on $\Omega-\{a\}$ , $\Omega|-1=2^{2}\cdot 31$ divides
$|G_{\alpha}|$ and any element of order 31 has a uniqu $e$ fixed point.

If $G_{\alpha}$ has an elementary abelian normal subgroup $A$ of odd order, we have
$|A|=31$ and $A$ acts semi-regularly on $\Omega-\{\alpha\}$ . By assumption, $G_{\alpha}$ contains a
four group $B$ , which normalizes $A$ , hence some involution $x\in B$ centralizes $A$ .
Since $|C_{v\wedge}(y)|=5$ for any $y\in B$ , we have $|F(x)|=5$ and $A$ acts on $F(x)$ . Hence
$A$ is not semi-regular on $\Omega-\{\alpha\}$ , a contradiction.

If $G_{\alpha}$ has an elementary abelian normal subgroup $A$ of even order, an ele-
ment $v\in G_{\alpha}$ of order 31 centralizes $A$ . By semi-regularity of $v$ on $\Omega-\{\alpha\}$ ,
$eve$ry involution in $A$ have a unique fixed point $\alpha$ , a contradiction.

Thus a minimal normal subgroup $A$ of $G_{\alpha}$ is the direct product of isomor-
phic non abelian simple groups. Since $A$ is a subgroup of $GL(3,5),$ $A$ is a

simple group. The order of $A$ is divisible by 31 because $A$ is $\frac{1}{2}$ -transitive

on $\Omega-\{\alpha\}$ . Henc $e$ $A$ is contained in $SL(3,5)$ . Let $Q$ be a Sylow 31-subgroup
of $A$ . By Sylow’s theorem, we have $|A:N_{A}(Q)|=2^{5}$ or $2^{5}5^{3}$ and so a Sylow
2-subgroup of $A$ is isomorphic to that of $SL(3,5)$ . Since $A\leqq SL(3,5)$ , we get
$A=SL(3,5)$ . If $A$ is a proper subgroup of $G_{\alpha}$ , it follows that the element

$\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & -1\end{array}\right)$ is contained in $G_{\alpha}$, which is a 25-involuton, a contradiction. Hence

$G_{\alpha}=A=SL(3,5)$ , which shows (7.1).

(7.2) If $N$ is isomorphic to $Z_{5}\times Z_{5}$ , then we have (3), (4), (5) or (6) of
Theorem 4.

PROOF. Let $G_{\alpha}$ be the stabilizer of a point $\alpha\in\Omega$ . We may assume $G_{\alpha}$ is
a subgroup of $GL(2,5)$ . Since $G_{\alpha}$ is transitive on $\Omega-\{\alpha\}$ , $G_{\alpha}|$ is divisible by
$|\Omega-\{\alpha\}|=2^{3}\cdot 3$ . The order of $G_{\alpha\beta}$ for $\beta\in\Omega-\{\alpha\}$ is even because $G_{\alpha\beta}$ contains
a 5-involution, hence $G_{\alpha}|$ is divisible by $2^{4}3$ .

If $G_{\alpha}|$ is divisible by 5, it follows that $G_{\alpha}=GL(2,5)$ or a subgroup of
$GL(2,5)$ of index 2 containing $SL(2,5)$ . An involution in $GL(2,5)$ Pxes one or
five points and $SL(2,5)$ contains no 5-involution, hence we have (3) or (4) of
Theorem 4.

If $G_{\alpha}|$ is not divisible by 5, we have $G_{\zeta f}|=2^{4}\cdot 3$ or $2^{5}\cdot 3$ . The normalizer
of a Sylow 3-subgroup of $GL(2,5)$ has order $2^{3}\cdot 3$ , hence $O(G_{\alpha})=1$ and $O_{2}(G_{\alpha})$

$\neq 1$ . Since $O(G_{\alpha})=1$ , an element of order 3 can not centralize $O_{2}(G_{\alpha})$ , hence it
can not stabilize the following normal series: $O_{2}(G_{\alpha})\triangleright O_{2}(G_{\alpha})\cap SL(2,5)\triangleright 1$ .
Since the factor group $O_{2}(G_{a})/O_{2}(G_{\alpha})\cap SL(2,5)$ is cyclic and a Sylow 2-subgroup
of $SL(2,5)$ is quaternion of order 8, it follows that $O_{2}(G_{\alpha})\cap SL(2,5)$ is a Sylow
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2-subgroup of $SL(2,5)$ . Set $P=O_{2}(G_{\alpha})\cap SL(2,5)$ . $G_{\alpha}$ is contained in $N_{GL(2,5)}(P)$ ,

which is a subgroup of $GL(2,5)$ of index 5. Henc $e$ we obtain (5) or (6) of
Theorem 4.

Next we assume that $N$ is not solvable. In this case $N$ is a simple $(1, \mu)-$

group where $\mu\in\{1,3,5\}$ or $N$ is isomorphic to $A_{5}\times A_{5}$ and $G$ is a subgroup of

$Aut(N)$ containing $N$. We note $N_{\alpha}$ is $\frac{1}{2}$ -transitive on $\Omega-\{\alpha\}$ for $\alpha\in\Omega$

because $G_{\alpha}$ is transitive on $\Omega-\{\alpha\}$ and $G_{\alpha}\triangleright N_{\alpha}$ . From this $N$ is not isomor-
phic to $A_{5}\times A_{5}$ .

(7.3) If $N$ is a simple $(1, 1)$-group, then (7), (8), (9) or (10) of Theorem 4
holds.

PROOF. If $N$ is a simple $(1, 1)$-group, $N$ is isomorphic to one of the follow-
ing groups in its usual representation: $L_{2}(2^{n}),$ $S_{Z}(2^{n}),$ $U_{3}(2^{n})(n\geqq 2)$ . Since $N$ is
2-transitive on $\Omega$ , it will suffice to consider that $G$ is a $(1, 5)$-group or not.
Let $T$ be a Sylow 2-subgroup of $N_{\alpha}(\alpha\in\Omega)$ and $x$ be a 5-involution in $G_{a}$ . Since
$N_{\alpha}$ is 2-closed ([3]), $x$ normalizes $T$ and also $Z(T)$ , which is an elementary

abelian 2-group. We have $|C_{Z(T)}(x)|\leqq 2^{2}$ by semi-regularity of $T$ on $\Omega-\{\alpha\}$

and so $|Z(T)|\leqq 2^{4}$ by (2.7), hence $2\leqq n\leqq 4$ . From this we can verify (7.3) by [21].

(7.4) If $N$ is a simple $(1, 3)$-group, $G$ is isomorhic to $S_{7}$ in its usual repre-
sentation, that is, (11) of Theorem 4 holds.

PROOF. Let $M$ be the subgroup which consists of all even permutations in
$G$ . Since a 3-involution is a even permutation in this case and $G$ contains a
5-involution, we have $|G:M|=2$ and involutions in $M$ are 3-involutions. Sinc $e$

$G_{\alpha\beta}$ contains a 5-involution for $\alpha\neq\beta\in\Omega$ , it follows that $|G_{\alpha\beta}$ : $M_{\alpha\beta}|=|G_{\alpha\beta}\cdot M$ :
$M|=2$ and so $M$ is a $(2, 3)$-group. By King’s Theorem ([14]), $M$ is isomorphic
to (a), (b), (f), (g), (h) or (i) of his list. Hence we can easily verify (7.4).

(7.5) If $N$ is a simple $(1, 5)$-group, then (12), (13), (14) or (15) of Theorem
4 holds.

PROOF. If $N$ is of type (1) or (2) of Theorem 3, any element in $T^{\#}$ has
the same set of Pxed points (see the proof of Lemma 5). Here $T$ is a unique
Sylow 2-subgroup of $N_{\alpha}(\alpha\in\Omega)$ . Since $T$ is characteristic in $N_{\alpha},$ $T$ is a normal
subgroup of $G_{\alpha}$, henc$eT$ fixes $\Omega-\{\alpha\}$ pointwise, a contradiction.

The automorphism groups of the simple groups (3) $-(12)$ of Theorem 3 are
known. Hence we can verify (7.5).
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