J. Math. Soc. Japan Vol. 30, No. 1, 1978

Remarks on conditional expectations in von Neumann algebra

By Yoshikazu KATAYAMA

(Received Aug. 8, 1975)

1. Introduction. The conditional expectation has been studied by several authors, e. g. [1] F. Combes, [5] I. Kovács and J. Szüces, [6] M. Nakamura and T. Turumaru and [9] H. Umegaki. Here in this note, we shall make a detailed study on the conditional expectation T_{ϕ} from M to $(M^{\Sigma\phi})e_{\phi}$ (See [1]). We then apply it to the strict semi-finiteness of weight.

The author wishes to thank Professors O. Takenouchi and S. Kitagawa for their helpful suggestions.

2. Conditional expectation. Given a weight ϕ on a von Neumann algebra M, we denote by m_{ϕ} the *-subalgebra spanned by $n_{\phi}^* n_{\phi}$ where $n_{\phi} = \{x \in M; \phi(x^*x) < +\infty\}$. The linear extension on m_{ϕ} of $\phi|_{(m_{\phi})+}$ will be denoted by $\dot{\phi}$.

The following theorem is a slight modification of [8] Theorem 3, which plays a crucial role in our study. The σ_t -invariance of T follows from the uniqueness of T.

THEOREM 1. Let M be a von Neumann algebra, ϕ a faithful normal semifinite weight on M, N a von Neumann subalgebra of M on which $\phi|_{N_+}$ is semifinite.

Then the following two statements are equivalent;

- (i) N is invariant under the modular automorphism group σ_t associated with ϕ .
- (ii) There exists a unique σ -weakly continuous conditional expectation T from M on N such that $\phi(x) = \phi \circ T(x)$ for all $x \in M_+$.

By excluding the condition " $\phi|_{N_+}$ is semi-finite" in the above Theorem 1, we get the following proposition.

PROPOSITION 2. Let M be a von Neumann algebra, ϕ a faithful normal semi-finite weight on M, N a von Neumann subalgebra, e_0 the greatest projection in the σ -weak closure of $m_{\phi}|_{N_+}$.

Then the following two statements are equivalent;

- (i) $e_0 N e_0$ is invariant under the modular automorphism group $\Sigma = \{\sigma_t\}$ associated with ϕ .
- (ii) e_0 is a projection of the subalgebra M^{Σ} of fixed points of M for Σ and

there exists a unique σ -weakly continuous conditional expectation T from Mon e_0Ne_0 such that $\phi(e_0xe_0)=\phi\circ T(x)$ for all $x\in M_+$. PROOF. (i) \rightarrow (ii).

Since e_0Ne_0 is invariant under Σ , $\sigma_t(e_0) \leq e_0$ for all t and hence $e_0 \in M^{\Sigma}$. We define a weight ψ by $\psi = \phi|_{(Me_0)_+}$. Then it follows from [7] Theorem 3.6 that ψ is a faithful normal semi-finite weight on M_{e_0} . Moreover by the construction of $e_0, \psi|_{(Ne_0)_+}$ is also semi-finite on N_{e_0} .

The modular automorphism group σ_t^{ψ} associated with ψ is the restriction $\sigma_t|_{M_{e_0}}$ on M_{e_0} , therefore N_{e_0} is invariant under σ_t^{ψ} . By Theorem 1 there exists a σ -weakly continuous conditional expectation T_1 from M_{e_0} on N_{e_0} such that $\psi(x) = \psi \circ T_1(x)$ for all $x \in (M_{e_0})_+$. Then putting a σ -weakly continuous conditional expectation T by $T(x) = T_1(e_0 x e_0)$ for all $x \in M$, we get;

$$\phi(e_0 x e_0) = \phi \circ T(x)$$

for all x in M_+ .

Let T' be another conditional expectation of the same properties. For each $x \in (m_{\phi})_+$, we get;

$$\phi((T(x)-T'(x))^*(T(x)-T'(x)))$$

$$=\phi[(T\{T(x)-T'(x))^*x\}-T'\{(T(x)-T'(x))^*x\}]$$

$$=\phi[e_0\{(T(x)-T'(x))^*\}e_0]-\phi[e_0\{(T(x)-T'(x))^*x\}e_0]$$

$$=0.$$

Since ϕ is faithful, we get;

$$T(x) - T'(x) = 0$$
 for all $x \in (m_{\phi})_+$

Since m_{ϕ} is σ -weakly dense in M, T_1 and T_2 are σ -weakly continuous $T_1(x) = T_2(x)$ for all $x \in M$.

(ii) \rightarrow (i) The first part of statement (ii) implies that ψ is semi-finite as before. By applying Theorem 1 to M_{e_0} , N_{e_0} , ψ , $\psi|_{(N_{e_0})^+}$ and $T|_{(M_{e_0})^-}$ instead of $M, N, \phi, \phi|_{N_+}$ and T, it follows from Theorem 1 that N_{e_0} is invariant under σ_t^{ϕ} for all $t \in \mathbf{R}$. On the other hand, $e_0 N e_0$ is invariant under Σ since $\sigma_t^{\phi} = \sigma_t|_{M_{e_0}}$.

We shall recall some definitions from [1]. Let ϕ be a faithful normal semi-finite weight on M_+ . Put

$$A_{\phi} = \{x \in n_{\phi}^{*} \cap n_{\phi}; \dot{\phi}(xy) = \dot{\phi}(yx) \text{ for all } y \in n_{\phi}^{*} \cap n_{\phi}\}$$

and let M_{ϕ} denote the σ -weak closure of A_{ϕ} .

COROLLARY 3. Let M be a von Neumann algebra, ϕ a faithful normal semi-finite weight on M_+ with the modular automorphism group $\Sigma = \{\sigma_t\}$, e_0 the

greatest projection of $m_{\phi}|_{M\Sigma}$.

Then there exists a unique σ -weakly continuous conditional expectational T from M onto $(M^{\Sigma})_{e_0}$ such that;

$$\phi(e_0 x e_0) = \phi(T x)$$

for all $x \in M_+$. Moreover $M_{\phi} = e_0 M^{\Sigma} e_0$.

PROOF. The first part of statement can be proved by replacing M^{Σ} in exchange for N in Proposition 2. Therefore we may have only to show that M_{ϕ} is the σ -weak closure of $m_{\phi}|_{(M\Sigma)+}$.

For each $x \in m_{\phi}|_{(M\Sigma)_{+}}$ we see by [7] Theorem 3.6

$$\phi(xz) = \phi(zx)$$
 for all $z \in m_{\phi}$,

which implies $\phi(x(y^*z)) = \phi((y^*z)x)$ for all $z, y \in n_{\phi}^* \cap n_{\phi}$

$$<\pi_{\phi}(y^{*})\eta_{\phi}(z) | \eta(x^{*}) >$$

$$= <\eta_{\phi}(x) | \pi_{\phi}(z^{*})\eta_{\phi}(y) >$$

$$= <\eta_{\phi}(x) | S\pi_{\phi}(y^{*})\eta_{\phi}(z) >$$

$$= < \varDelta^{1/2}\phi\pi_{\phi}(y^{*})\eta_{\phi}(z) | J_{\phi}\eta_{\phi}(x) >$$

Since m_{ϕ} is a σ -weakly dense *-subalgebra of M, there exists a net $\{u_{\lambda}\}$ in $(m_{\phi})_{+}$ such that $\{u_{\lambda}\}$ converges σ -strongly to 1 with $||u_{\lambda}|| \leq 1$ for all λ . Put $y_{\lambda} = \pi^{-1/2} \int_{-\infty}^{\infty} (\exp -t^2) \sigma_t(u_{\lambda}) dt$, then y_{λ} is an element of $(m_{\phi})_{+}$ which is analytic for σ_t , moreover $\sigma_{\alpha}(y_{\lambda})$ converges strongly to 1 and $\sigma_{\alpha}(y_{\lambda})$ is bounded for all $\alpha \in C$. [See [7] Lemma 5.2.]

Replacing y_{λ} by y, we get;

$$\begin{aligned} &<\pi_{\phi}(y_{\lambda}^{*})\eta_{\phi}(z) | \eta_{\phi}(x^{*}) > \\ &= <\pi_{\phi}(\sigma_{-i/2}(y_{\lambda})) \varDelta^{1/2}{}_{\phi}\eta_{\phi}(z) | J_{\phi}\eta_{\phi}(x) > . \\ &<\eta_{\phi}(z) | \eta_{\phi}(x^{*}) > = \lim_{\lambda} <\pi_{\phi}(y_{\lambda}^{*})\eta_{\phi}(z) | \eta_{\phi}(x^{*}) > \\ &= \lim_{\lambda} <\pi_{\phi}(\sigma_{-i/2}(y_{\lambda})) \varDelta^{1/2}{}_{\phi}\eta_{\phi}(z) | J_{\phi}\eta_{\phi}(x) > \\ &= <\varDelta^{1/2}{}_{\phi}\eta_{\phi}(z) | J_{\phi}\eta_{\phi}(x) > , \end{aligned}$$

Therefore

which implies
$$\phi(xz) = \phi(zx)$$
 for all $z \in n_{\phi}^* \cap n_{\phi}$. By the definition of M_{ϕ} we get $m_{\phi}|_{(M\Sigma)_{+}} \subset M_{\phi}$.

Conversely for $x \in A_{\phi}$, it follows from [7] Theorem 3.6 that $x \in M^{\Sigma}$, then by [1] Lemma 2.2 the σ -weak closure of $m_{\phi}|_{(M^{\Sigma})_{+}}$ contains A_{ϕ} .

DEFINITION 4. T and e_0 in Corollary 3 are written by T_{ϕ} and e_{ϕ} respectively and T_{ϕ} is called the conditional expectation associated with ϕ .

THEOREM 5. (The characterization of e_{ϕ} .)

Υ. ΚΑΤΑΥΑΜΑ

The projection e_{ϕ} is the greatest projection in $\{e \in (M^{\Sigma})_p; M_e \text{ is } \Sigma\text{-finite}\}$.

PROOF. We shall show that $M_{e\phi}$ is Σ -finite. It follows from the uniqueness of T_{ϕ} that $T_{\phi}\sigma_t(x)=T_{\phi}(x)$ for all $x \in M$ and $t \in \mathbb{R}$. If $x \in (m_{\phi})_+$, $y \mapsto \phi(T_{\phi}(x)yT_{\phi}(x))$ is Σ -invariant normal positive linear functional on M since $T_{\phi}(x)$ is in $M^{\Sigma} \cap (m_{\phi})_+$ for $x \in (m_{\phi})_+$ [See [7] Theorem 3.6].

We suppose; $y \in (e_{\phi}Me_{\phi})_+$ and $\phi(T_{\phi}(x)yT_{\phi}(x))=0$ for all $x \in (m_{\phi})_+$. $T_{\phi}(x)yT_{\phi}(x)=0$ for all $x \in (m_{\phi})_+$ since ϕ is faithful. Since m_{ϕ} is a σ -weakly dense *-subalgebra of M, T_{ϕ} is σ -weakly continuous and $T_{\phi}(1)=e_{\phi}$, we get $y=e_{\phi}ye_{\phi}=0$, which implies $M_{e_{\phi}}$ is Σ -finite.

Conversely we suppose that M_e is Σ -finite with $e \in M^{\Sigma}$. By the definition of Σ -finiteness, there exists a family of Σ -invariant normal positive linear functional $\{\omega_i\}_{i\in I}$ on M_e such that the support $s(\omega_i)$ of ω_i is mutually orthogonal with $\sum_{i\in I} s(\omega_i) = e$ [See [5]].

Put

$$\psi = \sum_{i \in I} \omega_i$$
.

Then ψ is a $\{\sigma_t|_{M_e}\}$ -invariant faithful normal semi-finite weight on $(M_e)_+$. On the other hand $\phi|_{(M_e)_+}$ is semi-finite on $(M_e)_+$ and its modular automor phism group $\{\sigma_t^{\phi|_M}\}$ proves to be $\{\sigma_t^{\phi}|_{M_e}\}$.

By Radon-Nikodym Theorem in [7], there exists a unique non-singular positive self-adjoint operator h is affiliated with $(M^{\Sigma})_e$ such that $\psi(\cdot)=\phi|_{M_e}(h\cdot)$, then $\phi|_{M_e}(\cdot)=\psi(h^{-1}\cdot)$ and h is affiliated with $(M_e)^{\Sigma^{\phi}}$. It follows from [7] Theorem 3.6 and $s(\omega_i) \in (m_{\phi})_+$ that

$$\left(e-e\left(\frac{1}{n}\right)\right)s(\omega_i)\left(e-e\left(\frac{1}{n}\right)\right)\in(m_{\phi})_+ \text{ where } h=\int_0^\infty \lambda de(\lambda).$$

Since ω_i is Σ -invariant, $s(\omega_i)$ is a projection of M^{Σ} , and then $\left(e-e\left(\frac{1}{n}\right)\right)s(\omega_i)\left(e-e\left(\frac{1}{n}\right)\right)$ is in $(M^{\Sigma})_e$.

By the definition of e_{ϕ} , we get;

$$\left(e-e\left(rac{1}{n}
ight)
ight)$$
s(ω_i) $\left(e-e\left(rac{1}{n}
ight)
ight)$ \leq e_{ϕ} for all $n\in N$.

Since *h* is non-singular, $e_{\phi} \ge w - \lim_{n \to \infty} \left(e - e \left(\frac{1}{n} \right) \right) s(\omega_i) \left(e - e \left(\frac{1}{n} \right) \right) = e s(\omega_i) e$ then $e \le e_{\phi}$ because $\sum_{i \in I} s(\omega_i) = e$.

Therefore e_{ϕ} is the greatest projection.

In the following Corollary the equivalence of condition (i), (iv) and (v) was proved by Combes [2] 3.4 Théorème.

COROLLARY 6. Let ϕ be a faithful normal semi-finite weight on M_+ . The

4

following statements are equivalent;

- (i) ϕ is strictly semi-finite.
- (ii) $M_{\phi} = M^{\Sigma}$.
- (iii) $e_{\phi}=1$.
- (iv) M is Σ -finite.

(v) There exists a σ -weakly continuous conditional expectation T from M onto M^{Σ} such that $\phi(x) = \phi \circ T(x)$ for all $x \in M_+$. Moreover T in (v) is T_{ϕ} .

PROOF. $(i) \leftrightarrow (ii) \leftrightarrow (iv) \rightarrow (v)$ follow from Corollary 3 and Theorem 5.

(v) \rightarrow (iii). For $x \in (m_{\phi})_+$, we see that $T(x) \in (m_{\phi}|_{M\Sigma})_+$.

In the proof of Corollary 3 we have already shown $m_{\phi}|_{(M\Sigma)_{+}} \subset M_{\phi}$, which implies, $T((m_{\phi})_{+}) \subset M_{\phi}$.

Since $T_{\sigma-W}$ is σ -weakly continuous and m_{ϕ} is σ -weakly dense in $M, M^{\Sigma} = T(\overline{m_{\phi}}^{\sigma-W}) \subset$ $\overline{T(m_{\phi})}^{\circ-w} \subset M_{\phi}$. Since $M^{\Sigma} \supset M_{\phi}$, we get $M_{\phi} = M^{\Sigma}$.

The last statement $T=T_{\phi}$ follows the uniqueness of T_{ϕ} .

THEOREM 7. Let M (resp. N) be a von Neumann algebra, ϕ (resp. ϕ) a faithful normal semi-finite weight on M (resp. N).

Then $e_{\phi} \otimes e_{\phi} = e_{\phi \otimes \phi}$.

PROOF. Let $\Sigma = \{\sigma_t\}$ (resp. $\Sigma^{\psi} = \{\rho_t\}$) be the modular automorphism group associated with ϕ (resp. ϕ), M^{Σ} (resp. $M^{\Sigma\phi}$) the subalgebra of fixed points of M (resp. N) for Σ (resp. Σ^{ϕ}).

We shall prove that $e_{\phi} \otimes e_{\phi} \geq e_{\phi \otimes \phi}.$

Since $(M \otimes N)_{e_{\phi \otimes \psi}}$ is $\Sigma \otimes \Sigma^{\psi}$ -finite by Theorem 5, there exists a family of $\Sigma \otimes \Sigma^{\phi}$ -invariant positive linear functional $\{\omega_i\}_{i \in I}$ on $M \otimes N$ such that $\Sigma s(\omega_i) =$

 $e_{\phi\otimes\psi}$.

 $\tilde{\omega}_i(x) = \omega_i(x \otimes 1)$ for all $x \in M_+$. Put

 $s(\omega_i) \leq s(\tilde{\omega}_i) \otimes 1$. Then we get

On the other hand, since $\tilde{\omega}_i$ is Σ -invariant normal positive linear functional on *M*, we get $s(\tilde{\omega}_i) \leq e_{\phi}$ by Theorem 5, which implies $s(\omega_i) \leq s(\tilde{\omega}_i) \otimes 1 \leq e_{\phi} \otimes 1$.

Similarly we get; $s(\omega_i) \leq 1 \otimes e_{\phi}$ so that $s(\omega_i) \leq e_{\phi} \otimes e_{\phi}$ for all $i \in I$, therefore $e_{\phi \otimes \psi} = \sum_{i \in I} s(\omega_i) \leq e_{\phi} \otimes e_{\psi}.$

By the definitions of e_{ϕ} , e_{ϕ} , $e_{\phi\otimes\psi}$ and of tensor product of weights [See 3 or 4], we get;

 $m_{\phi}|_{M\Sigma} \odot m_{\phi}|_{M\Sigma} \psi \subset m_{\phi \otimes \phi}|_{(M \otimes N)\Sigma \otimes \Sigma} \psi$

and hence

 $e_{\phi} \otimes e_{\phi} \leq e_{\phi \otimes \phi}$. $e_{\phi} \otimes e_{\phi} = e_{\phi \otimes \phi}$. Then we finally get

PROPOSITION 8. Let ϕ (resp. ψ) be a faithful normal semi-finite weight on M_+ (resp. N_+).

 ϕ and ψ are strictly semi-finite if and only if $\phi \otimes \phi$ is strictly semi-finite. PROOF. It follows from Theorem 7 and Corollary 6.

REMARK 9. The result in Proposition 8 has already mentioned without its proof in [4].

References

- F. Combes, Poids et espérences conditionelles dans algèbres de von Neumann, Bull. Soc. Math. France, 99 (1971), 73-112.
- [2] F. Combes, Poids associé à une algèbre hilbertienne à gauche, Compositio Math.,
 23 (1971), 49-77.
- [3] A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup., 6 (1973), 133-252.
- [4] Y. Katayama, The tensor product of weights, Proc. Japan Acad., 50 (1974), 430-432.
- [5] I. Kovács and Szüces, Ergodic type theorems in von Neumann algebras, Acta sci. Math. Szeged, 27 (1966), 233-246.
- [6] M. Nakamura and T. Tsurumaru, Expectations in an operator algebra, Tôhoku Math. J., 6 (1954), 182-188.
- [7] G.K. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math., 130 (1973), 53-87.
- [8] M. Takesaki, Conditional expectations in von Neumann algebra, J. Funct. Anal., 9 (1971), 306-321.
- [9] H. Umegaki, Conditional expectation in an operator algebra, Tôhoku Math. J. 6 (1954), 177-181.

Yoshikazu KATAYAMA

Department of Mathematics Faculty of Engineering Science Osaka University Toyonaka, Osaka Japan

6