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\S 1. Introduction.

In this paper we study real parts of Banach function algebras. In \S 2, we
shall show that uniformly closed ideals in algebras of continuous functions
are determined by their real parts. In \S 3, we shall give a slight generalization
of a theorem of Arenson [1] on real parts of function algebras to the case of
Banach function algebras, and use it to derive results on complex conjugation.

Let $X$ be a compact Hausdorff space and $C(X)$ (resp. $C_{R}(X)$ ) be the space
of all complex (resp. real) valued continuous functions on $X$ . For any subset
$B$ of $C(X)$ , we write as follows:

${\rm Re} B=\{{\rm Re} f;f\in B\}$ ,

$B_{R}=$ { $f\in B;f$ is real-valued} ,

$[B]=the$ uniform closure of $B$ in $C(X)$ ,

$\overline{B}=\{\overline{f};f\in B\}$ ( $\overline{f}$ is the complex conjugate of $f$),

$Z(B)=$ { $x\in X;f(x)=0$ for any $f\in B$}.

We shall call $A$ a function algebra on $X$ if $A$ is a uniformly closed sub-
algebra of $C(X)$ which separates points in $X$ and contains constant functions.
A subalgebra $A$ in $C(X)$ is called a Banach function algebra if $A$ is a Banach
algebra in its own norm. Let $A$ be a linear subspace of $C(X)$ . Then we
denote by $JC_{0}(A)$ (resp. $JC_{1}(A)$ ) the Shilov (resp. Bishop) decomposition for $A$ ,
that is the collection of all subsets of $X$ which are maximal with respect to
inclusion and on which every function from $A_{R}$ is constant (resp. the collec-
tion of maximal antisymmetric subsets).

In our discussions in the forthcoming sections, we need the following
lemma, which is a somewhat strengthened version of Bishop’s theorem (cf.
[4], [6; 3.3]).

LEMMA 1.1. Let $B$ be a uniformly closed subspace of $C(X)$ and let $A$ be a
linear subspace of $C(X)$ such that $B\cdot A\subset B,$ $i$ . $e.,$ $fg\in B$ whenever $f\in A,$ $g\in B$ .
If $f\in C(X)$ and $f|K\in B|K$ for any $K\in JC_{1}(A)$ , then $f\in B$ .
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This lemma can be proved in the same way as the proof of Theorem 1.1
in [4].

\S 2. Real parts of uniformly closed ideals.

In this section, we shall show that uniformly closed ideals in algebras of
continuous functions are determined by their real parts. We begin with the
following

THEOREM 2.1. Let I be a uniformly closed subspace of $C(X)$ , and let $B$ be
a linear subspace of $C(X)$ . Suppose that

(a) $I\subset B$ , (b) Re I $={\rm Re} B$ , (c) $I\cdot B_{R}\subset I$ ,
then $I=B$ .

PROOF. It is not hard to see that these conditions imply $Z(I_{R})=Z(B_{R})$ .
In fact, if $x\not\in Z(B_{R})$ , then there exists a $f\in I$ such that ${\rm Re} f(x)\neq 0$, and ${\rm Re} f$,
${\rm Im} f\in B_{R}$ by the conditions (a) and (b). Since $|f|^{2}\in I_{R}$ by the condition (c),
$x\not\in Z(I_{R})$ . The other inclusion follows from the condition (a). Hence, we obtain
$(B\cap\overline{B})|K=(I\cap\overline{I})|K$ for any $K\in JC_{1}(B\cap\overline{B})$ . On the other hand, $I\cap\overline{I}$ is a
uniformly closed subalgebra of $C(X)$ and $fg\in I\cap\overline{I}$ whenever $f\in I\cap I,$ $g\in B\cap\overline{B}$ .
It follows from Lemma 1.1 that $B\cap\overline{B}\subset I\cap\overline{I}$ and thus $B\cap\overline{B}=I\cap\overline{I}$. If $f\in B$,
then there exists a $g\in I$ such that ${\rm Re} f={\rm Re} g$ by the condition (b). Since
$f-g\in B\cap\overline{B}$, we have $f=g+(f-g)\in I$. This completes the proof.

COROLLARY 2.2. Let $A$ be a subalgebra of $C(X)$ and let I be a uniformly
closed ideal of A. Then we obtain the following:

(i) If $f\in A,$ ${\rm Re} f\in{\rm Re} I,$ ${\rm Im} f\in{\rm Re} I$, then $f\in I$.
(ii) If $J$ is an ideal in $A$ and ${\rm Re} I={\rm Re} J$, then $I=[J]$ .
PROOF. (i) Let $B$ be the linear subspace of $C(X)$ generated by $f$ and $I$.

Then we can easily see that $B$ and $I$ satisfy the hypothesis of Theorem 2.1,
and it concludes that $B=I$.

(ii) We set $I+J=\{f+g;f\in I, g\in J\}$ . Then $I+J$ is an ideal in $A,$ $I+J\supset I$

and ${\rm Re}(I+J)={\rm Re} I$. By Theorem 2.1, we have that $I+J=I$, and so $J\subset I$. It
follows that $[J]\subset I$ and ${\rm Re}[J]={\rm Re} I$. By using Theorem 2.1 again, we have
$[J]=I$.

REMARK. In Theorem 2.1, the condition (c) cannot be removed from the
hypothesis (see [2; 2.3]).

\S 3. A theorem of Arenson.

We shall extend a theorem of Arenson [1] to the case of Banach function
algebras. For any subset $E$ of $X$ and any function $f$ defined on a set con-
taining $E$, we set
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$\Vert f\Vert_{E}=\sup\{|f(x)| ; x\in E\}$ .
Let $A$ be a subalgebra of $C(X)$ . We define

$d(x, y)=\sup\{|f(x)-f(y)| ; f\in A, \Vert f\Vert_{X}\leqq 1\}$

for any $x,$ $y\in X$, and
$D_{A}(F)=\sup\{d(x, y);x, y\in F\}$

for any subset $F$ of $X$.
THEOREM 3.1. Let $A_{2}$ be a Banach function algebra on $X$ which contains

constant functions, and let $A_{1}$ be a subalgebra of $A_{2}$ . If $[{\rm Re} A_{1}]\subset{\rm Re} A_{2}$ , then
there exists a non-negative number $C<2$ such that

$(^{*})$ $D_{A_{1}+C}(K)\leqq C$ for any $K\in JC_{0}(A_{2})$ .
Conversely, if $(*)$ holds for some nonnegative $C<2$, then $[{\rm Re} A_{1}]\subset{\rm Re}[A_{2}]$ .

PROOF. If $\Vert\cdot\Vert_{2}$ denotes the norm of $A_{2}$ , then this is finer than the uniform
norm on $X$, automatically. We note first that ${\rm Re} A_{2}$ can be considered as a
real Banach space with respect to the following norm:

$N(u)=\inf\{\Vert f\Vert_{2} ; f\in A_{2}, {\rm Re} f=u\}$

for $u\in{\rm Re} A_{2}$ . Now assume that $[{\rm Re} A_{1}]\subset{\rm Re} A_{2}$ . Since $\Vert f\Vert_{X}\leqq\Vert f\Vert_{2}$ for any
$f\in A_{2}$ , we have that I $u\Vert_{X}\leqq N(u)$ for any $u\in{\rm Re} A_{2}$ . The closed graph theorem
asserts the existence of a constant $\mathfrak{K}$ such tnat

$\Vert u\Vert_{X}\leqq N(u)\leqq \mathfrak{K}\cdot\Vert u\Vert_{X}$ (1)

for any $u\in{\rm Re} A_{1}$ . We claim that $(*)$ is true for some non-negative constant
$C<2$ . Suppose not. Then for arbitrary $\delta>0$, there exists a $K_{\delta}\in JC_{0}(A_{2})$ such
that

$D_{A_{1}+C}(K_{\delta})>2(1-\delta)$ . (2)

We can here choose a polynomial $P(z)$ which satisfies the following: there
exists an $\epsilon>0$ such that $P(z)$ map the open disc $D=\{z\in C;|z|<1+\epsilon\}$ into
{ $z\in C$ : Rezl $<1$ }, $P(O)=0$ and ${\rm Im} P(1)>2\mathfrak{K}+3$ (cf. [3; Lemma 3.4]). Now let

$\delta$ be a positive number with $ 1-(1+\epsilon/2)^{-1}>\delta$ . Using this $\delta$ in (2), we have $x_{1}$ ,
$x_{2}\in K_{\delta}$ and $f\in A_{1}+C$ such that $\Vert f\Vert_{X}<1$ and $|f(x_{1})-f(x_{2})|>2(1-\delta)$ . If we get
$g=(f-f(x_{1}))(f(x_{2})-f(x_{1}))^{-1}$ , we see easily $g\in A_{1}+C,$ $\Vert g\Vert_{X}<1+\epsilon/2,$ $g(x_{1})=0$ and
$g(x_{2})=1$ . Next, we get $h=P\circ g$. Then $h\in A_{1}+C,$ $\Vert{\rm Re} h\Vert_{X}\leqq 1,$ ${\rm Im} h(x_{2})>2\mathfrak{K}+3$ .
Now, from (1) we have $v\in C_{R}(X)$ such that $({\rm Re} h)+iv\in A_{2}$ and

$\Vert{\rm Re} h+iv\Vert_{2}\leqq(\mathfrak{K}+1)\Vert{\rm Re} h\Vert_{X}\leqq R+1$ .
With this $v$ , we set $k=-i(h-({\rm Re} h+iv))$ . Then $k\in A_{2}$ and real-valued on $X$.
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Hence $k$ is constant on $K_{\delta}$ and so $k(x_{1})=k(x_{2})$ . But

$|k(x_{1})|=|v(x_{1})|\leqq\Vert{\rm Re} h+iv\Vert_{2}\leqq \mathfrak{K}+1$ .
$|k(x_{2})|\geqq|{\rm Im} h(x_{2})|-|v(x_{2})|\geqq \mathfrak{K}+2$ .

This contradiction shows that $(^{*})$ is true.
Conversly, suppose that $(^{*})$ holds for some non-negative constant $C<2$ .

Since $JC_{0}([A_{2}])$ is finer than $JC_{0}(A_{2})$ and $D_{[A_{1}+C]}(E)=D_{A_{1}+C}(E)$ for all subset $E$

of $X$, we have
$D_{[A_{1}+C]}(K)\leqq C$ for any $K\in JC_{0}([A_{2}])$ .

By Arenson’s theorem in [1], we have $[{\rm Re}[A_{1}+C]]\subset{\rm Re}[A_{2}]$ . Thus we get
Theorem 3.1.

COROLLARY 3.2. Under the assumptiOns of the first half of Theorem 3.1, if
$c\chi_{0}(A_{2})$ is a finite class, then $A|K$ for any $K\in JC_{0}(A_{2})$ contains no non-constant
functions.

PROOF. We first note that, since $JC_{0}(A_{2})$ is a finite class, every $f\in A_{2}$

assumes infinitely many distinct values on any given $K\in JC_{0}(A_{2})$ unless $f$ is
constant on $K$. In fact, suppose that $f$ assumes finite many distinct values on
$K$. Since $A_{2}$ contains characteristic function of $K$, we easily find a real-valued
function in $A_{2}$ which is not constant on $K$. Next, take any non-zero $f\in A_{2}$ .
We can choose a $K_{1}\in JC_{0}(A_{2})$ such that $\Vert f\Vert_{X}=\Vert f\Vert_{K_{1}}$ . By Theorem 3.1, there
exists a nonnegative number $C<2$ such that $D_{A_{1}+C}(K_{1})\leqq C$. This implies that
$f$ is equal to a constant, $\alpha_{1}$ , on $K_{1}$ . For, if $f$ is not constant on $K_{1}$ , then there
are $x_{1},$ $x_{2}\in K_{1}$ and $g\in A_{2}$ such that $|g(x_{1})|<\delta,$ $g(x_{2})=\Vert g\Vert_{X}$ , and $1-\delta<\Vert g\Vert_{X}<1$

for any given $\delta>0$ . On the other hand, we know that for any $\epsilon>0$ there
exist a polynomial $Q(z)$ and $\delta>0$ such that $Q(z)$ maps open unit disc into itself
and satisPes that

$|Q(z)+1|<\epsilon/2$ for any $z\in\{z\in C;|z|<\delta\}$ ,

$|Q(z)-1|<\epsilon/2$ for any $z\in\{z\in C;|z-1|<\delta\}$ .

We put $G=Q\circ g$, then $G\in A_{1}+C,$ $\Vert G\Vert_{X}\leqq 1,$ $|G(x_{1})+1|<\epsilon/2$ , and $|G(x_{2})-1|<\epsilon/2$ .
It follows that $D_{A_{1}+C}(K)=2$ , thus we have a contradiction. Assume by induc-
tion that we have found $K_{1},$ $\cdots$ , $K_{n}\in JC_{0}(A_{2})$ and $\alpha_{1},$ $\cdots\alpha_{n}\in C$ such that $f$ is
identically equal to $\alpha_{i}$ on $K_{i}(1\leqq i\leqq n)$ . We put

$F=f(f-\alpha_{1})(f-\alpha_{2})\cdots(f-\alpha_{n})$ .
If $F$ vanishes identically on $X$ , then $f$ can take only a finite number of values,
$0,$ $\alpha_{1},$

$\cdots$ , $\alpha_{n}$ . So the above remark shows that $f$ is constant on any $K\in J_{0}(A_{2})$ ,

which completes the proof. Otherwise, there exists a $K_{n+1}\in JC_{0}(A_{2})$ on which
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$F$ is a non-zero constant. The above remark again shows that $f$ assumes a
constant value, $\alpha_{n+1}$ , on $K_{n+1}$ . Hence, the induction finishes the proof.

From Theorem 3.1, we can prove the following theorem due to S. Saeki
[7].

THEOREM 3.3 ([7]). Let $A$ be a Banach function algebra on $X$, and let $I$

be a subalgebra of A. If
$I\cdot A_{R}\subset I$ and $[{\rm Re} I]\subset A+\overline{A}$ ,

then [I] is closed under complex conjugation.
PROOF. We have $[{\rm Re} I]\subset{\rm Re} A$ . So there exists a non-negative number

$C<2$ such that $D_{I+C}(K)\leqq Cfor$ any $K\in JC_{0}(A)$ . On the other hand, as we shall
see below, the assumption $I\cdot A_{R}\subset I$ implies that $D_{I+C}(K)=0$ or 2 for any $ K\in$

$JC_{0}(A)$ . Thus we have $D_{I+C}(K)=0$ for any $K\in JC_{0}(A)$ , and so have the con-
clusion by Lemma 1.1. Hence it suffices to show only $D_{I+C}(K)=0$ or 2 for any
$K\in JC_{0}(A)$ . If $D_{I+C}(K)>0$ for some $K\in JC_{0}(A)$ , then there are $x_{1},$ $x_{2}\in K$ and
$f\in I$ such that

$f(x_{1})=0$ and $f(x_{2})=\Vert f\Vert_{K}>0$ .

We fix an arbitrary $\epsilon>0$, and let $\delta>0$ and polynomial $Q(z)$ be as in the proof
of Corollary 3.2. We may assume that $1-\delta<f(x_{2})<1$ . Next we set $U=\{x\in X$ ;
$|f(x)|<1\}$ , then $U$ is open and $U\supset K$. Since $K$ is an intersection of peak sets
of $A_{R}$ , there exists $h\in A_{R}$ such that $h=1$ on $K$,

$\Vert h\Vert_{X}=1$ and $|h|<(2\cdot\Vert f\Vert_{X})^{-1}$ on $X\backslash U$ .

If $g=fh\in I$, we get $\Vert g\Vert_{X}<1,$ $g(x_{1})=0$ and $ g(x_{2})>1-\delta$ . We put $F=Q\circ g$, then
$F\in I+C,$ $\Vert F\Vert_{X}\leqq 1,$ $|F(x_{1})+1|<\epsilon/2$ and $|F(x_{2})-1|<\epsilon/2$ . It follows that $D_{I+C}(K)$

$=2$ . Thus the proof is complete.
Saeki’s theorem implies the following corollary (cf. [7]).

COROLLARY 3.4 ([5], [8]). Let $A$ be a function algebra on $X$, and let I be
a closed ideal in A. If $A+\overline{I}$ is uniformly closed in $C(X)$ , then $I=\overline{I}$.

\S 4. Ring conditions.

Let $A$ be a function algebra on $X$, and let $I$ be a uniformly closed ideaI
in $A$ . Since $K$ is an intersection peak sets for any $K\in JC_{1}(A),$ $(I+C)|K$ is
uniformly closed in $C(K)$ . By this fact and a results of Wermer ([3; Corollary
3.6]), we can prove the following two propositions (compare [8]).

PROPOSITION 4.1. Let $A$ be a function algebra on $X$, and let I be a closed
ideal in A. If $N$ is a subset of $A$ such that $N\supset I$ and $N+\overline{I}$ is a ring, then
$I=\overline{I}$.
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PROOF. We first note that $(N+\overline{I})|K\cap C_{R}(K)$ is a ring for any $K\in JC_{1}(A_{2})$ .
If $ h\in(N+\overline{I})|K\cap C_{R}(K)\int$ then there exist $f\in N$ and $g\in I$ such that $h=(f+\overline{g})|K$

and $(f-g)|K$ is a real valued function in $A|K$. So $ f|K=g|K+\alpha$ where $\alpha$ is
real constant. Therefore $h\in{\rm Re}\{(I+C)|K\}$ . In particular, if $u,$ $v\in{\rm Re}(I|K)$ ,
then $u\cdot v\in(N+\overline{I})|K\cap C_{R}(K)$ , so $u\cdot v\in{\rm Re}\{(I+C)|K\}$ . Hence, ${\rm Re}\{(I+C)|K\}$ is
a ring. Since $(I+C)|K$ is uniformly closed, it follows that from Wermer’s
theorem that $(I+C)|K=(\overline{I+C)|K}$. Thus we have $I=\overline{I}$ by Lemma 1.1.

PROPOSITION 4.2. SuPpose $A$ is a function algebra on $X$, and $I,$ $J$ are two
closed ideals in A. Then $I+\overline{J}$ is a ring if and only if $I\cap J=\overline{I\cap J.}$

PROOF. Observe that

$(I+\overline{J}+C)|K\cap C_{R}(K)={\rm Re}\{(I+C)|K\cap(J+\mathfrak{E})|K\}$

for any $K\in JC_{1}(A)$ . Since $(I+\overline{J}+C)|K\cap C_{R}(K)$ is a ring, it follows from
Wermer’s theorem that $(I+C)|K\cap(J+C)|K$ contains no non-constant func-
tions. Since

$(I\cap J)|K\subset(I+C)|K\cap(J+C)|K$

and $I\cap J$ is a closed ideal in $A$ , we have $I\cap J=\overline{I\cap J}$ by Lemma 1.1. Conversely,
suppose that $I\cap J=\overline{I\cap J.}$ We easily see that

$I\cap J=$ { $f\in C(X);f=0$ on $Z(I)\cup Z(J)$ }

by Stone-Weierstrass theorem. So $f\cdot\overline{g}\in I\cap J$ for any $f\in I$ and $g\in J$. Thus
$I+\overline{J}$ is a ring.

The author wishes to express his hearty thanks to Professor J. Wada for
his valuable advices and constant encouragements.
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