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Introduction.

In this paper we determine the Schur indices of irreducible (complex)
characters of the finite general linear group $GL(n, q)$ and of the odd-dimen-
sional finite special linear group $SL(2n+1, q)$ , both defined over the finite field
$GF(q)$ of $q=P^{f}$ elements.

MAIN THEOREM. Let $G$ denote the group $GL(n, q)$ or the group $SL(2n+1, q)$ .
Then if $p\neq 2$, the Schur index of any irreducible character of $G$ with respect to
the rational number field $Q$ is 1.

This is a consequence of the following three theorems.
THEOREM A (Gow). Let $G$ be as in the Main Theorem. Then the Schur

index of any irreducible character of $G$ with resPect to $Q$ divides 2.
THEOREM B. Let $G$ be as above. Then the value $X(u)$ of any irreducible

character $X$ of $G$ at a unipotent element $u$ of $G$ is a rational integer and the
Schur index of $X$ with resPect to $Q$ divides $X(u)$ .

THEOREM C. For any irreducible character $X$ of $G=GL(n, q)$ , there exists
a unipOtent element $u$ of $G$ such that $|X(u)|$ is equal to the $P$-Part of the degree

of $X$ .
Theorem A is proved in [2] and Theorems $B,$ $C$ will be proved in sections

1, 2, respectively. For $G=GL(n, q)$ , Main Theorem follows immediately from
these theorems. But for $G=SL(2n+1, q)$ , Main Theorem is not clear. So this
case will be dealt with in section 3. The methods used in sections 1, 3 depend
on [2]. [ $n$ section 4 we will discuss some special cases.

I wish to thank Professor T. Yamada for giving me this problem and for
his kind advice.

NOTATION. $Q$ is the field of rational numbers. A character always means
an ordinary complex one. $m_{Q}(X)$ is the Schur index of an irreducible character
$X$ of a finite group with respect to $Q$ . A rational character of a finite group
$G$ is a character afforded by some $Q[G]$ -module, $i$ . $e.$ , a character which can
be realized in $Q$ (see [1], $p279$). For a positive integer $r,$ $\zeta_{r}$ is a primitive
r-th root of unity in the field of complex numbers. If $K/k$ is a normal and
separable extension, Gal $(K/k)$ is its Galois group.



694 Z. OHMORI

\S 1. Proof of Theorem B.

(1.1) LEMMA. Let $x$ be an element of a finite group $G$ and suPpose that
for each integer $h$ coPrime to the order of $x,$ $x$ and $x^{h}$ are conjugate in G. Then
all characters of $G$ take rational integral values on $x$ .

PROOF. Let $b$ be the order of $x$ . Then if $X$ is a character of $G$ of degree
$d,$ $X(x)=\zeta_{b}^{a_{1}}+\cdots+\zeta_{b}^{a_{d}}$ for some positive integers $a_{1},$ $\cdots$ , $a_{d}$ . Let $\tau$ denote a non-
identity automorphism in Gal $(Q(\zeta_{b})/Q)$ . Then $X(x)^{\tau}=\zeta_{b}^{ia_{1}}+\cdots+\zeta_{b^{ia_{d}}}$ for some
positive integer $i$ coprime to $b$ . Put $k=b+i$ . Then $ka_{j}\equiv ia_{j}(mod. b),$ $j=1,$ $\cdots,$

$d$,
and $X(x)^{\tau}=X(x^{k})$ . Since $x$ and $x^{k}$ are conjugate in $G,$ $X(x)^{\tau}=X(x)$ . This
holds for any automorphism $\tau$ in Gal $(Q(\zeta_{b})/Q)$ . Then $X(x)$ is a rational num-
ber. But characteristic values are algebraic integers and hence $X(x)$ is a
rational integer. This completes the proof of (1.1).

(1.2) COROLLARY. Let $G$ denote the group $GL(n, q)$ or the group $SL(2n+1$,
$q)$ . Then all characters of $G$ take rational integral values on unipOtent elements
of $G$ .

PROOF. Firstly, let $G=SL(2n+1, q)$ and let $u$ denote a unipotent element
of $G$ . We may assume that $u$ is of the (lower triangular) Jordan canonical
form. Then for each integer $b$ coprime to $p$, we can choose an element $m$ of
$G$ of the form, for instance,

$[a^{-n}*$

$a_{1}^{-1}$

a

$0$

.
$a^{n}$

$b\equiv a(mod p)$ ,

$0<a<p$ ,

such that $mum^{-1}$ is equal to $u^{b}$ . Then the assertion follows from (1.1). If
$G=GL(n, q),$ $m$ can be chosen of the form

$[^{1}a*a^{2}$ $ 0a^{n- 1}\rfloor$

such that $mum^{-1}=u^{b}$ . This completes the proof of (1.2).

Now for a partition $\mu=(n_{1}, n_{2}, n_{k})$ of $n$ (if $G=GL(n,$ $q)$ ) or of $2n+1$ (if
$G=SL(2n+1, q))$ , put $P_{\mu}=P_{1}\times\cdots\times P_{k}$ , where for each $i,$ $i=1,$ $\cdots$ , $k,$ $P_{i}$ denotes
a Sylow $p$-subgroup of $GL(n_{i}, q)$ which consists of all those lower triangular
matrices whose entries on the main diagonal are 1. Next lemma is a key point
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in the proof of Theorem B.
(1.3) LEMMA. Let $G$ be the group $GL(n, q)$ or the group $SL(2n+1, q)$ and

let $P=P_{\mu}$ be as above. Then if $L$ is a linear character of $P,$ $L^{G}$ is a rational
character.

PROOF. Firstly, let $G=SL(2n+1, q)$ . Let $\sigma$ denote an element of order
$p-1$ in $GF(P)$ and put $m=diag(\sigma^{-n}, \cdots , \sigma^{-1},1, \sigma, \cdots , \sigma^{n})$ . Then $m$ lies in $G$ .
As is easily seen, for any element $x$ in $P,$ $mxm^{-1}$ is equal to $x^{\sigma}$ modulo $P^{\prime}$ .
Then if $M$ is the subgroup of $G$ generated by $m$ and $P$, each non-identity ele-
ment of $P/P^{\prime}$ is conjugate in $M/P^{\prime}$ to its $p-1$ non-identity powers. Then
(1.1) implies that each character of $M/P^{\prime}$ takes rational values on $P/P^{\prime}$ . It is
easy to see that if $L$ is a non-trivial linear character of $P,$ $L^{M}$ is a rational-
valued irreducible character. Moreover, $L^{M}(1)=p-1$ and $L^{M}(m^{a})=0$ (if $m^{a}\neq 1$).

This shows that $(L^{M})<m>$ is a character of the regular representation of $\langle m\rangle$ .
Then by reciprocity, we see that the multiplicity of $L^{M}$ in $(1<m>)^{M}$ is one and
by the Property of Schur indices we have $m_{Q}(L^{M})=1$ . Since $L^{M}$ is rational-
valued, it can be realized in $Q$ . Hence $L^{G}=(L^{M})^{G}$ is a rational character. In
the case of $G=GL(n, q)$ , tak $ e\sigma$ as above and put $m=diag(1, \sigma, \sigma^{2}, \cdots , \sigma^{n- 1})$ .
Then the proof can be done similarly.

REMARK. In [2] Gow proved the special case of (1.3) with $P$ being a
Sylow $p$-subgroup of $G,$ $i$ . $e.,$ $\mu=(n)$ or $=(2n+1)$ according as $G=GL(n, q)$ or
as $=SL(2n+1, q)$ , respectively. Our proof here is an analogue of Gow’s one.

(1.4) LEMMA. Let $u$ denote a regular unipOtent element of $G=GL(m, q)$ of
the form

$[^{1}1$

$11$

.
$11$

$1]$

and let $P$ denote a Sylow $P$-subgroup of $G$ which consists of all those lower
triangular matrices whose entries on the main diagonal are 1. Then if I is a
non-linear irreducible character of $P,$ $I(u)=0$ .

PROOF. It is easy to see that the order of the centralizer group $C_{P}(u)$ of
$u$ in $P$ is $q^{m- 1}$ . In fact, firstly, by applying to $u$ the formula below Lemma 2.1 of
[3], we see that the order of the centralizer group $C_{G}(u)$ of $u$ in $G$ is $q^{m- 1}(q-1)$ .
Secondly, we can prove that any normalizer of $u$ is a lower triangular matrix.
Thirdly, by combining these results, we see that the order of $C_{P}(u)=C_{G}(u)\cap P$

is $q^{m-1}$ . Then by the orthogonality, we have the expression $\sum I(u)I(u^{-1})=q^{m- 1}$ ,
where the summation is over all irreducible characters $I$ of $P$ . Since the order
of the derived factor group $P/P^{\prime}$ is $q^{m-1},$ $P$ has exactly $q^{m-1}$ linear characters.
This shows that only the linear characters contribute to the above summation.
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Then the assertion is clear.
Now we prove Theorem B. The following proof is an analogue of the

proof of Theorem 2(a) in [2]. Firstly, let $G=GL(n, q)$ and let $X$ denote an
arbitrary irreducible character of $G$ . Since $X$ is a class function, we may
assume that $u$ is of the form

$\left\{\begin{array}{l}11\backslash _{n_{1}}11.\cdot.\backslash \\1 1\\111\backslash 1. n_{2\backslash }\\1 1\end{array}\right.$

In this condition we can put $u=u_{\mu}$, where $\mu=(n_{1}, n_{2}, \cdots , n_{k})$ is the partition of
$n$ corresponding to $u$ . Let $P_{i}$ denote a Sylow $p$-subgroup of $GL(n_{i}, q)$ of the
form as in (1.3), $i=1,$ $\cdots$ , $k$, and put $P=P_{1}\times\cdots\times P_{k}$ . The restriction $X_{P}$ of $X$

to $P$ can be expressed as $X_{P}=\sum_{L}a_{L}L+\sum_{I}b_{I}I$, where th $e$ first summation is

over all linear characters $L$ of $P$, the second summation is over all non-linear
irreducible characters $I$ of $P$, and the $a_{L},$ $b_{I}$ are some non-negative integers.
Then by (1.4), we have the expression $X_{p}(u_{\mu})=\sum_{L}a_{L}L(u_{\mu})$ . Since $a_{L}=(X_{P}, L)_{P}$

$=(X, L^{G})_{G}$ is the multiplicity of $X$ in a rational character $L^{G}$, by th $e$ Property

of Schur index, $m_{Q}(X)$ divides $a_{L}$ . Moreover, in the expression $X_{P}(u_{\mu})/m_{Q}(X)$

$=\sum_{t}(a_{L}/m_{Q}(X))L(u)$ , th $e$ left hand side is a rational number (by (1.1)) and the

right hand side is an algebraic integer. Hence $m_{Q}(X)$ divides $X_{p}(u)=X(u)$ . This
completes the proof of Theorem B.

\S 2. Proof of Theorem C.

The purpose of this section is to prove(2.15) from which Theorem $C$ fol-
lows as a corollary.
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Let $\{\lambda\}=\{\lambda_{1}, \cdots , \lambda_{p}\}(\lambda_{1}\geqq\lambda_{2}\geqq\ldots\geqq\lambda_{p}>0)$ and $\{\mu\}=\{\mu_{1}, \cdots , \mu_{q}\}(\mu_{1}\geqq\mu_{2}\geqq\ldots$

$\geqq\mu_{q}>0)$ denote two Schur functions associated with a series

(2.1) $f(x)=\prod_{\iota=1}^{m}1/(1-\alpha_{i}x)=1+\sum_{\tau=1}^{\infty}q_{r}x^{r}$ ,

$i$ . $e.,$ $\{\lambda\}=|q_{\lambda_{s}- s+t}|$ and $\{\mu\}=|q_{\mu s-s+t}|$ (detailed discussions about Schur f.unctions
can be seen in [5]). Here $p,$ $q$ are some positive integers. Then the product
$\{\lambda\}\{\mu\}$ can be expressed as an integral linear combination of Schur functions:

(2.2) $\{\lambda_{1}, \lambda_{p}\}\{\mu_{1}, \mu_{q}\}=\sum_{\delta}c_{\delta}\{\delta\}$ ,

where the summation is over all partitions $\delta$ of $|\lambda|+|\mu|$ (if $\rho=(\rho_{1}, \cdots , \rho_{r})$ is
a partition of $\rho_{1}+\cdots+\rho_{r},$ $|\rho|$ is defined to be $\rho_{1}+\cdots+\rho_{r}$), and the $c_{\delta}$ are
some integers. The multiplicity $c_{\delta}$ of each $\delta$ can completely be determined by
the next lemma.

(2.3) LEMMA [5, p. 94]. The Schur functions appearing in the pr0duct (2.2)

are those which corresp0nd to the Young tableaux that can be built by adding
to a Young tableau corresp0nd to $\{\lambda\},$

$\mu_{1}$ identical symbols $\alpha_{1},$ $\mu_{2}$ identical
symbols $\alpha_{2},$ $\mu_{3}$ identical symbols $\alpha_{3}$ , etc., subject to two conditions:

Firstly, after the addition of each set of identical symbols we must have a
regular Young tableau with no two identical symbols in the same column.

Secondly, if the total set of added symbols are read from right to left in
the consecutive rows of the final tableau, we obtain a lattice permutati0n of
$\alpha_{1}^{\mu_{1}}\alpha_{2}^{\mu_{2}}\alpha_{3}^{\mu_{3}}\cdots$ .

REMARK. By a regular Young tableau we mean a Young tableau in which
“ the number of the symbols in the first row” $\geqq t$ the number of the symbols
in the second row ”

$\geqq‘‘$ the number of the symbols in the third row $’’\geqq\ldots$

Next, a permutation of symbols $ X_{1}^{r_{1}}X_{2}^{r_{2}}X_{3}^{r_{3}}\cdots$ will be called a lattice permuta-

tion if for each positive integer $k$ , in the sequence of first $k$ symbols (when

the symbols are read from left to right) of the permutation “ the number of
$x_{1}’\geqq’’$ the number of $X_{2}$

$\geqq’’$ the number of $ x_{3}’\cdots$ . For example, all the
lattice permutation of $x_{1}^{2}x_{2}^{2}x_{3}$ are

$X_{1}^{2}X_{2}^{2}X_{3}$ $X_{1}^{2}X_{2}X_{3}X_{2}$ $X_{1}X_{2}X_{1}X_{2}X_{3}$ $X_{1}X_{2}X_{1}X_{3}X_{2}$ $X_{1}X_{2}X_{3}X_{1}X_{2}$ .

EXAMPLE. Let $\{\lambda\}=(421)$ and $\{\mu\}=(21)$ . Then all the Young tableaux
built according as the procedure described in (2.3) are as follows:

$\left(\begin{array}{l}0000\alpha\alpha\\ 00\beta\\ 0\end{array}\right)$ $\left(\begin{array}{l}0000\alpha\alpha\\ 00\\0\beta\end{array}\right)$

$\left(\begin{array}{l}0000\alpha\alpha\\ 00\alpha\beta\\ 0\\\beta\end{array}\right)$

$\left(\begin{array}{l}0000\alpha\\ 00\\0\end{array}\right)$ $\left(\begin{array}{l}0000\alpha\\ 00\alpha\\ 0\beta\end{array}\right)$

$\left(\begin{array}{l}0000\alpha\\ 00\alpha\\ 0\\\beta\end{array}\right)$



698 Z. OHMORI

$\left(\begin{array}{l}0000\alpha\\ 00\beta\\ 0\alpha\end{array}\right)$

$\left(\begin{array}{l}0000\alpha\\ 00\\0\alpha\\\beta\end{array}\right)$ $\left(\begin{array}{l}0000\alpha\\ 00\beta\\ 0\\\alpha\end{array}\right)$ $\left(\begin{array}{l}0000\alpha\\ 00\\0\beta\\\alpha\end{array}\right)$

$\left(\begin{array}{l}0000\alpha\\ 00\\0\\\alpha\\\beta\end{array}\right)$

$\left(\begin{array}{l}0000\\00\alpha\alpha\\ 0\beta\end{array}\right)$

$\left(\begin{array}{l}0000\\00\alpha\alpha\\ 0\\\beta\end{array}\right)$

$\left(\begin{array}{l}0000\\00\alpha\\ 0\alpha\beta\end{array}\right)$

$\left(\begin{array}{l}0000\\00\alpha\\ 0\beta\\\alpha\end{array}\right)$
$\left(\begin{array}{l}0000\\00\alpha\\ 0\alpha\\\beta\end{array}\right)$

$\left(\begin{array}{l}0000\\00\alpha\\ 0\\\alpha\\\beta\end{array}\right)$ $\left(\begin{array}{l}0000\\00\\0\alpha\\\alpha\\\beta\end{array}\right)$

.
Hence by (2.3), we have

{421} $\{21\}=\{631\}+\{62^{2}\}+\{621^{2}\}+\{541\}+2\{532\}+2\{531^{2}\}+2\{52^{2}1\}$

$+\{521^{3}\}+\{4^{2}2\}+\{4^{2}1^{2}\}+\{43^{2}\}+2\{4321\}+\{431^{3}\}+\{42^{2}1^{2}\}$ .

Now let us define some notations. If $\rho=(\rho_{1}, \rho_{r})(\rho_{1}\geqq\rho_{2}\geqq\ldots\geqq\rho_{r}>0)$

is a partition of $|\rho|$ , the conjugate partition of $\rho$ which we shall denote by $\tilde{\rho}$

is defined to be the partition $(r^{\rho_{r}}(r-1)^{\rho_{r-1}-\rho_{r}}\cdots 1^{p_{1}-\rho_{2}})$ of $|\rho|$ . If $\rho=(1^{r_{1}}2^{r_{2}}$

$n^{\tau_{n}})$ and $\sigma=(1^{s_{1}}2^{s_{2}}\cdots n^{s_{n}})$ are two partitions of $n$, we shall denote by $\rho+\sigma$

the partition $(1^{r_{1}+s_{1}}2^{r_{2}+s_{2}}\cdots n^{r_{n}+s_{n}})$ of $2n$ .
(2.4) COROLLARY. (i) The largest partition (according as lexicographical

ordering) that appears in the pr0duct (2.2) is $(\lambda_{1}+\mu_{1}, \lambda_{2}\underline{+\mu_{2}}, \cdots)$ , and its multi-
plicity is one. Moreover, $(\lambda_{1}+\mu_{1}, \lambda_{2}+\mu_{2}, )$ is equal to $\tilde{\lambda}+\tilde{\mu}$ .

(ii) The smallest partition that appears in (2.2) is $(\lambda_{1}, \lambda_{p}, \mu_{1}, \cdots , \mu_{q})$ , and
its multiplicity is one.

PROOF. By (2.3), the first assertion of (i) is clear. Then it only needs
check up the relation with its conjugate partition. Changing $\lambda$ and $\mu$ if neces-
sary, we may assume that $p\geqq q$ . But by the definition of conjugate partitions,
we see that $\tilde{\lambda}+\tilde{\mu}=(p^{\lambda_{p}}\cdots(q+1)^{\lambda_{q+1^{-\lambda_{q+2}}}}q^{(\lambda_{q}+)-\lambda_{q+1}}\mu_{q}(q-1)^{(\lambda}q- 1+\mu_{qqf^{p}q}- 1)-(\lambda+)\ldots$

$1^{(\lambda_{1}+\mu_{1})-(\lambda_{2}+\mu_{2})})$ . This is clearly the conjugate partition of $(\lambda_{1}+\mu_{1}, \lambda_{2}+\mu_{2}, )$ .
(ii) We may assume that $\lambda\geqq\mu$ . Let $\Lambda$ denote the Young tableau corre-

sponding to $\lambda$ . To $\Lambda$ add $\mu_{1}$ identical symbols $\alpha_{1},$ $\mu_{2}$ identical symbols $\alpha_{2},$ $\mu_{3}$

identical symbols $\alpha_{3}$ , etc., so that the $\alpha_{1}$ are below the lowest node in each
column from the first column to the $\mu_{1^{-}}th$ column if the columns are read
from left to right, that the $\alpha_{2}$ are below $\alpha_{1}$ in each column from the first
column to the $\mu_{2^{-}}th$ column, that the $\alpha_{3}$ are below $\alpha_{2}$ in each column from
column to the $\mu_{3^{-}}th$ column, $\cdots$ and that the $\alpha_{q}$ are below $\alpha_{q-1}$ in each column
from the first column to the $\mu_{q^{-}}th$ column. This procedure gives us a new
regular Young tableau which we shall call $\Lambda_{q}$ . Now let $\gamma$ denote the partition
corresponding to $\Lambda_{q}$ . It is not hard to see from (2.3) and from the way of
the construction of $\Lambda_{q}$ that $\gamma$ is the smallest partition that appears in (2.2).

It is also clear that $\gamma$ appears in (2.2) exactly once. Then it is sufficient to
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show that $\gamma$ coincides with $(\lambda_{1}, \cdots , \lambda_{p}, \mu_{1}, \cdots , \mu_{q})$ . Let $\gamma_{i}$ denote the partition
corresponding to the Young.tableau which can be built by adding to $\Lambda$ the
symbols $\alpha_{1},$

$\cdots$ , $\alpha_{i}$ as above, $i=1,$ $\cdots$ , $q$ . Then we see from the construction
of $\Lambda_{1}$ that if $\lambda_{i- 1}\geqq\mu_{1}\geqq\lambda_{i},\tilde{\gamma}_{1}$ equals $((p+1)^{\lambda_{P}}p^{\lambda_{p- 1}-\lambda_{p}}\cdots(i+2)^{\lambda_{i+1^{-\lambda_{i+2}}}}(i+1)^{\mu_{1}-\lambda_{i+1}}$

$i^{\lambda_{i}-\mu_{1}}(i-1)^{\lambda_{i-1}-\lambda_{i}}\cdots 1^{\lambda_{1}-\lambda_{2}})$ , which is the conjugate partition of $(\lambda_{1},$ $\cdots$ , $\lambda_{i- 1},$
$\mu_{1}$ ,

$\lambda_{i},$ $\cdots$ , $\lambda_{p}$). By repeating the same consideration for $\Lambda_{2},$ $\cdots$ , $\Lambda_{q}$, we can con-
clude that $\gamma$ coincides with $(\lambda_{1}, \cdots , \lambda_{p}, \mu_{1}, \cdots , \mu_{q})$ . This completes the proof
of (2.4).

REMARK. By (2.3) and by the proof of (2.4), the assertions in (2.4) can
be generalized for a product of Schur functions of Pnite number.

Let $x_{\pi}^{\nu}$ denote an irreducible character of the symmetric group $S_{v}$ of order
$v$ !. As is well known, there is a natural bijection between the set of all con-
jugacy classes in $S_{v}$ and the set of all partitions of $v$ . Then if $\mu$ is a parti-
tion of $dv$ , the correspondence $\pi->\chi/Jd.\pi$ can be regarded as a class function on
$S_{v}$ , where if $\pi=(1^{p_{1}}2^{p_{2}}3^{p_{3}}\cdots)$ is a partition of $v,$

$ d.\pi$ is defined to be a partition
$(d^{p_{1}}(2d)^{p_{2}}(3d)^{p_{3}}\cdots)$ of $dv$ . Since the irreducible characters form a basis of the
space of all complex-valued class functions on $S_{v}$ , this function can be ex-
pressed as

(2.5) $x_{d.\pi}\rho t=\sum_{\xi}c_{\epsilon^{\ell}}^{\prime}x_{\pi}^{\xi}$ ,

where the summation is over all partitions $\xi$ of $v$ and the $c_{\xi^{l}}^{\prime}$ are some com-
plex numbers. The informations about which partitions really appear in (2.5)

and about their multiplicities play an important role for the proof of Theo-
rem C.

(2.6) LEMMA. If $x_{\pi}^{\xi}aPPears$ in $xt_{\pi},$ $\lambda$ does not exceed $ d.\xi$ . Moreover, if
$\lambda$ is equal to $ d.\nu$ for some partition $\nu$ of $v,$ $x_{\pi}^{\nu}aPPears$ in $\chi_{f}^{a}(:^{\nu}\pi$ and its multiplicity
is one.

This follows from the next lemma.
(2.7) LEMMA [7, pp. 145-146]. If $\lambda=(\lambda_{1}, \cdots , \lambda_{di})(\lambda_{1}\geqq\lambda_{2}\geqq\ldots\geqq\lambda_{di}\geqq 0)$ is a

partiiion of $v$ , and the numbers of the sequence

$\lambda_{1}+di-1$ , $\lambda_{2}+di-2,$ $\lambda_{di}$

congruent resPectively to $0,1,2,$ $\cdots$ , $d-1$ modulo $d$ are not equal, the correspond-
ing characteristics of all classes of $S_{dv}$ in which the order of all cycles are divisi-
ble by $d$ are zero.

Otherwise let the numbers of the sequence which are congruent to $q$ modulo
$d$ be

$d(\mu_{q1}+i-1)+q$ , $d(\mu_{q2}+i-2)+q,$ $\cdots$ $d\mu_{qi}+q$ .
Denote $\psi$ the compOund character of the group $S_{v}$ correspOnding to the Product
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of the Schur functions
$\{\mu_{01}, \mu_{02}, \mu_{ot}\},$ $\{\mu_{11}, \mu_{1i}\},$ $\cdots$ $\{\mu_{d- 1,1}, \mu_{d-1,i}\}$ .

Then if $\rho$ denotes the class $(1^{\tau_{1}}2^{r_{2}}3^{r_{3}}\cdots)$ of $S_{v}$ , we have

$x_{l.\rho}^{\lambda}(=\theta\psi_{\rho}$ ,

where $\theta$ is +1 according as the sequence

$d(\mu_{d- 1,1}+i-1)+d-1,$ $d(\mu_{d- 2,1}+i-1)+d-2,$ $\cdots$ , $d(\mu_{01}+i-1)$ ,

$d(\mu_{d- 1,2}+i-2)+d-1$ ,

$d\mu_{oi}$

is a Positive or negative permutation of
$\lambda_{1}+di-1,$ $\lambda_{2}+di-2,$ $\cdots$ , $\lambda_{di}$ .

REMARK. If we put $\{\mu_{01}, \cdots , \mu_{0i}\}\ldots\{\mu_{d-1,1}, \cdots , \mu_{d-1,i}\}=\sum_{|\xi|=v}c_{\overline{\overline{\vee}}}\{\xi\}$ (the $c_{\xi}$

being some rational integers), the compound character $\psi$ corresponding to this
product can be expressed as $\psi_{\pi}=\sum_{|\xi|=v}c_{\xi}x_{\pi}^{\xi}$ (see [5]). Then by (2.7) we see that

all coefficients $c_{\xi}^{\rho}$ in (2.5) are integers.
PROOF OF (2.6). If necessary, add some $O’ s$, we can put $\lambda=(\lambda_{1},$ $\lambda_{p},$ $\lambda_{p+1}$ ,

, $\lambda_{di}$ ) so that the $\lambda_{j}$ are arranged in descending order and that $\lambda_{(i-1)d+1}\neq 0$ .
It only needs consider in the case when the sequence $\lambda_{1}+di-1,$ $\lambda_{2}+di-2,$ $\cdots$ ,
$\lambda_{di}$ satisPes the condition $l$ ‘ Otherwise...” in (2.7). In this sequence, for each $q$

$(0\leqq q\leqq d-1)$ , choose the numbers which are congruent to $q$ modulo $d$ and
arrange them in descending order: $d(\mu_{q1}+i-1)+q,$ $d(\mu_{q2}+i-2)+q,$ $d\mu_{qi}+q$ .
Then it is easy to see that $\mu_{q1}\geqq\mu_{q2}\geqq\ldots\geqq\mu_{qi}(0\leqq q\leqq d-1)$ . Moreover, we may
assume that all the $\mu_{qj}$ are non-negative. For if some $\mu_{qj}$ is negative, the
smallest part $\mu_{qi}$ of $(\mu_{q1}, \cdots , \mu_{qj}, \mu_{qi})$ is also negative and by the property
of Schur functions, we have $\{\mu_{q1}, \mu_{qi}\}=0$ [ $6$, p. 99]. Now to prove the
first assertion in (2.6) it is sufficient to consider in the case when $\xi$ is the
smallest partition that appears in (2.5). Let $\xi^{1}$ be this partition. By (2.4), we
know that $\xi^{1}$ equals such a partition that can be built by arranging all the
$\mu_{qj}(0\leqq q\leqq d-1,1\leqq j\leqq i)$ in descending order. Let $\mu_{qj}$ be the part of $\xi^{1}$ corre-
sponding to $\lambda_{1},$ $i$ . $e.,$ $\lambda_{1}+di-1=d(\mu_{qj}+i-j)+q$ . Then it is easy to check that
$d\mu_{qj}\geqq\lambda_{1}$ . If the inequality holds here, we have $ d.\xi^{1}>\lambda$ , since $\lambda_{1}$ is the largest
part of $\lambda$, and the first assertion in (2.6) can be proved. So we may assume
that $d\mu_{qj}=\lambda_{1},$ $j=1$ , and $q=d-1$ . Now generally assume that $\lambda_{j}=d\mu_{d- 1,1}$ for
$1\leqq j\leqq d-1$ . Consider the expression $\lambda_{j+1}+di-(j+1)=d(\mu_{qk}+i-k)+q$ where
$j+1\leqq d$ and $k$ being 1 or 2 (this is because of the way of the construction of
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$\mu_{qj})$ . If $k=2$, then $q=d-m$ for some integer $m>j$, and we have $d\mu_{q2}-\lambda_{j+1}=$

$d+m-(j+1)\geqq m>0$, which implies that $ d.\xi^{1}>\lambda$ . So we may assume that $\lambda_{j+1}$

$=d\mu_{d-(j+1)1}$ . Thus we can continue our proof by assuming that $\lambda_{j}=d\mu_{d-j,1}$

$(1\leqq j\leqq d)$ , for if not, the Prst assertion in (2.6) can be proved. Next consider
the expression $\lambda_{d+1}+di-(d+1)=d(\mu_{qk}+i-k)+q(q\leqq d-1)$ . Since $k$ cannot be
any other number different from 2, $d\mu_{q2}\geqq\lambda_{d+1}$ . So we may assume that $\lambda_{d+1}$

$=d\mu_{d-1,2}$ . Now it is clear that by repeating the same considerations we have
$ d.\xi^{1}\geqq\lambda$, and if $ d.\xi^{1}=\lambda$, we have $\lambda_{kd+j}=d\mu_{d- j,k- 1}(0\leqq k\leqq i-1,0\leqq j\leqq d)$ . Con-
versely, if $\lambda=d.\nu$ for some partition $\nu=(\nu_{1}, \nu_{id})(y_{1}\geqq\nu_{2}\geqq\ldots\geqq\nu_{id}\geqq 0),it$ is
easy to see that the condition $t$ ‘ Otherwise...” in (2.6) is satisfied, that $\mu_{d-j,k- 1}$

$=\nu_{kd+j}(0\leqq k\leqq i-1,0\leqq j\leqq d)$ , and that $\theta=c_{d.\nu,v}=1$ . This completes the proof
of (2.6).

(2.8) COROLLARY.

$\sum_{|\pi|=v}\frac{1}{z_{\pi}}x_{\pi}^{\nu}x_{d.\pi}^{\lambda}=\{$

1 if $\lambda=d.\nu$ ,

$0$ if $\lambda>d.\nu$ ,

where if $\rho=(1^{r_{1}}2^{r_{2}}3^{r_{3}}\cdots)$ is a partition, $z_{p}$ is defined to be $1^{r_{1}}r_{1}$ ! $2^{r_{2}}r_{2}$ ! $3^{r_{3}}r_{3}$ ! $\ldots$

PROOF. Since $v$ ] $/z_{\pi}$ is the order of the conjugacy class in $S_{v}$ correspond-
ing to $\pi$, the assertion follows from the orthogonality.

Let $Q_{\rho}^{\lambda}(q)$ denote a Green polynomial of $q$ introduced by J. A. Green in [3]

(see [3], p. 420, DePnition 4.2). To prove Theorem $C$ we need the explicit
information about this polynomial (see the proof of (2.14)). But Definition 4.2
above is not satisfying for us.

Put $X_{\rho}^{\lambda}(t)=q^{-n_{\lambda}}Q_{\rho}^{\lambda}(q)(t=\frac{1}{q})$ , where if $\tilde{\rho}=(\tilde{r}_{1}, \overline{r}_{k})$ is the conjugate parti-

tion of $\rho,$ $n_{\rho}$ is defined to be $\sum_{i=1}^{k}\tilde{r}_{i}C_{2}$ . By Lemma 4.3 of [3], we see that $X_{\rho}^{\lambda}(t)$

is a polynomial of $t$ . In [7], A. O. Morris gave an effective procedure to cal-
culate $X_{\rho}^{\lambda}(t)$ . To state his results, let us consider the Schur function $\{\lambda\}=$

$\{\lambda_{1}, \lambda_{k}\}(\lambda_{1}\geqq\lambda_{2}\geqq\ldots\geqq\lambda_{k}>0)$ associated with a new series

(2.9) $f^{\prime}(x)=\prod_{i=1}^{m}(1-t\alpha_{i}x)/(1-\alpha_{i}x)=1+\sum_{r=1}^{\infty}q_{r}^{\prime}x^{\tau}$

$i$ . $e.,$ $\{\lambda\}=|q_{\lambda_{s}-s+1}^{\prime}|$ .
In [6] D. E. Littlewood introduced a certain symmetric function $Q_{\lambda}(t)$ and

gave an explicit formula to calculate it, $i$ . $e.$ ,

$Q_{(\lambda_{1},\cdots,\lambda_{k})}(t)=\prod_{1\leqq\iota_{\backslash }J\leqq k}(1+t\delta_{ij}+t^{2}\delta_{ij}^{2}+ )\{\lambda_{1}, \lambda_{k}\}$ ,

where $\{\lambda\}$ is a Schur function associated with the series (2.9) and $\delta_{ij}$ is an
operator which transforms $\lambda_{i}$ to $\lambda_{i}+1$ and $\lambda_{j}$ to $\lambda_{j}-1$ (see [6], Theorem V,
p. 498). For example, if $\lambda=(2^{3})$ ,
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$Q_{(2^{3})}(t)=\{2^{3}\}+(t+t^{2})\{321\}+t^{3}\{3^{2}\}+t^{3}\{41^{2}\}$

$+(t^{2}+t^{3}+t^{4})\{42\}+(t^{4}+t^{5})\{51\}+t^{6}\{6\}$ .
Put

(2.10)
$Q_{(\lambda_{1},\cdots,\lambda_{k})}(t)=\sum_{\mu}f_{\lambda\mu}(t)\{\mu\}$ ,

where the $J_{\lambda\mu}(t)$ are some polynomials of $t$ . For the above example,

$f_{(2^{3})(2^{3})}(t)=1$ , $f_{(2^{3})(321)}(t)=t+t^{2}$ , $f_{(23)(3^{2})}(t)=t^{3}$ ,

$f_{(2^{3})(412)}(t)=t^{3}$ , $f_{(2^{3})(42)}(t)=t^{2}+t^{3}+t^{4}$ ,

$f_{(2^{3})(51)}(t)=t^{4}+t^{5}$ $f_{(2^{3})(6)}(t)=t^{6}$

Now we can state Morris’ result:
(2.11) LEMMA. If $Q_{\lambda}(t)=\sum_{\mu}f_{\grave{A}}\mu(t)\{\mu\}$ , where $\{\mu\}$ are Schur functions asso-

ciated with the series (2.9). Then $ X_{\rho}^{\lambda}(t)=\sum_{\mu}f_{\lambda\mu}(t)\chi_{\rho}\mu$ .
(2.12) LEMMA. In the expressjOn(2.10), we have $f_{\lambda\lambda}(t)=1$ , and if $\mu<\lambda$ , we

have $f_{\lambda\mu}(t)=0$ .
PROOF. We shall prove(2.12) by induction on $k$ . If $k=1$ , the assertion is

clear. Now let $k>1$ and assume that (2.12) has been proved for $k-1$ . We
need the following lemma that was established by Morris [7]:

SUBLEMMA. If
$Q_{(\lambda_{2},\cdots,\lambda_{k})}(t)=\sum_{\mu}g_{\lambda\mu}(t)\{\mu\}$ ,

then

$Q_{(\lambda_{1},\lambda_{2},\cdots,\lambda_{k})}(t)=\sum_{r=0}^{\infty}t^{r}\sum_{\mu}g_{\lambda\mu}(t)\sum_{\omega}\{\lambda_{1}+r, \omega\}$ ,

where $\{\lambda\}$ is a Schur function of the series (2.9) and the last summation is over
all partitions $\omega$ so that $\{\mu\}$ appears in the product $\{\omega\}\{r\}$ .

Now we retum to the proof of (2.12). If $r=0,$ $\{\omega\}\{0\}=\{\omega\}$ and $\omega$ cannot
be any other partition different from $\xi$ . Then we have

$Q_{(\lambda_{1},\lambda_{2},\ldots,\lambda_{k})}(t)=\sum_{|\xi|=n-\lambda_{1}}g_{\lambda\xi}(t)\{\lambda_{1}, \xi\}$

$+\sum_{r=1}^{\infty}t^{r}\sum_{|\xi|=n-r}g_{\lambda\xi}(t)\sum_{\omega}\{\lambda_{1}+r, \omega\}$ .

In this expression, any partition appearing in the second summation is of the
form $(\lambda_{1}+r, \omega)(r\geqq 1)$ which is larger than $\lambda$ . In the first summation, by
hypothesis of induction, we see that $g_{\lambda,(\lambda_{2},\ldots,\lambda_{k})}(t)=1$, and that if $\xi<(\lambda_{2}, \cdots , \lambda_{k})$ ,
$g_{\lambda\xi}(t)=0$ . Then if $\xi$ is a partition such that $g_{\lambda\xi}(i)\neq 0$ and that $\xi\neq(\lambda_{2}, \cdots , \lambda_{k})$ ,
then $\xi>$ $(\lambda_{2}, \cdots , \lambda_{k})$ and $(\lambda_{1}, \xi)>\lambda=(\lambda_{1}, \lambda_{2}, \lambda_{k})$ . Thus we see that $f_{\lambda\lambda}(t)=$
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$g_{\lambda,(\lambda_{2}},$ $\lambda_{k)}(t)=1$ and that if $\mu<\lambda$ ,

$f_{\lambda\mu}(t)=\{$

$g_{\lambda\xi}(t)$ if $\mu=(\lambda_{1}, \xi)$ for some partition $\xi$ ,

$0$ otherwise ,

$=0$ .
This completes the proof of (2.12).

(2.13) COROLLARY.

$\sum_{|\pi|=v}\frac{1}{z_{\pi}}\chi_{\pi}^{\nu}X_{d.\pi}^{\lambda}(t)=\{$

1 if $\lambda=d.\nu$ ,

$0$ if $\lambda>d.\nu$ .
PROOF. This follows immediately from (2.8), (2.11) and (2.12).

From now on we will frequently use notations in [3].

(2.14) THEOREM. Let $X=(g^{\nu})$ denote a primary irreducible character of
$G=GL(dv, q)$ , where $d$ is the degree of a simplex $g$ and $\nu$ is a Partition of $v$ ,

and let $u_{\lambda}$ denote a uniPoteni element of $G$ corresPonding to a Partition $\lambda$ of $dv$ .
Then $X(u_{d.\nu})=(-1)^{(d-1)v}q^{n_{d.\nu}}$, and if $\lambda>d.\nu,$ $X(u_{\lambda})=0$ .

PROOF. By the definition ([3], p. 439),

$X=(g^{\nu})=(-1)^{(d-1)v}I_{d}^{k}[\nu]$ ,

where by Definition 7.3 of [3],

$I_{d}^{k}[\nu]=\sum_{|\pi|=v}\frac{1}{z_{\pi}}\chi_{\pi}^{\nu}B^{a.\pi}(k\frac{\pi}{d})$ .

If $\pi=(p_{1}, p_{2}, )$ is a partition of $v$ , by Lemma 7.1 and Theorem 9 of [3], we
see that the value of $B_{d.\pi}$ at $u_{\lambda}$ equals

$B_{d.\ulcorner_{\vee}}(k\frac{\pi}{d}$ : $1)=z_{\pi}U_{d.\pi}(k:1)$

$=z_{\pi}\prod_{e}\prod_{i=1}^{p_{e}}T_{d,e}(k:1)$

$=z_{\pi}\prod_{e}\prod_{i=1}^{p_{e}}\sum_{i=0}^{d-1}\theta^{q^{i}k}(1)$

$=z_{\pi}d^{\sum_{e}p_{e}}$

Then if $c$ denotes the conjugacy class of $u_{\lambda}$ , by Definition 4.12 of [3], we have

$B^{cJ\cdot\pi}(k\frac{\pi}{d})(c)=\sum_{m}Q(m, c)U_{d.r}(k:1)$

$=Q(m, c)U_{d.\pi}(k:1)$

$=\prod_{f\in F}\frac{1}{z_{\rho^{(}m,f)}}Q_{\rho(m,f)}^{\nu_{C}(f)}(q^{d(f)})U_{d.\tau}(k:1)$
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$=\frac{1}{z_{d.r}}Q_{d.\pi}^{\lambda}(q)U_{d.\pi}(k:1)$

$=\frac{1}{d^{e}.z_{\pi}\nabla_{\wedge}p_{e}}Q_{d\pi}^{\lambda}(q)z_{\pi}d^{\sum_{e}p_{e}}$

$=Q_{d\cdot\pi}^{\lambda}(q)$ .

Here the second equality follows from the fact that there is only one substitu-
tion $m$ of $X^{d.\pi}$ into $c$ such that $x^{d.\pi}\rightarrow 1$ for any $ d.\pi$-root (or $ d.\pi$-variable) $x^{d.\pi}$

in $X^{d\cdot\pi}$. Then we have

$X(u_{\lambda})=(-1)^{(d-1)v}I_{d}^{k}[\nu](u_{\lambda})$

$=(-1)^{(d-1)v}\sum_{|\pi|=v}\frac{1}{z_{\pi}}\chi_{\pi}^{\nu}Q_{d.\pi}^{\lambda}(q)$ .

Replacing $Q_{d\pi}^{\lambda}(q)$ with $q^{n_{\lambda}}X_{d\pi}^{i}(t)$ , we have

$X(u_{\lambda})=(-1)^{(d-1)v}q^{n_{\lambda}}\sum_{|\pi|=v}\frac{1}{z_{\pi}}x_{\pi}^{\nu}X_{d\cdot\pi}^{\lambda}(t)$ .

Then the assertion follows immediately from (2.13).

REMARK. By Theorem 14 of [3], we know that the $p$-part of the degree
of $(g^{v})$ is $q^{v(\nu_{2}+2\nu_{3}+\cdots+(k-1)\nu_{k})}(\nu=(\nu_{1}, \nu_{2}, \cdots , \nu_{k}), \nu_{1}\geqq\nu_{2}\geqq\ldots\geqq\nu_{k}>0)$ . But by induc-
tion on $k$, we can prove that $n_{d.\nu}=v(\nu_{2}+2\nu_{3}+ +(k-1)\nu_{k})$ . So $(2,14)$ is a
special case of Theorem C.

The object of this section is to prove the next Theorem:
(2.15) THEOREM. Let $X=(\cdots g^{\nu(g)}\cdots)=(g_{1}^{\nu_{1}}g_{2}^{\nu_{2}}\cdots g_{N}^{\nu_{N}})$ denote an arbitrary

irreducible character of $G=GL(n, q)$ , where if $d_{i}$ is the degree of simPlex $g_{i}$ ,

$i=1,$ $\cdots$ , $N$, the $\nu_{i}$ $(i=1, \cdots , N)$ are partitiOns so that $\sum_{i=1}^{N}|\nu_{i}|d_{i}=n$ , and let $\lambda$ be

the largest partition that appears in the Product of Schur functions $\{d.\nu_{i}\},$ $i=1$ ,
... , $N$ associated with the series (2.1). Then if $u_{\mu}$ is a unipotent element of $G$

corresponding to a partition $\mu$ of $n$ ,

$X(u_{\mu})=\{$

$\prod_{i=1}^{N}(-1)^{(d_{i}-1)v_{i}}q^{n_{d.\nu_{i}}}$ if $\mu=\lambda$ ,

$0$ if $\mu>\lambda$ .
REMARK. By Theorem 14 of [3] and the remark below the proof of (2.14),

we see that the $p$-part of the degree of $(g_{1}^{\nu_{1}}g_{2}^{\nu_{2}}\cdots g_{N}^{\nu_{N}})$ equals $\prod_{i=1}^{N}q^{n_{d.\nu_{i}}}$ .
Then Theorem $C$ is a corollary from (2.15).

PROOF OF (2.15). Put $X_{i}=(g_{\iota^{\nu_{i}}}),$ $i=1,$ $\cdots$ , $N$. Then by Theorem 13 of [3],

we have $X=X_{1}\circ\cdots\circ X_{N}$, where the notation $ i\circ$
’ is defined in the introduction

of [3]. By Theorem 2 and Lemma 2.6 of [3], we have the expression
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(2.16) $X(u_{\mu})=\sum g_{\lambda 1\lambda_{N}}^{\mu}(q)X_{1}(u_{\lambda_{1}})\cdots X_{N}(u_{\lambda_{N}})$ ,

where the summation is over all families of partitions $(\lambda_{i})_{i=1}^{N}$ so that $|\lambda_{i}|=$

$d_{i}|\nu_{i}|,$ $i=1,$ $\cdots$ , $N$, and the $g_{\lambda_{1}\cdots\lambda_{N}}^{\mu}(q)$ are Hall polynomials (see [3], pp. 411-412).
As in (2.15), let $\lambda$ be the largest partition that appears in the expression

(2.17)
$\{d_{1}.\nu_{1}\}\ldots\{d_{N}.\nu_{N}\}=\sum_{|\mu|=n}c_{\mu}\{\mu\}$ .

Firstly, suppose that $\mu>\lambda$ . If for each $i,$ $i=1,$ $\cdots$ , $N,$ $\lambda_{i}$ does not exceed
$d_{i}.v_{i},$

$\mu$ cannot appear in the product

(2.18) $\{\lambda_{1}\}\ldots\{\lambda_{N}\}=\sum_{|\delta I=n}c_{\lambda_{1}\cdots J_{N}}^{\delta}\{\delta\}$ ,

since by (2.4) the largest partition that appears in (2.18) cannot exceed $\lambda$ and
since $\mu$ is larger than $\lambda$ . By Theorem 4 of [3], $c^{\mu_{\lambda_{1}\cdots\lambda_{N}}}=0$ implies that $g_{\lambda_{1}\cdots\lambda_{N}}^{\mu}(q)$

$\equiv 0$ . Then we have

(2.19) $X(u_{\mu})=\sum g_{\lambda 1}^{\mu}\ldots x_{N}(q)X_{1}(u_{\lambda_{1}})\cdots X_{N}(u_{\text{{\it \‘{A}}}_{N}})$ ,

where the summation is over all families of partitions $(\lambda_{i})_{i=1}^{N}$ so that $|\lambda_{i}|=$

$d_{i}|\nu_{i}|,$ $i=1,$ $\cdots$ , $N$ and that for at least one suffix $i,$ $\lambda_{i}$ exceeds $d_{i}.\nu_{i}$ . But if $i$

is such a suffix, (2.14) implies that $X_{i}(u_{\lambda_{i}})=0$ . Hence $X(u_{\mu})=0$ .
Secondly, suppose that $\mu=\lambda$ . By the above consideration, we have

$X(u_{\lambda})=g_{d_{1\cdot\nu_{1}},\ldots,d_{N}.v_{N}}^{\lambda}(q)X_{1}(u_{d_{1}.v_{1}})\cdots X_{N}(u_{a_{N\cdot v_{N}}})$ .

However, the assertion (i) in (2.14) implies that $n_{\lambda}-n_{d_{1}.\nu_{1}}-\cdots-n_{dNvN}=0$ and
that $c_{d_{1}.\nu 1,dN\nu_{N}}^{\lambda}=1$ . Then by Theorem 4 of [3], we see $thatg_{a_{1.v_{1}},\cdots,a_{N\cdot\nu N}}^{\lambda}(q)\sim$

$=1$ . In fact, the former equality follows from the fact $\tilde{\lambda}=d_{1}.\nu_{1}+\cdots+d_{N}.\nu_{N}\sim$

and the latter from that the multiplicity of $\lambda$ in (2.18) is one. Now the asser-
tion follows from (2.14). This completes the proof of (2.15).

(2.19) COROLLARY (Gow). If $X$ is an irreducible character of $G=GL(n, q)$

of degree coprime to $p$, then $m_{Q}(X)=1$ .
PROOF. In this case the $p$-part of the degree of $X$ is 1. Then by Theorem

$C$ , there is a unipotent element $u$ of $G$ such that $X(u)=\pm 1$ . Then the asser-
tion follows from Theorem B.

REMARK. A unipotent element $u$ in the proof of (2.19) can be chosen of
the form as in (1.4).

(2.20) COROLLARY. Let $X$ denote an irreducible character of $G=GL(n, q)$

and let $u$ denote a regular unipOtent element of G. Then the degree of $X$ is
coPrime to $p$, if and only if $X(u)=\pm 1$ .

(2.21) COROLLARY. Let $X$ denote an arbitrary irreducible character of $G=$

$GL(n, q)$ . Then if $P\neq 2,$ $m_{Q}(X)=1$ .



7C6 Z. OHMORI

\S 3. Schur indices of characters of $SL(2n+1, q)$ .
(3.1) THEOREM. Let $X$ denote an irreducible character of $G=SL(2n+1, q)$ .

Then
(i) if the degree of $X$ is coPrime to $p,$ $m_{Q}(X)=1$ ,

(ii) if $P\neq 2$ , for any $X,$ $m_{Q}(X)=1$ .
PROOF. The following proof is due essentially to Gow [2]. Put $G_{1}=$

$CL(2n+1, q)$ and let $X=X_{1},$ $\cdots$ , $X_{r}$ denote the distinct $G_{1}$-conjugates of $X$.
By Clifford theory (see, for instance, Endliche Gruppen, by B. Huppert, Springer),
there is an irreducible character $I$ of $G_{1}$ with $I_{G}=X_{1}+\cdots+X_{r}$ . By Theorem
$C$, there is a unipotent element $u$ of $G_{1}$ (which also lies in $G$) such that $|I(u)|$

equals the $p$-part of the degree of $I$. By noting that $ m_{Q}(X_{1})=m_{Q}(X_{2})=\ldots$

$=m_{Q}(X_{r})$ and by Theorem $B$ , we see that $m_{Q}(X)$ divides $I(u)$ which is a power
of $l$ . Then the assertion (ii) follows from Theorem A. If the degree of $X$ is
coprime to $p$ , that of $I$ is also coprime to $p$ (note that $r$ devides $(G_{1}$ : $G)=q-1$).

Then we can choose $u$ so that $I(u)=\pm 1$ and hence the assertion (i) is clear.

\S 4. The case of $P=2$ and some other results.

If $p=2$, our method cannot determine the Schur indices. However, for
small $n$ , we have

(4.1) PROPOSITION (Gow [2], Ohmori-Yamada [8]). (i) If $n\leqq 4$, for any
irreducible character $X$ of $GL(n, q),$ $m_{Q}(X)=1$ .

(ii) The Schur indices of all the irreducible characters of $SL(3, q)$ are 1.
REMARK. G. J. Janusz showed that the Schur indices of all the irreducible

characters of $SL(2,2^{f})$ are 1. But he also showed that $SL(2, p^{f})(p\neq 2)$ has
irreducible characters of Schur indices 2 (see [4]). Generally, $SL(2n, q)$ has
real-valued irreducible characters of Schur indices 2 (see [2]).

(4.2) PROPOSITION. If $X$ is an irreducible character of $SL(2n, 2^{f})$ of degree
coprime to $P=2,$ $m_{Q}(X)=1$ .

PROOF. By Theorem A and by the fact that $m_{Q}(X)$ divides the degree of
$X$, the assertion is clear.
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