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\S 1. Introduction.

Let $Y$ be a completely regular Hausdorff space, $M(Y)$ the set of all positive,
regular, and finitely additive measures, each of total mass 1, on the field gen-
erated by zero sets in $Y$, and $iM_{\sigma}(Y),$ $M_{\tau}(Y)$ the subsets of $M(Y)$ consisting
of all a-additive, and all $\tau$-additive elements of $M(Y)$ . Every element of $M_{\sigma}(Y)$

is a Baire measure on the a-algebra generated by zero sets called Baire algebra
of $Y$ . Every $\mu$ of $M_{\tau}(Y)$ is uniquely extendible to a countably additive and
regular Borel measure on $Y$ which also is denoted by $\mu$ . Each element of
$M(Y)$ can be identified with a positive linear functional $L$ on $C_{b}(Y)$ , the set
of all real-valued bounded and continuous functions on $Y$ , such that $L(1)=1$ .
By the weak topology on $M_{\sigma}(Y)$ , we mean the topology $\sigma(M_{\sigma}, C_{b})$ . An element
$\mu$ of $M_{o}(Y)$ is said to be separable if for every continuous pseudometric $d$ on
$Y$, there is a d-closed subset $Z$ of $Y$ such that $\mu(Y\backslash Z)=0$ and such that $Z$ is
$d$-separable (see \S 1 in [1] or [7]). We denote the set of all separable mea-
sures by $M_{s}(Y)$ . Then we should remark that $M_{r}(Y)\subset M_{s}(Y)$ (see p. 267 in
[1]), and $M_{\sigma}(Y)=M_{s}(Y)$ for any D-topological space (see p. 1 in [3] and $p$ .
137 in [7]).

Let $X$ be a non-void, closed, convex, and bounded subset of a locally
convex Hausdorff space $F$ over reals. A pointa in $X$ is called the barycenter
of a $\mu\in M(X)$ if $\mu(f)=f(a)$ for any $f$ of $F*$ , the topological dual of $F$, where

$\mu(f)=\int f_{1X}d\mu$ , and $f_{1X}$ is the restriction of $f$ on $X$. We denote by ext $X$ the

set of all extreme points of $X$, by $\epsilon_{a}$ the point measure at $a$ , and by clconv $X$

the closed convex hull of $X$ .
Let $p$ be in $S_{F}$ which denotes the set of all continuous seminorms on $F$ .

Define on $F$ the equivalence relation $a\sim b$ if and only if $P(a-b)=0$ . If $\dot{F}_{p}$ is
the class of all such equivalence classes associated with $p,\dot{a}$ being that which
contains $a$ of $F$, then we can define the norm $\dot{p}$ on $\dot{F}_{p}$ by $\dot{p}(\dot{a})=p(a)$ . In $\dot{F}_{p}$ ,

sum of two elements and scalar multiplication can be defined as usual. Then
$\dot{F}_{p}$ is a normed space with norm $\dot{p}$ . This normed space is denoted by $\dot{F}_{p}$ .
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Define the map $Q_{p}$ : $F\rightarrow\dot{F}_{\dot{p}}$ by $Q_{p}(a)=\dot{a}$ , which is continuous and linear. Put-
ting $\dot{X}_{p}=Q_{p}(X),\dot{X}_{p}$ is a bounded subset of $F_{\dot{p}}$ , and a metric space with metric
induced by $\dot{p}$ . This metric space is denoted by $\dot{X}_{\dot{p}}$ . For $\mu\in M_{a}(X)$ , define
$(\dot{\mu})_{p}\in M_{\sigma}(\dot{X}_{\dot{p}})$ by $(\dot{\mu})_{p}(\dot{B})=\mu(Q_{p}^{-1}(\dot{B})\cap X)$ for any Baire set $\dot{B}\subset\dot{X}_{\dot{p}}$ . $(\epsilon_{\dot{a}})_{p}$ denotes
the point measure at $\dot{a}$ in $\dot{X}_{\dot{p}}$ . Then we consider the following set of measures
on $X$ associated with $F$ and $p\in S_{F}$ , which is denoted by $ni_{\tau F}^{p}(X)$ .

$\dot{M}_{\tau F}^{p}(X)=\{\mu\in M_{\sigma}(X):(\dot{\mu})_{p}\in M_{r}(\dot{X}_{\dot{p}})\}$ .
On this set of measures on $X$, we should remark two following facts. One is
that $M_{s}(X)\subset\dot{M}_{\tau F}^{p}(X)$ , since $(\dot{\mu})_{p}\in M_{r}(\dot{X}_{\dot{p}})$ for any $\mu\in M_{s}(X)$ , which is easily
checked by Varadarajan’s theorem (Corollary of Theorem 27 in part 1 in [9]).

The other is that if $F$ is separable, $M_{\sigma}(X)=\dot{M}_{\tau F}^{p}(X)$ , which also is easily check-
ed by Varadarajan’s theorem (Corollary 4 of Theorem 25 in part 1 in [9]).

From these sets $\dot{M}_{\tau F}^{p}(X),$ $p\in S_{F}$, we define the set of measures on $X$, which is
denoted by $\dot{M}_{\tau F}(X)$ and associated with $F$, as follows.

$\dot{M}_{rF}(X)=\bigcap_{p\in S_{F}}\dot{M}_{\tau F}^{p}(X)$ .

Then we have, from above properties of $\dot{M}_{\tau F}^{p}(X)$ ,
(1) $M_{s}(X)\subset\dot{M}_{\tau F}(X)$

and
(2) $M_{\sigma}(X)=\dot{M}_{\tau F}(X)$ if $F$ is separable.

The purpose of this Paper is to prove the following theorem, which gives
a characterization of extreme points of $X$ by $\dot{M}_{\tau F}(X)$ , and also is a generaliza-
tion of the results due to Khurana in the cases of $M_{\tau}(X)$ and $M_{\sigma}(X)$ (Theorems
2, 3 in [6] respectively).

THEOREM 1. If $X$ is complete, $a\in exfX$ if and only if $\epsilon_{a}$ is the only one
element of $\dot{M}_{\tau F}(X)$ having $a$ as its barycenter.

In order to prove this theorem, we need the following theorem on the
existence of barycenters of elements of $\dot{M}_{\tau F}(X)$ , which is a generalization of
the results obtained by Khurana in [5] and [6] in the cases of $M_{\tau}(X)$ and
$M_{\sigma}(X)$ .

THEOREM 2. If $X$ is complete, every element of $\dot{M}_{\tau F}(X)$ has a barycenter
in $X$.

In \S 2, we give the proof of Theorem 2. Our method of the proof is based

on the fact that $\mu(f)=\int f_{|X}d\mu$ is weak* continuous on every equicontinuous

set of $F_{1}^{*}$ , where $\mu$ is an element of $\dot{M}_{\tau F}(X)$ and $F_{1}$ is the completion of $F$.
In \S 3, we give the proof of Theorem 1. Our method is based on the facts
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that $(\dot{\mu})_{p}$ is $\tau$-additive for any $\mu\in\dot{M}_{rF}^{p}(X)$ and that every element of $\dot{M}_{\tau F}(X)$

has a barycenter in $X$.
Finally, in \S 4, we prove the following theorem concerning the connection

between the compactness of clconv $K$ and barycenters of elements of $M(K)$

for any compact subset $K$ of $F$. Then, the well-known theorem on the com-
pactness of clconv $K$ of a complete locally convex Hausdorff space $F$ follows
immediately from this theorem.

THEOREM 3. Let $K$ be a comPact subset of a locally convex Hausdorff sPace
F. Then, the following statements are equivalent.

(a) Every element of $M(K)$ has a barycenter in $F$ .
(b) Clconv $K$ is $comPact$ .
(c) Clconv $K$ is comPlete.
I express my hearty thanks to the referee for many valuable comments.

\S 2. Proof of Theorem 2.

For the proof, we prepare some lemmas.
LEMMA 1 (Theorem 17.7, chapter5 in [4]). A locally convex Hausdorff

sPace $F$ is comPlete if and only if each linear functional on $F^{*}$ which is weak*
continuous on every equicontinuous set of $F^{*}$ is weak* continuous on $F^{*}$ , (equi-
valently, if each such linear functional is evaluation at some point of $F$).

LEMMA 2. When $C_{b}(X)$ is toPologized by the Pointwise convergence topOlOgy,
every element of $\dot{M}_{\tau F}(X)$ is continuous on $\mathcal{H}_{X}$ for any equicontinuous set $\mathcal{H}$ of
$F^{*}$ , where $\mathcal{H}_{X}=\{f_{1X} : f\in \mathcal{H}\}$ .

PROOF. Let $\mu\in\dot{M}_{\tau F}(X)$ . To prove that $\mu$ is continuous on $\mathcal{H}_{X}$ , take a
net $f_{\alpha^{1}X}\rightarrow f_{|X}$ pointwise in $\mathcal{H}_{X}$ . DePne the seminorm $p$ on $F$ by $p(a)=$

$\sup\{|f(a)| : f\in \mathcal{H}\}$ . The equicontinuity of $\mathcal{H}$ implies that $p$ is in $S_{F}$ . Define on
$F$ the equivalence relation $a\sim b$ if and only if $P(a-b)=0$ . By the same argu-
ment as in introduction, we have a metric space $\dot{X}_{\dot{p}}$ . We define $(\dot{f}_{1X})_{\dot{p}}$ on $\dot{X}_{\dot{p}}$

by $(\dot{f}_{|X})_{p}(\dot{a})=f_{1X}(a)$ for some $a$ in $\dot{a}$ and $f_{1X}\in \mathcal{H}_{X}$ . The class $\dot{\mathcal{H}}_{X\dot{p}}=\{(\dot{f}_{X}|)_{\dot{p}}$ :
$f_{1X}\in \mathcal{H}_{X}\}$ is uniformly bounded and uniformly equicontinuous on $\dot{X}_{\dot{p}}$ since

$|(\dot{f}_{1X})_{\dot{p}}(\dot{a})|=|f_{1X}(a)|\leqq p(a)=\dot{p}(\dot{a})$

for any $f_{|X}\in \mathcal{H}_{X}$ . For $\mu\in\dot{M}_{rF}(X)$ , and so $\mu\in\dot{M}_{\tau F}^{p}(X)$ , we have

$\int g(\dot{a})d(\dot{\mu})_{p}(\&)=\int g(Q_{p}(a))du(a)$

for any $\dot{g}\in C_{b}(\dot{X}_{p})$ , particularly

$\int(f_{1X})_{\dot{p}}(\delta)d(\dot{\mu})_{p}(\delta)=\int(\dot{f}_{1X})_{\dot{p}}(Q_{p}(a))d\mu(a)=\int f_{1X}(a)d\mu(a)$
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for any $f_{1X}\in \mathcal{H}_{X}$ . Since $f_{\alpha 1X}\rightarrow f_{1X}$ pointwise, $(\dot{f}_{\alpha 1X})_{\dot{p}}\rightarrow(f_{1X})_{\dot{p}}$ pointwise. So we
have $\inf_{\delta}\sup_{\alpha\geqq}(f_{a1X})_{\dot{p}}(\dot{a})=(\dot{f}_{1X})_{\dot{p}}(\dot{a})=\sup_{\delta}\inf_{\alpha\geqq\delta}(\dot{f}_{\alpha 1X})_{\dot{p}}(\dot{a})$ . Putting $\dot{g}_{\delta}(\dot{a})=\sup_{\alpha\geqq\delta}(\dot{f}_{\alpha X}|)_{\dot{p}}(\dot{a})$ ,

and $\dot{h}_{\delta}(\dot{a})=\inf_{\alpha\geqq\delta}(f_{\alpha^{1}X})_{\dot{p}}(\dot{a}),\dot{g}_{\delta}$ and $\dot{h}_{\delta}$ are functions such that $\dot{g}_{\delta}\downarrow(\dot{f}_{1X})_{\dot{p}},\dot{h}_{\delta}\uparrow(f_{1X})_{\dot{p}}$ ,

$(\dot{f}_{\delta 1X})_{\dot{p}}\leqq\dot{g}_{\delta}$ and $h_{\delta}\leqq(f_{\delta 1X})_{\dot{p}}$ . The uniform boundedness and the equicontinuity
of $\dot{\mathcal{H}}_{X\dot{p}}$ imply that $\dot{g}_{\check{o}}$ and $\dot{h}_{\delta}$ are bounded and continuous. $(\dot{\mu})_{p}$ being in
$M_{\tau}(\dot{X}_{\dot{p}})$ , we have

$(\dot{\mu})_{p}(f_{1X})_{\dot{p}}=\varliminf_{\delta}(\dot{\mu})_{p}(\dot{h}_{\delta})\leqq\varliminf_{\delta}(\dot{\mu})_{p}(\dot{f}_{\delta|X})_{\dot{p}}\leqq\varlimsup_{\delta}(\dot{\mu})_{p}(f_{\dot{\delta}1X})_{\dot{p}}$

$\leqq\varlimsup_{\delta}(\dot{\mu})_{p}(\dot{g}_{\delta})=(\dot{\mu})_{p}(\dot{f}_{1X})_{\dot{p}}$ .

Hence we have $\lim\mu(f_{\alpha 1X})=\mu(f_{1X})$ . Thus the proof is completed.

PROOF OF THEOREM 2. Let $F_{1}$ be the completion of $F$ . We know that
$F_{1}^{*}=F^{*}$ . Consider the linear functional

$\mu:(F_{1}^{*}, \sigma(F_{1}^{*}, F_{1}))\rightarrow R,$ $\mu(f)=\int f_{1X}d\mu,$ $f\in F_{1}^{*}$ , where $R$ is the set of all real

numbers. By Lemma 1 and Lemma 2, we have that $\mu$ is continuous, that is,
$\mu\in(F_{1}^{*}, \sigma(F_{1}^{*}, F_{1}))^{*}=F_{1}$ , and so there exists a point $a$ in $F_{1}$ such that $f(a)=$

$\mu(f)=\int f_{1X}d\mu$ for any $f\in F_{\iota}^{*}=F^{*}$ . It easily follows from the separation theorem

that $a$ lies in $X$, since $X$ is closed in $F_{1}$ .
COROLLARY 1. If $X$ is complete, every element of $M_{s}(X)$ has a barycenter

in $X$.
PROOF. This follows from the fact that $M_{s}(X)\subset\dot{M}_{rF}(X)$ .
REMARK. This corollary contains a theorem of Khurana (Theorem 1 in

[6]) asserting that if $F$ is complete, every element of $M_{r}(X)$ has a barycenter
in $X$, since $M_{r}(X)\subset M_{s}(X)$ .

COROLLARY 2. If $X$ is a complete $D$-topological sPace, every element of
$M_{\sigma}(X)$ has a barycenter in $X$.

PROOF. Since $X$ is a D-topological space, we have $M_{\sigma}(X)=M_{s}(X)\subset\dot{M}_{\tau F}(X)$ .
Hence the corollary holds.

REMARK. This corollary contains a theorem of Khurana (Theorem 2.2 in
[5]) asserting that if $X$ is complete and separable, every element of $M_{\sigma}(X)$

has a barycenter in $X$.
COROLLARY 3 (Theorem 2.2 in [5]). If $X$ is complete and $F$ is separable,

every element of $M_{\sigma}(X)$ has a barycenter in $X$ .
PROOF. This follows from the fact that $M_{\sigma}(X)=\dot{M}_{\tau F}(X)$ if $F$ is separable.
REMARK. Concerning the vector integration, we obtain the following result.

Suppose $f:Y\rightarrow F$ is continuous and bounded, $\mu\in M_{s}(Y)$ , and $f(Y)$ is contained
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in a complete convex subset of $F$ . Then the weak integral $\int fd\mu$ is in $F$ .
This is a generalization of a result due to Khurana (Proposition1.5 in [5]).
We give a sketch of the proof. Consider the linear functional

$L$ : $(F_{1}^{*}, \sigma(F_{1}^{*}, F_{1}))\rightarrow R,$ $L(g)=\int(g, f(y))d\mu(y),$ $g\in F_{1}^{*}=F^{*}$ .

$\mathcal{H}_{f}=\{h(y)=(g, f(y)):g\in \mathcal{H}\}$ is uniformly bounded and equicontinuous on $Y$

for every equicontinuous set $\mathcal{H}$ of $F_{1}^{*}$ . Define on $Y$ the continuous pseudo-
metric $d(x, y)=\sup\{|h(x)-h(y)| : h\in \mathcal{H}_{f}\}$ . Define on $Y$ the equivalence relation
$x\sim y$ if and only if $d(x, y)=0$ . If $\dot{Y}$ is the class of all such equivalence classes,

$\dot{y}$ being that which contains $y$ of $Y$ , then we can define the metric $\dot{d}$ on $\dot{Y}$ by
$\dot{d}(\dot{x},\dot{y})=d(x, y)$ . $(\dot{Y},\dot{d})$ is a metric space and $Q:Y\rightarrow\dot{Y}$ defined by $Q(y)=\dot{y}$ is
continuous onto. We define $\dot{h}$ on $\dot{Y}$ by $\dot{h}(\dot{y})=h(y)$ for some $y$ iny and $h\in \mathcal{H}_{f}$ .
The class $\dot{\mathcal{H}}_{f}=\{\dot{h} : h\in \mathcal{H}_{f}\}$ is uniformly bounded and equicontinuous on $(\dot{Y}, \dot{d})$ .
For $\mu\in M_{s}(Y)$ , define $\dot{\mu}\in M_{\sigma}(\dot{Y})$ by $\dot{\mu}(\dot{B})=\mu(Q^{-1}(\dot{B}))$ for any Baire set $\dot{B}\subset\dot{Y}$ .
Then $\dot{\mu}\in M_{s}(\dot{Y})$ , and so $\dot{\mu}\in M_{\tau}(\dot{Y})$ by Varadarajan’s theorem (Corollary of
Theorem 27 in part1 in [9]). The rest is analogous to Theorem 2.

\S 3. Proof of Theorem 1.

For the proof, we prepare some lemmas.
LEMMA 3. Let $\mu$ be an element of $\dot{M}_{\tau F}(X)$ . If $ 0<\nu\leqq\mu$ , we have $\nu/\nu(X)$

$\in\dot{M}_{rF}(X)$ .
PROOF. We prove that $(\dot{\nu}/\nu(X))_{p}\in M_{\tau}(\dot{X}_{\dot{p}})$ for any $p\in S_{F}$ . Take a net $\dot{g}_{a}$

$\in C_{b}(\dot{X}_{\dot{p}})$ with $\dot{g}_{\alpha}\downarrow 0$ . Then we have

$\int\dot{g}_{\alpha}(\dot{a})d(\dot{\mu})_{p}(b)=\int\dot{g}_{a}(Q_{p}(a))d\mu(a)\geqq\int\dot{g}_{\alpha}(Q_{p}(a))d\nu(a)$

$=\int g_{\alpha}(\dot{a})d(\dot{\nu})_{p}(\delta)\geqq 0$ .

$(\dot{\mu})_{p}$ being in $M_{\tau}(\dot{X}_{\dot{p}})$ , we have $(\dot{\nu})_{p}(\dot{g}_{a})\rightarrow 0$, and so $(\dot{\nu}/\nu(X))_{p}\in M_{r}(\dot{X}_{\dot{p}})$ . $p$ being

arbitrary, we have $\nu/\nu(X)\in\dot{M}_{\tau F}(X)$ .
LEMMA 4. Let $\mu$ be an element of $\dot{M}_{\tau F}(X)$ having $a$ as its barycenter. If

there exists $P\in S_{F}$ such that $(\dot{\mu})_{p}\neq(\epsilon_{\dot{a}})_{p}$, there exists a convex zero set $A\subset X$ with
$0<\mu(A)<1$ and $a\overline{\in}A$ .

PROOF. Suppose that there exists $p\in S_{F}$ such that $(\dot{\mu})_{p}\neq(\epsilon_{a})_{p}$ . Let
$\dot{b}\in Support$ of $(\dot{\mu})_{p},\dot{b}\neq\dot{a}$ , and take $f\in(\dot{F}_{\dot{p}})^{*}$ such that $\dot{f}(\dot{b})<c<\dot{f}(\dot{a})$ , for some
real $c$ . Putting $A=\{x\in X;\dot{f}(Q_{p}(x))\leqq c\},$ $A$ is a convex zero set with $0<\mu(A)$

$<1$ , and $a\overline{\in}A$ , which are proved as follows. If $\mu(A)=1$ , we have
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$\dot{f}(\dot{a})=\dot{f}(Q_{p}(a))=\int_{X}\dot{f}(Q_{p}(x))d\mu(x)=\int_{A}\dot{f}(Q_{p}(x))d\mu(x)\leqq c$ ,

which is a contradiction. Putting $\dot{B}=\{\dot{x}\in\dot{X}_{\dot{p}} : \dot{f}(\dot{x})\leqq c\}$ , we have $A=Q_{p}^{-1}(\dot{B})\cap X$

and $(\dot{\mu})_{p}(\dot{B})>0$, which can be easily checked. Hence we have $\mu(A)=$

$\mu(Q_{p}^{-1}(\dot{B})\cap X)=(\dot{\mu})_{p}(\dot{B})>0$ . It is clear that $a\in-A$ .
LEMMA 5. If $(\dot{\mu})_{p}=(\epsilon_{a})_{p}$ for any $P\in S_{F},$ $\mu(\{x:P(x-a)=0\})=1$ for any

$p\in S_{F}$ .
PROOF. $\mu(\{x:P(x-a)=0\})=\mu(Q_{p}^{-1}(\{\dot{a}\})\cap X)=(\dot{\mu})_{p}(\{\dot{a}\})=(\epsilon_{a})_{p}(\{\dot{a}\})=1$ .
LEMMA 6. If $\mu(\{x:P(x-a)=0\})=1$ for any $p\in S_{F}$ , we have $\mu=\epsilon_{a}$ .
PROOF. Let $g$ be a real-valued continuous function on $X$ with $\Vert g\Vert<1$ and

$g(a)=0$ . For every positive number $\epsilon$ , there exists $p\in S_{F}$ such that $\{x:P(x-a)$

$=0\}\subset\{x:|g(x)|<\epsilon\}$ . Putting $Z=\{x:P(x-a)=0\},$ $Z$ is a zero set of $X$ and
$\mu(Z)=1$ . Hence we have

$|\int g(x)d\mu(x)|\leqq\int_{Z}|g(x)|d\mu(x)+\int_{X\backslash Z}|g(x)|d\mu(x)<\epsilon\mu(Z)=\epsilon$ .

$\epsilon$ being arbitrary, $\int g(x)d\mu(x)=0$. This implies that $\mu=\epsilon_{a}$ .
PROOF OF THEOREM 1. Let $\mu$ be an element of $\dot{M}_{\tau F}(X)$ having $a\in extX$

as its barycenter. If there exists $p\in S_{F}$ such that $(\dot{\mu})_{p}\neq(\epsilon_{\dot{a}})_{p}$ , there exists a
convex zero set $A$ with $0<\mu(A)<1$ and $a\overline{\in}$ $A$ by Lemma 4. Define $\mu_{1}(B)=t^{-1}$

. $\mu(A\cap B)$ , and $\mu_{2}(B)=(1-t)^{-1}\cdot\mu((X\backslash A))\cap B)$ for any Baire set $B\subset X$, where
$t=\mu(A)$ . Then we have by Lemma 3 and a simple verification that $\mu_{1}\in\dot{M}_{\tau F}(X)$ ,
$\mu_{2}\in\dot{M}_{\tau F}(X)$ and $\mu=t\cdot\mu_{1}+(1-t)\cdot\mu_{2}$ , which implies that $a=ta_{1}+(1-t)a_{2},$ $a_{1},$ $a_{2}$ ,
being barycenters of $\mu_{1},$ $\mu_{2}$ , respectively (Theorem 2), and $a_{1}\neq a$ (Lemma 4).
Since $a$ is an extreme point, this is a contradiction, and so $(\dot{\mu})_{p}=(\epsilon_{\dot{a}})_{p}$ for any
$p\in S_{F}$ . By Lemma 5 and Lemma 6, we have $\mu=\epsilon_{a}$ . The converse is trivial.
Thus the proof is completed.

COROLLARY 4. If $X$ is complete, $a\in extX$ if and only if $\epsilon_{a}$ is the only one
element of $M_{s}(X)$ having $a$ as its barycenter.

REMARK. This corollary contains a theorem of Khurana (Theorem 2 in
[6]) asserting that if $F$ is complete, $a\in extX$ if and only if $\epsilon_{a}$ is the only
one element of $M_{r}(X)$ having $a$ as its barycenter.

COROLLARY 5. If $X$ is a complete D-topological space, $a\in extX$ if and only
if $\epsilon_{a}$ is the only one element of $M_{\sigma}(X)$ having $a$ as its barycenter.

COROLLARY 6 (Theorem 3 in [6]). If $X$ is complete and $F$ is separable, $a$

$\in extX$ if and only if $\epsilon_{a}$ is the only one element of $M_{\sigma}(X)$ having $a$ as its
barycenter.
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\S 4. Proof of Theorem 3.

$(b)\Rightarrow(c)$ . This is trivial.
$(c)\Rightarrow(a)$ . This follows from Corollary 1 of Theorem 2, since $M(K)=M_{s}\langle K)$

for any compact $K$.
$(a)\Rightarrow(b)$ . Every element of $M(K)$ having a barycenter in $F$, we can define

the maP $r:M(K)\rightarrow F$ by $r(\mu)=barycenter$ of $\mu$ . Since it is Proved in [8] (Pro-
position 1.2, section 1) that a point $x$ lies in clconv $K$ if and only if there
exists $\mu\in M(K)$ having $x$ as its barycenter, the image $r(M(K))$ coincides with
clconv $K$. Hence we have only to show that the map $r$ is continuous on $M(K)$

with the weak topology, since $M(K)$ with the weak topology is compact. Take
a net $\mu_{\alpha}\rightarrow\mu$ in $M(K)$ . For any equicontinuous set $\mathcal{H}$ of $F^{*}$ , we put $\mathcal{H}_{K}=$

$\{f_{1K} : f\in \mathcal{H}\}$ . Then $\mathcal{H}_{K}$ is a uniformly bounded and equicontinuous subset of
$C(K)$ , the set of all real-valued continuous functions on $K$. When $C(K)$ is
topologized by the $\sup$ norm topology, $\mathcal{H}_{K}$ is a totally bounded subset of
$C(K)$ by Arzel\‘a’s theorem (Theorem 6.7, chapter4 in [2]). Hence, putting
$x_{\alpha}=r(\mu_{\alpha})$ and $x=r(\mu)$ , we have

$sup\{|f(x_{\alpha})-f(x)| : f\in \mathcal{H}\}=\sup\{|\mu_{\alpha}(f)-\mu(f)| : f\in \mathcal{H}_{K}\}\rightarrow 0$ ,

since $M(K)$ is equicontinuous on $C(K)$ with the $\sup$ norm topology. This proves
that $x_{\alpha}\rightarrow x$ with respect to the locally convex topology. Hence the map $r$ is
continuous. Thus the proof is completed.

COROLLARY 7. Let $K$ be a compact subset of a complete locally convex Haus-
dorff space F. Then clconv $K$ is compact.

REMARK. In [5], Khurana has obtained some results concerning the con-
nection between the weak compactness of $X$ and barycenters of elements of
$M(X)$ .
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