Barycenters and extreme points

By Minoru MATSUDA

(Received Oct. 2, 1974) (Revised May 17, 1977)

§1. Introduction.

Let Y be a completely regular Hausdorff space, M(Y) the set of all positive, regular, and finitely additive measures, each of total mass 1, on the field generated by zero sets in Y, and $M_{\sigma}(Y)$, $M_{\tau}(Y)$ the subsets of M(Y) consisting of all σ -additive, and all τ -additive elements of M(Y). Every element of $M_{\sigma}(Y)$ is a Baire measure on the σ -algebra generated by zero sets called Baire algebra of Y. Every μ of $M_{\tau}(Y)$ is uniquely extendible to a countably additive and regular Borel measure on Y which also is denoted by μ . Each element of M(Y) can be identified with a positive linear functional L on $C_b(Y)$, the set of all real-valued bounded and continuous functions on Y, such that L(1)=1. By the weak topology on $M_{\sigma}(Y)$, we mean the topology $\sigma(M_{\sigma}, C_{b})$. An element μ of $M_{\sigma}(Y)$ is said to be separable if for every continuous pseudometric d on Y, there is a d-closed subset Z of Y such that $\mu(Y \setminus Z) = 0$ and such that Z is d-separable (see 1 in [1] or [7]). We denote the set of all separable measures by $M_s(Y)$. Then we should remark that $M_{\tau}(Y) \subset M_s(Y)$ (see p. 267 in [1]), and $M_{\sigma}(Y) = M_{s}(Y)$ for any D-topological space (see p. 1 in [3] and p. 137 in [7]).

Let X be a non-void, closed, convex, and bounded subset of a locally convex Hausdorff space F over reals. A point a in X is called the barycenter of a $\mu \in M(X)$ if $\mu(f) = f(a)$ for any f of F*, the topological dual of F, where $\mu(f) = \int f_{1X} d\mu$, and f_{1X} is the restriction of f on X. We denote by ext X the set of all extreme points of X, by ε_a the point measure at a, and by clconv X the closed convex hull of X.

Let p be in S_F which denotes the set of all continuous seminorms on F. Define on F the equivalence relation $a \sim b$ if and only if p(a-b)=0. If \dot{F}_p is the class of all such equivalence classes associated with p, \dot{a} being that which contains a of F, then we can define the norm \dot{p} on \dot{F}_p by $\dot{p}(\dot{a})=p(a)$. In \dot{F}_p , sum of two elements and scalar multiplication can be defined as usual. Then \dot{F}_p is a normed space with norm \dot{p} . This normed space is denoted by $\dot{F}_{\dot{p}}$.

M. Matsuda

Define the map $Q_p: F \rightarrow \dot{F}_p$ by $Q_p(a) = \dot{a}$, which is continuous and linear. Putting $\dot{X}_p = Q_p(X)$, \dot{X}_p is a bounded subset of \dot{F}_p , and a metric space with metric induced by \dot{p} . This metric space is denoted by \dot{X}_p . For $\mu \in M_{\sigma}(X)$, define $(\dot{\mu})_p \in M_{\sigma}(\dot{X}_p)$ by $(\dot{\mu})_p(\dot{B}) = \mu(Q_p^{-1}(\dot{B}) \cap X)$ for any Baire set $\dot{B} \subset \dot{X}_p$. $(\varepsilon_a)_p$ denotes the point measure at \dot{a} in \dot{X}_p . Then we consider the following set of measures on X associated with F and $p \in S_F$, which is denoted by $\dot{M}_{\tau F}^p(X)$.

$$\dot{M}^{p}_{\tau F}(X) = \{ \mu \in M_{\sigma}(X) : (\dot{\mu})_{p} \in M_{\tau}(\dot{X}_{p}) \}$$

On this set of measures on X, we should remark two following facts. One is that $M_s(X) \subset \dot{M}_{\tau F}^p(X)$, since $(\dot{\mu})_p \in M_{\tau}(\dot{X}_p)$ for any $\mu \in M_s(X)$, which is easily checked by Varadarajan's theorem (Corollary of Theorem 27 in part 1 in [9]). The other is that if F is separable, $M_{\sigma}(X) = \dot{M}_{\tau F}^p(X)$, which also is easily checked by Varadarajan's theorem (Corollary 4 of Theorem 25 in part 1 in [9]). From these sets $\dot{M}_{\tau F}^p(X)$, $p \in S_F$, we define the set of measures on X, which is denoted by $\dot{M}_{\tau F}(X)$ and associated with F, as follows.

$$\dot{M}_{\tau F}(X) = \bigcap_{p \in S_F} \dot{M}_{\tau F}^p(X) .$$

Then we have, from above properties of $\dot{M}^{p}_{\tau F}(X)$,

(1) $M_s(X) \subset \dot{M}_{\tau F}(X)$

and

(2) $M_{\sigma}(X) = \dot{M}_{\tau F}(X)$ if F is separable.

The purpose of this paper is to prove the following theorem, which gives a characterization of extreme points of X by $\dot{M}_{rF}(X)$, and also is a generalization of the results due to Khurana in the cases of $M_r(X)$ and $M_o(X)$ (Theorems 2, 3 in [6] respectively).

THEOREM 1. If X is complete, $a \in ext X$ if and only if ε_a is the only one element of $\dot{M}_{\tau F}(X)$ having a as its barycenter.

In order to prove this theorem, we need the following theorem on the existence of barycenters of elements of $\dot{M}_{rF}(X)$, which is a generalization of the results obtained by Khurana in [5] and [6] in the cases of $M_r(X)$ and $M_\sigma(X)$.

THEOREM 2. If X is complete, every element of $\dot{M}_{\tau F}(X)$ has a barycenter in X.

In §2, we give the proof of Theorem 2. Our method of the proof is based on the fact that $\mu(f) = \int f_{1X} d\mu$ is weak* continuous on every equicontinuous

set of F_1^* , where μ is an element of $\dot{M}_{\tau F}(X)$ and F_1 is the completion of F. In §3, we give the proof of Theorem 1. Our method is based on the facts

608

that $(\dot{\mu})_p$ is τ -additive for any $\mu \in \dot{M}_{\tau F}^p(X)$ and that every element of $\dot{M}_{\tau F}(X)$ has a barycenter in X.

Finally, in §4, we prove the following theorem concerning the connection between the compactness of clconv K and barycenters of elements of M(K)for any compact subset K of F. Then, the well-known theorem on the compactness of clconv K of a complete locally convex Hausdorff space F follows immediately from this theorem.

THEOREM 3. Let K be a compact subset of a locally convex Hausdorff space F. Then, the following statements are equivalent.

- (a) Every element of M(K) has a barycenter in F.
- (b) Clconv K is compact.
- (c) Clconv K is complete.

I express my hearty thanks to the referee for many valuable comments.

§2. Proof of Theorem 2.

For the proof, we prepare some lemmas.

LEMMA 1 (Theorem 17.7, chapter 5 in [4]). A locally convex Hausdorff space F is complete if and only if each linear functional on F^* which is weak* continuous on every equicontinuous set of F^* is weak* continuous on F^* , (equivalently, if each such linear functional is evaluation at some point of F).

LEMMA 2. When $C_b(X)$ is topologized by the pointwise convergence topology, every element of $\dot{M}_{\tau F}(X)$ is continuous on \mathcal{H}_X for any equicontinuous set \mathcal{H} of F^* , where $\mathcal{H}_X = \{f_{\perp X} : f \in \mathcal{H}\}.$

PROOF. Let $\mu \in \dot{M}_{\tau F}(X)$. To prove that μ is continuous on \mathcal{H}_X , take a net $f_{\alpha|X} \to f_{|X}$ pointwise in \mathcal{H}_X . Define the seminorm p on F by p(a) = $\sup\{|f(a)|: f \in \mathcal{H}\}$. The equicontinuity of \mathcal{H} implies that p is in S_F . Define on F the equivalence relation $a \sim b$ if and only if p(a-b)=0. By the same argument as in introduction, we have a metric space \dot{X}_p . We define $(\dot{f}_{|X})_p$ on \dot{X}_p by $(\dot{f}_{|X})_p(\dot{a}) = f_{|X}(a)$ for some a in \dot{a} and $f_{|X} \in \mathcal{H}_X$. The class $\dot{\mathcal{H}}_{Xp} = \{(\dot{f}_{|X})_p: f_{|X} \in \mathcal{H}_X\}$ is uniformly bounded and uniformly equicontinuous on \dot{X}_p since

$$|(\dot{f}_{|X})_{\dot{p}}(\dot{a})| = |f_{|X}(a)| \leq p(a) = \dot{p}(\dot{a})$$

for any $f_{1X} \in \mathcal{H}_X$. For $\mu \in \dot{M}_{\tau F}(X)$, and so $\mu \in \dot{M}_{\tau F}^p(X)$, we have

$$\int \dot{g}(\dot{a})d(\dot{\mu})_p(\dot{a}) = \int \dot{g}(Q_p(a))d\mu(a)$$

for any $\dot{\boldsymbol{g}} \in C_{\boldsymbol{b}}(\dot{X}_p)$, particularly

$$\int (\dot{f}_{|X})_{\dot{p}}(\dot{a}) d(\dot{\mu})_{p}(\dot{a}) = \int (\dot{f}_{|X})_{\dot{p}}(Q_{p}(a)) d\mu(a) = \int f_{|X}(a) d\mu(a)$$

M. MATSUDA

for any $f_{|X} \in \mathcal{H}_{X}$. Since $f_{\alpha|X} \to f_{|X}$ pointwise, $(\dot{f}_{\alpha|X})_{\dot{p}} \to (\dot{f}_{|X})_{\dot{p}}$ pointwise. So we have $\inf_{\delta} \sup_{\alpha \geq \delta} (\dot{f}_{\alpha|X})_{\dot{p}} (\dot{a}) = (\dot{f}_{|X})_{\dot{p}} (\dot{a}) = \sup_{\delta} \inf_{\alpha \geq \delta} (\dot{f}_{\alpha|X})_{\dot{p}} (\dot{a})$. Putting $\dot{g}_{\delta}(\dot{a}) = \sup_{\alpha \geq \delta} (\dot{f}_{\alpha|X})_{\dot{p}} (\dot{a})$, and $\dot{h}_{\delta}(\dot{a}) = \inf_{\alpha \geq \delta} (\dot{f}_{\alpha|X})_{\dot{p}} (\dot{a})$, \dot{g}_{δ} and \dot{h}_{δ} are functions such that $\dot{g}_{\delta} \downarrow (\dot{f}_{|X})_{\dot{p}}$, $\dot{h}_{\delta} \uparrow (\dot{f}_{|X})_{\dot{p}}$, $(\dot{f}_{\delta|X})_{\dot{p}} \leq \dot{g}_{\delta}$ and $\dot{h}_{\delta} \leq (\dot{f}_{\delta|X})_{\dot{p}}$. The uniform boundedness and the equicontinuity of $\dot{\mathcal{H}}_{X\dot{p}}$ imply that \dot{g}_{δ} and \dot{h}_{δ} are bounded and continuous. $(\dot{\mu})_{p}$ being in $M_{\tau}(\dot{X}_{\dot{p}})$, we have

$$\begin{split} (\dot{\mu})_p (\dot{f}_{|X})_p &= \lim_{\delta} (\dot{\mu})_p (\dot{h}_{\delta}) \leq \lim_{\delta} (\dot{\mu})_p (\dot{f}_{\delta|X})_p \leq \overline{\lim_{\delta}} (\dot{\mu})_p (\dot{f}_{\delta|X})_p \\ &\leq \overline{\lim_{\delta}} (\dot{\mu})_p (\dot{g}_{\delta}) = (\dot{\mu})_p (\dot{f}_{|X})_p \,. \end{split}$$

Hence we have $\lim_{\alpha} \mu(f_{\alpha|X}) = \mu(f_{|X})$. Thus the proof is completed.

PROOF OF THEOREM 2. Let F_1 be the completion of F. We know that $F_1^* = F^*$. Consider the linear functional

 $\mu: (F_1^*, \sigma(F_1^*, F_1)) \to R, \ \mu(f) = \int f_{1X} d\mu, \ f \in F_1^*, \ \text{where } R \text{ is the set of all real}$ numbers. By Lemma 1 and Lemma 2, we have that μ is continuous, that is, $\mu \in (F_1^*, \sigma(F_1^*, F_1))^* = F_1$, and so there exists a point a in F_1 such that $f(a) = \mu(f) = \int f_{1X} d\mu$ for any $f \in F_1^* = F^*$. It easily follows from the separation theorem that a lies in X, since X is closed in F_1 .

COROLLARY 1. If X is complete, every element of $M_s(X)$ has a barycenter in X.

PROOF. This follows from the fact that $M_s(X) \subset \dot{M}_{\tau F}(X)$.

REMARK. This corollary contains a theorem of Khurana (Theorem 1 in [6]) asserting that if F is complete, every element of $M_{\tau}(X)$ has a barycenter in X, since $M_{\tau}(X) \subset M_s(X)$.

COROLLARY 2. If X is a complete D-topological space, every element of $M_{\sigma}(X)$ has a barycenter in X.

PROOF. Since X is a D-topological space, we have $M_{\sigma}(X) = M_s(X) \subset \dot{M}_{\tau F}(X)$. Hence the corollary holds.

REMARK. This corollary contains a theorem of Khurana (Theorem 2.2 in [5]) asserting that if X is complete and separable, every element of $M_{\sigma}(X)$ has a barycenter in X.

COROLLARY 3 (Theorem 2.2 in [5]). If X is complete and F is separable, every element of $M_{\sigma}(X)$ has a barycenter in X.

PROOF. This follows from the fact that $M_{\sigma}(X) = \dot{M}_{\tau F}(X)$ if F is separable.

REMARK. Concerning the vector integration, we obtain the following result. Suppose $f: Y \rightarrow F$ is continuous and bounded, $\mu \in M_{s}(Y)$, and f(Y) is contained

610

in a complete convex subset of F. Then the weak integral $\int f d\mu$ is in F. This is a generalization of a result due to Khurana (Proposition 1.5 in [5]). We give a sketch of the proof. Consider the linear functional

$$L: (F_1^*, \sigma(F_1^*, F_1)) \to R, \ L(g) = \int (g, f(y)) d\mu(y), \ g \in F_1^* = F^*.$$

 $\mathcal{H}_f = \{h(y) = (g, f(y)) : g \in \mathcal{H}\}\$ is uniformly bounded and equicontinuous on Y for every equicontinuous set \mathcal{H} of F_1^* . Define on Y the continuous pseudometric $d(x, y) = \sup\{|h(x) - h(y)| : h \in \mathcal{H}_f\}$. Define on Y the equivalence relation $x \sim y$ if and only if d(x, y) = 0. If \dot{Y} is the class of all such equivalence classes, \dot{y} being that which contains y of Y, then we can define the metric \dot{d} on \dot{Y} by $\dot{d}(\dot{x}, \dot{y}) = d(x, y)$. (\dot{Y}, \dot{d}) is a metric space and $Q : Y \rightarrow \dot{Y}$ defined by $Q(y) = \dot{y}$ is continuous onto. We define \dot{h} on \dot{Y} by $\dot{h}(\dot{y}) = h(y)$ for some y in \dot{y} and $h \in \mathcal{H}_f$. The class $\dot{\mathcal{H}}_f = \{\dot{h} : h \in \mathcal{H}_f\}$ is uniformly bounded and equicontinuous on (\dot{Y}, \dot{d}) . For $\mu \in M_s(Y)$, define $\dot{\mu} \in M_o(\dot{Y})$ by $\dot{\mu}(\dot{B}) = \mu(Q^{-1}(\dot{B}))$ for any Baire set $\dot{B} \subset \dot{Y}$. Then $\dot{\mu} \in M_s(\dot{Y})$, and so $\dot{\mu} \in M_r(\dot{Y})$ by Varadarajan's theorem (Corollary of Theorem 27 in part 1 in [9]). The rest is analogous to Theorem 2.

§ 3. Proof of Theorem 1.

For the proof, we prepare some lemmas.

LEMMA 3. Let μ be an element of $\dot{M}_{\tau F}(X)$. If $0 < \nu \leq \mu$, we have $\nu/\nu(X) \in \dot{M}_{\tau F}(X)$.

PROOF. We prove that $(\dot{\nu}/\nu(X))_p \in M_r(\dot{X}_p)$ for any $p \in S_F$. Take a net $\dot{g}_{\alpha} \in C_b(\dot{X}_p)$ with $\dot{g}_{\alpha} \downarrow 0$. Then we have

$$\begin{split} \int \dot{g}_{\alpha}(\dot{a}) d(\dot{\mu})_{p}(\dot{a}) &= \int \dot{g}_{\alpha}(Q_{p}(a)) d\mu(a) \geq \int \dot{g}_{\alpha}(Q_{p}(a)) d\nu(a) \\ &= \int \dot{g}_{\alpha}(\dot{a}) d(\dot{\nu})_{p}(\dot{a}) \geq 0 \,. \end{split}$$

 $(\dot{\mu})_p$ being in $M_{\tau}(\dot{X}_p)$, we have $(\dot{\nu})_p(\dot{g}_{\alpha}) \rightarrow 0$, and so $(\dot{\nu}/\nu(X))_p \in M_{\tau}(\dot{X}_p)$. p being arbitrary, we have $\nu/\nu(X) \in \dot{M}_{\tau F}(X)$.

LEMMA 4. Let μ be an element of $\dot{M}_{\tau F}(X)$ having a as its barycenter. If there exists $p \in S_F$ such that $(\dot{\mu})_p \neq (\varepsilon_{\dot{a}})_p$, there exists a convex zero set $A \subset X$ with $0 < \mu(A) < 1$ and $a \in A$.

PROOF. Suppose that there exists $p \in S_F$ such that $(\dot{\mu})_p \neq (\varepsilon_{\dot{a}})_p$. Let $\dot{b} \in$ Support of $(\dot{\mu})_p$, $\dot{b} \neq \dot{a}$, and take $\dot{f} \in (\dot{F}_p)^*$ such that $\dot{f}(\dot{b}) < c < \dot{f}(\dot{a})$, for some real c. Putting $A = \{x \in X; \dot{f}(Q_p(x)) \leq c\}$, A is a convex zero set with $0 < \mu(A) < 1$, and $a \in A$, which are proved as follows. If $\mu(A) = 1$, we have

M. Matsuda

$$\dot{f}(\dot{a}) = \dot{f}(Q_p(a)) = \int_X \dot{f}(Q_p(x))d\mu(x) = \int_A \dot{f}(Q_p(x))d\mu(x) \le c$$

which is a contradiction. Putting $\dot{B} = \{\dot{x} \in \dot{X}_{\dot{p}} : \dot{f}(\dot{x}) \leq c\}$, we have $A = Q_p^{-1}(\dot{B}) \cap X$ and $(\dot{\mu})_p(\dot{B}) > 0$, which can be easily checked. Hence we have $\mu(A) = \mu(Q_p^{-1}(\dot{B}) \cap X) = (\dot{\mu})_p(\dot{B}) > 0$. It is clear that $a \in A$.

LEMMA 5. If $(\mu)_p = (\varepsilon_a)_p$ for any $p \in S_F$, $\mu(\{x : p(x-a) = 0\}) = 1$ for any $p \in S_F$.

PROOF. $\mu(\{x: p(x-a)=0\}) = \mu(Q_p^{-1}(\{\dot{a}\}) \cap X) = (\dot{\mu})_p(\{\dot{a}\}) = (\varepsilon_a)_p(\{\dot{a}\}) = 1.$

LEMMA 6. If $\mu(\{x: p(x-a)=0\})=1$ for any $p \in S_F$, we have $\mu = \varepsilon_a$.

PROOF. Let g be a real-valued continuous function on X with ||g|| < 1 and g(a)=0. For every positive number ε , there exists $p \in S_F$ such that $\{x : p(x-a) = 0\} \subset \{x : |g(x)| < \varepsilon\}$. Putting $Z = \{x : p(x-a) = 0\}$, Z is a zero set of X and $\mu(Z)=1$. Hence we have

$$\left|\int g(x)d\mu(x)\right| \leq \int_{Z} |g(x)|d\mu(x) + \int_{X\setminus Z} |g(x)|d\mu(x) < \varepsilon \mu(Z) = \varepsilon.$$

 ε being arbitrary, $\int g(x)d\mu(x)=0$. This implies that $\mu=\varepsilon_a$.

PROOF OF THEOREM 1. Let μ be an element of $\dot{M}_{\tau F}(X)$ having $a \in \operatorname{ext} X$ as its barycenter. If there exists $p \in S_F$ such that $(\dot{\mu})_p \neq (\varepsilon_a)_p$, there exists a convex zero set A with $0 < \mu(A) < 1$ and $a \in A$ by Lemma 4. Define $\mu_1(B) = t^{-1} \cdot \mu(A \cap B)$, and $\mu_2(B) = (1-t)^{-1} \cdot \mu((X \setminus A)) \cap B)$ for any Baire set $B \subset X$, where $t = \mu(A)$. Then we have by Lemma 3 and a simple verification that $\mu_1 \in \dot{M}_{\tau F}(X)$, $\mu_2 \in \dot{M}_{\tau F}(X)$ and $\mu = t \cdot \mu_1 + (1-t) \cdot \mu_2$, which implies that $a = ta_1 + (1-t)a_2$, a_1 , a_2 , being barycenters of μ_1 , μ_2 , respectively (Theorem 2), and $a_1 \neq a$ (Lemma 4). Since a is an extreme point, this is a contradiction, and so $(\dot{\mu})_p = (\varepsilon_a^*)_p$ for any $p \in S_F$. By Lemma 5 and Lemma 6, we have $\mu = \varepsilon_a$. The converse is trivial. Thus the proof is completed.

COROLLARY 4. If X is complete, $a \in ext X$ if and only if ε_a is the only one element of $M_s(X)$ having a as its barycenter.

REMARK. This corollary contains a theorem of Khurana (Theorem 2 in [6]) asserting that if F is complete, $a \in ext X$ if and only if ε_a is the only one element of $M_r(X)$ having a as its barycenter.

COROLLARY 5. If X is a complete D-topological space, $a \in ext X$ if and only if ε_a is the only one element of $M_{\sigma}(X)$ having a as its barycenter.

COROLLARY 6 (Theorem 3 in [6]). If X is complete and F is separable, a $\in ext \ X$ if and only if ε_a is the only one element of $M_{\sigma}(X)$ having a as its barycenter.

§4. Proof of Theorem 3.

 $(b) \Rightarrow (c)$. This is trivial.

 $(c) \Rightarrow (a)$. This follows from Corollary 1 of Theorem 2, since $M(K) = M_s(K)$ for any compact K.

 $(a) \Rightarrow (b)$. Every element of M(K) having a barycenter in F, we can define the map $r: M(K) \rightarrow F$ by $r(\mu) =$ barycenter of μ . Since it is proved in [8] (Proposition 1.2, section 1) that a point x lies in cloon K if and only if there exists $\mu \in M(K)$ having x as its barycenter, the image r(M(K)) coincides with cloon K. Hence we have only to show that the map r is continuous on M(K)with the weak topology, since M(K) with the weak topology is compact. Take a net $\mu_{\alpha} \rightarrow \mu$ in M(K). For any equicontinuous set \mathcal{H} of F^* , we put $\mathcal{H}_K =$ $\{f_{1K}: f \in \mathcal{H}\}$. Then \mathcal{H}_K is a uniformly bounded and equicontinuous subset of C(K), the set of all real-valued continuous functions on K. When C(K) is topologized by the sup norm topology, \mathcal{H}_K is a totally bounded subset of C(K) by Arzelà's theorem (Theorem 6.7, chapter 4 in [2]). Hence, putting $x_{\alpha} = r(\mu_{\alpha})$ and $x = r(\mu)$, we have

$$\sup \{ |f(x_{\alpha}) - f(x)| : f \in \mathcal{H} \} = \sup \{ |\mu_{\alpha}(f) - \mu(f)| : f \in \mathcal{H}_{K} \} \to 0,$$

since M(K) is equicontinuous on C(K) with the sup norm topology. This proves that $x_{\alpha} \rightarrow x$ with respect to the locally convex topology. Hence the map r is continuous. Thus the proof is completed.

COROLLARY 7. Let K be a compact subset of a complete locally convex Hausdorff space F. Then cloonv K is compact.

REMARK. In [5], Khurana has obtained some results concerning the connection between the weak compactness of X and barycenters of elements of M(X).

References

- [1] R.M. Dudley, Convergence of Baire measures, Studia Math., 27 (1966), 251-268.
- [2] N. Dunford and J. Schwartz, Linear operators 1, Interscience Publ., 1958.
- [3] E. Granirer, On Baire measures on D-topological spaces, Fund. Math., 60 (1967), 1-22.
- [4] J.L. Kelly and I. Namioka, Linear topological spaces, D. Van Nostrand Co., Princeton, N. J., 1961.
- [5] S.S. Khurana, Measures and barycenters of measures on convex sets in locally convex spaces 1, 2, J. Math. Anal. Appl., 27 (1969), 103-115; ibid., 28 (1969), 222-229.
- [6] S.S. Khurana, Characterization of extreme points, J. London Math. Soc., (2) 5 (1972), 102-104.
- [7] R.B. Kirk, Convergence of Baire measures, Pacific J. Math., 49 (1973), 135-148.

M. Matsuda

- [8] R.R. Phelps, Lectures on Choquet's theorem, D. Van Nostrand Co., Princeton, N. J., 1966.
- [9] V.S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Translations, Ser. 2, 48 (1965), 161-228.

Minoru MATSUDA Department of Mathematics Faculty of Science Shizuoka University Oya, Shizuoka Japan

614