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Let $M$ be a differentiable manifold with a locally flat linear connection $D$ .
Then, for each point $p\in M$, there exists a local coordinate system $\{x^{1}, \cdots , x^{n}\}$

in a neighbourhood of $p$ such that $D(dx^{i})=0$, which we call an affine local
coordinate system. A Riemannian metric $g$ on $M$ is said to be locally Hessian
with respect to $D$, if there exists, for each point $p\in M$, a real-valued function
$\phi$ of class $C^{\infty}$ on a neighbourhood of $p$ such that

$g=\sum_{l.j}\frac{\partial^{2}\phi}{\partial x^{\ell}\partial x^{j}}dx^{i}dx^{j}$ ,

where $\{x^{1}, x^{n}\}$ is an affine local coordinate system around $p$ . Such the
pair $(D, g)$ is called a locally Hessian structure on $M$. We know that for a
locally flat Riemannian manifold the pair of the Riemannian connection and
the Riemannian metric is a locally Hessian structure, and that a homogeneous
self-dual convex cone has a canonical locally Hessian structure (cf. [6]).

Let $G$ be a connected Lie group and $B$ a closed subgroup of $G$ . The pair
$(G, B)$ is called a symmetric pair if there exists an involutive automorphism
$\sigma$ of $G$ such that $(B_{\sigma})_{0}\subset B\subset B_{\sigma}$, where $B_{\sigma}$ is the set of fixed points of $\sigma$ and
$(B_{\sigma})_{0}$ is the identity component of $B_{\sigma}$ . If, in addition, $B$ contains no non-trivial
normal subgroup of $G,$ $(G, B)$ is said to be an effective symmetric pair.

The aim of this paper is to prove the following
THEOREM. Let $(G, B)$ be an effective symmetric Pair. If $M=G/B$ admits a

locally Hessian structure $(D, g)$ such that $D$ and $g$ are invariant under $G$ , then
$M$ is affinely diffeomorphic and isometric (with resPect to $D$ and $g$ respectively)
to a direct product

$M_{0}\times M_{1}\times\cdots\times M_{r}$ ,
where $M_{0}$ is a locally flat Riemannian manifold and the universal covering

manifold of $M_{i}(1\leqq i\leqq r)$ is an irreducible homogeneous self-dual convex cone
with a canonical locally Hessian structure.

1. In this section let $(G, B)$ be a pair of a connected Lie group $G$ and its
closed subgroup $B$ which needs not be symmetric. Assume that $G/B$ admits
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an invariant locally Hessian structure $(D, g)$ . Let $\mathfrak{g}$ be the Lie algebra of $G$

and let $\mathfrak{b}$ be the Lie subalgebra of $\mathfrak{g}$ corresponding to $B$ . For $X\in g$ we denote
by $x*$ the vector field on $M$ induced by the l-parameter group of transforma-
tions exp $(-tX)$ . We put $A_{X^{*}}Y^{*}=-D_{Y^{*}}X^{*}$ for $X,$ $Y\in \mathfrak{g}$ . Let $V$ be the tangent
space of $G/B$ at $0=\{B\}$ and let $f(X)$ and $q(X)$ denote the values of $A_{X^{*}}$ and
$x*ato$ respectively. Then we have (cf. [6])

(1) $f$ is a linear representatiOn of $\mathfrak{g}$ in $V$,

(2) $q$ is a linear map of $\mathfrak{g}$ onto $V$ such that

$q([X, Y])=f(X)q(Y)-f(Y)q(X)$ ,

and the kernel of $q$ coincides with $\mathfrak{b}$ .
Let $\omega$ be an invariant volume element on $G/B$ . If $\omega$ has the expression

$\omega=Kdx^{1}\wedge\cdots\Lambda dx^{n}$

in an affine local coordinate system $\{x^{1}, x^{n}\}$ , then the forms

$\alpha=\sum_{i}-\frac{K}{i}dx^{i}\underline{\partial 1}og\partial x$

$ D\alpha=\sum_{i.j}\frac{\partial^{2}10}{\partial x^{i}}g\frac{K}{X^{j}}dx^{i}dx^{j}\partial$

are called the Koszul form and the canonical bilinear form respectively. Let
$\alpha_{o},$

$D\alpha_{o}$ denote the values of $\alpha,$
$ D\alpha$ at $0$ . Then we have

(3) $\alpha_{o}(q(X))=Trf(X)$ ,

(4) $D\alpha_{o}(q(X), q(Y))=\alpha_{o}(f(X)q(Y))$ ,

for $X,$ $Y\in \mathfrak{g}$ (cf. [4], [6]).

Let $\langle, \rangle$ denote the inner product on $V$ given by the Riemannian metric $g$.
Then $\langle, \rangle$ satisfies the following condition (cf. [6])

(C) $\langle f(X)q(Y), q(Z)\rangle+\langle q(Y), f(X)q(Z)\rangle$

$=\langle f(Y)q(X), q(Z)\rangle+\langle q(X), f(Y)q(Z)\rangle$ .

Let $V^{*}$ be the dual space of $V$ and let $f*be$ the representation of $\mathfrak{g}$ con-
tragredient to $f$. We define a linear map $\gamma:\mathfrak{g}\rightarrow V^{*}$ by $(\gamma(X))(v)=\langle q(X), v\rangle$ for
$X\in \mathfrak{g},$ $v\in V$. Let $d_{f^{*}}$ denote the coboundary operator for the cohomology of
the Lie algebra $\mathfrak{g}$ with coefficients in $(V^{*}, f^{*})$ . Then the condition (C) is
equivalent to

(C) $d_{f^{*}}\gamma=0$ .
In fact, for $X,$ $Y,$ $Z\in \mathfrak{g}$ we have



Symmetric spaces with Hessian structures 583

$((d_{f}*r)(X, Y))(q(Z))$

$=(f^{*}(X)\gamma(Y))(q(Z))-(f^{*}(Y)\gamma(X))(q(Z))-\gamma([X, Y])q(Z)$

$=-\langle q(Y), f(X)q(Z)\rangle+\langle q(X), f(Y)q(Z)\rangle-\langle q([X, Y]), q(Z)\rangle$

$=-\langle q(Y), f(X)q(Z)\rangle+\langle q(X), f(Y)q(Z)\rangle$

$-\langle f(X)q(Y), q(Z)\rangle+\langle f(Y)q(X), q(Z)\rangle$ .
PROPOSITION 1. If $G/B$ admits an invariant locally Hessian structure, then

$G$ is not semi-simple.
PROOF. Let $d_{f}$ denote the coboundary operator for the cohomology of the

Lie algebra $\mathfrak{g}$ with coefficients in (V, $f$). Regarding $q$ as a l-dimensional (V, $f$) $-$

cochain, we have $(d_{f}q)(X, Y)=f(X)q(Y)-f(Y)q(X)-q([X, Y])=0$ for all $X,$ $Y$

$\in \mathfrak{g}$ . Now assume that $\mathfrak{g}$ is semi-simple. Since the cohomology group $H^{1}(\mathfrak{g}, (V, f))$

of the Lie algebra $\mathfrak{g}$ with coefficients in (V, $f$) is zero, there exists an element
$e\in V$ such that $q=d_{f}e$ . Choosing an element $E\in \mathfrak{g}$ such that $q(E)=e$ , we have
$q(X)=f(X)q(E)$ for all $X\in \mathfrak{g}$ . Since the cohomology group $H^{1}(\mathfrak{g}, (V^{*}, f^{*}))$ of
the Lie algebra $\mathfrak{g}$ with coefficients in $(V^{*}, f^{*})$ is zero and since $d_{f^{n}}\gamma=0$, there
exists an element $C^{*}\in V^{*}$ such that $r=d_{f^{*}}c^{*}$ . Therefore

$\langle q(X), q(Y)\rangle=(\gamma(X))(q(Y))=((d_{f^{*}}c^{*})(X))(q(Y))$

$=-c^{*}(f(X)q(Y))$

for all $X,$ $Y\in \mathfrak{g}$ . In particular

$\langle q(E), q(X)\rangle=\langle q(X), q(E)\rangle=-c^{*}(f(X)q(E))=-c^{*}(q(X))$

for $X\in \mathfrak{g}$ . Combining these with (C), we have

$\langle f(E)q(X), q(Y)\rangle+\langle q(X), f(E)q(Y)\rangle$

$=\langle f(X)q(E), q(Y)\rangle+\langle q(E), f(X)q(Y)\rangle$

$=\langle q(X), q(Y)\rangle-c^{*}(f(X)q(Y))$

$=2\langle q(X), q(Y)\rangle$ .
This implies that $f(E)+{}^{t}f(E)=2$, where ${}^{t}f(E)$ is the transpose of $f(E)$ with
respect to $\langle$ , $\rangle$ . Taking the trace of the both sides of this formula we get
Tr $f(E)=\dim V$. On the other hand, since $\mathfrak{g}=[g, \mathfrak{g}]$ , we have Tr $f(E)=0$ , which
is a contradiction. Thus Proposition is completely proved.

2.
metric pair. Then there exists a subspace $\mathfrak{m}$ of $\mathfrak{g}$ such that

$\mathfrak{g}=\mathfrak{b}+\mathfrak{m}$ (a vector space direct sum) ,
(5)

$[\mathfrak{b}, \mathfrak{b}]\subset \mathfrak{b}$ , $[\mathfrak{b}, \mathfrak{m}]\subset \mathfrak{m}$ , $[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{b}$ .

In the following we always assume that $(G, B)$ is an effective sym-
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Since $q$ is a linear isomorphism from $\mathfrak{m}$ onto $V$, for each $u\in V$ there exists a
unique element $X_{u}\in \mathfrak{m}$ such that

$q(X_{u})=u$ .
We put

$L_{u}=f(X_{u})$ ,

and define a multiplication low in $V$ by

(6) $u\cdot\iota’=L_{u}v$ .
Then, by (5) the algebra $V$ is commutative.

LEMMA 1. Let $R_{o}$ be the value of the curvature tensor 7 or the Riemannian
metric $g$ at $0$ . Then, for $u,$ $v\in V$ we have

$R_{o}(u, v)=-[L_{u}, L_{v}]$ .
PROOF. Identifying $\mathfrak{m}$ with $V$ by $q$, it is known that

$R_{o}(X, Y)Z=-[[X, Y],$ $Z$]

for $X,$ $Y,$ $Z\in \mathfrak{m}$ (cf. [2]). Therefore $R_{o}(u, v)w=q(R_{o}(X_{u}, X_{v})X_{w})=-q([[X_{u}, X_{v}]$ ,
$X_{w}])=-f([X_{u}, X_{v}])q(X_{w})+f(X_{w})q([X_{u}, X_{v}])=-[L_{u}, L_{v}]w$, for $u,$ $v,$ $w\in V$.

QED.

LEMMA 2. For $W\in \mathfrak{b},$ $f(W)$ is a derivation of the algebra $V$.
PROOF. Let $u\in V$. Since $q([W, X_{u}])=f(W)q(X_{u})-f(X_{u})q(W)=f(W)u$ and

since $[W, X_{u}]\in \mathfrak{m}$, we obtain $[W, X_{v}]=X_{f(W)u}$ . Therefore we have $(f(W)u)\cdot v$

$=f(X_{f(W)u})v=f([W, X_{u}])v=f(W)f(X_{u})v-f(X_{u})f(W)v=f(W)(u\cdot v)-u\cdot(f(W)v)$ .
QED.

For simplicity, we put $\alpha=\alpha_{o},$ $\tau=D\alpha_{o}$ . Then the following formulas follow
from (3) and (4).

(3) $\alpha(u)=TrL_{u}$ ,

(4) $\tau(u, v)=\alpha(u\cdot v)$ .
LEMMA 3. For $u,$ $v,$ $w\in V$, we have

(i) $[[L_{u}, L_{v}],$ $L_{w}$] $=L_{[u\cdot w\cdot v]}$ ,

(ii) $\tau(u\cdot v, w)=\tau(v, u\cdot w)$ ,

where $[u\cdot w\cdot v]=u\cdot(w\cdot v)-(u\cdot w)\cdot v$ .
PROOF. Since $q([[X_{u}, X_{v}], X_{w}])=f([X_{u}, X_{v}])q(X_{w})-f(X_{w})q([X_{u}, X_{v}])=$

$[L_{u}, L_{v}]w=[u\cdot w\cdot v]$ and since $[[X_{u}, X_{v}],$ $X_{w}$] $\in \mathfrak{m}$ , we have $[[X_{u}, X_{v}],$ $X_{w}$] $=$

$ X_{\ddagger u\cdot w\cdot v\lrcorner}\urcorner$ Therefore we obtain $[[L_{u}, L_{v}],$ $L_{w}$] $=f([[X_{u}, X_{v}], X_{w}])=f(X_{[u\cdot w\cdot v]})=$

$L_{[u\cdot w\cdot v]}$ . Applying this we have $\tau(u\cdot v, w)-\tau(v, u\cdot w)=TrL_{(u\cdot v)\cdot w- v\cdot(u\cdot w)}=$

-Tr $L_{[v\cdot u\cdot w]}=-Tr[[L_{v}, L_{w}],$ $L_{u}$] $=0$ . QED.
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LEMMA 4. Let ${}^{t}f(X)$ denote the transpOse of $f(X)$ with respect to $\langle, \rangle$ .
Then we have

(i) ${}^{t}f(X)=f(X)$ for all $X\in \mathfrak{m}$ ,

(ii) ${}^{t}f(W)=-f(W)$ for all $W\in \mathfrak{b}$ .
In particular $f(\mathfrak{g})$ is self-adjoint with respect to $\langle, \rangle$ .

PROOF. We recall the condition (C);

$\langle f(Y)q(Z), q(X)\rangle+\langle q(Z), f(Y)q(X)\rangle$

$=\langle f(Z)q(Y), q(X)\rangle+\langle q(Y), f(Z)q(X)\rangle$ .
Let $X,$ $Y,$ $Z\in \mathfrak{m}$ . Since $V$ is commutative, we have $\langle q(Z), f(X)q(Y)\rangle=$

$\langle f(X)q(Z), q(Y)\rangle$, which implies (i). Let $X,$ $Y\in \mathfrak{m}$ and $Z=W\in \mathfrak{b}$ . Since $q(W)=0$,
it follows that $\langle f(W)q(Y), q(X)\rangle+\langle q(Y), f(W)q(X)\rangle=0$ . Thus (ii) is proved.

QED.

LEMMA 5. Let Ker $f$ denote the kernel of $f$. Then we have Ker $f\subset \mathfrak{m}$ .
PROOF. Let $Z\in Kerf\cap \mathfrak{b}$ . For $X\in \mathfrak{m}$ we have $[Z, X]\in \mathfrak{m}$ and $q([Z, X])=$

$f(Z)q(X)-f(X)q(Z)=0$ . Hence $[Z, X]=0$ . For $W\in \mathfrak{b}$ we have $[Z, W]\in$

$[Kerf, \mathfrak{b}]\cap[\mathfrak{b}, \mathfrak{b}]\subset Kerf\cap \mathfrak{b}$ . These imply that Ker $f\cap \mathfrak{b}$ is an ideal of $\mathfrak{g}$ con-
tained in $\mathfrak{b}$ . Since $(G, B)$ is effective, it follows Ker $f\cap \mathfrak{b}=\{0\}$ . Now suppose
that $X\in \mathfrak{m}$ and $W\in \mathfrak{b}$ . Then $f(X+W)+{}^{t}f(X+W)=2f(X)$ and $f(X+W)-{}^{t}f(X+W)$

$=2f(W)$ by Lemma 4. It follows that Ker $f=Kerf\cap \mathfrak{b}+Kerf\cap \mathfrak{m}$ . Thus we
get $Ker.f\subset \mathfrak{m}$. QED.

We set

(6) $\mathfrak{g}(\mathfrak{m})=[\mathfrak{m}, \mathfrak{m}]+\mathfrak{m}$ ,

Then $\mathfrak{g}(\mathfrak{m})$ is a subalgebra of $\mathfrak{g}$ . Let $G(\mathfrak{m})$ be the connected Lie subgroup of
$G$ generated by $g(\mathfrak{m})$ and put $B(\mathfrak{m})=G(\mathfrak{m})\cap B$ . Then we have

(7) $G/B=G(\mathfrak{m})/B(\mathfrak{m})$ .
By the definition of $\mathfrak{g}(\mathfrak{m})$ and by Lemma 4 (i), $f(\mathfrak{g}(\mathfrak{m}))$ is self-adjoint with

respect to $\langle$ , $\rangle$ . Let $V_{0}=$ { $v_{0}\in V;f(X)v_{0}=0$ for all $X\in \mathfrak{g}(\mathfrak{m})$ } and let $V^{\prime}$ be the
orthogonal complement of $V_{0}$ with respect to $\langle$ , $\rangle$ . Then, under the action of
$f(\mathfrak{g}(\mathfrak{m})),$

$V^{\prime}$ is invariant and is decomposed into a direct sum $V^{\prime}=\sum_{l-1}^{r}V_{i}$ of

mutually orthogonal, invariant and irreducible subspaces. We have then

$V=V_{0}+V_{1}+\cdots+V_{r}$ ,
(8)

$V_{i}\cdot V_{i}\subset V_{t}$ , $V_{i}\cdot V_{j}=\{0\}$ $(i\neq j)$ .
LEMMA 6. Put $\mathfrak{m}_{\ell}=\{X\in \mathfrak{m};q(X)\in V_{i}\}(0\leqq i\leqq r)$ . Then we have

(i) $Kerf=\mathfrak{m}_{0}$ ,
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(ii) $[\mathfrak{m}_{i}, \mathfrak{m}_{j}]=\{0\}$ $(0\leqq i<j\leqq r)$ .
PROOF. Let $X\in \mathfrak{n}\iota_{0}$ . Then $f(X)q(Y)=f(Y)q(X)=0$ for all $Y\in \mathfrak{m}$ , and there-

fore $X\in Kerf$. Conversely, let $X\in Kerf$. Since $X\in \mathfrak{m}$ by Lemma 5, we have
$f(Y)q(X)=f(X)q(Y)=0$ for all $Y\in \mathfrak{m}$ . Since $\mathfrak{g}(\mathfrak{m})$ is generated by $\mathfrak{m}$, we obtain
$f(Y)q(X)=0$ for all $Y\in \mathfrak{g}(\mathfrak{m})$ and therefore $X\in \mathfrak{m}_{0}$ . Thus (i) is proved. Let
$X_{i}\in \mathfrak{m}_{i}$ and $X_{j}\in \mathfrak{m}_{j}$ . By (8) we have $f([X_{i}, X_{j}])v=f(X_{i})f(X_{j})v-f(X_{j})f(X_{i})v=0$

for all $v\in V$. Therefore it follows $[X_{i}, X_{j}]\in Kerf\cap \mathfrak{b}$ and so $[X_{i}, X_{j}]=0$ by
Lemma 5. QED.

LEMMA 7. If we set
$\mathfrak{g}_{i}=[\mathfrak{m}_{i}, \mathfrak{m}_{i}]+\mathfrak{m}_{i}$

for $0\leqq i\leqq r$, then we have

(i) $\mathfrak{g}(\mathfrak{m})=\mathfrak{g}_{0}+\mathfrak{g}_{1}+\cdots+\mathfrak{g}_{r}$ ,

(ii) $\mathfrak{g}_{i}$ is an ideal of $\mathfrak{g}(\mathfrak{m})$ .
PROOF. Since $[\mathfrak{m}_{i}, \mathfrak{m}_{j}]=\{0\}(i\neq j)$ , (i) is trivial, and $[\mathfrak{g}_{i}, \mathfrak{g}_{j}]=\{0\}$ $(i\neq j)$ .

Therefore, to prove (ii), it is sufficient to see $[[\mathfrak{m}_{i}, \mathfrak{m}_{i}],$
$\mathfrak{m}_{i}$] $\subset \mathfrak{m}_{i}$ . This follows

from the fact that $[[\mathfrak{m}_{i}, \mathfrak{m}_{i}],$
$\mathfrak{m}_{i}$] $\subset \mathfrak{m}$ and $ q([[\mathfrak{m}_{i}, \mathfrak{m}_{i}], \mathfrak{m}_{i}])=f([\mathfrak{m}_{i}, \mathfrak{m}_{i}])q(\mathfrak{m}_{i})\subset$

$f(\mathfrak{g})V_{i}\subset V_{t}$ . QED.

LEMMA 8. For $X\in \mathfrak{g}_{t}$ we denote by $f_{i}(X)$ the restriction of $f(X)$ to $V_{i}$ .
Then $f_{i}(1\leqq i\leqq r)$ is a faithful irreducible representatiOn of $\mathfrak{g}_{i}$ in $V_{i}$ .

PROOF. We fix $i$ between 1 and $r$ and suppose $f_{i}(X)=0$ . Since $f(\mathfrak{g}_{i})$ is
generated by $f(\mathfrak{m}_{i})$ and since $f(\mathfrak{m}_{i})V_{j}=\{0\}$ , we have $f(X)V_{j}=\{0\}$ for $j\neq i$ .
Therefore $f(X)=0$ . Since $Kerf\cap \mathfrak{g}_{i}=\mathfrak{m}_{0}\cap \mathfrak{g}_{i}=\{0\}$ by Lemma 6, $X=0$ and so $f_{i}$

is faithful. Let $U_{i}$ be a subspace of $V_{i}$ invariant under $f_{i}(\mathfrak{g}_{i})$ . Since $f(\mathfrak{g}_{j})$ is
generated by $f(\mathfrak{m}_{j})$ and since $f(\mathfrak{m}_{j})U_{i}=\{0\}$ , we have $f(\mathfrak{g}_{j})U_{i}=\{0\}$ for $j\neq i$ .
Therefore $U_{t}$ is a subspace of $V_{i}$ invariant under $f(\mathfrak{g}(\mathfrak{m}))$ , and so $U_{i}=\{0\}$ or
$V_{i}$ , which proves that $f_{i}$ is an irreducible representation. QED.

3, In this section we prove the following
PROPOSITION 2. Under the same assumPtions as in Theorem, assume further

that $f$ is a faithful irreducible representatiOn of $\mathfrak{g}$ in V. Then the universal
covering manifold of $G/B$ is an irreducible homogeneous self-dual convex cone.

Before proving this proposition, we prepare some results.
We put $U_{0}=$ { $u_{0}\in V;\tau(u_{0},$ $v)=0$ for all $v\in V$ }. By Lemma 3 (ii) we have

$\tau(u\cdot u_{0}, v)=\tau(u_{0}, u\cdot v)=0$ for $u_{0}\in U_{0},$ $u,$ $v\in V$. Hence $f(\mathfrak{m})U_{0}\subset U_{0}$ . Let $u_{0}\in U_{0}$ ,
$v\in V$ and $W\in \mathfrak{b}$ . Then, from Lemma 2 it follows that $\tau(f(W)u_{0}, v)=TrL_{(f(W)u_{0})\cdot v}$

$=TrL_{f(W)(u_{0}\cdot v)}-TrL_{u_{0}\cdot(f(W)v)}=Trf(X_{f(W)(u_{0}\cdot v)})-\tau(u_{0}, f(W)v)=Trf([W, X_{u_{0}\cdot v}])=0$ .
This implies that $f(\mathfrak{b})U_{0}\subset U_{0}$ . Therefore $f(\mathfrak{g})U_{0}\subset U_{0}$ . Since $f$ is an irreducible
representation, we have $U_{0}=\{0\}$ or $V$, which means that $\tau$ is non-degenerate
on $V$ or $\tau=0$ on $V$ .
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Assume that $\tau=0$ on $V$. Let $e$ be an element of $V$ such that $\langle e, u\rangle=\alpha(u)$

for all $u\in V$. By (4) and Lemma 4 (i) it follows that $\langle e\cdot u, v\rangle=\langle u\cdot e, v\rangle=$

$\langle e, u\cdot v\rangle=\alpha(u\cdot v)=\tau(u, v)=0$ for all $u,$ $v\in V$. Hence $L_{e}=0$ . Therefore we have
$\langle e, e\rangle=\alpha(e)=TrL_{e}=0$ , and so $e=0$ . Thus we obtain

(a) $\alpha(u)=0$ for all $u\in V$ .

Since $\mathfrak{g}$ admits a faithful irreducible representation, $\mathfrak{g}$ is a reductive Lie
algebra (cf. [1]). Let $\mathfrak{g}=\mathfrak{c}+@$, where $c$ is the center of $\mathfrak{g}$ and 9 is a semi-simple
part of $\mathfrak{g}$ . Then it is clear $\mathfrak{c}=c\cap \mathfrak{b}+c\cap \mathfrak{m}$ . Let $C\in \mathfrak{c}\cap \mathfrak{b}$ . Then $f(C)q(X)=$

$f(C)q(X)-f(X)q(C)=q([C, X])=0$ for all $X\in \mathfrak{m}$ . Hence $f(C)=0$ . Since $f$ is
faithful, it follows that $C=0$ . Thus we have

(b) $\mathfrak{c}\subset \mathfrak{m}$ .

Let $C\in c$ and let $P(x)$ be the minimal polynomial of $f(C)$ . We shall prove
that $P(x)$ is an irreducible polynomial over the real number field $R$ . In fact,
assume $P(x)=Q(x)R(x)$ , where $Q(x)$ and $R(x)$ are polynomials over $R$ whose
degrees are less than that of $P(x)$ . If we put $U=Q(f(C))V$, then the subspace
$U$ of $V$ is invariant under $f(\mathfrak{g})$ . Since $f$ is an irreducible representation, it
follows that $U=\{0\}$ or $V$. In the case $U=\{0\}$ , we have $Q(f(C))=0$ , which
contradicts the fact that $P(x)$ is the minimal polynomial of $f(C)$ . In the case
$U=V,$ $Q(f(C))$ is non-singular. From $Q(f(C))R(f(C))=P(f(C))=0$ , it follows
$R(f(C))=0$, which is also a contradiction. Therefore $P(x)$ is an irreducible
polynomial over $R$ .

The polynomial $P(x)$ is thus one of the forms $x-\lambda(\lambda\in R)$ or $(x-\lambda)(x-\overline{\lambda})$

$(\lambda\in C,\overline{\lambda}\neq\lambda)$ . Since ${}^{t}f(C)=f(C)$ by Lemma 4 (i) and (b), the eigenvalues of
$f(C)$ are real. Hence it follows $P(x)=x-\lambda(\lambda\in R)$ and $ f(C)=\lambda$ . By (a) we
have $ 0=\alpha(q(C))=Trf(C)=\lambda$ dim $V$. Therefore $f(C)=0$ . Since $f$ is a faithful
representation, we obtain $C=0$ . Therefore we have $\mathfrak{c}=\{0\}$ and $\mathfrak{g}$ is a semi-
simple Lie algebra, which contradicts Proposition 1. Thus we have so far
proved the following

LEMMA 9. $\tau$ is non-degenerate.
We recall now the following known results (A), (B).
(A) Let $V$ be a commutative algebra with a multiplicati0n $u\cdot v=L_{u}v$ . Supp0se
(i) $[[L_{u}, L_{v}],$ $L_{w}$] $=L_{[u\cdot w\cdot v]}$ for $u,$ $v,$ $w\in V$,

(ii) the bilinear form $\tau(u, v)=TrL_{u\cdot v}$ is non-degenerate, where $[u\cdot w\cdot v]=$

$u\cdot(w\cdot v)-(u\cdot w)\cdot v$ . Then $V$ is a semi-simple Jordan algebra (cf. [7]).
(B) Let $V$ be a real Jordan algebra. Then the following conditions are

equivalent.
(i) $V$ is a formal real Jorda $7l$ algebra.

(ii) The bilinear form $\tau(u, v)=TrL_{u\cdot v}$ is positive definite.
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(iii) There exists an inner pr0duct $\langle, \rangle$ on $V$ such that $\langle u\cdot v, w\rangle=\langle v, u\cdot w\rangle$

for all $u,$ $v,$ $w\in V$ (cf. [3]).

In view of Lemmas 3, 4, 9, (A) and (B), we obtain
LEMMA 10. $V$ is a simple formal real Jordan algebra.
We are now in a position to prove Proposition 2. Let $\tilde{G}$ be the universal

covering group of $G$ and let $\pi$ be the covering projection of $\tilde{G}$ onto $G$ . Denot-
ing by $\tilde{B}_{0}$ the identity component of $\pi^{-1}(B),\tilde{G}/\tilde{B}_{0}$ is the universal covering
manifold of $G/B$ . Since $\tilde{G}$ is simply connected, there exists a linear repre-
sentation $f$ of $\tilde{G}$ in $V$ such that $d\tilde{f}=f$, where $df$ is the differential of $\tilde{f}$. Let
$e$ be an element in $V$ such that $\tau(e, u)=\alpha(u)$ for all $u\in V$. Then $e$ is the unit
element in $V$ and we have

(9) $f(X)e=q(X)$ for all $X\in \mathfrak{g}$ .
In fact,

$\tau(e\cdot u, v)=\tau(u\cdot e, v)=\tau(e, u\cdot v)$

$=\alpha(u\cdot v)=\tau(u, v)$

for $u,$ $v\in V$. Since $\tau$ is positive definite, it follows that $e\cdot u=u\cdot e=u$ for all
$u\in V$. Hence $f(X)e=q(X)$ for all $X\in \mathfrak{m}$ . By Lemma 2, $f(W)$ is a derivation
of $V$ for $W\in \mathfrak{b}$ . Hence $f(W)e=0=q(W)$ for $W\in \mathfrak{b}$ . We have thus proved (9).

Let $\Omega=f(G)e$ be the orbit of $\tilde{f}(\tilde{G})$ through $e$ . Then $\Omega$ is an irreducible
homogeneous self-dual convex cone in $V$ (cf. [3], [7]). Let $\tilde{H}=\{\tilde{h}\in\tilde{G};f\tilde{(}\tilde{h}$) $e$

$=e\}$ and let $\sim \mathfrak{h}$ be the subalgebra of $\mathfrak{g}$ corresponding to $\tilde{H}$. Then $\sim \mathfrak{h}=\mathfrak{b}$ . Indeed,

by (9) $X$ is contained in $\sim \mathfrak{h}$ if and only if $f(X)e=q(X)=0$ . Hence $\tilde{B}_{0}\subset\tilde{H}$. There-
fore we have the natural projection $p;\tilde{G}/\tilde{B}_{0}\rightarrow\Omega=\tilde{G}/\tilde{H}$ and this map is a cover-
ing projection. Since $\Omega$ is convex, it is simply connected. Hence $P$ gives an
isomorphism from $\tilde{G}/\tilde{B}_{0}$ onto $\Omega$ . This completes the proof of Proposition 2.

4. Proof of Theorem. Let $G_{i}$ be the connected Lie subgroup of $G$ gener-
ated by $\mathfrak{g}_{i}$ and let $B_{j}=B(\mathfrak{m})\cap G_{j}$ . Then it follows from (7), (8) and Lemma 7
that $M$ is affinely diffeomorphic and isometric (with respect to $D$ and $g$ respec-
tively) to the direct product

$G_{0}/B_{0}\times G_{1}/B_{1}\times\cdots\times G_{\gamma}/B_{\gamma}$ .
According to Lemmas 1 and 6, $M_{0}=G_{0}/B_{0}$ is a locally flat Riemannian mani-
fold. By Lemma 8 and by Proposition 2, the universal covering manifold of
$M_{i}=G_{i}/B_{i}(1\leqq i\leqq r)$ is an irreducible homogeneous self-dual convex cone. Thus
our Theorem is completely proved.
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