
J. Math. Soc. Japan
Vol. 29, No. 3, 1977

Analytic approximation of continuous ovals
of constant width
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In his paper [6] S. Tanno proved that for any positive number $\delta$ the $\delta-$

neighbourhood of a continuous oval of constant width contains a $C^{\infty}$-oval of
the same constant width. The purpose of this note is to show that this ap-
proximation can be assumed to be real analytic. Furthermore Tanno’s proof
can be simplified essentially by using results on ovals of constant width in
the plane which have been presented by P. C. Hammer and A. Sobczyk in [4]

and [5].

In these papers Hammer and Sobczyk gave the following description of
plane convex curves of constant width: Let $P:R\rightarrow R$ be a continuous periodic
function with period $ 2\pi$ such that $p(r+\pi)=-p(t)$ for all $t\in R$ . Suppose that
$p$ satisfies the following Lipschitz condition

$|p(t_{1})-p(t_{2})|<k_{1}|t_{1}-t_{2}|$

(1)
$|p(t_{1})+p(t_{2})|<k_{2}|\pi-(t_{2}-t_{1})|$

for suitable constants $k_{1},$ $k_{2}>0$ and for all pairs $t_{1},$ $t_{2}$ such that $ 0<t_{2}-t_{1}<\pi$ .
Then the line family

(2) $x\sin t-y\cos t-P(t)=0$ ,

$ 0\leqq t\leqq\pi$ , is outwardly simple, $i$ . $e$ . they intersect each other within a bounded
domain ([5]). Under this condition the curve

(3) $\mathfrak{x}(r)=-p(t):(t)+(c-\int_{0}^{t}p(t^{\prime})dt^{\prime})\vee\rangle$ $(t)$ ,

$t\in R,$ $e(t)=$ ( $\cos t$ , sin $t$), is an oval of constant width (here the point denotes
differentiation with respect to $t$), if the real number $c$ satisfies the inequality

(4) $c>$ $sup\{Dp(t)+\int_{0}^{t}p(t^{\prime})dt^{\prime}|t\in R\}$

where $Dp(t)$ represents any of the possible limits of sequences of difference
quotients of $p$ at $t$.

In this case (3) describes a $C^{1}$-curve by a continuous parametrization. The
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curve (3) is orthogonal to the line family (2). If $c$ approaches the right-hand
side of (4) from above, then (3) is also an oval of constant width or a single
point [4]. Hammer and Sobczyk show that any curve of constant width can
be constructed in this way.

THEOREM. Let $\mathfrak{x}:S^{1}\rightarrow E^{2}$ be a continuous convex curve of constant width
$d$ . Then, for any positive number $\delta$ , there exists a real analytic convex curve
$\mathfrak{x}:S^{1}\rightarrow E^{2}$ of the same constant width in the $\delta$-neighbourhood of $\mathfrak{x}$ in $E^{2}$ .

PROOF. Let $\epsilon$ be a positive real number.
I: By Blaschke’s approximation theorem (see [1] and [2] or [3]) there is

a Reuleaux-polygon $\mathfrak{x}_{1}(i$ . $e$ . a convex curve of constant width which can be
described by a Pnite number of rotations) within the $\epsilon$-neighbourhood of $\mathfrak{x}$ .

[I: Taking an outer parallel curve $\mathfrak{x}_{2}$ to $\mathfrak{x}_{1}$ ([3]) in a distance smaller then
$\epsilon$ , we get a $C^{1}$-Reuleaux-polygon $\mathfrak{x}_{2}$ within the $\epsilon$-neighbourhood of $\mathfrak{x}_{1}$ .

III: Using the result of Hammer and Sobczyk described above we have
the existence of a real constant $c$ and a continuous periodic function $P_{2}$ : $R\rightarrow R$

with period $ 2\pi$ satisfying the Lipschitz condition (1) such that

$p_{2}(t+\pi)=-p_{2}(t)$ ,

$\mathfrak{x}_{2}(r)=-p_{2}(t)\dot{\mathfrak{e}}(t)+(c-\int_{0}^{t}p_{2}(t^{\prime})dt^{\prime})\mathfrak{e}(t)$

for all $t\in R$ and the inequality (4) is valid for $p_{2}$ . Since $p_{2}$ is the support
function of the normal lines to $p_{2}$ , it is $piecewis^{\mathfrak{D}}$. of the class $C^{\infty}$ in this special
case. Therefore $p_{2}$ can be approximated by a periodic $C^{\infty}$-function $p_{3}$ ; $R\rightarrow R$

with period $ 2\pi$ such that

$p_{3}(t+\pi)=-p_{3}(t)$ ,

$|p_{3}(r)-p_{2}(t)|<\frac{\eta}{4\pi}$ ,

$\dot{p}_{3}(t)\leqq\frac{d}{dt}p_{2}|_{t+0}+\frac{\eta}{2}$ ,

$\dot{p}_{3}(t)\leqq\frac{d}{dt}p_{2}|_{t- 0}+\frac{\eta}{2}$ ,

for all $t\in R$ where $\eta$ is a fixed positive real number such that

$\eta<\min$ { $\epsilon,$ $c-$ $sup\{Dp_{2}(t)+\int_{0}^{f}p_{2}(t^{\prime})dt^{\prime}|t\in R\}$ }.

In the case under consideration $DP_{2}(t)$ is the closed interval between

$\frac{d}{dt}p_{2}|_{t+0}$ and $\overline{d}\overline{t}dp_{2}|_{t- 0}$ .
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The function $p_{3}$ satisPes the Lipschitz condition (1) for suitable real constants
$k_{1},$ $k_{2}$ and the inequality (4) for the constant $c$ defined above:

$sup\{Dp_{3}(t)+\int_{0}^{t}p_{3}(t^{\prime})dt^{\prime}|t\in R\}$

$\leqq\sup\{DP_{2}(t)+\frac{\eta}{2}+\int_{0}^{t}p_{2}(t^{\prime})dt^{\prime}+\int_{0}^{t}|p_{2}(t^{\prime})-P_{3}(t^{\prime})|dt^{\prime}|t\in R\}$

$\leqq\sup\{Dp_{2}(t)+\int_{0}^{t}p_{2}(t^{\prime})dt^{\prime}|t\in R\}+\frac{\eta}{2}$

$+t$ $sup\{|p_{2}(t^{\prime})-p_{3}(t^{\prime})||t^{\prime}\in R\}$

$\leqq\sup\{Dp_{2}(t)+\int_{0}^{t}p_{2}(t^{\prime})dt^{\prime}|t\in R\}+-\eta_{-+2\pi\frac{\eta}{4\pi}}2<c$

if $t\in[0,2\pi]$ . Thus

$\mathfrak{x}_{3}(t)=-p_{3}(t)\dot{\mathfrak{c}}(t)+(c-\int_{0}^{t}p_{3}(t^{\prime})dt^{\prime})e(t)$

describes a $C^{\infty}$-oval of constant width which is contained in the $\epsilon$-neighbour-
hood of $r_{2}$ since

$||\mathfrak{x}_{2}(t)-\mathfrak{x}_{3}(t)||\leqq|p_{2}(t)-p_{3}(t)|+|\int_{0}^{t}(p_{2}(t))-P_{3}(t^{\prime})dt^{\prime}|$

$<\eta<\epsilon$ if $t\in[0,2\pi]$ .
IV: The $C^{\infty}$-function $\dot{p}_{3}$ satisfies the identities $\dot{p}_{3}(r)=\dot{p}_{3}(t+2\pi)$ and $\dot{p}_{3}(t)$

$=-\dot{p}_{3}(r+\pi)$ for all $t\in R$ . It is easy to see that for an arbitrary positive
number $\eta$ there exists a real analytic function $q:R\rightarrow R$ which is periodic with

period $ 2\pi$ such that $q(t+\pi)=-q(t)$ and $|p_{3}(t)-q(t)|<\frac{\eta}{8\pi^{2}}$ for all $t\in R$ . Then
there is a value $t_{0}\in[0, \pi]$ such that

(5) $\int_{t_{0}}^{t_{0}+\pi}q(t^{\prime})dt^{\prime}=0$ .

The real analytic function $p_{4}$ ; $R\rightarrow R$ which is defined by $p_{4}(r)=\int_{t_{0}}^{t}q(t^{\prime})dt^{\prime}$ is
periodic with period $ 2\pi$ and satisfies

$p_{4}(r)+p_{4}(t+\pi)=\int_{t_{0}}^{t}q(t^{\prime})dt^{\prime}+\int_{t_{0}+\pi}^{t+\pi}q(t^{\prime})dt^{\prime}=0$

for all $t\in R$ . Furthermore we have

$|P_{4}(r)-p_{3}(t)|=|\int_{t_{0}}^{t}(q(t^{\prime})-\dot{P}_{3}(t^{\prime}))dt^{\prime}-P_{3}(t_{0})|$

$\leqq\frac{\eta}{8\pi^{2}}|t-t_{0}|+\frac{1}{2}|P_{3}(t_{0}+\pi)-p_{3}(t_{0})|$

$\leqq\frac{\eta}{8\pi}+|\int_{r_{0}}^{t_{0}+\pi}(\dot{p}_{3}(t^{\prime})-q(t^{\prime}))dt^{\prime}|<\frac{\eta}{4\pi}$ using (5),
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if $t\in[0, \pi]$ . Hence this inequality is valid for anv real $t$ . Since

$\dot{p}_{4}(t)=q(t)<\dot{p}_{3}(t)+\frac{\eta}{\angle r\cap}$

we can show as in the third section that for a sufficiently small $\eta>0$

$\mathfrak{x}_{4}(t)=-p_{4}(t)\dot{\mathfrak{e}}(t)+(c-\int_{0}^{t}p_{4}(t^{\prime})dt^{\prime}).’(t)$

describes a real analytic oval of constant width $d_{4}$ which is contained in the
$\epsilon$-neighbourhood of $\mathfrak{x}_{3}$ .

V: From the previous sections we conclude that $\mathfrak{x}_{4}$ stays within the $4\epsilon-$

neighbourhood of $\mathfrak{x}$ and we have $|d-d_{4}|<8\epsilon$ . By a suitable homothetic trans-
formation $h$ of $E^{2}$ we get a real analytic oval $h\circ \mathfrak{x}_{4}$ of constant width $d$ such
that

$|\mathfrak{x}_{4}(t)-h(\mathfrak{x}_{4}(t))|\leqq|d-d_{4}|<8\epsilon$ ,

$i$ . $e.,$
$h\circ \mathfrak{x}_{4}$ is contained in the $ 16\epsilon$-neighbourhood of $\mathfrak{x}$ . Hence our theorem is

proved, if we choose $\epsilon<\frac{\delta}{16}$ .
REMARK: If $\mathfrak{x}$ is symmetric with respect to a straight line, then the ap-

proximating real analytic oval of constant width can be chosen symmetric
too. This implies the validity of an analogous approximation theorem for
convex surfaces of revolution which have constant width.
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