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§1. Introduction and semantics.

We gave the Gentzen-type formal system of Kleene’s 3-valued logic and
McCarthy’s 3-valued logic interpreted into the system in [3] In this paper
we shall give the Gentzen-type formal system of McCarthy’s logic itself. After
that, we shall give the formal system in which McCarthy’s and Kleene’s are
joined. In this system, serial or parallel evaluation is mixed.

We shall use the same terminology in [3] Especially we use the symbols
+, + or Dy for ‘or’, ‘and’ or ‘implies’ in McCarthy’s sense respectively and V,
A or D for them in Kleene’s sense respectively, and use 7 for ‘not’ in common.

As we see from the following truth tables, formulas are evaluated serially
from left to right in McCarthy’s logic while in parallel in Kleene’s logic.

A+B A-B ADyB
AB t o f AB t w f AAB t o f
t t t ¢t t t of t t o f
0 © 0 o 0 0 0 o 0 © 0
f t w f f f f f f t tt
AVB ANB ADB
AAB t o f AB t o f AB t o F
t ¢t t t t t o f t t o f
o t v o o o o f 0w t 0o o
f t w f f f f f f t t t
7A
A
t f
® o
f t

Here t, f or w means ‘true’, ‘false’ or ‘undefined’ respectively.
It is clear that P;-P,- -+ -P, (o1 P,+P,+ --- +P,) has the value ¢ (or f) if
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and only if every P; has the value ¢ (or f). So A-w-B or A-f-B has never
the value £ and A-+w+B or A+t+B has never the value f.

Now we can easily verify the following equalities and inequalities, where
A=DB means that A has always the same value as B and A<B means that A
has always the value less than or equal to the value of B with respect to the
order f<w<t. In what follows we shall promise that ‘-’ is stronger than the
other connectives with respect to the order of combination, that is, A+B-C
means A-+(B-C). We note that A=B and F=G cause F*=G* where F* or G*
is that obtained from F or G by replacing A by B respectively.

(1) (the law of double negation)
T7T7A=A.

We shall occasionally regard 7 7A as A itself. To clarify this we use the
notation A. When A is of the form 7B, A is B, otherwise 4 is 7 A.

(2) (the associative law)
A-(B-C)=(A-B)-C, A+(B+C)=(A+B)+C.

We shall write simply A-B-C for A-(B-C) or (A-B)-C,and A+B+C for A+(B+C)
or (A+B)+C.

(3) (the first absorption law)
A-L-A=A-L, A+R+A=A+R.
4) AL-Asw, A+R+Azc.
(5) (the second absorption law)
A-L-A-K=A-L-A, A+R+A+S=A+R+A.
(6) (the left distributive law)
A-(B+C)=(A-B)+(A-C), A+(B-C)=(A+B)-(A+C).

(7) (the right distributive law)

(B+C)-D=(B-D)+(B-C-D), (B-C)+D=(B+D)-(B+C+D).
Combining (6) and (7) we obtain
(8) A-(B+C)-D=(A-B-D)+(A-B-C-D)=(A-B-D)V(A-B-C-D),

A+(B-C)+D=(A+B+D)-(A+B+C+D)=(A+B+D) A (A+B+C+D).

(9) (de Morgan’s law)
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7(A-B)=7A+7B, 7(A+B)=7A-7B.
(10) ADyB=7A+B.
(11) A-(BACY=(A-B)A(A-C), A+(BVC)=(A+B)V(A+C).
(12) (BAC)-D=(B-C-D)A(C-B-D),  (BVC)+D=(B+C+D)V(C+B+D).
Combining and (12)
(13) A-(BAC)-D=(A-B-C-D)A(A-C-B-D),
A+(BVC)+D=(A+B+C+D)V(A+C+B+D).
(14) A-(BVC)=(A-B)V(A-C), A+(BAC)=(A+B)A(A+C).
(15) (BVC)-D=((B-D)AC)V ((C-D)AB)V(BAD)V(CAD),
(BACY+D=((B+D)VC)A(C+D)VB)YA(BVD)A(CVD).
Combining{14) and
(16) A-(BVC)-D=((A-B-D)A(A-C)V((A-C-D)A(A- B))
V((A-B)A(A-D)V((A-C)A(A-D)),
A+(BAC)+D=((A+B+D)V(A+C)A(A+C+D)V(A+B))
A(A+B)V (A+D)A((A+C)V (A+D)).

We shall use the same terminologies, a formula, a literal, etc., as those in
[3]. However, the antecedent or the succedent of a sequent shall be a sequence
of formulas rather than a set. And the antecedent means the McCarthy's
conjunction and the succedent means the McCarthy’s disjunction. In order to
emphasize it we shall write a sequent as <A, -+, Ap>y=>{By, -+, B,>. Indeed
in the sections §5, § 6 the notation <{A,,---, A,> shall be used as abbrevia-
tion of A,- ----A, or A,+ --- +A,, according as it occurs in the antecedent or
the succedent. In this paper r, 0, etc. denote a sequence of formulas.

§2. Formal system for McCarthy’s logic.

In this section we shall give the formal system for McCarthy’s and show
its plausibility.

Before giving axioms, we consider the following four conditions concern-
ing a sequent {y>><{d).

(a) 7 contains a formula and its negation.
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(b) 7 and 0 contain a formula in common. Let B be the leftmost formula
in 0 which occurs in y too. Then <0} is of the form {4,, B, d,>. Under this
assumption 7 contains the negation C of every formula C in d,.

(c) 0 contains a formula and its negation.

(d) 7 and 0 contain a formula in common. Let A be the leftmost formula
in 7y which occurs in 6 too. Then <{7) is of the form <y, 4, 7,>. And J con-
tains the negation C of every formula C in 7,.

Now we admit as axioms those sequents:

i) which satisfy the conditions (a) and (c),

ii) which satisfy the conditions (a) and (d),

iii) which satisfy the conditions (b) and (c),

or iv) which satisfy the conditions (b) and (d).

That is, a sequent is an axiom if and only if it satisfies (a) or (b) and it
satisfies (¢) or (d).

These axioms are valid. For example, suppose that {y>=>{d)> is an axiom
on the ground of (b) and (d). Let <y, 4, 7.> and <3, B, 3,> be those such as
in the assumption of (b) and (d). When y takes ¢, 0, takes f and B takes ¢
by the condition (b). (To be exact, when the McCarthy’s conjunction of y takes
t, the McCarthy’s disjunction of 0, takes f and B takes f.) Hence ¢ takes t.
When 7 takes w, either y, takes w or 7, takes £ and A takes w or . In that
case 0 contains a formula taking @ by the condition (d). In this case J con-
tains A which takes w or £. Hence ¢ takes w or £ in either case. When 7
takes f, the value of J is not mattered.

We shall give the rules of inference.

. <r1) A: B, 7‘2>$<5>
(=) A B 1y >0y
>4 r>=>€0, A, 050 i_>_:_><§1, 7A, B, 52>
<r>:><51, -B, 0,
\ A, 102K0> {1, 74, B, r2>:><5>
+=) o AT B, 1253405
{r>=><0,, A, B, 85
&+ a0, ATE, 3
M <7’1, ADyB, T2>:><O>
(>D4) <7’>:><51; 7 A, B_ag>_

{7>><0,, ADyB, 6;) ’

- <Tlr A 72>j<5>
(772) Gy 7 7 A 155
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<7’>3<51, A, 52>
&77) 506, 7 7 A5
(7 . j) <T1) 7A, Tz>:><5> <7’1, A’ 7B: r2>:><5>
<r1’ 7(AB>) 72>3<5> ’
, (>34, 7A, 7B, 8,5
(>7) (P58, 7(AB), 0,5
_<7’1; 7A, 7B, 72>:><5>_
(7+2) e T ATBY, 7550y
OBy, TA, By (>0, A, 7B, 8
>7+) Gry>46s, 7(ALB), 3y ,
(DMj) <7‘1) A) 7B: 72>j<5>

<T1; 7(ADMB), Tz>:><5> ’

(:>D ) <r>:><51, A, 52> <7’>:><51, 7A} 7B; 52>
M <7>j<51: 7(A-——)MB): 62>

The following rules are not essential but useful.

< A, g% 7’3>:><5> <T>:><51, A, 05, 03)
<r1; A; 721 A: Ta>:><5> ’ <r>:><51’ A, 52, A; 53> ’
o, A 1oy DAD >4, A, 35, A
<Tl) A; TZ) A: T3>j<5> ’ <T>j<51’ AJ 52) A’ 53> ’
=407 {>=><dy
<7’1: T2>:><5> ’ <T>:><51; 050 °

These rules preserve the validity. We shall show it for the rule (+2=)
and (27-) as examples.

Suppose that an assignment does not satisfy the lower sequent of the rule
(+>), then either {r,, A+B, 7,> takes w and ¢ takes f or {y,, A+B, r,> takes
t and 0 takes f or w. That <{y,, A+B, 7,> takes w implies one of the following
three cases. i) If 7, takes o, then so does {y;, 4,7,>. ii) If 7, takes ¢ and
A-+B takes w, either A takes w or A takes f and B takes w. The former
makes <7;, 4, 7.) take » and the latter makes {r,, 74, B, 7,) take w. iii) If 7,
and A+B take £ and 7, takes o, either A takes ¢ or A takes f and B takes
t. Then <y, A, 7> or {r, 74, B, r,> takes w respectively. In each case one
of upper sequents fails to be satisfied. We shall prove the rest by using a
table as follows. It is divided into several rows according to assignments
which does not satisfy the lower sequent of the rule. The last column indi-
cates which upper sequent fails to be satisfied by such assignment.
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For the rule (+2).

{1y, A+B, 7 0 71 A+B 72 A B upper sequent

w — — — — both
t w — w — first

w f t 12} — f ) second
t t w t — first
t t ) f t second
t t t t — first

(4 w
t t t f t second
t t t t — first

t f
it t t ‘ f t second

For the rule (7).

7 <0,, 7(A-B), 0, 0, ‘ 7(A'B)\ d, | A | B | upper sequent
t f f f , flt |t first
w f f f f t t first
w — — — — first
f ) — w — first
it w
f D) — t W first
f f o) t t first

Thus the following theorem holds.

PLAUSIBILITY THEOREM. FEvery provable sequent is valid.

As an example of the formal proof, we show the equivalence of
(ADyB) - (7ADxC) and (A-B)+(7A-C).
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(b) (© (b) d)
(7A, 7A,C2CA, 7A)  TA 7A,CooCA, 7740
(74, 74C={4, 74-Cy

(a) (d)
(7A, AD>CA, 7A-C)
(TA, 77484, 74A-C (b) (d)
(T4, 7ADCOA, 7A-Cy (T7A, 7AD4COXT7A,B, 7A-C)

(74, 7A:)MC‘>:><A-B, 7A-C)

(b) (d) (b) (d)
(A, B, 7ADuC)=<A-B, 7A-C)
A28, 7AD,COSAB, 7A-CS
{AD yB)-(7 A2 yC>CA-B, 74-C
(ADyB)-(7ADKC))=L(A-B)+(7 A-C))

Conversely
(b) (d) (a) d
(b) (d) (7A, 7A CX7A,B) (A 7B, 7A C>(7A, B>
(A, By><{7A4A,B) (7(A-B), 7A,C>>(7A, B>
CA-By>X74A,B) (7(A-B), 7A-C)>{ /4, B>

{(A-B)+(7A-C))>{(7 A, B)
{(A-B)+(7A-C)=XADuB)

| (b) (d) (a) (d)
(b) (d) (7A, 7A,C2CA,Cy A, 7B, 7A,Cr3¢(A,C>
CA-B)=<A, C) K7(A-B), 7A-C>=<A, C)

(A B T(7A0)(A, O
{CA-B) (7 A-C)>><4, 4,C5

(b) (©) (b) (c)
(A, By>(7A,7B,A,C> <(7(A-B), 7A,C>2(7A, 7B, A4,C>
(A-By=>(7A,7B,A,C> (7(A-B), 7A-C)>(7A, 7B, 4,C>
((A-B)+(7A-C))=X7A, 7B, 4A,C
C(A-B)+(7A-C))=>7(ADyB), 4, C>
LA-B)+(7A-C)H=X7(ADyB), 774, C
(A-B)+(7A-C))=oX7(ADyB), 7AD,C)
((A-B)+(7A-C))={(ADuB)- (7 AD,C))

§3. The completeness of the previous system.

In this section, we shall show the completeness of the system defined in
the previous section.

We define the degree of a formula or a sequent as the sum of the number
of negation symbols and twice the number of other symbols occuring in it.

We can easily verify that the degree of the lower sequent is greater than
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that of each upper sequent in every rule of inference.

Now we shall show the theorem.

COMPLETENESS THEOREM. FEvery valid sequent is provable.

Suppose that a sequent is not provable, and we shall find an assignment
which does not satisfy the given sequent.

We make the decomposition of it, that is, we construct strings of sequents
as follows. i) The first sequent is the given sequent. ii) If either the n-th
sequent 1S an axiom or it is no longer decomposable, that is, it is of the form
Py, -+, Pp>(Q,, -+, Q) with literals Py, -+, @Q,, it is the end of the string.
iii) If the n-th sequent is not an axiom but decomposable, then the (n+1)-st
sequent is one of upper sequents of the rule whose lower sequent is the n-th
sequent.

Since the (n-+1)-st sequent has the degree less than the n-th sequent, every
string is finite. If every string ends in an axiom, the first sequent is clearly
provable. So there must be a string which does not end in an axiom since
the given sequent is not provable. Let {(y>=><0) be the last sequent of the
string, then it satisfies neither the conditions (a) nor (b), or neither (c¢) nor (d).
We may assume the former case without loss of generality.

Take the assignment which assigns £ to every prime formula in 7, f to
every prime formula whose negation occurs in 7, and @ to every other prime
formula. Such assignment is well-defined since y does not contain both a prime
formula and its negation.

It will be shown by the induction on the degree that every sequent in the
string is not satisfied by the assignment, indeed it assigns ¢ to each antecedent
and ® or f to succedent. i) The last sequent {y)>=><{0) mentioned above is not
satisfied. It is clear that y takes ¢ and that 0 takes f or @ when there is no
formula in common. When there is a formula in common, let J,, B and J, be
as in the condition (b). Then 0, contains a formula whose negation does not
occur in 7 and to which » is assigned. Hence 0 takes w. ii) To show the
induction step, it is sufficient to show that the value assigned to the antecedent
of the lower sequent is greater than or equal to that of each upper sequent
and the value assigned to the succedent of the lower sequent is less than or
equal to that of each upper sequent for every rule for connective. And this
is easily shown by the equalities (1), (8), (9) and in §1.

Given the sequent {(4:B)+C)>=>{(A+C)-(B+C)) as an example, we find the
following string.

((A-B)+Cr=(A+C)-(B+C)y,
((A-B)+Cy=>(7(A+C), B+C,
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<(A'B)+C>:><A; 7C, B, C> ’
(74,C=<A4,7C,B,C).

Then the assignment that assigns £ to A, ¢t to C and o to B does not satisfy
(A-B)+Co(A+C)-(B+C)).

§4. Correlation between the present formulation and Takahashi’s.

We shall compare our formulation with that using Takahashi’s general
method which formulates many valued logics using ‘matrix’ (see [4]).
Axioms in his system are of the form {I’, A},\U{4, A}, U{4, A},.

Rules are

{F}fU{A}wU{A: A}t
76 A, UL, U4y,

{F}fU{A) A}wU{A}b
(7o) YO, AL T 4,

(T, A}, J{ALU ),
70 OO, A

{r', A}, U4} U{4} I} U4y, U 4, A}, AT, B} U {4}, U {4}

CH) I ABLUMLI (T, 4B}, U4, U{d},
(T}, U4, A} U4}, (T}, U4t {4, A}, (T}, U{4, B}, U{4},
‘@) IY,0UU, A BLU4L (T} U4, A BI,U 4,
(I}, UidL,Uid, A}, (T} ,\U{d}, UL, B},
S Ty ,0{A).,U{d, A-BT, ’
(T, A}, U4 ULy, (T, By, Ui}, U4},
(+£) (T, A+ B}, U4}, U4, .
{F}fU{Ar A}wU{A}t {F,- A}fU{A}wU{A}t {F}fU{/L B}(uU{A}L
(te) YU, ATBLUA) 1,04, AF By, U},
(I}, U404, A}, (T, A}, Uiy {4}, {T},U{4},Ul4, B},

0 Y, UW.U4, AT B, T, U0, A5,
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tules for other symbols, (Dyf), (Dyw) and (Dyt) are similarly given.
THEOREM. A sequent {A,, ---, Au>=>{By, -+, B,y is provable in our system
if and only if the matrices

{Ay, =, Ay, 7Ad 1,0 U{By, -+, Ba}, (=1, -, m=1),
{Ay -, Ay, 7AY,U{B,y, -+, Bile, (=1, ,m—1),
{Ay -, Ant s U{By, -+, B;, 7B3}, (j=1,-,n—-1),
(A o, AnbIBy, -+, By, 7BjYa, (=1, ,n=1),
{Ay, -+, Antro\U{By, -+, Baly,

and {Ay, -+, An}/\J{By, -+, Bplaw,: are all provable in his system.

§ 5. Serial and parallel logic SPL.

Combining McCarthy’s logic and Kleene’s, we shall construct a new logic.
We call it the serial and parallel logic, abbreviated as SPL.

In what follows, a formula may contain both Kleene’s symbols and Mc-
Carthy’s. On a sequent L,, ---, L,>R,, -, R, the antecedent means the Kleene’s
conjunction and the succedent means the Kleene’s disjunction. And each L;
or R; is of the form (A, -+, A,> or {B,, -+, B,y which is an abbreviation of
A,- - -A, or B,+ -+ +B, respectively. I, 4, etc. denote sets of formulas and
7, 0, etc. denote sequences of formulas. When I’ is {(4,, -, Ay
CAmpsy s Amyen, T is the set {Ayy, -+, Auip o Amy 1 > Ay} -

We consider the following four conditions concerning a sequent ['=>4:

a) I' contains a formula and its negation.

b) There is a formula {B,, ---, B;, ---, B> in 4 such that I’ contains Bj; and
every negation of B, -, B;_,.

¢) 4 contains a formula and its negaiton.

d) There is a formula <(A4,, -+, A;, -+, A,> in I" such that 4 contains A4,
and every negation of A, -+, A;_..

The axioms in SPL are those sequents which satisfy the conditions (a) and
(c), (a) and (d), (b) and (c), or (b) and (d).

The rules of inference in SPL are as follows.

(, :>> __,F)_<Tl’ A; B: 7:2>_:>__Av_
Fl <T1; A'Br 7’2>jA ’

Fjd} <51) A’ 52> F:>A; <51y 7A: B: 52>
SR T=4,<5,, A-B, 5,5 -
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The other rules for McCarthy’s connective are similar to those in the
previous system and so we omit to list up them.

Iy, A, {riBy> 4
(A=1 I, G, ANBYSd
(A>2) I, A B, o, B A ydod

r, <71,A/\B 7’2>:>A
I—'jA, <51, A> FjA; <5.U B>

S T=14,G, AnEy
I—'j‘d: <51; 7*4>’ <61) B’ 62> FQA; <51) A>: <61; 52>
(j/\2> FjA; <51; 7B>’<_51) A} 52> Fjd; <51’ B>; <51) 52>
Fjdy <517 A/\B’ 52>
F; <Tl’ A>jd F’ <r1) B>jA
V=0 I AVEST
I G, 74, G0 B rood  I'p, A, < ro>4
(V>2) L <, 7B < A r2d T S, B, 24
I, <y <}’1,A\/B 7’&):}4
FjA <517 A>; <611 B>
&V T4, AVES
FjA, <517 A) B; 52>) <51) B) Al 52>
(ZVv2) I'>1,%,, AVB, 3 ’
' {r 7A>3A I, <y, By=>4
(o= T < =SB4 )
F <T1; AD, <7’1,B T2>jd F <T1; 7 A, <7’1: Tz>:>A
(D>2) I, {1y, 7B, {1 7 A, 7’2>jd r, {11 B>. {11, Tz>:>A
I, <y, ADB, Tz>:>A
I'>4,40,, 74A),<0,, B)
S IS4, G ASEY
I'>4,46,, 7A, B, 8,),{0,, B, 7 A, 52>
(>=2) I'>4,5, ADB, &)

The rules (7AD1), (7AD2), ST AL, (7A2),(7V2D, (7V22), (27VI),
(>7V2), (7D>1), (7D>2), (7D1) and (> 7D2) are similarly given.

It is easily seen that these rules preserve the validity. For example, we
shall show the case (2 A2) using the table as in § 2.

Supposing that the lower sequent is not valid, the following cases happen.
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r 4 j {0,, ANB, 0, | 0, A 1 B 0, | upper sequent
E ) — } — — all
f ) ‘ t — second
f ® ® — first, second
f ® ‘
i | f t | (O] -— ﬁrSt
t | or ' |
i f f — | ® third
w 1
f — f © fourth
. f f — f third
f — f l f fourth
f f | — | f third
@ f | f | j’
f — f f f fourth

We also define the degree of a sequent as the sum of the number of
negation symbols and twice the number of other symbols occuring in it. Now
the completenss of SPL will be shown in quite similar way as in § 3.

§6. The formal system for the extended SPL.

We shall extend SPL to the predicate calculus with infinitary connectives.

YxA(x) is true if and only if A(f) is true for every term ¢, it is false if
and only if A(?) is false for some term ¢, and it is undefined if and only if none
of A(t)’s are false and some of them are undefined. A(A4,, A,, --+), the infinitary
conjunction in Kleene’s sense, is true if and only if every A, is true, it is false
if and only if some A, is false, and it is undefined if and only if none of A4,’s
are false and some of them are undefined. While I/(A,, A,, ---), the infinitary
conjunction in McCarthy’s sense, is true if and only if every A, is true, it is
false if and only if there exists an 7 such that A4,, ---, A,_, are true and A, is
false, and it is undefined if and only if there exists an n such that A4,, -, 4,_,
are true and A, is undefined even if some A,,, is false. IxA(x), V(4,, 4,, ---)
and X(A,, A,, ---) are interpreted likewise.

The following rules for these symbols are added to SPL.

I, &y Ay -, < A, <74, VrA(x)>:>A
(V=1) T N AmS S
I, Croy ALY, -+, ey Altn)Y, (1, VXA, {7y, 7YX A(X)Y>4

(V'—'>2) F; <71, A(t1)>) ) <T1, A(tm)>’ <7’1, VXA(X» <7‘1, 7’2>3A
F <Tl’ VXA<X)7 7’2>:>A




where ¢, -

(V1)

(=>Vv2)
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, Im are arbitrary terms.

_I'>4,44, Ala))
I'>4,$5,YxAx)) °

I'>4,438,, Ala)),<0,, 7VxAx)) I'>4,d,, A(a)),<d,, 5z>
I'>4,4<0,, VxA(x), 0,y

where a is an eigen-variable, that is, a free valiable not occuring in the lower

sequent.

(A1)

(A>2)

=>A1)

(> A2)

(I1=>1)

(II=2)

(=>111)

(>112)

F; <r1; A1>’ ) <T1’ m> <T1y /\(Al, Azy : )>jA for some m
<7’1; N(Ay, Ay, - )>:>A ’

F’ <rlr A1>) Tty <T1) A'm.>) <r1’ /\(A A2) : )> <T1, 7/\(141, A2r )>$A

1_" <r1; Al>’ ) <r1’ Am>,~ <Tl) /\(Al) ° )>7 <rl) r2>$A for some 7/’1'
F; <r17 /\(AI) ) )) T2>j

FjA’ <51?A1> B Fjd; <51y A7l> ot
Fjd; <51, /\(AI) AZ’ ')> ’

FjAr <51; A1>, <51) 7/\<A1) AZ} ')> F:>A; <617 A1>; <517 52>

............

Fjd; <51; An>’ <61r 7/\(Al; AZ; “')> F:>A; <51; An>) <51y 52>

............

F:>A; <51; /\(Aly A27 '")) 52> ’

F; <T1; Al; Tty A‘m.,v H(él; AZ; ')>jA for some m
r: <r1) H(Alr AZ} ”')>$A ’
F; <T1, Al) Tt Am’ H(Aly Az: "')>’ <rly 717(A1) AZ: ')>:>A
F; <7’1, Al’ ) Am, H<A1, Az; "’)>, <T1, Tz>$A for some m
F; <r1’ H(Al) A27 "')) r2>3A ’

FjA, <51) Al> o F3M51; 7A1’ ) 7An—1) An> e
Fjd: <51’ H(Aly Az, "°)> ’

F:>A) <51’ A1>; <51’ 7H(A17 Azy "')>
P:>A) <51) A1>’ <51) 52>

Fjd; <61’ 7A1; Tty 7An—ly An>: <51) 7”(A1) AZ’ ”')>
Fjd: <511 7A1’ Tty 7An—1; An>) <51) 52>

......

I'>4,40,, II(A,, A,, --+), 02>

The other rules for 3, Vv, X, 7Y, 7A, 7II, 73, 7V, and 72 are similarly

given.
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PLAUSIBILITY THEOREM. FEvery provable sequent is valid.
This is easily verified as in § 3.

The degrees of formulas are recursively defined as follows.

1) d(A)=2 for prime formula A.

2) d(7A)=d(A)+1.

3) d(AANB)=d(AVB)=d(ADB)=d(A-B)=d(A+B)=d(ADyB)=({d(A+1)
#(d(B)+1), where £ is the natural sum of d(A)+1 and d(B)-+1.

4) d(VxA)=d3xA)=d(A)+2.

5) d(N(Ay, Ay, ) =d(V (A, Ay, - )=d(IT (A, Ay, ) =d(Z(Ay, Ay, -+ )=
sup {(d(A)+1) §--- $(d(A)+D|n=12, -}

COMPLETENESS THEOREM. FEvery valid sequent is provable.

When a sequent is given, we decompose it and construct strings of sequents
as the proof in §4 in [3] The strings satisfies the conditions:

i) S, is the given sequent. ii) If S, is an axiom, it is the end of the string.
iii) If S, is not an axiom, let p and ¢ be the maximum number such that
2?P.3% divides n. If F,, the p-th formula of a fixed enumeration of all formulas,
occurs at least ¢ times in S,, then S,.; is one of the upper sequents of the
rule of inference whose principal formula is the ¢-th F, in S,. Moreover if
the rule is (V=), (=3), (7V) or (73=), then we must select the first # terms
of a fixed enumeration of all terms as ¢,, -+, f,, described in the above schema.
© And if the rule is (AD), (D V), 7 A)L(7V2),TI2),(22), @ 7H)or (72),
then we must take n as m described in the above schema, that is, we must
select the first » components of the principal formula. iv) In other cases S,,;
is S,. We call this production S,,; from S, the n-th decomposition on the
string.

When every string is finite, S; is provable. Hence if the given sequent is
not provable, there is an infinite string ©. Let I' or 4 be the set of all for-
mulas in the antecedents or in the succedents of the sequents in ©. Suppose
I' and 4 satisfy the conditions (a) or (b) and satisfy (c) or (d) described in
§4, then we can find an axiom in & contradicting the assumption. We may
assume that they satisfy neither (a) nor (b) without loss of generality. We
assign ¢ to prime formulas which occur in f, f to prime formulas whose
negations occur in f, and w to all other primes. The following two lemmas
imply that the given sequent S; is not valid.

LEMMA. Every formula in I' takes t. That is, every formula in I" takes t.

This is shown by the induction on the degree of the formula in I'. We
only note that if S,,, were chosen the first upper sequent of the rule (V>2),
(>V2), etc. at the n-th decomposition on &, then I must satisfy the condition
(a) contradicting the assumption.

LEMMA. Every formula in 4 takes f or . That is, 4 contains no formula



Various 3-valued logics I1 527

of the form (A, - A,, -, A,y where Ay, -+, A,_, takes f and A, takes t.

This is proved by the induction on the rank w,-d+d(A,), where d is the
natural sum of d(A4,),---,d(4,), and w, is the least uncountable ordinal.

If all A, -, A, are literals, A, ---,A,_; and A, must occur in I" since £ is
assigned to them. Therefore I' and 4 satisfy (b) contradicting the assumption.

If (A,, -+, A,, 0> occurs in S, and the n-th decomposition is concerned with
a formula other than these A, ---, A4,, then {A4,, -, A;, 0’> occursin S,;;;,. So
at last we find the n-th decomposition concerned with one of A,,---,A,.; or
with A,. 1) The case it is one of A, -+, As_;, say A;. 1.1) When 4; is of
the form B-C, then either B takes f or B takes £ and C takes f. In either
case both <A,, -, A;.y, B, Airy, -+, Ay, 0) and {A,, -, Ay, 7B,C, Aiyq, -+,
A,, 0> have the smaller rank. And one of them appears in the succedent of
Sni1. 1.2) When A; is of the form VxB(x), then S, ., contains {A,, ---, A;_,, 7 A
or <A, -+, Ai_1, Aisq, - Ap, 0). They have the smaller rank. It is similar in
other cases. 2) The case the n-th decomposition is concerned with A,. 2.1)
When A, is of the form 2 (B,, B,, ---) then ¢ is assigned to all B,’s and all
(A, -+, A4y, 7By, -, 7Bpu_y, Bn)'s have the smaller rank. 2.2) When A4, is
of the form JxB(x), then t is assigned to B(f{,) for some term t,, the m-th
term of the enumeration. If m<n, then S,., contains (A,, -+, As_,, B(tp)>
whose rank is smaller. If m>n, {A,, ---, A,.,;, 3xB(x)) remains in S,,;. There
are two cases. 2.3) It remains throughout the string, and at the sufficiently
large n-th decomposition {A4,, ---, A,_;, B(t,)> appearsin S,,,. 2.4) It vanishes
on the way. This happens only when some of A, -, A,.; is decomposed.
So it results in the case 1). It is similar in other cases.
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