J. Math. Soc. Japan Vol. 29, No. 3, 1977

On the irreducible characters of the finite unitary groups

By Noriaki KAWANAKA*

(Received April 22, 1976)

Introduction.

Let k be a finite field of q elements, and k_2 the quadratic extension of k. Let σ be the automorphism of the finite general linear group $GL_n(k_2)$ defined by

$$(x_{ij})^{\sigma} = (x_{ji}^q)^{-1}$$

for any element $(x_{ij})_{1 \le i,j \le n}$ of $GL_n(k_2)$. The group $U_n(k_2)$ of σ -fixed elements of $GL_n(k_2)$ is called the finite unitary group over k_2 . So far, the irreducible complex characters of $U_n(k_2)$ have been determined only for small n (see Ernola [4] and Nozawa [8], [9]), while those of $GL_n(k_2)$ have been determined completely by J. A. Green [7]. The purpose of the present paper is to give a method by which one can construct the irreducible complex characters of $U_n(k_2)$ using those of $GL_n(k_2)$, at least if the characteristic of k is not 2. As an application, we also obtain a parametrization of the irreducible characters of $U_n(k_2)$ which is dual to a known parametrization of the conjugacy classes.

Let χ be an irreducible character of $GL_n(k_2)$ which is fixed by σ , i.e. satisfies $\chi(x) = \chi(x^{\sigma})$ for all $x \in GL_n(k_2)$. Then, by a well-known elementary lemma, χ can be extended to an irreducible character $\tilde{\chi}$ of the semi-direct product $AGL_n(k_2)$ of $GL(k_2)$ with the group $A = \{1, \sigma\}$. Our main theorem is:

Assume that char $(k) \neq 2$. Let χ be a σ -fixed irreducible character of $GL_n(k_2)$, and $\tilde{\chi}$ an extension of χ to an irreducible character of $AGL_n(k_2)$. Then, there exists a unique irreducible character ψ_{χ} of $U_n(k_2)$ which depends only on χ and satisfies

$$\tilde{\chi}(\sigma x) = \varepsilon(\tilde{\chi}) \psi_{\chi}(n(x)) \qquad (x \in GL_n(k_2)),$$

where $\varepsilon(\tilde{\chi}) = \pm 1$ and n(x) is an arbitrary element of $U_n(k_2)$ conjugate to $x^{\sigma}x$ in $GL_n(k_2)$. Moreover, the correspondence $\chi \rightarrow \psi_{\chi}$ is a bijection between the set of σ -fixed irreducible characters of $GL_n(k_2)$ and the set of irreducible characters of $U_n(k_2)$.

This paper consists of five sections. §1 is a recollection of some known

^{*} This research was supported in part by the Sakkokai Foundation.

results on linear representations of finite groups. § 2 concerns finite groups realized as groups of fixed points of surjective endomorphisms of connected linear algebraic groups. As a special case of a fairly general lemma proved there, we can see that there is a close relation between the conjugacy classes of $AGL_n(k_2)$ and those of $U_n(k_2)$. § 3 is devoted to prove an analogue of the main theorem for the irreducible Brauer characters of finite Chevalley groups. In § 4, we prove the main theorem. The formulation given there is slightly more general than the one stated above. In the last § 5, combining the main theorem with Green's results [7], we obtain a parametrization of the irreducible characters of $U_n(k_2)$ (char $(k) \neq 2$).

The author is glad to acknowledge the debt he owes to Dr. T. Shintani, who has kindly let him know the results of [10] before its publication.

A short summary of the results of this paper has appeared in [16].

Notation.

Let S be a set. If σ is a transformation of S, S_{σ} denotes the set of σ -fixed elements of S. Let f be a mapping from S into another set, and T is a subset of S. Then f|T denotes the restriction of f to T. If S is a finite set, |S|means the number of its elements. For a group G and an element x of G, $Z_G(x)$ and $\mathfrak{E}_G(x)$ denote the centralizer group and the conjugacy class of x. If K is a field, K^* is the multiplicative group of K. We denote by C and Z the field of complex numbers and the ring of rational integers respectively.

§ 1. Preliminaries on representations of finite groups.

Let G be a finite group, and A a finite cyclic group of order m with a fixed generator σ . Suppose that A acts on G. In such situations we shall often assume that G and A are embedded in their semi-direct product AG; the multiplication rule in AG is defined by

$$x^{\delta} = \delta^{-1} x \delta$$
 $(x \in G, \ \delta \in A)$.

Let K be an algebraically closed field of characteristic p. Assume that m is not divisible by p. The following lemma is well-known.

LEMMA 1.1. (a) Let \tilde{T} be an irreducible representation of AG over K, and T its restriction to G. If T is still irreducible, then two representations T and $T \circ \sigma$ of G are equivalent to each other.

(b) Conversely, if an irreducible representation T of G is equivalent to $T \circ \sigma$, then there exist m mutually inequivalent irreducible representations of AG whose restrictions to G are equivalent to T. If \tilde{T} is one of them, any other one is equivalent to $\xi \otimes \tilde{T}$ for a suitable character ξ of AG/G. We may assume that there exists an injective homomorphism ϕ of K^* into C^* . For a representation R of a finite group H over K, we denote by $\beta_{\phi}[R]$ the C-valued function on H defined by

(1.1)
$$\beta_{\phi}[R](h) = \sum_{i} \phi(r_i(h)) \qquad (h \in H),$$

where $r_i(h)$ $(i=1, 2, \dots, \dim R)$ are the characteristic roots of R(h).

LEMMA 1.2. Let \tilde{T} be an irreducible representation of AG over K whose restriction to G is reducible. Then,

$$\beta_{\phi}[\widetilde{T}](\sigma x) = 0 \qquad (x \in G) \,.$$

PROOF. By a theory of Clifford [2], the matrix representation of $\tilde{T}(\sigma x)$ for a suitable base is written as

$$\begin{pmatrix} B_{11}(x), \cdots, B_{1l}(x) \\ \cdots \\ B_{l1}(x), \cdots, B_{ll}(x) \end{pmatrix}$$

where *l* is a divisor of *m*, $B_{ij}(x)(1 \le i, j \le l)$ are square matrices of the same size, and $B_{ij}(x)=0$ if $j-i \equiv 1 \pmod{l}$. Hence the assertion follows from

LEMMA 1.3. Let l be a positive integer which is not divisible by p, and

$$B = \begin{pmatrix} B_{11}, \cdots, B_{1l} \\ \cdots \\ B_{l1}, \cdots, B_{ll} \end{pmatrix}$$

a square matrix of (N, N)-type over K, where $B_{ij}(1 \le i, j \le l)$ are square matrices of (N/l, N/l)-type, and $B_{ij}=0$ if $j-i \equiv 1 \pmod{l}$.

(a) The characteristic polynomial det (zE_N-B) $(E_N$ is the unit matrix of (N, N)-type) is a polynomial in z^l .

(b) Let $\alpha_1, \alpha_2, \dots, \alpha_N$ be the characteristic roots of B. Then $\sum_{i=1}^N \phi(\alpha_i) = 0$. PROOF. (a) It is sufficient to show that

(1.2)
$$\det (zE_N - B) = \det (\eta zE_N - B)$$

for an arbitrary *l*-th root η of unity in K. Let $B'_{ij}(1 \leq i, j \leq l)$ be the (i, j)-blocks of the matrix $zE_N - B$, i.e.

$$B'_{ij} = \begin{cases} zE_{N/l} & \text{if } i=j, \\ -B_{ij} & \text{if } j-i\equiv 1 \pmod{l}, \\ 0 & \text{otherwise.} \end{cases}$$

Multiply η^i to $B'_{i1}, B'_{i2}, \dots, B'_{ll}$ $(1 \le i \le l)$, and η^{1-j} to $B'_{1j}, B'_{2j}, \dots, B'_{lj}$ $(1 \le j \le l)$. Then the resultant matrix is $zE_N - B$. The equality (1.2) follows from this fact. (b) Since p does not devide l, there are l distinct l-th roots $\eta_1, \eta_2, \dots, \eta_l$ of unity in K. By the injectivity of ϕ , $\phi(\eta_1)$, $\phi(\eta_2)$, \dots , $\phi(\eta_l)$ are the l distinct roots of unity in C. Hence $\sum_{i=1}^{l} \phi(\eta_i) = 0$. Now the assertion follows from part (a).

Let T be an irreducible representation of G over the complex number field C, and χ its character. If χ is fixed by σ , i. e. satisfies $\chi(x) = \chi(x^{\sigma})$ for all $x \in G$, then χ can be extended to an irreducible character $\tilde{\chi}$ of AG by Lemma 1.1(b).

LEMMA 1.4. Let χ_1 and χ_2 be σ -fixed irreducible complex characters of G, and $\tilde{\chi}_1$ and $\tilde{\chi}_2$ irreducible characters of AG such that $\tilde{\chi}_1 | G = \chi_1$ and $\tilde{\chi}_2 | G = \chi_2$. Then, for $l = 0, 1, 2, \dots, m-1$,

$$|G|^{-1} \sum_{x \in G} \tilde{\chi}_1(\sigma^l x) \tilde{\chi}_2(\sigma^l x)$$

equals $\xi(\sigma^l)$ if $\chi_1 = \chi_2$ and $\tilde{\chi}_1 = \xi \tilde{\chi}_2$ with an irreducible character ξ of AG/G, and equals 0 if $\chi_1 \neq \chi_2$.

PROOF. This is proved in Glauberman [6] and Shintani [10]. Here we follow Glauberman's proof. Let $\Phi_i(i=1,2)$ be the class functions on AG defined by

$$\Phi_i = \sum_{\xi \in \Xi} \xi(\sigma^{-l}) \xi \tilde{\chi}_i$$
 ,

where Ξ is the set of irreducible characters of AG/G. Clearly, $\Phi_i(\sigma^n x) = 0$ $(x \in G)$ if $n \neq l$, and $\Phi_i(\sigma^l x) = m \tilde{\chi}_1(\sigma^l x)$. Therefore

$$|G|^{-1}\sum_{x\in G}\chi_1(\sigma^l x)\overline{\chi_2(\sigma^l x)} = |G|^{-1}m^{-2}\sum_{x\in G}\sum_{\delta\in A}\Phi_1(\delta x)\overline{\Phi_2(\delta x)}$$
$$= m^{-1}\sum_{\xi,\xi'\in \Xi} \{\xi(\sigma^{-l})\overline{\xi'(\sigma^{-l})} | AG|^{-1}\sum_{x\in G}\sum_{\delta\in A} (\xi\tilde{\chi}_1)(\delta x)(\overline{\xi'\tilde{\chi}_2})(\delta x)\}$$

By Lemma 1.1(b), $\xi \tilde{\chi}_i$ are irreducible characters for all $\xi \in \Xi$. Hence, using orthogonality relations of irreducible characters, we obtain the required result.

LEMMA 1.5. For a positive integer m, put $\zeta_m = \exp(2\pi i/m)$. Let ψ be a complex valued class function on G. Assume that ψ satisfies the following two conditions:

(1) The restriction $\psi | E$ of ψ to an arbitrary elementary subgroup E of G is a $\mathbb{Z}[\zeta_m]$ -linear combination of irreducible characters of E.

(2)
$$|G|^{-1} \sum_{x \in G} |\psi(x)|^2 = 1$$
.

Then there exists an irreducible character χ of G, an integer a, and a sign ε such that

$$\psi(x) = \varepsilon \zeta_m^a \chi(x) \qquad (x \in G).$$

PROOF. By a version [5; § 15] of Brauer's characterization of characters, the condition (1) implies that ϕ can be written as

$$\psi = \sum_i c_i \chi_i$$
 ,

where χ_i are the irreducible characters of G, and c_i are elements of $\mathbb{Z}[\zeta_m]$. Using the condition (2), we see that

$$\sum_{i} c_i \overline{c_i} = 1$$
.

Denote by Γ the Galois group of $Q(\zeta_m)$ with respect to Q. Since the complex conjugation is an element of Γ and since Γ is abelian, we have

$$\sum_{i} c_i^r \overline{c_i^r} = 1$$

for all $\gamma \in \Gamma$. Setting $d = |\Gamma|$ we have

$$\sum_{i} \sum_{\gamma \in \Gamma} c_i^{\gamma} \overline{c_i^{\gamma}} = d$$
.

Since $c_i \in \mathbb{Z}[\zeta_m]$, if $c_i \neq 0$,

$$\sum_{\gamma \in I'} c_i^{\gamma} \overline{c_i^{\gamma}} \ge d | \prod_{\gamma \in I'} c_i^{\gamma} |^{2/d} \ge d$$

and the equality holds if and only if $|c_i^{r}|=1$ for all $\gamma \in \Gamma$. Hence $c_i=0$ except for a single index i_0 , and $c_{i0}=\pm \zeta_m^a$ for some integer *a*. This proves the lemma.

§ 2. Preliminaries on algebraic groups.

In this section we denote by \mathfrak{G} a connected linear algebraic group, and by σ a surjective endomorphism of \mathfrak{G} such that \mathfrak{G}_{σ} is finite. In such situation the following theorem is of fundamental importance.

THEOREM 2.1 (Steinberg [15; 10.1]). The mapping $f: x \rightarrow x^{-\sigma}x$ of \mathfrak{G} into \mathfrak{G} is surjective.

Let *m* be a fixed positive integer such that $\mathfrak{G}_{\sigma m}$ is finite. Put $G = \mathfrak{G}_{\sigma m}$. Let *A* be a finite cyclic group of order *m* with a generator σ' . We suppose that *A* acts on *G* by

$$x^{\sigma} = x^{\sigma}$$
 $(x \in G)$.

In the following we write σ for σ' , because there is no fear of confusion.

LEMMA 2.2. (a) Let \mathfrak{G} be an AG-conjugacy class of the set $\{\sigma\} \times G$, and σx an arbitrary element of \mathfrak{G} . Take an element α_x of $f^{-1}(x)$ (see Theorem 2.1), and put $N(x) = x^{\sigma^{m-1}} x^{\sigma^{m-2}} \cdots x^{\sigma} x$. Then $\alpha_x N(x) \alpha_x^{-1}$ is an element of G_{σ} ; its G_{σ} -conjugacy class is determined by \mathfrak{G} .

(b) For all $x \in G$,

$$|\mathfrak{G}_{AG}(\sigma x)| |G|^{-1} = |\mathfrak{G}_{G\sigma}(\alpha_x N(x)\alpha_x^{-1})| |G_{\sigma}|^{-1}.$$

N. KAWANAKA

(c) The correspondence \mathfrak{N} from the set of AG-conjugacy classes of $\{\sigma\} \times G$ into the set of conjugacy classes of G_{σ} defined by

$$\mathcal{I}(\mathfrak{G}_{AG}(\sigma x)) = \mathfrak{G}_{G\sigma}(\alpha_x N(x)\alpha_x^{-1}) \qquad (x \in G)$$

is bijective.

PROOF. (a) Since $xN(x)x^{-1}=N(x)^{\sigma}$, we have $\alpha_xN(x)\alpha_x^{-1}=(\alpha_xN(x)\alpha_x^{-1})^{\sigma}$, i.e. $\alpha_xN(x)\alpha_x^{-1}\in G_{\sigma}$. Let β be another element of $f^{-1}(x)$. Then $\alpha_x^{-\sigma}\alpha_x=\beta^{-\sigma}\beta$. Hence $\beta\alpha_x^{-1}\in G_{\sigma}$. Next, let y be an element of G such that σy is AG-conjugate to σx . Then there is an element z of G such that $y=z^{\sigma}xz^{-1}$. Hence α_xz^{-1} is an element of $f^{-1}(y)$. Moreover, since $z^{\sigma m}=z$, we have $N(y)=zN(x)z^{-1}$. Therefore

$$(\alpha_x z^{-1}) N(y) (\alpha_x z^{-1})^{-1} = \alpha_x N(x) \alpha_x^{-1}$$
.

This proves part (a).

(b) An element g of G is contained in $Z_G(\sigma x) = \{g \in G | g(\sigma x) = (\sigma x)g\}$, if and only if it satisfies

$$(2.1) xgx^{-1} = g^{\sigma}.$$

From (2.1) and the fact that $g^{\sigma^m} = g$, we have $g \in Z_G(N(x))$. Hence

(2.2)
$$\alpha_x g \alpha_x^{-1} \in Z_{\mathfrak{G}}(\alpha_x N(x) \alpha_x^{-1}).$$

On the other hand, (2.1) also implies that

$$(2.3) \qquad \qquad \alpha_x g \alpha_x^{-1} \in G_\sigma.$$

Therefore, from (2.2), (2.3) and part (a) we see that (2.1) is equivalent to

$$\alpha_x g \alpha_x^{-1} \in Z_{G_{\sigma}}(\alpha_x N(x) \alpha_x^{-1})$$

Hence

$$|Z_G(\sigma x)| = |Z_{G_\sigma}(\alpha_x N(x)\alpha_x^{-1})|.$$

It is easy to see that

(2.5)
$$Z_{AG}(\sigma x) = \bigcup_{i=0}^{m-1} (\sigma x)^i Z_G(\sigma x) \quad \text{(disjoint union)}.$$

From (2.4) and (2.5) we have

 $|Z_{AG}(\sigma x)| = m |Z_{G_{\sigma}}(\alpha_x N(x)\alpha_x^{-1})|.$

Hence we get

$$|\mathfrak{G}_{AG}(\sigma x)| = |AG| |Z_{AG}(\sigma x)|^{-1} = |G| |Z_{G_{\sigma}}(\alpha_x N(x)\alpha_x^{-1})|^{-1}$$
$$= |\mathfrak{G}_{G_{\sigma}}(\alpha_x N(x)\alpha_x^{-1})| |G| |G_{\sigma}|^{-1},$$

as required.

(c) First we show that the correspondence \mathcal{N} is surjective. Take any $y \in G_{\sigma}$. Then by Theorem 2.1 and the assumption that $|\mathfrak{G}_{\sigma m}| < \infty$, there exists an element γ of \mathfrak{G} such that

(2.6)
$$\gamma \gamma^{-\sigma m} = y$$

Since $y=y^{\sigma}$, we have $\gamma\gamma^{-\sigma m}=\gamma^{\sigma}\gamma^{-\sigma m+1}$. Hence $\gamma^{-\sigma}\gamma\in G$. Put $x=\gamma^{-\sigma}\gamma$. Then $\gamma N(x)\gamma^{-1}=y$

by (2.6). This proves the surjectivity of the correspondence \mathcal{N} . Let $\{c_1, c_2, \dots, c_l\}$ be the set of conjugacy classes of G_{σ} , and $\{C_1, C_2, \dots, C_l\}$ AG-conjugacy classes of $\{\sigma\} \times G$ such that $\mathcal{N}(C_i) = c_i$. Then, from part (b), we have

$$|C_i| |G|^{-1} = |c_i| |G_\sigma|^{-1} \qquad (1 \le i \le l).$$

Hence

$$\sum_{i=1}^{l} |C_i| = \sum_{i=1}^{l} |c_i| |G_o|^{-1} |G| = |G|.$$

This implies that $\{C_1, C_2, \dots, C_l\}$ is the set of AG-conjugacy classes of $\{\sigma\} \times G$, and that \mathcal{N} is certainly bijective.

COROLLARY 2.3. The number of σ -fixed irreducible complex characters of G is equal to the number of irreducible complex characters of G_{σ} .

PROOF. The dimension of the linear space spanned by restrictions of irreducible characters of AG to $\{\sigma\} \times G$ equals to the number of AG-conjugacy classes of $\{\sigma\} \times G$. The former is equal to the number of σ -fixed irreducible characters by Lemma 1.1, 1.2 and 1.4; the latter is, by Lemma 2.2 (c), equal to the number of conjugacy classes of G_{σ} , which is equal to the number of irreducible characters of G_{σ} . This proves the corollary.

The following result is not used in the sequel.

COROLLARY 2.4. The number of σ -fixed conjugacy classes of G is equal to the number of conjugacy classes of G_{σ} .

PROOF. Applying a theorem of Brauer ([5; 12.1]) to the character table of G, we see that the number of σ -invariant irreducible characters of G is equal to the number of σ -fixed conjugacy classes of G. Combining this fact with Corollary 2.3 we obtain the required result.

LEMMA 2.5. Assume that \mathfrak{G} is abelian. Let $\tilde{\chi}$ be an irreducible complex character of AG, and χ its restriction to G. Then, for $x \in G$, we have

$$\tilde{\chi}(\sigma x) = \begin{cases} 0 & \text{if } \chi \text{ is reducible,} \\ \zeta_m^a \psi_{\chi}(N(x)) & \text{if } \chi \text{ is irreducible,} \end{cases}$$

where $\zeta_m = \exp(2\pi i/m)$, a is an integer, and ψ_{χ} is an irreducible character of G_{σ} determined by χ .

PROOF. By Lemma 1.2, $\tilde{\chi}(\sigma x)=0$ if χ is reducible. Assume that χ is irreducible, i.e. one dimensional representation of G. Since $\chi(x)=\chi(x^{\sigma})$ for all $x\in G$, we have

(2.7)
$$\chi(x^{-\sigma}x) = 1 \qquad (x \in G).$$

On the other hand, from Theorem 2.1, it is easy to see that

(2.8)
$$\{x \in G \mid N(x) = 1\} = \{x^{-\sigma}x \mid x \in G\}.$$

By (2.7), (2.8) and the surjectivity of the mapping N from G into G_{σ} , we have

$$\chi = \phi_{\chi} \circ N$$

for a unique irreducible character ψ_{χ} of G_{σ} . By Lemma 1.1 (b), $\tilde{\chi}$ can be written as

(2.10)
$$\tilde{\chi}(\sigma^n x) = \zeta^n \chi(x) \qquad (x \in G, \ 0 \le n \le m-1)$$

The assertion follows from (2.9) and (2.10).

THEOREM 2.6 (Springer and Steinberg [12; 1, 3.4]). Let \mathfrak{E} be a conjugacy class of \mathfrak{G} which is fixed by σ . Assume that the centralizer $Z_G(x)$ of $x \in \mathfrak{E}$ is connected. Then $\mathfrak{E} \cap \mathfrak{G}_{\sigma}$ forms a single conjugacy class of \mathfrak{G}_{σ} .

COROLLARY 2.7. Let \mathfrak{E} be a conjugacy class of $G(=\mathfrak{G}_{\sigma^m})$ which is fixed by σ . Assume that $Z_G(x)$ is connected for $x \in \mathfrak{E}$. Then $\mathfrak{E} \cap G_{\sigma}$ forms a single conjugacy class of G_{σ} .

PROOF. Let x be an element of \mathfrak{E} . Since $\mathfrak{E}=\mathfrak{E}^{\sigma}$, x^{σ} is also contained in \mathfrak{E} . Hence $\mathfrak{E}_{\mathfrak{G}}(x)$ is fixed by σ . Therefore, by Theorem 2.6, $\mathfrak{E}_{\mathfrak{G}}(x) \cap G$ is a single conjugacy class of G. This implies that $\mathfrak{E}=\mathfrak{E}_{\mathfrak{G}}(x) \cap G$. Using again Theorem 2.6 we see that

$$\mathfrak{G} \cap G_{\sigma} = (\mathfrak{G}_{\mathfrak{G}}(x) \cap G) \cap G_{\sigma} = \mathfrak{G}_{\mathfrak{G}}(x) \cap G_{\sigma}$$

is a single conjugacy class of G_{σ} .

COROLLARY 2.8. Let $\mathfrak{G}=GL_{n_1}\times GL_{n_2}\times \cdots \times GL_{n_l}$ for some positive integers n_1, n_2, \cdots, n_l . Then, for any σ -fixed conjugacy class \mathfrak{G} of G, \mathfrak{G}_{σ} forms a single conjugacy class of G_{σ} .

PROOF. This follows from Corollary 2.7 and the fact that $Z_{\mathfrak{G}}(x)$ is connected for all $x \in \mathfrak{G}$ (see [12; III, 3.22]).

COROLLARY 2.9. (a) Let \mathfrak{G} be semisimple and simply connected. If x is an element of G such that N(x) is semisimple, then we have

$$\mathfrak{N}(\mathfrak{G}_{GA}(\sigma x)) = \mathfrak{G}_G(N(x)) \cap G_\sigma$$
.

(b) Let $\mathfrak{G}=GL_{n_1}\times GL_{n_2}\times \cdots \times GL_{n_l}$ for some positive integers n_1, n_2, \cdots, n_l . Then we have

$$\mathfrak{N}(\mathfrak{G}_{GA}(\sigma x)) = \mathfrak{G}_G(N(x)) \cap G_\sigma$$

for all $x \in G$.

PROOF. (a) By [15; 8.1], $Z_{\mathfrak{S}}(N(x))$ is connected. Hence, by Theorem 2.6, we see that $\mathfrak{E}_{\mathfrak{S}}(\alpha_x N(x)\alpha_x^{-1}) \cap G$ is a single conjugacy class of G. Hence $\mathfrak{E}_G(N(x)) = \mathfrak{E}_{\mathfrak{S}}(\alpha_x N(x)\alpha_x^{-1}) \cap G$. Using again Theorem 2.6 we also have

$$\mathfrak{G}_{\mathfrak{G}}(\alpha_x N(x)\alpha_x^{-1}) \cap G_{\sigma} = \mathfrak{G}_{G_{\sigma}}(\alpha_x N(x)\alpha_x^{-1}).$$

Hence

$$\mathfrak{N}(\mathfrak{E}_{AG}(\sigma x)) = \mathfrak{E}_{G_{\sigma}}(\alpha_{x}N(x)\alpha_{x}^{-1}) = G_{\mathfrak{G}}(\alpha_{x}N(x)\alpha_{x}^{-1}) \cap G_{\sigma} = \mathfrak{E}_{G}(N(x)) \cap G_{\sigma}.$$

(b) By [12; III, 3.22], $Z_{\mathfrak{S}}(N(x))$ is connected. Hence (b) follows by the same argument as in the proof of (a).

§ 3. Modular representations of finite Chevalley groups.

In this section we denote by \mathfrak{G} a simply connected semisimple linear algebraic group. We consider \mathfrak{G} as a subgroup of some $GL_l(K)$ for a fixed algebraically closed field K. Assume that \mathfrak{G} has a surjective endomorphism σ such that \mathfrak{G}_{σ} is finite. Then the characteristic p of K must be positive ([15; 10.5]). The main result of this section is Theorem 3.6. Before stating this, we summarize some known facts on \mathfrak{G} and σ . These are mostly due to C. Chevalley and R. Steinberg ([1], [13], [14], [15]).

Let \mathfrak{B} be a Borel subgroup of \mathfrak{G} , and \mathfrak{H} a maximal torus of \mathfrak{G} contained in \mathfrak{B} . One can choose \mathfrak{B} and \mathfrak{H} to be fixed by σ . Then the unipotent radical \mathfrak{U} of \mathfrak{B} is also fixed by σ . Let $X(\mathfrak{H})$ be the character module of \mathfrak{H} , and $\Sigma \subset X(\mathfrak{H})$ the root system of \mathfrak{G} with respect to \mathfrak{H} . For each $\alpha \in \Sigma$ there is an isomorphism x_{α} of the additive group of K onto a closed subgroup \mathfrak{U}_{α} of Gsuch that

$$hx_{\alpha}(t)h^{-1} = x_{\alpha}(\alpha(h)t) \qquad (h \in \mathfrak{H}, t \in K).$$

Take an order on Σ so that $\mathfrak{U}=\prod_{\alpha>0}\mathfrak{U}_{\alpha}$. Let Π be the set of simple roots with respect to this order. From the construction of \mathfrak{G} given in [14] we have the following

LEMMA 3.1. One can choose $x_{\alpha}(\sigma \in \Sigma)$ so that the following statements hold. (a) Put $h_{\alpha}(t) = w_{\alpha}(t)w_{\alpha}(-1)$ $(t \in K^*)$ for $\alpha \in \Sigma$, where $w_{\alpha}(t) = x_{\alpha}(t)x_{-\alpha}(-t^{-1})x_{\alpha}(t)$. Then $h_{\alpha}(t)$ are multiplicative as functions of $t \in K^*$.

(b) Put $\mathfrak{F}_{\alpha} = \{h_{\alpha}(t) | t \in K^*\}$ for $\alpha \in \Sigma$. These are subgroups of \mathfrak{F} . Moreover, \mathfrak{F} is a direct product of the subgroups \mathfrak{F}_{α} for $\alpha \in \Pi$.

(c) For $\alpha \in \Pi$, define the element ω_{α} of $X(\mathfrak{H})$ by

$$\omega_{\alpha}(\prod_{\beta\in\Pi}h_{\beta}(t_{\beta}))=t_{\alpha}.$$

Then ω_{α} ($\alpha \in \Pi$) are the fundamental dominant weights ([1; 16-07]).

Henceforth, we assume that $x_{\alpha} (\alpha \in \Sigma)$ have been chosen as in Lemma 3.1. LEMMA 3.2. There exists a permutation ρ of Σ and for each $\alpha \in \Sigma$ a power $q(\alpha)$ of p such that the following statements hold.

- (a) Π is stable under ρ .
- (b) $x_{\alpha}(t)^{\sigma} = x_{\rho\alpha}(c_{\alpha}t^{q(\alpha)}) \quad (t \in K)$

for some $c_{\alpha} \in K^*$.

(c) One can normalize x_{α} ($\alpha \in \Sigma$) so that

$$x_{\alpha}(t)^{\sigma} = x_{\rho\alpha}(t^{q(\alpha)}) \qquad (t \in K)$$

for all $\alpha \in \Pi$. Then

$$x_{-1}(t) = x_{-\varrho\alpha}(t^{q(\alpha)}) \qquad (t \in K)$$

for all $\alpha \in \Pi$.

PROOF. Part (a) and part (b) are proved in [15; 11.2]. Part (c) follows from part (b) and [14; p. 160, (2)].

For each $\lambda \in X(\mathfrak{F})$ there exists an irreducible rational representation R_{λ} of \mathfrak{G} whose highest weight ([14; p. 209]) is λ ; the equivalence class of R_{λ} is uniquely determined by λ . Since $\{\omega_{\alpha} | \alpha \in \Pi\}$ (see Lemma 3.1 (d)) is a basis of $X(\mathfrak{F})$, any element λ of $X(\mathfrak{F})$ can be written as $\lambda = \sum_{\alpha \in \Pi} \lambda(\alpha) \omega_{\alpha}$ for some $\lambda(\alpha) \in \mathbb{Z}$.

THEOREM 3.3 (Steinberg [15; 13.1, 13.3]). Let $\mathcal{R}_{\mathfrak{G}}$ denote the set of irreducible rational representations of \mathfrak{G} for which the highest weight $\lambda = \sum \lambda(\alpha) \omega_{\alpha}$ satisfies $0 \leq \lambda(\alpha) \leq q(\alpha) - 1$ ($\alpha \in \Pi$).

(a) The elements of $\mathfrak{R}_{\mathfrak{G}}$ remain distinct and irreducible on restriction to \mathfrak{G}_{σ} .

(b) A complete set of irreducible representations of \mathfrak{G}_{σ} over K is obtained in this way.

(c) The collection $\{\bigotimes_{i=0}^{\infty} R_i \circ \sigma^i \mid R_i \in \mathcal{R}_{\mathfrak{S}}, most R_i trivial\}$ is a complete set of irreducible rational representations of G, each counted exactly once.

LEMMA 3.4. (a) Let R be an irreducible rational representation of \mathfrak{G} whose highest weight is $\sum \lambda(\alpha)\omega_{\alpha}$. Then the highest weight of the irreducible representation $R \circ \sigma$ is $\sum q(\alpha)\lambda(\rho\alpha)\omega_{\alpha}$.

(b) Let $R_i(i=0, 1, 2, \cdots)$ be irreducible rational representations of \mathfrak{G} whose highest weights are $\sum_{\alpha} \lambda_i(\alpha) \omega_{\alpha}$ respectively. Then the highest weight of the irreducible representation $\bigotimes_{i=0}^{m-1} R_i \circ \sigma^i$ is $\sum_{\alpha \in II} \{\sum_{i=0}^{m-1} q(\alpha)q(\rho\alpha) \cdots q(\rho^{i-1}\alpha)\lambda_i(\rho^i\alpha)\} \omega_{\alpha}$.

PROOF. (a) Let V be a left G-module which affords R, and $v \in V$ a highest weight vector, i.e.

(1) xv = v for all $x \in \mathfrak{U}$,

and

(2) $hv = (\sum \lambda(\alpha)\omega_{\alpha})(h)v$ for all $h \in \mathfrak{H}$.

For a proof of part (a) it suffices to show that

(1')
$$x^{\sigma}v = v$$
 for all $x \in \mathfrak{U}$,

and

(2')
$$h^{\sigma}v = (\sum q(\alpha)\lambda(\rho\alpha)\omega_{\alpha})(h)v$$
 for all $h \in \mathfrak{H}$.

(1') follows from (1) and the fact that \mathfrak{l} is fixed by σ . For $h \in \mathfrak{H}$ we can write $h = \prod_{\beta \in \Pi} h_{\beta}(t_{\beta})$ by Lemma 3.1 (c). Then, by Lemma 3.1 (a) and Lemma 3.2 (c), we get

$$h^{\sigma} = \prod_{\beta \in II} h_{\rho,\beta}(t^{q(\beta)}_{\beta}).$$

Hence, by Lemma 3.1 (d),

$$\omega_{\alpha}(h^{\sigma}) = t^{q(\eta\alpha)}_{\eta\alpha} = (q(\eta\alpha)\omega_{\eta\alpha})(h),$$

where $\eta = \rho^{-1}$. Therefore, we see from (2) that

$$h^{\sigma}v = (\sum q(\eta \alpha)\lambda(\alpha)\omega_{\eta \alpha})(h)v = (\sum q(\alpha)\lambda(\rho \alpha)\omega_{\alpha})(h)v,$$

which is (2'). The proof of part (a) is over. Next, we prove part (b). Let $v_i(i=0, 1, 2, \dots, m-1)$ be highest weight vectors of $R_i \circ \sigma^i$ respectively. Using part (a) repeatedly we see that $\bigotimes_{i=0}^{m-1} v_i$ is a highest weight vector of $\bigotimes_{i=0}^{m-1} R_i \circ \sigma^i$ with the required weight.

Let *m* be a positive integer. Then $\mathfrak{G}_{\sigma m}$ is also finite by [15; 10.6].

LEMMA 3.5. Let $\mathcal{R}_{\mathfrak{G}}$ be as in Theorem 3.3. For a positive integer *m*, let $\mathcal{R}_{\mathfrak{G},m}$ be the set $\{\bigotimes_{i=0}^{m-1} R_i \circ \sigma^i | R_i \in \mathcal{R}_{\mathfrak{G}}\}$ of irreducible rational representations of \mathfrak{G} .

(a) The elements of $\mathfrak{R}_{\mathfrak{G},m}$ remain distinct and irreducible on restriction to $\mathfrak{G}_{\sigma m}$.

(b) A complete set of irreducible representations of \mathfrak{G}_{om} is obtained in this way.

PROOF. By theorem 3.3 and the definition (Lemma 3.2 (b)) of $q(\alpha)$, it suffices to show that $\Re_{\mathfrak{G},\mathfrak{m}}$ is the set of irreducible representations of \mathfrak{G} for which the highest weight $\lambda = \sum \lambda(\alpha)\omega_{\alpha}$ satisfies $0 \leq \lambda(\alpha) \leq Q(\alpha) - 1$, where $Q(\alpha) = q(\alpha)q(\rho\alpha)q(\rho^2\alpha)\cdots q(\rho^{m-1}\alpha)$. This, in turn, follows easily from Lemma 3.4 (b).

Put $G = \bigotimes_{\sigma^m}$. As in §2, we denote by A the cyclic group of order m generated by $\sigma | G$. In the following we write σ for $\sigma | G$. Assume that m is not divisible by p. Then it is easy to see that an element $\sigma \chi$ of the semi-direct product AG is p-regular if and only if N(x) is a p-regular (i.e. semi-simple) element of G. The main result of this section is:

THEOREM 3.6. Assume that m is not divisible by p and that K is the algebraic closure of the finite field with p elements. Let \tilde{T} be an irreducible representation of the semi-direct product AG over K, and T its restriction to G. Let ϕ be an injective homomorphism from K* into C*.

(a) If the representation T of G is reducible, we have

$$\beta_{\phi}[\tilde{T}](\sigma x) = 0 \qquad (x \in G),$$

where $\beta_{\phi}[\tilde{T}]$ is defined by (1.1).

(b) If T is still irreducible, then there exists an irreducible representation S_T of G_σ over K which depends only on T and satisfies

$$\beta_{\phi}[\widetilde{T}](\sigma x) = \zeta_m^a \beta_{\phi}[S_T](n(x))$$

for all $x \in G$ such that $N(x) = x^{\sigma^{m-1}} x^{\sigma^{m-2}} \cdots x^{\sigma} x$ is semisimple, where n(x) is an arbitrary element of $\mathfrak{G}_G(N(x)) \cap G_\sigma$, $\zeta_m = \exp(2\pi i/m)$, and a is an integer.

(c) The correspondence $T \rightarrow S_T$ induces a bijection between the set of σ -fixed equivalence classes of irreducible representations of G and the set of equivalence classes of irreducible representations of G_{σ} .

PROOF. (a) This is a special case of Lemma 1.2.

(b) For each $R \in \mathcal{R}_{\mathfrak{G}}$, we put

$$T_{R} = \{ (R \circ \sigma^{m-1}) \otimes (R \circ \sigma^{m-2}) \otimes \cdots \otimes (R \circ \sigma) \otimes R \} \mid G.$$

By Lemma 3.5, these representations of G are irreducible and pairwise inequivalent. Since the action of σ^m is trivial on G, T_R is equivalent to $T_R \circ \sigma$. Conversely, by Lemma 3.5, irreducible representation T of G over K is equivalent to $T \circ \sigma$ if and only if it is equivalent to some T_R . Let R be an element of $\mathcal{R}_{\mathfrak{G}}$ and V its representation space. Define a linear transformation I_{σ} of $V \otimes V \otimes \cdots \otimes V$ (*m* times) by

$$I_{\sigma}(v_{m-1} \otimes v_{m-2} \otimes \cdots \otimes v_1 \otimes v_0) = v_{m-2} \otimes v_{m-3} \otimes \cdots \otimes v_1 \otimes v_0 \otimes v_{m-1} \qquad (v_i \in V)$$

Put

(3.1)
$$\tilde{T}_R(\sigma^l x) = I_{\sigma}^l \circ T_R(x)$$

for $x \in G$ and $l=0, 1, \dots, m-1$. Then \tilde{T}_R is an irreducible representation of AGand T_R is its restriction to G. Let x be an element of G such that N(x) is semisimple, and n(x) an element of $\mathfrak{G}_G(N(x)) \cap G_\sigma$. By [12; II, 1.1], n(x) is contained in a maximal torus \mathfrak{F} of \mathfrak{G} fixed by σ . To calculate $\beta_{\phi}[\tilde{T}_R](\sigma x)$ we may assume that x is contained in \mathfrak{G} and N(x) = n(x), by Lemma 2.2 (c) and Corollary 2.9 (a). Then $x^{\sigma i}$ $(i=0, 1, 2, \dots, m-1)$ are semisimple and commute with each other. So we can choose a basis $\{e_1, e_2, \dots, e_d\}$ $(d = \dim R)$ of V for which there exist $\lambda_{ij} \in K$ $(i=0, 1, 2, \dots, m-1; j=1, 2, \dots, d)$ such that

$$R(x^{\sigma i})e_j = \lambda_{ij}e_j.$$

Put $\mathscr{B} = \{e_{j_{m-1}} \otimes e_{j_m-2} \otimes \cdots \otimes e_{j_1} \otimes e_{j_0} | 1 \leq j_i \leq d\}$; this is a basis of $V \otimes V \otimes \cdots \otimes V$ (*m* times). The operator I_{σ} on $V \otimes V \otimes \cdots \otimes V$ permutes the set \mathscr{B} . Let *o* be an I_{σ} -orbit in \mathscr{B} , and W_o a linear subspace of $V \otimes V \otimes \cdots \otimes V$ spanned by elements of \mathscr{B} contained in *o*. Then $\tilde{T}_R(\sigma x) W_o \subset W_o$ by (3.1) and (3.2). Clearly, the cardinality *l* of *o* is a divisor of *m*. First, assume that l > 1. Let *b* be a fixed element of *o*, and (a_{st}) $(1 \leq s, t \leq l)$ the matrix representation of $\tilde{T}_R(\sigma x) | W_o$

with respect to the basis $\{I_{\sigma}^{l-1}b, I_{\sigma}^{l-2}b, \cdots, I_{\sigma}b, b\}$ of W_o . Then, from (3.1) and (3.2), we see that $a_{st} = 0$ if $t-s \not\equiv 1 \pmod{l}$. Hence, if $r_i(\sigma x)$ $(1 \leq i \leq l)$ are the characteristic roots of $\tilde{T}_R(\sigma x) | W_o$, we have

(3.3)
$$\sum_{i} \phi(r_i(\sigma x)) = 0$$

from Lemma 1.3. Next, consider the case that l=1, i. e. $o = \{e_j \otimes e_j \otimes \cdots \otimes e_j\}$ for some j. From (3.1) and (3.2) we get

(3.4)
$$\widetilde{T}_{R}(\sigma x)e_{j}\otimes e_{j}\otimes \cdots \otimes e_{j}=\lambda_{m-1,j}\lambda_{m-2,j}\cdots \lambda_{1,j}\lambda_{0,j}e_{j}\otimes e_{j}\otimes \cdots \otimes e_{j}$$

 $(j=1, 2, \cdots, d).$

Combining (3.3) with (3.4) we get

(3.5)
$$\beta_{\phi}[\widetilde{T}_{R}](\sigma x) = \sum_{j=1}^{d} \phi(\lambda_{m-1,j}\lambda_{m-2,j}\cdots\lambda_{1,j}\lambda_{0,j})$$

On the other hand, from (3.2), we have

$$R(N(x))e_j = \lambda_{m-1,j}\lambda_{m-2,j}\cdots\lambda_{1j}\lambda_{0j}e_j \qquad (j=1, 2, \cdots, d).$$

Hence

(3.6)
$$\beta_{\phi}[R](N(x)) = \sum_{j=1}^{d} \phi(\lambda_{m-1,j}\lambda_{m-2,j}\cdots\lambda_{1,j}\lambda_{0,j}).$$

Put $S_{T_R} = R | G_{\sigma}$. This is an irreducible representation of G_{σ} by Theorem 3.3, and depends only on $T_R = \bigotimes_{i=0}^{m-1} R \circ \sigma^i | G$ by Lemma 3.5 (a). From (3.5) and (3.6) we have

$$\beta_{\phi}[\widetilde{T}_{R}](\sigma x) = \beta_{\phi}[S_{T_{R}}](N(x)).$$

This, combined with Lemma 1.1, implies part (b) of the Theorem.

(c) The defining domain of the correspondence is the set of σ -fixed equivalence classes of irreducible representations of G by Lemma 1.1 (a). The remaining assertions follow from the proof of (b) and Theorem 3.3.

§4. Main theorem.

In this section we denote by \mathfrak{G} the general linear group GL_n considered as an algebraic group defined over an algebraically closed field K of characteristic p>0. Let k be a fixed finite subfield of K. For a positive integer l, we denote by $k_l(\subset K)$ the extension of k of degree l. Let τ and σ be the surjective endomorphisms of \mathfrak{G} defined by

(4.1)
$$x^{\tau} = (x_{ij}^q)_{1 \le i, j \le n} \quad \text{for} \quad x = (x_{ij}) \in \mathfrak{G}$$

and

N. KAWANAKA

(4.2) $x^{\sigma} = (({}^{t}x)^{\tau})^{-1}$ for $x \in \mathfrak{G}$,

where q = |k| and 'x is the transposed matrix of $x \in \mathfrak{G}$. If m is a positive integer,

$$(4.3) \qquad \qquad \mathfrak{G}_{\tau m} = GL_n(k_m)$$

and

(4.4)
$$\mathfrak{G}_{\sigma m} = \begin{cases} GL_n(k_m) & \text{ if } m \text{ is even,} \\ U_n(k_{2m}) & \text{ if } m \text{ is odd} \end{cases}$$

where $U_n(k_{2m})$ is the group of unitary matrices over k_{2m} . Put $G = \bigotimes_{\sigma m}$ for a fixed *m*. Then $\sigma | G$ is an automorphism of the finite group *G*, and will be denoted simply by σ . Let *A* be the cyclic group of order *m* generated by the automorphism σ of *G*, and *AG* the semi-direct product of *G* with *A*. Now we can state the main result of the paper.

THEOREM 4.1. Assume that m is not divisible by p. Let $\tilde{\chi}$ be an irreducible character of AG, and χ its restriction to G.

(a) If the character χ of G is reducible, then

$$\tilde{\chi}(\sigma x) = 0$$
 $(x \in G)$.

(b) If χ is still irreducible, then there exists an irreducible character ψ of G_{σ} (= $U_n(k_2)$) which depends only on χ and satisfies

$$\tilde{\chi}(\sigma x) = \varepsilon \zeta_m^a \psi_{\chi}(n(x)) \qquad (x \in G, \ n(x) \in \mathfrak{G}_G(N(x)) \cap G_\sigma),$$

where $N(x) = x^{\sigma^{m-1}} x^{\sigma^{m-2}} \cdots x^{\sigma} x$, $\zeta_m = \exp(2\pi i/m)$, $\varepsilon = \pm 1$, and a is an integer.

(c) The correspondence $\chi \rightarrow \psi_{\chi}$ is a bijection between the set of σ -fixed irreducible characters of G and the set of irreducible characters of G_{σ} .

REMARK 4.2. Theorem 4.1, and its proof, are valid even if one replaces σ with τ defined by (4.1). Using Green's construction [7] of irreducible characters of finite general linear groups, Shintani [10] proved the τ -case without assuming that m is not divisible by p. Our proof is independent of the Green's construction.

REMARK 4.3. It may be possible to extend Theorem 4.1 to a more general case. See Lemma 2.2 and Corollary 2.3.

For the proof of Theorem 4.1 we need some preliminary results. Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s)$ be a partition of *n*, i. e. an integer sequence such that $n = \sum_{i=1}^{s} \alpha_i$ and $\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_s > 0$. Put

$$\mathfrak{G}_{\alpha} = \{ (B_{ij})_{1 \leq i, j \leq s} \in \mathfrak{G} | B_{ii} \in GL_{\alpha_i} (1 \leq i \leq s), B_{ij} = 0 (i \neq j) \}$$

This is a σ -fixed connected algebraic subgroup of \mathfrak{G} . A subgroup of \mathfrak{G} is

called of type α if it is conjugate to \mathfrak{G}_{α} .

LEMMA 4.4. (a) Let u be a unipotent element of \mathfrak{G} . Then

(4.5)
$$Z_{\mathfrak{G}}(u) = \mathfrak{X} \cdot \mathfrak{U}$$
 (semi-direct product),

where \mathfrak{u} is the unipotent radical of $Z_{\mathfrak{G}}(u)$ and \mathfrak{X} is a subgroup of \mathfrak{G} which is of type α for some partition α of n. Moreover, if u is fixed by σ , \mathfrak{u} is fixed by σ and \mathfrak{X} can be chosen to be fixed by σ .

(b) Let s be a (σ -fixed) semisimple element of \mathfrak{G} . Then $Z_{\mathfrak{G}}(s)$ is a (resp. σ -fixed) subgroup of \mathfrak{G} of type α for some partition α of n.

PROOF. (a) The decomposition (4.5) is proved, for example, in [12; IV, 1.7]. If u is fixed by σ , we have

$$Z_{\mathsf{G}}(u) = \mathfrak{X} \cdot \mathfrak{U} = \mathfrak{X}^{\sigma} \cdot \mathfrak{U}^{\sigma}.$$

Since \mathfrak{l} and \mathfrak{l}^{σ} are both unipotent radicals of $Z_{\mathfrak{G}}(u)$, we have $\mathfrak{l}=\mathfrak{l}^{\sigma}$. Let \mathfrak{S} be the center of \mathfrak{X} . Then \mathfrak{S}^{σ} is the center of \mathfrak{X}^{σ} . Since $\mathfrak{S}\mathfrak{l}$ and $\mathfrak{S}^{\sigma}\mathfrak{l}$ are both radicals of $Z_{\mathfrak{G}}(u)$, we have $\mathfrak{S}\mathfrak{l}=\mathfrak{S}^{\sigma}\mathfrak{l}$. Moreover, \mathfrak{S} and \mathfrak{S}^{σ} are maximal tori of the connected algebraic group $\mathfrak{S}\mathfrak{l}=\mathfrak{S}^{\sigma}\mathfrak{l}$. Hence $\mathfrak{S}^{\sigma}=x\mathfrak{S}x^{-1}$ for some element x of $\mathfrak{S}\mathfrak{l}$. By Theorem 2.1, there exists $y \in \mathfrak{S}\mathfrak{l}$ such that $x=y^{-1}y$. Put $\mathfrak{S}'=y\mathfrak{S}y^{-1}$. Then \mathfrak{S}' is σ -stable. Therefore, $\mathfrak{X}'=Z_{\mathfrak{G}}(\mathfrak{S}')$ is fixed by σ . We also have $Z_{\mathfrak{G}}(u) = \mathfrak{X}'\mathfrak{l}$, because $\mathfrak{X}'=yZ_{\mathfrak{G}}(\mathfrak{S})y^{-1}=y\mathfrak{X}y^{-1}$. This proves part (a).

(b) This is well-known.

LEMMA 4.5. Let $\mathfrak{X}=y\mathfrak{G}_{\alpha}y^{-1}(y\in\mathfrak{G})$ be a σ -fixed algebraic subgroup of \mathfrak{G} which is of type α for some partition $\alpha=(\alpha_1, \alpha_2, \cdots, \alpha_s)$ of n. Let \mathfrak{Y} be an algebraic subgroup of \mathfrak{X} defined by

$$\mathfrak{Y} = \{ y(B_{ij}) y^{-1} \in \mathfrak{X} \mid B_{ii} \in SL_{\alpha i} (1 \le i \le s) , B_{ij} = 0 (i \ne j) \}.$$

Then

(a) \mathfrak{Y} is fixed by σ .

(b) For any positive intger l, there exist sequences $\{a_1, a_2, \dots, a_h\}$ $\{b_1, b_2, \dots, b_k\}$ of positive integers and sequences $\{D_1, D_2, \dots, D_h\}$ $\{F_1, F_2, \dots, F_k\}$ of finite fields such that

Х

(4.6)
$$\mathfrak{X}_{al} \cong GL_{a_1}(D_1) \times GL_{a_2}(D_2)$$

$$\cdots \times GL_{ah}(D_h) \times U_{b_1}(F_1) \times U_{b_2}(F_2) \times \cdots \times U_{b_k}(F_k)$$

and

(4.7)
$$\mathfrak{Y}_{\sigma l} \cong SL_{a_1}(D_1) \times SL_{a_2}(D_2) \times \cdots \times SL_{a_h}(D_h) \times SU_{b_1}(F_1) \times SU_{b_2}(F_2) \times \cdots \times SU_{b_k}(F_k),$$

where $SU_{bi}(F_i) = U_{bi}(F_i) \cap SL_{bi}(F_i)$.

PROOF. (a) This follows from the fact that \mathfrak{Y} is the commutator sub-

group of X.

(b) Put $\rho = \sigma^{l}$. Since $\mathfrak{X} = \mathfrak{X}^{\rho}$, $n = y^{-\rho}y$ normalizes \mathfrak{G}_{α} . For any element $x = ygy^{-1}$ $(g \in \mathfrak{G}_{\alpha})$ of \mathfrak{X} , we have

$$x^{\rho} = y^{\rho}g^{\rho}y^{-\rho} = y(n^{-1}g^{\rho}n)y^{-1}$$
.

Hence

(4.8)
$$\mathfrak{X}_{o} \cong \{g \in \mathfrak{G}_{\alpha} | n^{-1}g^{o}n = g\}.$$

For each index $1 \leq i \leq s$ satisfying $\alpha_i = \alpha_{i+1}$, let $w_i \in \mathfrak{G}$ be the permutation matrix such that

$$w_i g w_i^{-1} = (g_i, g_2, \cdots, g_{i-1}, g_{i+1}, g_i, g_{i+2}, \cdots, g_s)$$

for any element $g=(g_1, g_2, \dots, g_s)$ $(g \in GL_{\alpha i})$ of \mathfrak{G}_{α} ; we denote by $\mathfrak{W}_{\mathfrak{X}}$ the subgroup of \mathfrak{G} generated by w'_i s. The normalizer group of \mathfrak{G}_{α} in \mathfrak{G} is generated by $\mathfrak{W}_{\mathfrak{X}}$ and \mathfrak{G}_{α} . Hence n=aw for some $w \in \mathfrak{W}_{\mathfrak{X}}$ and $a \in \mathfrak{X}$. By Theorem 2.1, there exists $b \in \mathfrak{G}_{\alpha}$ such that $a=b^{-\rho}b$. Therefore, by (4.9),

$$\begin{aligned} \mathfrak{X}_{\rho} &\cong \{g \in \mathfrak{G}_{\alpha} | w^{-1}b^{-1}b^{\rho}g^{\rho}b^{-\rho}bw = g\} \\ &\cong \{g \in \mathfrak{G}_{\alpha} | (bgb^{-1})^{\rho} = b(wgw^{-1})b^{-1}\} \end{aligned}$$

Using this and (4.4) we can easily prove (4.6); (4.7) can be proved in a similar way.

LEMMA 4.6. Let \mathfrak{X} be as in Lemma 4.5. For a fixed positive integer m which is not divisible by p, we put $X = \mathfrak{X}_{\sigma m}$. Assume that K is the algebraic closure of the finite field with p elements. Let ϕ be an injective homomorphism from K* into C*. Let \tilde{T} be an irreducible representation of the semi-direct product AX over K, and T its restriction to X.

(a) If the representation T of X is reducible we have

$$\beta_{\phi}[\tilde{T}](\sigma x) = 0$$
 $(x \in X)$,

where $\beta_{\phi}[\tilde{T}]$ is defined by (1.1).

(b) If T is still irreducible, then there exists an irreducible representation S_T of X_σ whose equivalence class depends only on the equivalence class of T and satisfies

$$\beta_{\phi}[\widetilde{T}](\sigma x) = \zeta_m^a \beta_{\phi}[S_T](n(x))$$

for any $x \in X$ such that $N(x) = x^{\sigma^{m-1}} x^{\sigma^{m-2}} \cdots x^{\sigma} x$ is semisimple, where n(x) is an arbitrary element of $\mathfrak{E}_X(N(x)) \cap X_{\sigma}$, $\zeta_m = \exp(2\pi i/m)$, and a is an integer.

(c) The correspondence $T \rightarrow S_T$ induces a bijection between the set of σ -fixed equivalence classes of irreducible representations of X and the set of equivalence classes of irreducible representations of X_{σ} .

PROOF. (a) is a special case of Lemma 1.2. The proof of (b) and (c)

depends on the following two results.

(1) The number of σ -fixed equivalence classes of irreducible representations of X over K is equal to the number of equivalence classes of irreducible representations of X_{σ} over K.

(2) Let \mathfrak{Y} be as in Lemma 4.5. For an irreducible rational representation R of \mathfrak{Y} , there exists an irreducible rational representation R' of \mathfrak{X} such that $R'|\mathfrak{Y}|$ is equivalent to R.

Let us deduce (b) and (c) from (1) and (2). Let $\mathfrak{R}_{\mathfrak{P}}$ be the set of irreducible rational representations of \mathfrak{P} defined in Theorem 3.3. For each $R \in \mathfrak{R}_{\mathfrak{P}}$, let R' be an irreducible rational representation of \mathfrak{X} such that $R' | \mathfrak{P}$ is equivalent to R. Then $R' | X_{\sigma}$ is an irreducible representation of X_{σ} , since its restriction to Y_{σ} (where $Y = \mathfrak{P}_{\sigma m}$) is already irreducible by Theorem 3.3. Hence, by a theorem of Clifford (see [2] or [3; Theorem (51.7)]) and Theorem 3.3,

$$\{(R' \mid X_{\sigma}) \otimes \xi \mid R \in \mathcal{R}_{\mathfrak{Y}}, \xi \in E\}$$

is a complete set of irreducible representations of X_{σ} over K, each counted exactly once, where Ξ is the set of irreducible representations of X_{σ}/Y_{σ} . By Lemma 4.5, each $\xi \in \Xi$ can be extended to a rational 1-dimensional representation ξ' of \mathfrak{X} . Then, by Corollary 2.9 (b),

$$(4.9) \qquad \qquad (\bigotimes_{i=0}^{m-1} (\xi' \circ \sigma^i))(x) = \xi(n(x)) \qquad (x \in X),$$

where n(x) is an arbitrary element of $\mathfrak{E}_{\mathfrak{X}}(N(x)) \cap X_{\sigma}$. For $R \in \mathfrak{R}_{\mathfrak{Y}}$ and $\xi \in \mathbb{Z}$, we put

$$T_{R,\xi} = \{ \bigotimes_{i=0}^{m-1} (R' \otimes \xi') \circ \sigma^i \} \mid X$$
$$= \{ (\bigotimes_{i=0}^{m-1} R' \circ \sigma^i) \otimes (\bigotimes_{i=0}^{m-1} \xi' \circ \sigma^i) \} \mid X.$$

Then $T_{R,\xi}$ is an irreducible representation of X, since its restriction to Y is already irreducible by Lemma 3.5. Two representations $T_{R,\xi}$ and $T_{S,\tau}(R, S \in \mathcal{R}_{v}; \xi, \eta \in \Xi)$ are equivalent to each other if and only if R=S and $\xi=\eta$. This follows from Lemma 3.5 and (4.9). Clearly, $T_{R,\xi}$ is equivalent to $T_{R,\xi}\circ\sigma$. Conversely, by (1), an irreducible representation T of X over K is equivalent to $T \circ \sigma$ if and only if it is equivalent to some $T_{R,\xi}$. The rest of the proof is similar to the proof of Theorem 3.6, and is omitted. We now prove (1). The table of irreducible Brauer characters of X is a non-singular matrix by orthogonality relations ([3; (84.11)]). Hence we may apply a theorem of Brauer ([5; § 12.1]). By this theorem the number of σ -fixed irreducible Brauer characters of X equals the number of σ -fixed p-regular conjugacy classes of X. By Corollary 2.8, the latter number equals the number of p-regular conjugacy classes of X_{σ} . This proves (1). Next, we prove (2). For this purpose we need some results on rational representations of \mathfrak{X} . Let $\mathfrak{B}_{\mathfrak{X}}$ be a Borel subgroup of \mathfrak{X} , $\mathfrak{U}_{\mathfrak{X}}$ the unipotent radical of $\mathfrak{B}_{\mathfrak{X}}$, and $\mathfrak{H}_{\mathfrak{X}}$ a maximal torus of \mathfrak{X} contained in $\mathfrak{B}_{\mathfrak{X}}$. Then, $\mathfrak{B}_{\mathfrak{Y}} = \mathfrak{B}_{\mathfrak{X}} \cap \mathfrak{Y}$ is a Borel subgroup of \mathfrak{Y} , $\mathfrak{U}_{\mathfrak{Y}} = \mathfrak{U}_{\mathfrak{X}}$ is the unipotent radical of $\mathfrak{B}_{\mathfrak{Y}}$, and $\mathfrak{H}_{\mathfrak{Y}} = \mathfrak{H}_{\mathfrak{X}} \cap \mathfrak{Y}$ is a maximal torus of \mathfrak{Y} contained in $\mathfrak{B}_{\mathfrak{Y}}$. Let \mathfrak{W} be the Weyl group of \mathfrak{X} with respect to $\mathfrak{H}_{\mathfrak{X}}$. This can be identified with the Weyl group of \mathfrak{Y} with respect to $\mathfrak{H}_{\mathfrak{Y}}$. We denote by w_0 the element of \mathfrak{W} such that $(w_0\mathfrak{B}_{\mathfrak{X}}w_0^{-1})\cap \mathfrak{B}_{\mathfrak{X}} = \mathfrak{H}_{\mathfrak{X}}$. Let λ be a rational character of $\mathfrak{H}_{\mathfrak{Y}}$. Put $\mathfrak{W}_{\mathfrak{Z}} = \{w \in \mathfrak{W} \mid \lambda(w_0hw_0^{-1}) = \lambda(w_0whw^{-1}w_0^{-1})$ for all $h \in \mathfrak{H}_{\mathfrak{Y}}\}$. We define the K-valued function $a_{\mathfrak{X}}$ on \mathfrak{Y} by

if $y \in \mathfrak{Y}$ is in $\mathfrak{B}_{\mathfrak{Y}}w_0w\mathfrak{B}_{\mathfrak{Y}}$ and is written $y=uhw_0wu_1$ with $u, u_1 \in \mathfrak{U}_{\mathfrak{Y}}, h \in \mathfrak{H}_{\mathfrak{Y}}, w \in \mathfrak{M}_{\lambda}$, and

otherwise. For $z \in \mathfrak{Y}$, we also define the function za_{λ} on \mathfrak{Y} by

$$(za_{\lambda})(y) = a_{\lambda}(z^{-1}y)$$
.

Let V_{λ} be the K-linear space spanned by $\{za_{\lambda} | z \in \mathfrak{Y}\}$, considered as a \mathfrak{Y} -module. Then, by [14; pp. 213-217], the function a_{λ} is rational on \mathfrak{Y} , and the \mathfrak{Y} -module V_{λ} affords an irreducible rational representation with the highest weight λ . To prove (2), it is sufficient to show that the action of \mathfrak{Y} on V_{λ} can be extended to a rational action of \mathfrak{X} on V_{λ} . Using explicit descriptions of \mathfrak{H}_{x} , \mathfrak{H}_{y} , λ and \mathfrak{W} , we can see that there exists a rational character λ' of \mathfrak{H}_{x} which satisfies

 $\lambda' \mid \mathfrak{H}_{\mathfrak{D}} = \lambda$

and

(4.12)
$$\mathfrak{W}_{\lambda} = \{ w \in \mathfrak{W} | \lambda'(w_0 h' w_0^{-1}) = \lambda'(w_0 w h' w^{-1} w_0^{-1}) \text{ for all } h' \in \mathfrak{H}_{\mathfrak{X}} \}.$$

We choose one such λ' and fix it. Since any $f \in V_{\lambda}$ satisfies

$$f(yh) = f(y)\lambda(w_0h^{-1}w_0^{-1}) \qquad (y \in \mathfrak{Y}, h \in \mathfrak{H}_{\mathfrak{Y}})$$

and since \mathfrak{X} can be written as a semi-direct product of \mathfrak{Y} with a torus $\mathfrak{T} \subset \mathfrak{H}_{\mathfrak{X}}$, any $f \in V_{\mathfrak{X}}$ can be uniquely extended to a rational function on \mathfrak{X} satisfying

(4.13)
$$f(xh') = f(x)\lambda'(w_0h'^{-1}w_0^{-1}) \qquad (x \in \mathfrak{X}, h' \in \mathfrak{H}).$$

For $v \in X$ and $f \in V_{\lambda}$, define the function vf on \mathfrak{X} by

$$(vf)(x) = f(v^{-1}x) \qquad (x \in \mathfrak{X}).$$

Our purpose is to show that $vf \in V_{\lambda}$. It is sufficient to prove this in the case

 $v=t\in\mathfrak{T}$ and $f=a_{\lambda}$. If $x\in\mathfrak{X}$ is written $x=uhw_0wu_1t_1$ with $u, u_1\in\mathfrak{U}_{\mathfrak{Y}}, h\in\mathfrak{H}_{\mathfrak{Y}}, w\in\mathfrak{W}_{\lambda}, t_1\in\mathfrak{T}$, then

$$(ta_{\lambda})(x) = a_{\lambda}(t^{-1}x) = a_{\lambda}(t^{-1}xw^{-1}w_{0}^{-1}tw_{0}w)\lambda'(w_{0}w^{-1}w_{0}^{-1}tw_{0}ww_{0}^{-1})$$
$$= a_{\lambda}(x)\lambda'(t)$$

by (4.10), (4.12) and (4.13). If $x \in \mathfrak{X}$ is not in $\mathfrak{B}_{\mathfrak{X}} w_0 \mathfrak{W}_{\mathfrak{X}} \mathfrak{B}_{\mathfrak{X}}$,

$$(ta_{\lambda})(x) = a_{\lambda}(t^{-1}x) = 0$$

by (4.11) and the fact that $t^{-1}x \in B_X w_0 W B_X$. Hence we have

$$ta_{\lambda} = \lambda'(t)a_{\lambda} \in V_{\lambda}$$
,

as required. This completes the proof of Lemma 4.6.

LEMMA 4.7. Let $\hat{\mathbf{x}}$, m and X be as in Lemma 4.6. Let $\tilde{\mathbf{\chi}}$ be an irreducible character of the semi-direct product AX. Define the class function ϕ on X_{σ} by

$$\tilde{\chi}(\sigma x) = \psi(n(x))$$
 $(x \in X, n(x) \in \mathfrak{E}_X(N(x)) \cap X_\sigma)$.

(This is possible by Lemma 2.2 (c) and Corollary 2.10 (b).) Let X^0_{σ} be the set of semisimple elements of X_{σ} . Then there exists a $\mathbb{Z}[\zeta_m]$ -linear combination ψ' of irreducible characters of X_{σ} such that

$$\psi | X^{\mathsf{o}}_{\sigma} = \psi' | X^{\mathsf{o}}_{\sigma}.$$

PROOF. Let $\{\tilde{\beta}_1, \tilde{\beta}_2, \dots, \tilde{\beta}_l\}$ be the set of irreducible Brauer characters of AX. Then

(4.14)
$$\tilde{\chi}(\sigma x) = \sum_{i=1}^{l} d_i \tilde{\beta}_i(\sigma x)$$

for all x in $\{x \in X | \sigma x \text{ is } p\text{-regular}\} = \{x \in X | N(x) \text{ is semisimple}\}$, where d_i are non-negative integers called decomposition numbers (see, for example, [3; \$83]). From Lemma 4.5 we have

(4.15)
$$\tilde{\beta}_i(\sigma x) = \zeta_m^{ai} \beta_i(n(x)) \quad \text{or} \quad 0$$

for all $x \in X$ such that N(x) is semisimple, where a_i are integers and β_i are irreducible Brauer characters of X_{σ} . By a theorem [7; Theorem 1] of Green, we can write β_i as

(4.16)
$$\beta_i = \sum_j c_i \, \mathcal{X}_j \, | \, \mathcal{X}_{\sigma}^0 \, ,$$

where c_{ij} are integers and χ_j are irreducible complex characters of X_o . Combining (4.14), (4.15) with (4.16), we obtain the required result.

PROOF OF THEOREM 4.1.

(a) This is a special case of Lemma 1.2.

(b) By Lemma 2.2 (c) and Corollary 2.9 (b), we can define the class function ψ on G_{σ} by

$$\tilde{\mathfrak{A}}(\sigma x) = \psi(n(x)) \qquad (x \in G),$$

where n(x) is an arbitrary element of $\mathfrak{E}_G(N(x)) \cap G_o$. From Lemma 1.4, Lemma 2.2 (b) and Corollary 2.9 (b) we have

$$|G_{\sigma}|^{-1}\sum_{g\in G_{\sigma}} |\psi(g)|^2 = 1.$$

Hence, by Lemma 1.5, for a proof of (b) it suffices to show that: (*) the restriction $\psi | E$ of ψ to an arbitrary elementary subgroup E of G_{σ} is a $\mathbb{Z}[\zeta_m]$ linear combination of irreducible characters of E.

Recall that an elementary subgroup E can be written as a direct product $H \times \langle g \rangle$, where $\langle g \rangle$ is a cyclic group generated by $g \in G_{\sigma}$, and H is an r-subgroup of $Z_{G_{\sigma}}(g)$ for some prime number r which does not divide the order of g. We consider the following three cases separately.

- (1) g is semisimple and r=p.
- (2) g is semisimple and $r \neq p$.
- (3) g is not semisimple.

First, we prove (*) for the case (1). Let \mathfrak{S} be the center of $Z_{\mathfrak{S}}(g)$. By Lemma 4.4 (b), \mathfrak{S} is a connected abelian algebraic subgroup of \mathfrak{S} . Since $g=g^{\sigma}$, \mathfrak{S} is σ -stable. Put $S=\mathfrak{S}_{\sigma^m}$. Then $S_{\sigma} \times H$ contains E. Consider the subgroup $Q=S \times H$ of G. Since $AQ=AS \times H$, we can write

(4.17)
$$\tilde{\chi} \mid AQ = \sum_{i} e_{i}(\theta_{i} \times \omega_{i}),$$

where θ_i and ω_i are irreducible characters of AS and H respectively, and e_i are positive integers. From Lemma 2.5 and the assumption that m is not divisible by p, we see that the functions θ'_i on S_σ and the functions ω'_i on H defined by

and

$$\omega_i'(N(h))(=\omega_i'(h^m))=\omega_i(h) \qquad (h\in H)$$

 $\theta_i'(N(s)) = \theta_i(\sigma s) \quad (s \in S)$

are $\mathbb{Z}[\zeta_m]$ -linear combinations of irreducible characters of S_σ and H respectively. This facts combined with (4.17) implies (*) for the present case. Next, let us consider the case (2). In this case every element of E is semisimple. Hence (*) follows from Lemma 4.7. There remains to prove (*) for the case (3). Let s and u be semisimple and unipotent elements of G_σ such that g=su=us. Since $u\neq 1$, the order of g is divisible by p. Hence $r\neq p$. This means that every element of H is semisimple.

Put $\mathfrak{L}=Z_{\mathfrak{G}}(s)$ and $\mathfrak{M}=Z_{\mathfrak{L}}(u)$. Then \mathfrak{M} is σ -stable and contains E. From

Lemma 4.4, we have a semi-direct product decomposition

$$\mathfrak{M} = \mathfrak{X} \cdot \mathfrak{U}$$
,

where \mathfrak{U} is the unipotent radical of \mathfrak{M} and \mathfrak{X} is a σ -fixed algebraic subgroup of type α for some partition α of n. Put $X = \mathfrak{X}_{\sigma m}$ and $D = X \times \langle u \rangle$. The order of \mathfrak{U}_{σ} is a power of p. Hence, by Sylow's theorem, we may assume that X_{σ} contains $H \times \langle s \rangle$. Then D_{σ} contains E. Since $AD = AX \times \langle u \rangle$, we can write

(4.18)
$$\tilde{\chi} \mid AD = \sum_{i} f_{i}(\mu_{i} \times \nu_{i}),$$

where f_i are positive integers, and μ_i and ν_i are irreducible characters of AXand $\langle u \rangle$ respectively. From Lemma 4.7 and the assumption that m is not divisible by p, we see that the functions μ'_i on $H \times \langle s \rangle$ and the functions ν'_i on $\langle u \rangle$ defined by

and

$$\mu'_i(n(x)) = \mu_i(\sigma x) \qquad (x \in X, n(x) \in \mathfrak{G}_X(N(x)) \cap (H \times \langle s \rangle))$$

$$\nu_i'(N(v))(=\nu_i'(v^m))=\nu_i(v) \qquad (v\in\langle u\rangle)$$

are $\mathbb{Z}[\zeta_m]$ -linear combinations of irreducible characters of $H \times \langle s \rangle$ and $\langle u \rangle$ respectively. This fact combined with (4.18) implies (*) for the case (3).

(c) The defining domain of the correspondence is the set of σ -fixed irreducible characters of G by Lemma 1.1. Let χ_1 and χ_2 be two distinct σ -fixed irreducible characters of G. Then we have

$$|G_{\sigma}|^{-1}\sum_{g\in G}\psi_{\chi_1}(g)\overline{\psi_{\chi_2}(g)}=0$$

from Lemma 1.4, Lemma 2.2 (b) and Corollary 2.9 (b). This proves the injectivity of the correspondence. By Corollary 2.3, the number of σ -fixed irreducible characters of G is equal to the number of irreducible characters of G_{σ} . Hence the correspondence must be bijective. The proof of Theorem 4.1 is now complete.

§ 5. Parametrizations.

For a positive integer l, we denote by G_l the general linear group $GL_l(k_2)$ over the quadratic extension k_2 of a finite field k. Let σ be the automorphism of G_l defined by (4.2). Put $F=k_{2n!}$. We consider that σ also acts on $F^*=GL_1(k_{2n!})$ and $\hat{F}^*=$ Hom (F^*, C^*) by

$$t^{\sigma} = t^{-q}, \ u^{\sigma}(t) = u(t^{-q}) \qquad (t \in F^*, \ u \in \hat{F}^*, \ q = |k|).$$

We denote by \mathcal{F}_i and \mathcal{G}_i respectively, the set of σ^i -orbits in F^* and \hat{F}^* (i=1, 2).

N. KAWANAKA

For an element f of \mathcal{F}_i (or \mathcal{G}_i), d(f) denotes the cardinality of the orbit f. Let \mathcal{P} be the set of partitions, i.e. integer sequences $\nu = (\nu_1, \nu_2, \dots, \nu_r)$ satisfying $\nu_1 \geq \nu_2 \geq \dots \geq \nu_r > 0$. We write $|\nu| = \nu_1 + \nu_2 + \dots + \nu_r$. For convention, we suppose that \mathcal{P} contains the empty partition \emptyset , and that $|\emptyset| = 0$. For a positive integer $l \leq n$, let $\Lambda_i^{(l)}$ (i=1, 2) be the set of \mathcal{P} -valued functions $f \rightarrow \lambda(f)$ on \mathcal{F}_i , which respectively satisfy

(5.1)
$$\sum_{f \in \mathcal{G}_i} |\lambda(f)| d(f) = l,$$

and let $\Theta_i^{(1)}$ (i=1,2) be the set of \mathcal{P} -valued functions $g \rightarrow \theta(g)$ on \mathcal{G}_i , which respectively satisfy

(5.2)
$$\sum_{g \in \mathcal{G}_i} |\theta(g)| d(g) = l.$$

The following two lemmas are easy to verify.

LEMMA 5.1. (a) Let $f = \{f_1, f_2, \dots, f_d\} (f_i \in F^*)$ be an element of \mathcal{F}_2 . Then $f = \{f_1^{\sigma}, f_2^{\sigma}, \dots, f_d^{\sigma}\}$ is also an element of \mathcal{F}_2 , and the union $f \cup f^{\sigma}$ is an element of \mathcal{F}_1 . (b) Let λ be an element of $A_1^{(1)}$. Define a \mathcal{P} -valued function λ' on \mathcal{F}_2 by

(5.3)
$$\lambda'(f) = \lambda(f \cup f^{\sigma}) \qquad (f \in \mathcal{F}_2).$$

Then λ' is an element of $\Lambda_2^{(l)}$.

(c) The mapping $\lambda \rightarrow \lambda'$ is a bijection between $\Lambda_1^{(1)}$ and

$$\Lambda_{2,\sigma}^{(l)} = \{ \lambda \in \Lambda_2^{(l)} \mid \lambda(f) = \lambda(f^{\sigma}) \text{ for all } f \in \mathcal{F}_2 \}.$$

LEMMA 5.2. (a) Let $g = \{g_1, g_2, \dots, g_d\}$ $(g_i \in \hat{F}^*)$ b can element of \mathcal{Q}_2 . Then $g = \{g_1^{\sigma}, g_2^{\sigma}, \dots, g_d^{\sigma}\}$ is also an element of \mathcal{Q}_2 , and the union $g \cup g^{\sigma}$ is an element of \mathcal{Q}_1 .

(b) Let θ be an element of $\Theta_1^{(l)}$. Define a \mathcal{P} -valued function θ' on \mathcal{G}_2 by

(5.4)
$$\theta'(g) = \theta(g \cup g^{\sigma}) \qquad (g \in \mathcal{G}_2)$$

Then θ' is an element of $\Theta_2^{(l)}$.

(c) The mapping $\theta \rightarrow \theta'$ is a bijection between $\Theta_1^{(l)}$ and

$$\Theta_{2,\sigma}^{\scriptscriptstyle (l)} = \{\theta \in \Theta_2^{\scriptscriptstyle (l)} | \, \theta(g) = \theta(g^{\sigma}) \quad for \ all \ g \in \mathcal{G}_2\} \ .$$

The theory of Jordan normal forms gives a bijection $\lambda \rightarrow \mathfrak{E}[\lambda]$ between $\Lambda_2^{(l)}$ and the set of conjugacy classes of G_l . In particular, for each $f = \{f_1, f_2, \dots, f_d\} \in \mathcal{F}_2$, $|\lambda(f)|$ is the multiplicity of f_i $(1 \leq i \leq d)$ as characteristic roots of $x \in \mathfrak{E}[\lambda]$. See [7; §1] or [11; §2] for more details. On the other hand, a theory ([7], [11]) of J. A. Green gives a bijection $\theta \rightarrow \chi[\theta]$ between $\Theta_2^{(l)}$ and the set of irreducible complex characters of G_l . Here, we describe an outline of Green's theory, because we need them later. Let α be an element of \hat{k}_{2l}^* $(l \leq n)$.

We define the (not necessarily irreducible) character $\chi_l[\alpha]$ of G_l , whose value at $x \in \mathfrak{E}[\lambda]$ ($\lambda \in \Lambda_2^{(l)}$) is given by

$$\chi_{\iota}[\alpha](x) = 0$$

if $|\lambda(f)| \neq 0$ for at least two elements f of \mathcal{F}_2 , and

(5.6)
$$\chi_{l}[\alpha](x) = p_{\lambda(f)}(q^{2}) \sum_{i=0}^{d(f)-1} \alpha(t^{q^{2i}})$$

if there exists only one $f \in \mathcal{F}_2$ such that $|\lambda(f)| \neq 0$, where p_{ν} is a polynomial depending on a partition ν , q = |k| and t is an element in the σ^2 -orbit f in F^* . (Note that t is an element of k_{2l}^* because of the condition (5.1).) For an element α of k_{2l}^* and a partition $\nu = (\nu_1, \nu_2, \dots, \nu_r)$ such that $l|\nu| \leq n$, we can define the character $\chi_{l|\nu|}[\nu; \alpha]$ of $G_{l|\nu|}$ which can be written as

(5.7)
$$\chi_{l|\nu|}[\nu; \alpha] = \sum_{\mu} c_{\mu\nu} \prod_{i=1}^{r} \chi_{l\nu_{i}}[\alpha \circ N_{k2l\nu_{i}}/_{k_{2l}}],$$

where the sum is over the set of partitions μ such that $|\mu| = |\nu|$, $c_{\mu\nu}$ are rational numbers independent of α , $N_{k_{2l}\nu_{i}}/_{k_{2l}}$ $(i=1, 2, \dots, r)$ are usual norm mappings from $k_{2l\nu_{i}}$ to k_{2l} , and Π is a \circ -product ([7]; see the proof of Lemma 5.3 below). We can now describe the irreducible character $\chi[\theta]$ of G_n corresponding to $\theta \in \Theta_2^{(n)}$. Let g be an element of \mathcal{Q}_2 , and u an element of \hat{F}^* contained in g. Since $u=u^{q_{2d}}$ (d=d(g)), there exists a unique element α_u of \hat{k}_{2d}^* such that $u=\alpha_u \circ N_{F/k_{2d}}$. For a partition ν , the character $\chi_{d|\nu|}[\nu; \alpha_u]$ does not depend on the choice of u in g. Hence we can define the character $\chi[\theta]$ of G_n by

(5.8)
$$\chi[\theta] = \prod_{g \in \mathcal{G}_2} \chi_{d(g) \mid \theta(g) \mid} [\theta(g); \alpha_{u(g)}],$$

where u(g) is an element of F^* contained in $g \in \mathcal{G}_2$, and Π is a \circ -product. In [7], it is shown that $\chi[\theta](\theta \in \Theta_2^{(n)})$ are irreducible and distinct, and any irreducible characters of G_n can be obtained in this way.

LEMMA 5.3. Let $\nu = (\nu_1, \nu_2, \dots, \nu_r)$ be a partition such that $|\nu| = l$. Let ψ_i be a complex valued class function on G_{ν_i} (i=1, 2, ..., r). Then

$$(\prod_{i=1}^r \psi_i)(x^{\sigma}) = (\prod_{i=1}^r \psi_i^{\sigma})(x) \qquad (x \in G_l),$$

where \prod is a \circ -product and ψ_i^{σ} is the class function on G_{ν_i} defined by

$$\psi_i^{\sigma}(y) = \psi_i(y^{\sigma}) \qquad (y \in G_{\nu_i}).$$

PROOF. Let P_{ν} be the standard parabolic subgroup of G_i corresponding to ν , i.e. the group of matrices

N. KAWANAKA

$$b = \begin{pmatrix} B_{11}B_{12} \cdots B_{1r} \\ 0 & B_{22} \cdots B_{2r} \\ 0 & 0 \\ \cdots & \vdots \\ 0 & 0 \cdots & 0 & B_{rr} \end{pmatrix} \in G_l$$

for which $B_{ii} \in G_{\nu_i}$ $(i=1, 2, \dots, r)$. Let ψ be the class function on P_{ν} defined by

(5.9)
$$\phi(b) = \prod_{i=1}^{r} \{ \phi_i(B_{ii}) \} \qquad (b = (B_{ij}) \in P_{\nu}).$$

Then, by the definition of o-product,

(5.10)
$$\prod_{i=1}^{r} \psi_{i} = \operatorname{ind} \left[\psi | P_{\nu} \longrightarrow G_{l} \right]$$

where the right hand side is the class function on G_i induced from ψ :

(5.11)
$$\operatorname{ind} \left[\psi \,|\, P_{\nu} \longrightarrow G_{l} \right](x) = |P_{\nu}|^{-1} |Z_{G_{l}}(x)| \sum_{y \in \mathfrak{G}_{l}} (x) \cap P_{\nu} \psi(y) \,.$$

From (5.11) we have

(5.12)
$$\operatorname{ind} \left[\psi \right| P_{\nu} \longrightarrow G_{l} \right] (x^{\sigma}) = \operatorname{ind} \left[\psi^{\sigma} \right| P_{\nu} \longrightarrow G_{l} \right] (x) ,$$

where ϕ^{σ} is defined by

$$\phi^{\sigma}(y) = \phi(y^{\sigma}) \qquad (y \in P_{\nu}).$$

By (5.9), (5.10), (5.12) and the commutativity ([7; Lemma 2.5]) of \circ -product, we obtain the required result.

LEMMA 5.4. Let α be an element of \hat{k}_{2l}^* , and ν a partition.

- (a) $\chi_l[\alpha](x^{\sigma}) = \chi_l[\alpha^{-q}](x) \quad (x \in G_l).$
- (b) $\chi_{l|\nu|}[\nu; \alpha](x^{\sigma}) = \chi_{l|\nu|}[\nu; \alpha^{-q}](x) \quad (x \in G_{l|\nu|}).$

PROOF. (a) Let t_1, t_2, \dots, t_l be the characteristic roots of $x \in G_l$. Then, clearly, $t_1^{\sigma}, t_2^{\sigma}, \dots, t_l^{\sigma}$ are the characteristic roots of x^{σ} . Part (a) follows from this fact and the formulas (5.5) and (5.6).

(b) This follows from (5.7), Lemma 5.3 and part (a).

For each $\lambda \in \Lambda_2^{(n)}$, define the element λ^{σ} of $\Lambda_2^{(n)}$ by

$$\lambda^{\sigma}(f) = \lambda(f^{\sigma}) \qquad (f \in \mathcal{F}_2).$$

Similarly we also define the element θ^{σ} of $\Theta_2^{(n)}$ for each $\theta \in \Theta_2^{(n)}$.

LEMMA 5.5. (a) For each $\lambda \in \Lambda_2^{(n)}$, we have $\mathfrak{E}[\lambda]^{\sigma} = \mathfrak{E}[\lambda^{\sigma}]$. (b) For each $\theta \in \Theta_2^{(n)}$, we have $\chi[\theta](x^{\sigma}) = \chi[\theta^{\sigma}](x)$ $(x \in G_n)$. PROOF. (a) This can be easily verified.

(b) This follows from (5.8), Lemma 5.3 and Lemma 5.4 (b).

COROLLARY 5.6. (a) A conjugacy class $\mathfrak{E}[\lambda]$ ($\lambda \in \Lambda_2^{(n)}$) of G_n is fixed by σ if and only if λ is contained in $\Lambda_{2,\sigma}^{(n)}$ (see Lemma 5.1 (c)).

(b) An irreducible character $\chi[\theta]$ ($\theta \in \Theta_2^{(n)}$) of G_n is fixed by σ if and only if θ is contained in $\Theta_{2,\sigma}^{(n)}$ (see Lemma 5.2 (c)).

Let λ be an element of $\Lambda_1^{(n)}$, and λ' an element of $\Lambda_{2,\sigma}^{(n)}$ defined by (5.3). By Corollary 5.6 (a), the conjugacy class $\mathfrak{E}[\lambda']$ of G_n is fixed by σ . Hence, by Corollary 2.8, $\mathfrak{D}[\lambda] = \mathfrak{E}[\lambda'] \cap U_n(k_2)$ is a conjugacy class of $U_n(k_2)$. It is easy to see that every conjugacy class of $U_n(k_2)$ can be obtained in this way. Next, let θ be an element of $\Theta_1^{(n)}$, and θ' an element of $\Theta_{2,\sigma}^{(n)}$ defined by (5.4). By Corollary 5.6 (b), the irreducible character $\chi[\theta']$ of G_n is fixed by σ . Hence using Theorem 4.1 with m=2, one can define an irreducible character $\psi[\theta]$ $= \psi_{\chi[\theta']}$ of $U_n(k_2)$, if char $(k) \neq 2$. Thus we have proved the following

THEOREM 5.7. Let the notations be as above.

(a) The correspondence $\lambda \rightarrow \mathfrak{D}[\lambda]$ is a bijection between $\Theta_1^{(n)}$ and the set of conjugacy classes of $U_n(k_2)$.

(b) The correspondence $\theta \rightarrow \phi[\theta]$ is a bijection between $\Theta_1^{(n)}$ and the set of irreducible characters of $U_n(k_2)$ (char(k) $\neq 2$).

REMARK 5.8. (a) The above parametrization of the conjugacy classes of $U_n(k_2)$ is essentially the same as the one given in Ennola [4].

(b) Ennola constructed a set of class functions $\psi'[\theta]$ ($\theta \in \Theta_1^{(n)}$), and conjectured that these are the irreducible characters of $U_n(k_2)$. It is very probable that our irreducible character $\psi[\theta]$ coincides with Ennola's class function $\psi'[\theta]$ for each $\theta \in \Theta_1^{(n)}$.

References

- C. Chevalley, Classification des Groupes de Lie Algébriques, Inst. H. Poincaré, Paris, 1958.
- [2] A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math., 38 (1937), 533-550.
- [3] C.W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
- [4] V. Ennola, On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn., 323 (1963), 1-35.
- [5] W. Feit, Characters of Finite Groups, Benjamin, New York, 1967.
- [6] G. Glauberman, Correspondences of characters for relatively prime operator groups, Canad. J. Math., 20 (1968), 1465-1488.
- [7] J.A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc., 80 (1955), 402-447.
- [8] S. Nozawa, On the characters of the finite general unitary group $U(4, q^2)$, J. Fac. Sci. Univ. Tokyo, 19 (1972), 257-293.
- [9] S. Nozawa, Characters of the finite general unitary group U(5, q²), J. Fac. Sci. Univ. Tokyo, 23 (1976), 23-74.
- [10] T. Shintani, Two remarks on irreducible characters of finite general linear

groups, J. Math. Soc. Japan, 28 (1976), 396-414.

- [11] T.A. Springer, Characters of special groups, Sem. on Algebraic Groups and Related Finite Groups (Lecture Notes in Math. Vol. 131, Springer, Berlin, 1970), 97-120.
- [12] T.A. Springer and R. Steinberg, Conjugacy classes, ibid., 121-166.
- [13] R. Steinberg, Representations of algebraic groups, Nagoya Math. J., 22 (1963), 33-56.
- [14] R. Steinberg, Lectures on Chevalley Groups, Yale University, 1967.
- [15] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc., 80, 1968.
- [16] N. Kawanaka, On the irreducible characters of the finite unitary groups, Proc. Japan Acad., 52 (1976), 95-97.

Noriaki KAWANAKA Department of Mathematics Faculty of Science Osaka University Toyonaka, Osaka Japan