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Introduction.

Let & be a complete field under a discrete valuation with residue field 2
of characteristic p+#0. In this paper we shall state a theory of unramified
abelian extensions of % (see the main theorem below) and apply this result to
fully ramified Z,-extensions of % (see §4, Remarks 1 and 2).

The main result of this paper is as follows.

Fix a fully ramified cyclic extension k/ of k of degree m, and for a finite
unramified extension K of k, put

G*K)=Ngx(Ug) N\R/Np(Up),

where K’'=K&k’ and U, is the group of units of 2 Put W(k'/k)=\UGHK),
where the union is taken in U,/N, (U, ) over all finite unramified extensions
K of k. Let Z, be the set of all finite abelian unramified extensions K of k
such that ¢™=1 for all s=G(K/k), where G(K/k) is the Galois group of K/,
and let W(k’/k) be the set of all finite subgroups of W(k’/k). Then we have
the following

MAIN THEOREM.” Under the above assumptions, the following statements
(1) and (2) are valid:

(1) If KeZF,, then GX(K) is canonically isomorphic to the character group
of G(K/k).

(2) Fn corresponds bijectively to W(k'/E) by K—>G*(K). Moreover, we have
G*(K,)CG*(K,) if and only if K,CK, for K,, K,e%,,.

*) Partly supported by Fiijukai Foundation.

(1) We found this theorem to simplify the proof of [5], §6, Theorem and its
which is the original form of in this paper. Our first motiva-
tion of [5] was to consider the problem of finding the class field theory of Q(¥), (see

Thara [2]).
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This theorem can be regarded as an analogue of the theory of Kummer
extensions and Witt theory [10] and it contains both of them essentially.
When m=%=0 (mod p), this is equivalent to Kummer theory; when m is a power
of p, it is equivalent to Witt theory [10] essentially. However, our formula-
tion is more useful for our application. For W(k’/k), see the Remarks at the
end of §3.
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Notations.

(1) (For a complete field % under a discrete valuation) ord,: the normal-
ized additive valuation of k. ©,: the ring of integers of k. U,: the group
of units of & UP={ucU, | ordy(u—1)=i} for i=1. k: the residue field of k.
d (for a=0,): the image of a by the canonical homomorphism of O, to k.

(2) Z: the ring of rational integers. Z,: the ring of p-adic integers. @,:
the field of p-adic numbers. N={zeZ | z=1}. m|n:m divides n for m, n= N.

(3) K*: the multiplicative group of a field K. G(K/k): the Galois group
of a Galois extension K/k. Hom (G,, G,): the group of homomorphisms of a
group G, to an abelian group G,. Ng/.: the norm map of K to & for a finite
Galois extension K of k. [G, G]: the commutator group of a group G. <u)
or {ulusS): the subgroup of a group G, generated by uG or by a subset
S of G respectively. #(S): the number of elements of a finite set S. Ker F
(for a homomorphism F of a group G to a group G’): the kernel of F. ImF:
the image of F.

§1. Norm groups.

In this section we shall prove the following [Theorem 1, which will be
used for the proof of When £ is finite, is well known
(e. g. Artin-Tate [1], Chap. XI, §4 and Iyanaga [3], Chap. V, §2). However,
its proof is not valid for arbitrary residue field 2. We use Sen [7],
and Serre [8], Chap. V.

THEOREM 1. Let k be a complete field under a discrete valuation wilh
residue field of characteristic p+0 and let k’ be a finite fully ramified cyclic
extension of k. Then we have Ny, (UP)=Np (UPINU for each i, jEN such
that $(i—1)<j<¢(i), where ¢ is the Hasse function of k'/k.
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We need also the following

LEMMA 1. Let p and k be as in Theorem 1 and let k, be a fully ramified
cyclic extension of k of degree p". Let t,<t,< --- <t, be the sequence of all the
ramification numbers of k,/k and let ¢ be the Hasse function of k,/k. Put
S,={NeN|N=#¢(m) for all meN and N<t,} and S,={N&N|N=t,+mp’?
with 1=j<n, m#%0 (mod p), meN and N<t,}. Then S,=S,.

PROOF. Let s; be such that ¢(s;)=t¢; for i=1,2,---,n and let {,=s,=0. By
Hasse-Arf’s theorem, s;Z. Then we have easily S,={NeN|N+t,+(m;—s;)p*
for s;=m; (€Z)<s;;; and 1=0, 1, ---,n—1}. Now let N&S,. Then N=t;+mp’~*
with 1=j<n, m=%£0 (mod p) and meN. Let i€N be such that t,=N<l;:.
Since N>t;, we have j<i=n—1. If N&S,, then N=f,+sp* with 0=s<s;4;—s;
and s€Z. Since ;—t;=0 (mod p’) and 1=}, this implies that mp’~'=0 (mod p?)
hence m=0 (mod p), which is a contradiction, hence NS,. Hence S.,CS,.
Conversely let NeS,. If N&S,, then N=t;+m;p’ with 1=j<n—1, m,eZ and
m;=0. Let j, be the maximum of such j, then we have easily ¢;,SN<t;..
This implies that N&S,, which is a contradiction, hence NS,. Hence S,CS,.
Therefore S,=S,.

LEMMA 2. Let notations be as in Lemma 1 and let ¢ be a generator of
G(k,/k). Let NN be such that N+¢(m) for all me N and N<t, and let A<k,
be such that ord,,(A)=N. Then there exists xeU§) such that x°'=1+A
(mod Y *Y), where &, is a prime element of k,.

ProoF. By [Lemma 1, N=t;+mp’~! with 1<some j<n, some m=0 (mod p)
and meN. By Sen [7], Lemma 1, there exists yk; such that ord,,(y)=mp’~!
and ord,,(y’—y)=N. For 2€U,, put z;=141y and B=y°—y, then z{—z,=1B,
hence (2)° *=1+4B (mod 7¥*'). There exists A= U, such that A=4B (mod z¥*1).
For this A€U,, put x=z;, then the assertion follows.

Now we can prove

PROOF OF THEOREM 1. It is easily verified that it is enough to prove the
theorem when k’=k,, where k, is as in[Lemma 1. By Serre [8], Chap. V, §6,
Proposition 8, N, x(U$)CN,(UiHNU. By Serre [8], Chap. V, §6, Corol-
lary 3, we may suppose ¢(1)<f,. Now conversely let N;,/(2) ENy, (U)NUP
with zeU§. Then by and Serre [8], Chap. V, §6, Proposition 9,
there exists z Ek; such that z-z{'eUE?, hence N, u(2)=N;,u(z-2{)e
Newn(U).

§2. Canonical isomorphism.

In this section we shall prove the following and Corollaries to
which will be used for the proof of the main theorem. The state-
ment (1) of the main theorem is an immediate consequence of (see
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iCorollary 1| to [I'heorem 2)).

THEOREM 2. Let k be a complete field under a discrete valuation with residue
field of characteristic px0 and let k'/k be a finite fully ramified cyclic extension.
Let K/k be a finite unramified Galois extension and put K' =Kk, Tg=
{y"HyeK”™}, Ve={y"tyeUx}, G*K)=Ngx(Ug)"\k/Ny(Uy) and G=
G(K/k), where s is a generator of G(K'/K). Then there exists a canonical iso-
morphism Fg: G*(K)—Hom (G, Tx./ V).

2.1. Proof of

For the proof of we need and the following two
lemmas.

LEMMA 3. Let k and K be two complete fields under a discrete valuation and
let R'/k be a finite fully ramified cyclic extension. Suppose that K is an exten-
sion of k with ramification index 1. Put K'=KFk'. Let Ty, Vi, Tg and Vg be
as in Theorem 2. Then the following (1), (2), (3) are valid:

(1) (Serre [8], p. 104, Exercise.) G(k’/R)~=T,/Vy by o—(z’“ P mod V),
where ©’ is a prime element of k'.

(2) Tw/VexTg/Vg by (xmod V,)—(xmod Vx.), where x&T .

B) VenTp=V,.

PROOF. Since n’ is also a prime element of K’, it follows from the state-
ment (1) that (z’“"®mod Vi) generates Tk /Vg, where s is a generator of
G(K'/K). Therefore the given homomorphism in the statement (2) is surjec-
tive, hence bijective by (1). The statement (2) implies the statement (3).

LEMMA 4. Let k, k', K, K/, Vi and G be as in Theorem 2. Let ucs
UNnNg,x(Ug) and A€Ug be such that Ny x(A)=u. Suppose that A°*&Vy
for all 6=G, identifying G and G(K'/k’). Then us Ny, (Up).

PROOF. Since Vi CUR, we have (A)°=A for all 6G, hence A=aA, with
aclU, and A,€U%, since K'/k’ is unramified. Therefore we may suppose
that A€UQ from the beginning. Suppose that ueU{ with some m=1. By
applying to K’'/K, we may suppose that A=1+7'¢™ (mod z/¢™*1),
where 7/ is a prime element of £/, ¢ is the Hasse function of K’'/K and A€0g.
Then A°'=14+A°— 29 (mod n’¢™*!), Since VenUE™ C UE™D (see
Serre [7], p. 104, Ex. a)), we have (1)°=2 for all ¢=G, hence we can take 2
in @,. Put B=(1—Ar’?“)A. Then B U™+, A°*=B°"1€Vy, and Ng,x(B)
U™ by Serre [8], Chap. V, Proposition 8. Applying the above procedure
to B, we have u= N, ,,(U) by induction on m.

ProoOF OF THEOREM 2. Identify G with the Galois group G(K’/k’). For
usENg, x(Ug)Nk and o<G, put f,(6)=A°"'mod Vg, where AUy is such
that Ng,x(A)=u. It is easily verified that f,(0)eTk/Vg and that f,(o) is
independent of the choice of A and that f,eHom (G, Tx./Vg). Put Fr(u)=s,,
then it is easily verified that Fx is a homomorphism of Ny, x(Ug )Nk to
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Hom (G, Tx/Vy). By Lemma 4, Ker Fx=N,,(Uy). Now we shall show that
Fy is surjective. Let XeHom (G, Tx./Vg). Let L’ be the subfield of K’ fixed
by Ker X and put L=L'"K. Let 0,G be such that X(s,) generates Im X.
By (2) of Lemma 3, X(¢,)=x*"'mod Vg with some x€k’*. If d=[L’:k’], then
X(6,)%=1, hence (x?)°**€VxN\Ts, so (x4 '=y*"! with yeU,, by (3) of
3. This implies that x%/yv<k. Since k’/k is fully ramified, we can take ¥ in
UP. Since L’/k’ is unramified, y=N..,(2) with some z€U®. Put w=x/z,
then Ny w(w)=x%/yek and X(o,)=w'*mod Vg. Since Ny, (W )=(x%/y)""!
=1 and since L’/k’ is cyclic, by Hilbert’s theorem 90, w* '=A“1"? with AL’
Since L’/k’ is unramified, we may suppose that A=U.. Since N, (A)°1 =1,
we have N, (A)=uck. Then X(¢,)=f,(0,) and X=f,=1 on Ker X. Since {o,,
Ker X} generates G, we have X=f, on G. This completes the proof.

2.2. Corollaries to

In this section we shall state the Corollaries to [Theorem 2. The
1 is the statement (1) of the main theorem in the introduction. Corollaries 2
and 3 will be used for the proof of (2) of the main theorem.

COROLLARY 1. Let notations and assumptions be as in Theorem 2. Put m—=
Ck': k). Suppose moreover that ¢™=1 for all o=G. Let X(G) be the character
group of G. Then G*(K) is isomorphic to X(G).

PRrROOF. Since Tk /Vg is a cyclic group of order m by (1) of
by assumption Hom (G, Tk /Vx)=%(G). Hence the assertion follows from
Theorem 2.

COROLLARY 2. Let notations and assumptions be as in Theorem 2. Put
m=[k’: k). Let L be the maximal abelian extension of k in K such that c™=1
for all 6&G(L/k). Then G*(L)=G*K).

PrOOF. It is trivial that G*(K)DG*(L). Put H=[G, GKg™|geG), then L
is the subfield of K fixed by H. It is clear that Hom (G, Tk /Vx)=Hom (G/H,
Tx/Vg). Hence by £(GH(K)=4(G*(L)), so G*(K)=G*(L).

COROLLARY 3. Let K,, K, be two finite unramified Galois extensions of k
such that K,DK,, and put G,=G(K,/k). Let G*(K;), TK% and VK% be as in Theo-
rem 2, where K;=K;k’, and let Fg : G¥(K,)—Hom (G,, TKi/VKi) be the canonical
isomorphism defined in Theorem 2. Put G(K,/K,)*={f€Hom (G,, Tx,/ Vg, | f=1
on G(K,/Ky}. Then Fg (G*K,)=G(K,/K,)*.

Proor. By the definition of Fg, Fx (G*(K,)CG(K,/K,)*. Since TKVI/VK,1
=Tx,/Vi, by [Theorem 2 4(Fx,(G*(K,))=4#(G(K,/K,)*). Therefore we have
the assertion.



368 H. MikI

§3. Proof of the main theorem.

Noting the similarity of to Kummer theory, we shall prove the
statement (2) of the main theorem in the introduction. For the proof we use
Corollaries 1, 2 and 3 to and the duality of finite abelian
groups.

PROOF OF THE MAIN THEOREM. The statement (1) of the main theorem
is already proved in [Corollary 1] to [Theorem 2 By if KeF,
then Gx(K)s W(k'/k).

Existence: Let MeW(k’/E). Then by the definition of W(k’/k), G*(K,)
DM for some finite unramified extension K, of k. By taking the Galois closure
of K, over k2, we may suppose that K,/k is a Galois extension. Moreover by
Corollary 2 to [I'heorem 2, we may suppose that K, %, from the beginning.
Since K,=%,, by [Corollary 1 to [Theorem 2, we can regard Hom (G(K,/k),
TKi/VKi) as the character group of G(K,/k). Put H*=Fg (M), where Fg, is
the canonical isomorphism of G*(K,) to Hom (G(K,/k), TKi/VKi)’ defined in
Let H be the subgroup of G(K,/k) corresponding to H* by the
duality of finite abelian groups. Then H*={f<Hom (G(K,/k), TKi/VK’l) | f=1
on H}. Let K be the subfield of K, fixed by H, then K&€F,, and Fg (M)=
Fx (G*(K)) by [Corollary 3 to [Theorem 2, hence M=G*(K) by

Uniqueness: Let K, K,= %, be such that G¥(K,)DG*(K,). Put K=K,K,,
G=G(K/k) and G,=G(K/K;) for i=1,2. Let Fg: G¥(K)—Hom (G, Tx./Vg) be
the canonical isomorphism defined by [Theorem 2 By [Corollary 3 to [I’heorem|
2, Fx(G¥K,))={fHom (G, Tx:/Vg) | f=1o0n G;} for i=1,2. Since K& %,, by
Corollary 1] to [Theorem 2 Hom (G, Tx/Vy) is isomorphic to the character
group of G. Then by the duality of finite abelian groups, G*(K;)DG*(K,)
implies G,E£G,, so K,2K,. In particular, G*(K,)=G*(K,) implies K,=K,.

REMARK 1. Let %2 be a complete field under a discrete valuation v with
arbitrary residue field £ of characteristic p#0 and assume that p is a prime
element of k. Let %k, be the subfield of % satisfying the conditions: (i) &, is
complete with respect to the restriction of v to k; (ii) the residue field &, is

the maximum perfect subfield of %, i.e., k,= A (£)*". By MacLane [4], such
n=1
a k, really exists. Let £2/k, be a fully ramified cyclic extension of degree p"
and put k,=kPk. Then it can be proved that W(k,/k)=H,(R)/Npyt(Ur,),
where Hy(B)={x&U, | x= 3 2" p* (mod p™*) with ,E0,}.
1=0

REMARK 2. If & is perfect, then W(k’/k)=U,/Ny,(Us). Hence the main

theorem in the introduction gives an interpretation of a quotient group

Uy/ Ny, (Ug); it can be regarded as the character group of the Galois group
G(K,,/k), where K, is the composite field of all fields in F,.
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§4. Application.

In this section, we shall apply the main theorem to fully ramified cyclic
extensions and Z,extensions of Z.

LEMMA 5. Let k be a complete field under a discrete valuation. Let k,, k,
be two finite fully ramified abelian extensions of k such that k,L==Fk,L with an
extension L/k of ramification index 1 (i.e., a prime element of k is a prime ele-
ment of L). Suppose that N, u(R)N\Nyy(ks) contains a prime element of k.
Then k,=k,.

PrROOF. We may suppose that k;/k is cyclic and that L is a Galois exten-
sion of k&, by taking the Galois closure of L over k. Since k,(kk,N\L)=
ky(k,kyN\L), we may suppose LCk,k,. Put Lk,=Lk,=L, and let s be a generator
of G(L,/L). By assumption, there exist prime elements z; of %; such that
Ny yu(m)=Npyp(m,). Put u=mn,/m,, then ucU,, and N, (u)=1. Hence ' '=u
with a yeL;. Now suppose k,xk,. Then there exists 6=G(L,/k,) such that
o|k,>x1. By the statement (1) of w1 V4, hence by the statement
(3) of Lemma 3, 7§~'«¢ V. On the other hand, 7§ '=u’"'=(y""")"'e Vi,, which
is a contradiction. Therefore k,=k,.

LEMMA 6. Let k be as in Lemma 5 and let ki, k, be two finite fully ramified
Galois extensions of k such that k,L=Fk,L with a finite unramified extension L/k.
Then Nkl/k(Ukl):NkZ/k(Uk2>-

ProOOF. By taking the Galois closure of L over %2, we may suppose that L
! is a Galois extension of k. Put L’=Lk,=Lk, Since L’/k; is unramified, we
j we have Ny, (UP)=U}), hence Np(UR)=N,,(UL). Since k;/k is fully
ramified and [k, : k]=[k,: k], we have the assertion.

THEOREM 3. Let k, k' and W(k'/k) be as in the main theorem in the intro-
duction. Let F=F(k")={k"|k" is a fully ramified cyclic extension of k such
that k'L=Pk"L with an unramified extension L of k}. Let F, : F—W(k'/k) be
a map defined by k"—(Ny (7)) Npyp(z”) mod Ny (Uy)), where n’ and =n” are
prime elements of k' and k” respectively. Then Fy is bijective and independent
of the choice of @’ and w”.

PROOF. By F, is independent of the choice of #’ and #”.

F, is injeclive: Let k;eF with 1=1,2. By assumption, Lk, =Lk,=Lk’
with an unramified extension L of k. Suppose that F(k,)=F,(k,). Then by
the definition of F, and by Niya(k)=Ny,s(ksy). Hence by [Lemmal
5, k,=Fk,. Hence F, is injective.

F, is surjective: Let usW(k’/k) and let m’ be the order of <u). Then
m’|m. By the main theorem, there exists an unramified cyclic extension K/k
of degree m’ such that G*(K)=<{u). Put K'=KFk’. By Galois theory, there
exist m’ cyclic extensions k,, -+, kB, of degree m such that 2/#k; and k,CK’
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for 1=1, 2,---, m’. Clearly Fy(k;)={u). Since F, is injective, F,(k;)=u with
some 1. Hence F is surjective. This completes the proof.

Now we apply to Z,-extensions of .. Fix a fully ramified Z,-
extension k. of R, and let k,/k be the sub-extension of k./k of degree p".
For mznz=1, let ppr: W(kn,/k)—W(k,/k) be a homomorphism defined by
2m0d Npp/s(Usp)—=x mod Ny u(Us,) with x€Ng, 4, (Us, )Nk, where k,, is the
completion of the maximum unramified extension of 2 and E,n:k:mkm. Then
{W(k,/k), pr} is a projective system. Let W(k.) be the projective limit of
this system. Then we have directly the following [Theorem 4 by [Theorem 3.

THEOREM 4. Let k, p, k. and W(k.) be as above. Let F(k.)=/{k. | kL is
a fully ramified Z,-extension of k such that k.L=Fk,L with an unramified exten-
sion L of k}. Let F..: F(k.)—W(k.) be a map defined by k’»—»{Nk;L,k(n;)/Nkn/k(nn)
mod Ny, x(Us,)}, where k,/k and k,/k are the sub-extensions of klL/k and k./k
of degree p" respectively, and where w, and x, are prime elements of k!, and k,
respectively. Then F. is independent of the choice of prime elements and F.. 1s
bijective.

REMARK 1. Suppose the conditions: (i) p is a prime element of &, (ii) the
finite field F, with p elements is the maximum perfect subfield of E ie.,

F,= 61(5)1“". As typical examples, we have 2 such that 2=F,(¢) (the rational

function field over F, in one variable t) or F,{t} (the field of power series
over F, in one variable ). In this case, it is easily verified by [6], Theorem
that F(k..) is the set of all fully ramified Z,-extensions of k.

REMARK 2. It can be proved that W(kw):l(iln H,(R)/Ny,/x(Us,) under the

above conditione (i), (ii), where H,(k) is as in the Remark 1 in §3 and the
projective limit is taken with respect to a homomorphism induced by the

natural injection of H, (k) into H,(k) for n’=n. Therefore under the above
conditions (i), (ii), as a Corollary to [Theorem 4, it can be proved that

N Nk,n/k(k;) contains a prime element of k if and only if there exists a Z,-exten-
n=1

sion k. of Q, such that ki.=kk‘® Note that W(k.)=U}" if k=Q, and that in
this case follows from local class field theory.
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