On unramified abelian extensions of a complete field under a discrete valuation with arbitrary residue field of characteristic $p \neq 0$ and its application to wildly ramified Z_p -extensions

By Hiroo MIKI*'

(Received Dec. 5, 1974) (Revised Sept. 30, 1975)

Introduction.

Let k be a complete field under a discrete valuation with residue field \bar{k} of characteristic $p \neq 0$. In this paper we shall state a theory of unramified abelian extensions of k (see the main theorem below) and apply this result to fully ramified Z_p -extensions of k (see §4, Theorem 4, Remarks 1 and 2).

The main result of this paper is as follows.

Fix a fully ramified cyclic extension k' of k of degree m, and for a finite unramified extension K of k, put

$$G^{*}(K) = N_{K'/K}(U_{K'}) \cap k/N_{k'/k}(U_{k'}),$$

where K' = Kk' and U_k is the group of units of k. Put $W(k'/k) = \bigcup G^*(K)$, where the union is taken in $U_k/N_{k'/k}(U_{k'})$ over all finite unramified extensions K of k. Let \mathcal{F}_m be the set of all finite abelian unramified extensions K of k such that $\sigma^m = 1$ for all $\sigma \in G(K/k)$, where G(K/k) is the Galois group of K/k, and let $\widetilde{W}(k'/k)$ be the set of all finite subgroups of W(k'/k). Then we have the following

MAIN THEOREM.⁽¹⁾ Under the above assumptions, the following statements (1) and (2) are valid:

(1) If $K \in \mathcal{F}_m$, then $G^*(K)$ is canonically isomorphic to the character group of G(K/k).

(2) \mathfrak{F}_m corresponds bijectively to $\widetilde{W}(k'/k)$ by $K \mapsto G^*(K)$. Moreover, we have $G^*(K_1) \subset G^*(K_2)$ if and only if $K_1 \subset K_2$ for $K_1, K_2 \in \mathfrak{F}_m$.

^{*)} Partly supported by Fūjukai Foundation.

⁽¹⁾ We found this theorem to simplify the proof of [5], §6, Theorem and its Corollary 2, which is the original form of Theorem 4 in this paper. Our first motivation of [5] was to consider the problem of finding the class field theory of $Q(t)_p$ (see Ihara [2]).

This theorem can be regarded as an analogue of the theory of Kummer extensions and Witt theory [10] and it contains both of them essentially. When $m \not\equiv 0 \pmod{p}$, this is equivalent to Kummer theory; when *m* is a power of *p*, it is equivalent to Witt theory [10] essentially. However, our formulation is more useful for our application. For W(k'/k), see the Remarks at the end of § 3.

Table of Contents

- §1. Norm groups
- § 2. Canonical isomorphism
- §3. Proof of the main theorem
- §4. Application

Notations.

(1) (For a complete field k under a discrete valuation) ord_k : the normalized additive valuation of k. \mathcal{O}_k : the ring of integers of k. U_k : the group of units of k. $U_k^{(i)} = \{u \in U_k \mid \operatorname{ord}_k(u-1) \ge i\}$ for $i \ge 1$. \overline{k} : the residue field of k. \overline{a} (for $a \in \mathcal{O}_k$): the image of a by the canonical homomorphism of \mathcal{O}_k to \overline{k} .

(2) Z: the ring of rational integers. Z_p : the ring of *p*-adic integers. Q_p : the field of *p*-adic numbers. $N = \{z \in Z \mid z \ge 1\}$. $m \mid n : m$ divides *n* for *m*, $n \in N$.

(3) K^{\times} : the multiplicative group of a field K. G(K/k): the Galois group of a Galois extension K/k. Hom (G_1, G_2) : the group of homomorphisms of a group G_1 to an abelian group G_2 . $N_{K/k}$: the norm map of K to k for a finite Galois extension K of k. [G, G]: the commutator group of a group G. $\langle u \rangle$ or $\langle u | u \in S \rangle$: the subgroup of a group G, generated by $u \in G$ or by a subset S of G respectively. #(S): the number of elements of a finite set S. Ker F (for a homomorphism F of a group G to a group G'): the kernel of F. Im F: the image of F.

§1. Norm groups.

In this section we shall prove the following Theorem 1, which will be used for the proof of Theorem 2. When \bar{k} is finite, Theorem 1 is well known (e. g. Artin-Tate [1], Chap. XI, §4 and Iyanaga [3], Chap. V, §2). However, its proof is not valid for arbitrary residue field \bar{k} . We use Sen [7], Lemma 1 and Serre [8], Chap. V.

THEOREM 1. Let k be a complete field under a discrete valuation with residue field of characteristic $p \neq 0$ and let k' be a finite fully ramified cyclic extension of k. Then we have $N_{k'/k}(U_{k'}^{(j)}) = N_{k'/k}(U_{k'}^{(i)}) \cap U_{k}^{(i)}$ for each $i, j \in N$ such that $\psi(i-1) < j \leq \psi(i)$, where ψ is the Hasse function of k'/k.

364

We need also the following

LEMMA 1. Let p and k be as in Theorem 1 and let k_n be a fully ramified cyclic extension of k of degree p^n . Let $t_1 < t_2 < \cdots < t_n$ be the sequence of all the ramification numbers of k_n/k and let ψ be the Hasse function of k_n/k . Put $S_1 = \{N \in \mathbb{N} | N \neq \psi(m) \text{ for all } m \in \mathbb{N} \text{ and } N < t_n\}$ and $S_2 = \{N \in \mathbb{N} | N = t_j + mp^{j-1} \text{ with } 1 \leq j < n, m \not\equiv 0 \pmod{p}, m \in \mathbb{N} \text{ and } N < t_n\}$. Then $S_1 = S_2$.

PROOF. Let s_i be such that $\psi(s_i)=t_i$ for $i=1, 2, \cdots, n$ and let $t_0=s_0=0$. By Hasse-Arf's theorem, $s_i \in \mathbb{Z}$. Then we have easily $S_1=\{N\in \mathbb{N} | N\neq t_i+(m_i-s_i)p^i$ for $s_i \leq m_i \ (\in \mathbb{Z}) < s_{i+1}$ and $i=0, 1, \cdots, n-1\}$. Now let $N\in S_2$. Then $N=t_j+mp^{j-1}$ with $1\leq j < n, m \not\equiv 0 \pmod{p}$ and $m \in \mathbb{N}$. Let $i\in \mathbb{N}$ be such that $t_i \leq N < t_{i+1}$. Since $N>t_j$, we have $j\leq i\leq n-1$. If $N\notin S_1$, then $N=t_i+sp^i$ with $0\leq s < s_{i+1}-s_i$ and $s\in \mathbb{Z}$. Since $t_i-t_j\equiv 0 \pmod{p^j}$ and $i\geq j$, this implies that $mp^{j-1}\equiv 0 \pmod{p^j}$ hence $m\equiv 0 \pmod{p}$, which is a contradiction, hence $N\in S_1$. Hence $S_2\subset S_1$. Conversely let $N\in S_1$. If $N\notin S_2$, then $N=t_j+m_jp^j$ with $1\leq j\leq n-1, m_j\in \mathbb{Z}$ and $m_j\geq 0$. Let j_0 be the maximum of such j, then we have easily $t_{j_0}\leq N < t_{j_0+1}$. This implies that $N\notin S_1$, which is a contradiction, hence $N\in S_2$. Hence $S_1\subset S_2$.

LEMMA 2. Let notations be as in Lemma 1 and let σ be a generator of $G(k_n/k)$. Let $N \in \mathbb{N}$ be such that $N \neq \phi(m)$ for all $m \in \mathbb{N}$ and $N < t_n$ and let $A \in k_n$ be such that $\operatorname{ord}_{k_n}(A) = \mathbb{N}$. Then there exists $x \in U_{k_n}^{(1)}$ such that $x^{\sigma-1} \equiv 1 + A$ (mod π_n^{N+1}), where π_n is a prime element of k_n .

PROOF. By Lemma 1, $N=t_j+mp^{j-1}$ with $1 \leq \text{some } j < n$, some $m \neq 0 \pmod{p}$ and $m \in N$. By Sen [7], Lemma 1, there exists $y \in k_n^{\times}$ such that $\operatorname{ord}_{k_n}(y) = mp^{j-1}$ and $\operatorname{ord}_{k_n}(y^{\sigma}-y) = N$. For $\lambda \in U_k$, put $z_{\lambda} = 1 + \lambda y$ and $B = y^{\sigma} - y$, then $z_{\lambda}^{\sigma} - z_{\lambda} = \lambda B$, hence $(z_{\lambda})^{\sigma-1} \equiv 1 + \lambda B \pmod{\pi_n^{N+1}}$. There exists $\lambda \in U_k$ such that $A \equiv \lambda B \pmod{\pi_n^{N+1}}$. For this $\lambda \in U_k$, put $x = z_{\lambda}$, then the assertion follows.

Now we can prove Theorem 1.

PROOF OF THEOREM 1. It is easily verified that it is enough to prove the theorem when $k'=k_n$, where k_n is as in Lemma 1. By Serre [8], Chap. V, §6, Proposition 8, $N_{kn/k}(U_{kn}^{(j)}) \subset N_{kn/k}(U_{kn}^{(1)}) \cap U_k^{(i)}$. By Serre [8], Chap. V, §6, Corollary 3, we may suppose $\psi(i) \leq t_n$. Now conversely let $N_{kn/k}(z) \in N_{kn/k}(U_{kn}^{(1)}) \cap U_k^{(i)}$ with $z \in U_{kn}^{(1)}$. Then by Lemma 2 and Serre [8], Chap. V, §6, Proposition 9, there exists $z_1 \in k_n^{\times}$ such that $z \cdot z_1^{\sigma-1} \in U_{kn}^{(\psi(i))}$, hence $N_{kn/k}(z) = N_{kn/k}(z \cdot z_1^{\sigma-1}) \in N_{kn/k}(U_{kn}^{(j)})$.

§2. Canonical isomorphism.

In this section we shall prove the following Theorem 2 and Corollaries to Theorem 2, which will be used for the proof of the main theorem. The statement (1) of the main theorem is an immediate consequence of Theorem 2 (see Corollary 1 to Theorem 2).

THEOREM 2. Let k be a complete field under a discrete valuation with residue field of characteristic $p \neq 0$ and let k'/k be a finite fully ramified cyclic extension. Let K/k be a finite unramified Galois extension and put K' = Kk', $T_{K'} = \{y^{s-1}|y \in K'^*\}$, $V_{K'} = \{y^{s-1}|y \in U_{K'}\}$, $G^*(K) = N_{K'/K}(U_{K'}) \cap k/N_{k'/k}(U_{k'})$ and G = G(K/k), where s is a generator of G(K'/K). Then there exists a canonical isomorphism $F_K: G^*(K) \to \text{Hom}(G, T_{K'}/V_{K'})$.

2.1. Proof of Theorem 2.

For the proof of Theorem 2 we need Theorem 1 and the following two lemmas.

LEMMA 3. Let k and K be two complete fields under a discrete valuation and let k'/k be a finite fully ramified cyclic extension. Suppose that K is an extension of k with ramification index 1. Put K'=Kk'. Let $T_{k'}$, $V_{k'}$, $T_{K'}$ and $V_{K'}$ be as in Theorem 2. Then the following (1), (2), (3) are valid:

(1) (Serre [8], p. 104, Exercise.) $G(k'/k) \cong T_{k'}/V_{k'}$ by $\sigma \mapsto (\pi'^{(\sigma-1)} \mod V_{k'})$, where π' is a prime element of k'.

(2) $T_{k'}/V_{k'} \cong T_{K'}/V_{K'}$ by $(x \mod V_{k'}) \mapsto (x \mod V_{K'})$, where $x \in T_{k'}$.

 $(3) \quad V_{\mathbf{K}'} \cap T_{\mathbf{k}'} = V_{\mathbf{k}'}.$

PROOF. Since π' is also a prime element of K', it follows from the statement (1) that $(\pi'^{(s-1)} \mod V_{K'})$ generates $T_{K'}/V_{K'}$, where s is a generator of G(K'/K). Therefore the given homomorphism in the statement (2) is surjective, hence bijective by (1). The statement (2) implies the statement (3).

LEMMA 4. Let k, k', K, K', $V_{K'}$ and G be as in Theorem 2. Let $u \in U_k \cap N_{K'/K}(U_{K'})$ and $A \in U_{K'}$ be such that $N_{K'/K}(A) = u$. Suppose that $A^{\sigma-1} \in V_{K'}$ for all $\sigma \in G$, identifying G and G(K'/k'). Then $u \in N_{k'/k}(U_{k'})$.

PROOF. Since $V_{K'} \subset U_{K'}^{(1)}$, we have $(\overline{A})^{\sigma} = \overline{A}$ for all $\sigma \in G$, hence $A = aA_1$ with $a \in U_{k'}^{(1)}$ and $A_1 \in U_{K'}^{(1)}$, since K'/k' is unramified. Therefore we may suppose that $A \in U_{K'}^{(0)}$ from the beginning. Suppose that $u \in U_{k}^{(m)}$ with some $m \ge 1$. By applying Theorem 1 to K'/K, we may suppose that $A \equiv 1 + \lambda \pi'^{\phi(m)} \pmod{\pi'^{\phi(m)+1}}$, where π' is a prime element of k', ϕ is the Hasse function of K'/K and $\lambda \in \mathcal{O}_{K'}$. Then $A^{\sigma-1} \equiv 1 + (\lambda^{\sigma} - \lambda)\pi'^{\phi(m)} \pmod{\pi'^{\phi(m)+1}}$. Since $V_{K'} \cap U_{K'}^{(\phi(m))} \subset U_{K'}^{(\phi(m)+1)}$ (see Serre [7], p. 104, Ex. a)), we have $(\overline{\lambda})^{\sigma} = \overline{\lambda}$ for all $\sigma \in G$, hence we can take λ in \mathcal{O}_k . Put $B = (1 - \lambda \pi'^{\phi(m)})A$. Then $B \in U_{K'}^{(\phi(m)+1)}$, $A^{\sigma-1} \equiv B^{\sigma-1} \in V_{K'}$, and $N_{K'/K}(B) \in U_{k'}^{(m+1)}$ by Serre [8], Chap. V, Proposition 8. Applying the above procedure to B, we have $u \in N_{k'/k}(U_{k'})$ by induction on m.

PROOF OF THEOREM 2. Identify G with the Galois group G(K'/k'). For $u \in N_{K'/K}(U_{K'}) \cap k$ and $\sigma \in G$, put $f_u(\sigma) = A^{\sigma-1} \mod V_{K'}$, where $A \in U_{K'}$ is such that $N_{K'/K}(A) = u$. It is easily verified that $f_u(\sigma) \in T_{K'}/V_{K'}$ and that $f_u(\sigma)$ is independent of the choice of A and that $f_u \in \text{Hom } (G, T_{K'}/V_{K'})$. Put $F_K(u) = f_u$, then it is easily verified that F_K is a homomorphism of $N_{K'/K}(U_{K'}) \cap k$ to

366

Hom $(G, T_{K'}/V_{K'})$. By Lemma 4, Ker $F_K = N_{k'/k}(U_{k'})$. Now we shall show that F_K is surjective. Let $\lambda \in \text{Hom}(G, T_{K'}/V_{K'})$. Let L' be the subfield of K' fixed by Ker λ and put $L = L' \cap K$. Let $\sigma_1 \in G$ be such that $\lambda(\sigma_1)$ generates Im λ . By (2) of Lemma 3, $\lambda(\sigma_1) = x^{s-1} \mod V_{K'}$ with some $x \in k'^{\times}$. If d = [L':k'], then $\lambda(\sigma_1)^d = 1$, hence $(x^d)^{s-1} \in V_{K'} \cap T_{k'}$, so $(x^d)^{s-1} = y^{s-1}$ with $y \in U_{k'}$, by (3) of Lemma 3. This implies that $x^d/y \in k$. Since k'/k is fully ramified, we can take y in $U_{k'}^{(1)}$. Since L'/k' is unramified, $y = N_{L'/k'}(z)$ with some $z \in U_{L'}^{(1)}$. Put w = x/z, then $N_{L'/k'}(w) = x^d/y \in k$ and $\lambda(\sigma_1) = w^{s-1} \mod V_{K'}$. Since $N_{L'/k'}(w^{s-1}) = (x^d/y)^{s-1} = 1$ and since L'/k' is cyclic, by Hilbert's theorem 90, $w^{s-1} = A^{(\sigma_1-1)}$ with $A \in L'^{\times}$. Since L'/k' is unramified, we may suppose that $A \in U_{L'}$. Since $N_{L'/L}(A) = u \in k$. Then $\lambda(\sigma_1) = f_u(\sigma_1)$ and $\lambda = f_u = 1$ on Ker λ . Since $\{\sigma_1, Ker \lambda\}$ generates G, we have $\lambda = f_u$ on G. This completes the proof.

2.2. Corollaries to Theorem 2.

In this section we shall state the Corollaries to Theorem 2. The Corollary 1 is the statement (1) of the main theorem in the introduction. Corollaries 2 and 3 will be used for the proof of (2) of the main theorem.

COROLLARY 1. Let notations and assumptions be as in Theorem 2. Put $m = \lfloor k' : k \rfloor$. Suppose moreover that $\sigma^m = 1$ for all $\sigma \in G$. Let $\chi(G)$ be the character group of G. Then $G^*(K)$ is isomorphic to $\chi(G)$.

PROOF. Since $T_{K'}/V_{K'}$ is a cyclic group of order *m* by (1) of Lemma 3, by assumption Hom $(G, T_{K'}/V_{K'}) \cong \chi(G)$. Hence the assertion follows from Theorem 2.

COROLLARY 2. Let notations and assumptions be as in Theorem 2. Put m = [k':k]. Let L be the maximal abelian extension of k in K such that $\sigma^m = 1$ for all $\sigma \in G(L/k)$. Then $G^*(L) = G^*(K)$.

PROOF. It is trivial that $G^*(K) \supset G^*(L)$. Put $H = [G, G] \langle g^m | g \in G \rangle$, then L is the subfield of K fixed by H. It is clear that Hom $(G, T_{K'}/V_{K'}) \cong \text{Hom}(G/H, T_{K'}/V_{K'})$. Hence by Theorem 2, $\#(G^*(K)) = \#(G^*(L))$, so $G^*(K) = G^*(L)$.

COROLLARY 3. Let K_1 , K_2 be two finite unramified Galois extensions of ksuch that $K_1 \supseteq K_2$, and put $G_1 = G(K_1/k)$. Let $G^*(K_i)$, $T_{K'_i}$ and $V_{K'_i}$ be as in Theorem 2, where $K'_i = K_i k'$, and let $F_{K_1} : G^*(K_1) \to \text{Hom}(G_1, T_{K'_1}/V_{K'_1})$ be the canonical isomorphism defined in Theorem 2. Put $G(K_1/K_2)^{\perp} = \{f \in \text{Hom}(G_1, T_{K_1}/V_{K_1}) \mid f=1$ on $G(K_1/K_2)\}$. Then $F_{K_1}(G^*(K_2)) = G(K_1/K_2)^{\perp}$.

PROOF. By the definition of F_{K_1} , $F_{K_1}(G^*(K_2)) \subset G(K_1/K_2)^{\perp}$. Since $T_{K'_1}/V_{K'_1} \cong T_{K'_2}/V_{K'_2}$, by Theorem 2, $\#(F_{K_1}(G^*(K_2))) = \#(G(K_1/K_2)^{\perp})$. Therefore we have the assertion.

§ 3. Proof of the main theorem.

Noting the similarity of Theorem 2 to Kummer theory, we shall prove the statement (2) of the main theorem in the introduction. For the proof we use Theorem 2, Corollaries 1, 2 and 3 to Theorem 2 and the duality of finite abelian groups.

PROOF OF THE MAIN THEOREM. The statement (1) of the main theorem is already proved in Corollary 1 to Theorem 2. By Theorem 2, if $K \in \mathcal{F}_m$, then $G^*(K) \in \widetilde{W}(k'/k)$.

Existence: Let $M \in \widetilde{W}(k'/k)$. Then by the definition of W(k'/k), $G^*(K_1) \supset M$ for some finite unramified extension K_1 of k. By taking the Galois closure of K_1 over k, we may suppose that K_1/k is a Galois extension. Moreover by Corollary 2 to Theorem 2, we may suppose that $K_1 \in \mathcal{F}_m$ from the beginning. Since $K_1 \in \mathcal{F}_m$, by Corollary 1 to Theorem 2, we can regard Hom $(G(K_1/k), T_{K'_1}/V_{K'_1})$ as the character group of $G(K_1/k)$. Put $H^* = F_{K_1}(M)$, where F_{K_1} is the canonical isomorphism of $G^*(K_1)$ to Hom $(G(K_1/k), T_{K'_1}/V_{K'_1})$, defined in Theorem 2. Let H be the subgroup of $G(K_1/k)$ corresponding to H^* by the duality of finite abelian groups. Then $H^* = \{f \in \text{Hom } (G(K_1/k), T_{K'_1}/V_{K'_1}) \mid f=1$ on H. Let K be the subfield of K_1 fixed by H, then $K \in \mathcal{F}_m$ and $F_{K_1}(M) = F_{K_1}(G^*(K))$ by Corollary 3 to Theorem 2, hence $M = G^*(K)$ by Theorem 2.

Uniqueness: Let $K_1, K_2 \in \mathcal{F}_m$ be such that $G^*(K_1) \supset G^*(K_2)$. Put $K = K_1K_2$, G = G(K/k) and $G_i = G(K/K_i)$ for i=1, 2. Let $F_K : G^*(K) \rightarrow \text{Hom}(G, T_{K'}/V_{K'})$ be the canonical isomorphism defined by Theorem 2. By Corollary 3 to Theorem 2, $F_K(G^*(K_i)) = \{f \in \text{Hom}(G, T_{K'}/V_{K'}) \mid f=1 \text{ on } G_i\}$ for i=1, 2. Since $K \in \mathcal{F}_m$, by Corollary 1 to Theorem 2 Hom $(G, T_{K'}/V_{K'})$ is isomorphic to the character group of G. Then by the duality of finite abelian groups, $G^*(K_1) \supset G^*(K_2)$ implies $G_1 \subseteq G_2$, so $K_1 \supseteq K_2$. In particular, $G^*(K_1) = G^*(K_2)$ implies $K_1 = K_2$.

REMARK 1. Let k be a complete field under a discrete valuation ν with arbitrary residue field \bar{k} of characteristic $p \neq 0$ and assume that p is a prime element of k. Let k_0 be the subfield of k satisfying the conditions: (i) k_0 is complete with respect to the restriction of ν to k; (ii) the residue field \bar{k}_0 is the maximum perfect subfield of \bar{k} , i. e., $\bar{k}_0 = \bigcap_{n=1}^{\infty} (\bar{k})^{p^n}$. By MacLane [4], such a k_0 really exists. Let $k_n^{(0)}/k_0$ be a fully ramified cyclic extension of degree p^n and put $k_n = k_n^{(0)}k$. Then it can be proved that $W(k_n/k) = H_n(k)/N_{k_n/k}(U_{k_n})$, where $H_n(k) = \{x \in U_k \mid x \equiv \sum_{i=0}^n \lambda_i^{p^{n-i}} p^i \pmod{p^{n+1}}$ with $\lambda_i \in \mathcal{O}_k\}$.

REMARK 2. If \bar{k} is perfect, then $W(k'/k) = U_k/N_{k'/k}(U_{k'})$. Hence the main theorem in the introduction gives an interpretation of a quotient group $U_k/N_{k'/k}(U_{k'})$; it can be regarded as the character group of the Galois group $G(K_m/k)$, where K_m is the composite field of all fields in \mathcal{F}_m .

§4. Application.

In this section, we shall apply the main theorem to fully ramified cyclic extensions and Z_{ν} -extensions of k.

LEMMA 5. Let k be a complete field under a discrete valuation. Let k_1, k_2 be two finite fully ramified abelian extensions of k such that $k_1L=k_2L$ with an extension L/k of ramification index 1 (i.e., a prime element of k is a prime element of L). Suppose that $N_{k_1/k}(k_1) \cap N_{k_2/k}(k_2)$ contains a prime element of k. Then $k_1=k_2$.

PROOF. We may suppose that k_i/k is cyclic and that L is a Galois extension of k, by taking the Galois closure of L over k. Since $k_1(k_1k_2\cap L) = k_2(k_1k_2\cap L)$, we may suppose $L \subset k_1k_2$. Put $Lk_1 = Lk_2 = L_1$ and let s be a generator of $G(L_1/L)$. By assumption, there exist prime elements π_i of k_i such that $N_{k_1/k}(\pi_1) = N_{k_2/k}(\pi_2)$. Put $u = \pi_2/\pi_1$, then $u \in U_{L_1}$ and $N_{L_1/L}(u) = 1$. Hence $y^{s-1} = u$ with a $y \in L_1^{\times}$. Now suppose $k_1 \neq k_2$. Then there exists $\sigma \in G(L_1/k_1)$ such that $\sigma \mid k_2 \neq 1$. By the statement (1) of Lemma 3, $\pi_2^{\sigma-1} \notin V_{k_2}$, hence by the statement (3) of Lemma 3, $\pi_2^{\sigma-1} \notin V_{L_1}$. On the other hand, $\pi_2^{\sigma-1} = u^{\sigma-1} = (y^{\sigma-1})^{s-1} \in V_{L_1}$, which is a contradiction. Therefore $k_1 = k_2$.

LEMMA 6. Let k be as in Lemma 5 and let k_1 , k_2 be two finite fully ramified Galois extensions of k such that $k_1L = k_2L$ with a finite unramified extension L/k. Then $N_{k_1/k}(U_{k_1}) = N_{k_2/k}(U_{k_2})$.

PROOF. By taking the Galois closure of L over k, we may suppose that Lis a Galois extension of k. Put $L'=Lk_1=Lk_2$. Since L'/k_i is unramified, we we have $N_{L'/k_i}(U_{L'}^{(1)})=U_{k_i}^{(1)}$, hence $N_{L'/k}(U_{k_1}^{(1)})=N_{k_i/k}(U_{k_i}^{(1)})$. Since k_i/k is fully ramified and $[k_1:k]=[k_2:k]$, we have the assertion.

THEOREM 3. Let k, k' and W(k'/k) be as in the main theorem in the introduction. Let $\mathfrak{F}=\mathfrak{F}(k')=\{k''|k'' \text{ is a fully ramified cyclic extension of } k \text{ such that } k'L=k''L \text{ with an unramified extension } L \text{ of } k\}$. Let $F_{k'}: \mathfrak{F} \to W(k'/k)$ be a map defined by $k'' \mapsto (N_{k'/k}(\pi')/N_{k'/k}(\pi'') \mod N_{k'/k}(U_{k'}))$, where π' and π'' are prime elements of k' and k'' respectively. Then $F_{k'}$ is bijective and independent of the choice of π' and π'' .

PROOF. By Lemma 6, $F_{k'}$ is independent of the choice of π' and π'' .

 $F_{k'}$ is injective: Let $k_i \in \mathcal{F}$ with i=1, 2. By assumption, $Lk_1 = Lk_2 = Lk'$ with an unramified extension L of k. Suppose that $F_{k'}(k_1) = F_{k'}(k_2)$. Then by the definition of $F_{k'}$ and by Lemma 6, $N_{k_1/k}(k_1) = N_{k_2/k}(k_2)$. Hence by Lemma 5, $k_1 = k_2$. Hence $F_{k'}$ is injective.

 $F_{k'}$ is surjective: Let $u \in W(k'/k)$ and let m' be the order of $\langle u \rangle$. Then m'|m. By the main theorem, there exists an unramified cyclic extension K/k of degree m' such that $G^*(K) = \langle u \rangle$. Put K' = Kk'. By Galois theory, there exist m' cyclic extensions $k_1, \dots, k_{m'}$ of degree m such that $k' \neq k_i$ and $k_i \subset K'$

for $i=1, 2, \dots, m'$. Clearly $F_{k'}(k_i) \in \langle u \rangle$. Since $F_{k'}$ is injective, $F_{k'}(k_i)=u$ with some *i*. Hence $F_{k'}$ is surjective. This completes the proof.

Now we apply Theorem 3 to Z_p -extensions of k. Fix a fully ramified Z_p extension k_{∞} of k, and let k_n/k be the sub-extension of k_{∞}/k of degree p^n . For $m \ge n \ge 1$, let $\rho_n^m : W(k_m/k) \to W(k_n/k)$ be a homomorphism defined by $x \mod N_{k_m/k}(U_{k_m}) \mapsto x \mod N_{k_n/k}(U_{k_n})$ with $x \in N_{\hat{k}_m/\hat{k}_{ur}}(U_{\hat{k}_m}) \cap k$, where \hat{k}_{ur} is the completion of the maximum unramified extension of k and $\hat{k}_m = \hat{k}_{ur}k_m$. Then $\{W(k_n/k), \rho_n^m\}$ is a projective system. Let $W(k_{\infty})$ be the projective limit of this system. Then we have directly the following Theorem 4 by Theorem 3.

THEOREM 4.⁽²⁾ Let k, p, k_{∞} and $W(k_{\infty})$ be as above. Let $\mathcal{F}(k_{\infty}) = \{k'_{\infty} \mid k'_{\infty} \text{ is a fully ramified } \mathbb{Z}_{p}$ -extension of k such that $k_{\infty}L = k'_{\infty}L$ with an unramified extension L of k}. Let $F_{\infty}: \mathcal{F}(k_{\infty}) \to W(k_{\infty})$ be a map defined by $k' \mapsto \{N_{k'_{n}/k}(\pi'_{n})/N_{k_{n}/k}(\pi_{n}) \mod N_{k_{n}/k}(U_{k_{n}})\}$, where k'_{n}/k and k_{n}/k are the sub-extensions of k'_{∞}/k and k_{∞}/k of degree p^{n} respectively, and where π'_{n} and π_{n} are prime elements of k'_{n} and k_{n} respectively. Then F_{∞} is independent of the choice of prime elements and F_{∞} is bijective.

REMARK 1. Suppose the conditions: (i) p is a prime element of k, (ii) the finite field \mathbf{F}_p with p elements is the maximum perfect subfield of \bar{k} , i.e., $\mathbf{F}_p = \bigcap_{n=1}^{\infty} (\bar{k})^{p^n}$. As typical examples, we have k such that $\bar{k} = \mathbf{F}_p(t)$ (the rational function field over \mathbf{F}_p in one variable t) or $\mathbf{F}_p\{t\}$ (the field of power series over \mathbf{F}_p in one variable t). In this case, it is easily verified by [6], Theorem that $\mathcal{F}(k_{\infty})$ is the set of all fully ramified \mathbf{Z}_p -extensions of k.

REMARK 2. It can be proved that $W(k_{\infty}) = \lim_{\leftarrow} H_n(k)/N_{k_n/k}(U_{k_n})$ under the above conditions (i), (ii), where $H_n(k)$ is as in the Remark 1 in § 3 and the projective limit is taken with respect to a homomorphism induced by the natural injection of $H_{n'}(k)$ into $H_n(k)$ for $n' \ge n$. Therefore under the above conditions (i), (ii), as a Corollary to Theorem 4, it can be proved that $\bigcap_{n=1}^{\infty} N_{k'_n/k}(k'_n)$ contains a prime element of k if and only if there exists a \mathbb{Z}_p -extension k_c of \mathbb{Q}_p such that $k'_{\infty} = k_c k$.⁽³⁾ Note that $W(k_{\infty}) = U_k^{(1)}$ if $k = \mathbb{Q}_p$ and that in this case Theorem 4 follows from local class field theory.

References

- [1] E. Artin and J. Tate, Class field theory, Benjamin, New York, 1967.
- [2] Y. Ihara, On a problem on some complete p-adic function fields (in Japanese), Kokyuroku of the Research Institute for Mathematical Sciences Kyoto Univ., 41 (1968), 7-17.
 - (2) This can be regarded as a generalization of [5], § 6, Corollary 2 to Theorem.
 - (3) This is [5], §6, Corollary 3 to Theorem.

- [3] S. Iyanaga (editors), Number theory (in Japanese), Iwanami Shoten, Tokyo, 1969=(in English), North-Holland, Amsterdam, 1975.
- [4] S. MacLane, Subfields and automorphism groups of p-adic fields, Ann. of Math., 40 (1939), 424-442.
- [5] H. Miki, On cyclic extensions of *p*-power degree over complete *p*-adic fields (in Japanese), Master's thesis, University of Tokyo, 1973.
- [6] H. Miki, On Z_p-extensions of complete p-adic power series fields and function fields, J. Fac. Sci. Univ. Tokyo Sec. IA, 21 (1974), 377-393.
- [7] S. Sen, On automorphisms of local fields, Ann. of Math., 90 (1969), 33-46.
- [8] J.P. Serre, Corps locaux (2nd edition), Hermann, Paris, 1968.
- [9] O. Teichmüller, Diskret bewertete perfekte Körper mit unvollkommenem Restklassenkörper, J. Reine Angew. Math., 176 (1937), 141-152.
- [10] E. Witt, Zyklische Körper und Algebren der Characteristik p von Grade pⁿ, J. Reine Angew. Math., 176 (1936), 126-140.

Hiroo Miki

Department of Mathematics University of Tokyo

Present address: Department of Mathematics Faculty of Engineering Yokohama National University Tokiwadai, Hodogaya-ku Yokohama, Japan