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Introduction.

Let $k$ be a complete field under a discrete valuation with residue field $\overline{k}$

of characteristic $P\neq 0$ . In this paper we shall state a theory of unramified
abelian extensions of $k$ (see the main theorem below) and apply this result to
fully ramified $Z_{p}$-extensions of $k$ (see \S 4, Theorem 4, Remarks 1 and 2).

The main result of this paper is as follows.
Fix a fully ramified cyclic extension $k^{\prime}$ of $k$ of degree $m$ , and for a finite

unramified extension $K$ of $k$ , put

$G^{*}(K)=N_{K^{\prime}/K}(U_{K^{\prime}})\cap k/N_{k^{\prime}/k}(U_{k^{\prime}})$ ,

where $K^{\prime}=Kk^{\prime}$ and $U_{k}$ is the group of units of $k$ . Put $W(k^{\prime}/k)=\cup G^{*}(K)$ ,
where the union is taken in $U_{k}/N_{k^{\prime}/k}(U_{k^{\prime}})$ over all finite unramified extensions
$K$ of $k$ . Let $\mathcal{F}_{m}$ be the set of all finite abelian unramified extensions $K$ of $k$

such that $\sigma^{m}=1$ for all $\sigma\in G(K/k)$ , where $G(K/k)$ is the Galois group of $K/k$ ,
and let $\pi(k^{\prime}/k)$ be the set of all finite subgroups of $W(k^{\prime}/k)$ . Then we have
the following

MAIN THEOREM.(1) Under the above assumPtions, the following statements
(1) and (2) are valid:

(1) If $K\in \mathcal{F}_{m}$ , then $G^{*}(K)$ is canonically isomorPhic to the character $\Psi ouP$

of $G(K/k)$ .
(2) $\mathcal{F}_{m}$ correspOnds bijectively to $\pi(k^{\prime}/k)$ by $K-,G^{*}(K)$ . Moreover, we have

$G^{*}(K_{1})\subset G^{*}(K_{2})$ if and only if $K_{1}\subset K_{2}$ for $K_{1},$ $K_{2}\in \mathcal{F}_{m}$ .

$*)$ Partly supported by Fttjukai Foundation.
(1) We found this theorem to simplify the proof of [5], \S 6, Theorem and its

Corollary 2, which is the original form of Theorem 4 in this paper. Our first motiva-
tion of [5] was to consider the problem of finding the class field theory of $Q(t)_{p}$ (see
Ihara [2]).
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This theorem can be regarded as an analogue of the theory of Kummer
extensions and Witt theory [10] and it contains both of them essentially.
When $m\not\equiv O(mod p)$ , this is equivalent to Kummer theory; when $m$ is a power
of $p$ , it is equivalent to Witt theory [10] essentially. However, our formula-
tion is more useful for our application. For $W(k^{\prime}/k)$ , see the Remarks at the
end of \S 3.
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Notations.

(1) (For a complete field $k$ under a discrete valuation) $ord_{k}$ : the normal-
ized additive valuation of $k$ . $O_{k}$ : the ring of integers of $k$ . $U_{k}$ : the group
of units of $k$ . $U_{k}^{(t)}=\{u\in U_{k}|ord_{k}(u-1)\geqq i\}$ for $i\geqq 1$ . $\overline{k}$ : the residue field of $k$ .
$\overline{a}$ (for $a\in O_{k}$): the image of $a$ by the canonical homomorphism of $O_{k}$ to $\overline{k}$ .

(2) $Z$ : the ring of rational integers. $Z_{p}$ : the ring of $p$-adic integers. $Q_{p}$ :
the field of $p$-adic numbers. $N=\{z\in Z|z\geqq 1\}$ . $m|n:m$ divides $n$ for $m,$ $n\in N$

(3) $K^{\times}:$ the multiplicative group of a field K. $G(K/k)$ : the Galois group
of a Galois extension $K/k$ . Hom $(G_{1}, G_{2})$ : the group of homomorphisms of a
group $G_{1}$ to an abelian group $G_{2}$ . $N_{K/k}$ : the norm map of $K$ to $k$ for a finite
Galois extension $K$ of $k$ . $[G, G]$ : the commutator group of a group G. $\langle u\rangle$

or $\langle u|u\in S\rangle$ : the subgroup of a group $G$ , generated by $u\in G$ or by a subset
$S$ of $G$ respectively. $\#(S)$ : the number of elements of a Pnite set $S$. Ker $F$

(for a homomorphism $F$ of a group $G$ to a group $G^{\prime}$): the kernel of F. ${\rm Im} F$ :
the image of $F$.

\S 1. Norm groups.

In this section we shall prove the following Theorem 1, which will be
used for the proof of Theorem 2. When $\overline{k}$ is finite, Theorem 1 is well known
( $e$ . $g$ . Artin-Tate [1], Chap. XI, \S 4 and Iyanaga [3], Chap. V, \S 2). However,
its proof is not valid for arbitrary residue field $\overline{k}$ . We use Sen [7], Lemma 1
and Serre [8], Chap. V.

THEOREM 1. Let $k$ be a complete field under a discrete valuation with
residue field of characteristic $p\neq 0$ and let $k^{\prime}$ be a finite fully ramified cyclic
extension of $k$ . Then we have $N_{k^{\prime}/k}(U\zeta^{j)})=N_{k^{\prime}/k}(U\S^{1)})\cap Ut^{i)}$ for each $i,$ $j\in N$ such
that $\psi(i-1)<j\leqq\psi(i)$ , where $\psi$ is the Hasse function of $k^{\prime}/k$ .
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We need also the following
LEMMA 1. Let $p$ and $k$ be as in Theorem 1 and let $k_{n}$ be a fully ramified

cyclic extension of $k$ of degree $p^{n}$ . Let $t_{1}<t_{2}<\ldots<t_{n}$ be the sequence of all the
ramification numbers of $k_{n}/k$ and let $\psi$ be the Hasse function of $k_{n}/k$ . Put
$S_{1}=$ { $N\in N|N\neq\psi(m)$ for all $m\in N$ and $N<t_{n}$ } and $S_{2}=\{N\in N|N=t_{j}+mp^{j-1}$

with $1\leqq j<n,$ $m\not\equiv O(mod P),$ $m\in N$ and $N<t_{n}$ }. Then $S_{1}=S_{2}$ .
PROOF. Let $s_{i}$ be such that $\psi(s_{i})=t_{i}$ for $i=1,2,$ $\cdots,$

$n$ and let $t_{0}=s_{0}=0$ . By
Hasse-Arf’s theorem, $s_{i}\in Z$. Then we have easily $S_{1}=\{N\in N|N\neq t_{i}+(m_{i}-s_{i})p^{i}$

for $s_{i}\leqq m_{i}(\in Z)<s_{i+1}$ and $i=0,1,$ $\cdots$ , $n-1$ }. Now let $N\in S_{2}$ . Then $N=t_{j}+mp^{j-1}$

with $1\leqq j<n,$ $m\not\equiv O(mod p)$ and $m\in N$. Let $i\in N$ be such that $t_{i}\leqq N<t_{i+1}$ .
Since $N>t_{j}$ , we have $j\leqq i\leqq n-1$ . If $N\not\in S_{1}$ , then $N=t_{i}+sp^{i}$ with $0\leqq s<s_{i+1}-s_{i}$

and $s\in Z$. Since $t_{i}-t_{j}\equiv 0(mod p^{j})$ and $i\geqq j$ , this implies that $mP^{j- 1}\equiv 0(mod p^{j})$

hence $m\equiv 0(mod p)$ , which is a contradiction, hence $N\in S_{1}$ . Hence $S_{2}\subset S_{1}$ .
Conversely let $N\in S_{1}$ . If $N\not\in S_{2}$ , then $N=t_{j}+m_{j}p^{j}$ with $1\leqq j\leqq n-1,$ $m_{j}\in Z$ and
$m_{j}\geqq 0$ . Let $j_{0}$ be the maximum of such $j$ , then we have easily $t_{Jo}\leqq N<t_{j_{0}+1}$ .
This implies that Ne $S_{1}$ , which is a contradiction, hence $N\in S_{2}$ . Hence $S_{1}\subset S_{2}$ .
Therefore $S_{1}=S_{2}$ .

LEMMA 2. Let notations be as in Lemma 1 and let $\sigma$ be a generator of
$G(k_{n}/k)$ . Let $N\in N$ be such that $N\neq\psi(m)$ for all $m\in NandN<t_{n}$ and let $A\in k_{n}$

be such that $ord_{kn}(A)=N$. Then there exists $x\in Ui_{n}^{1)}$ such that $x^{\sigma- 1}\equiv 1+A$

$(mod \pi_{n}^{N+1})$ , where $\pi_{n}$ is a Prime element of $k_{n}$ .
PROOF. By Lemma 1, $N=r_{j}+mp^{j- 1}$ with $1\leqq somej<n$ , some $m\neq 0(mod p)$

and $m\in N$. By Sen [7], Lemma 1, there exists $y\in k_{n}^{\times}$ such that $ord_{k_{n}}(y)=mp^{j-1}$

and $ord_{k_{n}}(y^{\sigma}-y)=N$. For $\lambda\in U_{k}$ , put $z_{\lambda}=1+\lambda y$ and $B=y^{\sigma}-y$ , then $z_{\lambda}^{\sigma}-z_{\lambda}=\lambda B$ ,

hence $(z_{\lambda})^{\sigma-1}\equiv 1+\lambda B(mod \pi_{n}^{N+1})$ . There exists $\lambda\in U_{k}$ such that $A\equiv\lambda B(mod \pi_{n}^{N+1})$ .
For this $\lambda\in U_{k}$ , put $x=z_{\lambda}$ , then the assertion follows.

Now we can prove Theorem 1.
PROOF OF THEOREM 1. It is easily veriPed that it is enough to prove the

theorem when $k^{\prime}=k_{n}$ , where $k_{n}$ is as in Lemma 1. By Serre [8], Chap. V, \S 6,

Proposition 8, $N_{kn/k}(U_{k_{n}}^{(j)})\subset N_{kn/k}(U_{k_{n}}^{(1)})\cap U_{k}^{(i)}$ . By Serre [8], Chap. V, \S 6, Corol-
lary 3, we may suppose $\psi(i)\leqq t_{n}$ . Now conversely let $N_{kn/k}(z)\in N_{kn/k}(U_{k_{n}}^{(1)})\cap U_{k}^{(i\rangle}$

with $z\in U_{k_{n}}^{(1)}$ . Then by Lemma 2 and Serre [8], Chap. V, \S 6, Proposition 9,
there exists $z_{1}\in k_{n}^{\times}$ such that $z\cdot z_{1}^{\sigma-- 1}\in U_{k_{n}}^{(\psi(t))}$ , hence $ N_{k_{n}/k}(z)=N_{k_{n}/k}(z\cdot z_{1}^{\sigma-1})\in$

$N_{kn/k}(U_{k_{n}}^{(J)})$ .

\S 2. Canonical isomorphism.

In this section we shall prove the following Theorem 2 and Corollaries to
Theorem 2, which will be used for the proof of the main theorem. The state-
ment (1) of the main theorem is an immediate consequence of Theorem 2 (see
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Corollary 1 to Theorem 2).

THEOREM 2. Let $k$ be a complete field under a discrete valuation with residue
field of characteristic $p\neq 0$ and let $k^{\prime}/k$ be a finite fully ramified cyclic extension.
Let $K/k$ be a finite unramified Galois extension and put $K^{\prime}=Kk^{\prime}$ , $T_{K^{\prime}}=$

$\{y^{S-1}|y\in K^{\prime}’\}$ , $V_{K^{\prime}}=\{y^{S-1}|y\in U_{K^{\prime}}\},$ $G^{*}(K)=N_{K^{\prime}/K}(U_{K^{\prime}})\cap k/N_{k^{\prime}/k}(U_{k^{\prime}})$ and $G=$

$G(K/k)$ , where $s$ is a generator of $G(K^{\prime}/K)$ . Then there exists a canonical iso-
morphism $F_{K}$ : $G^{*}(K)\rightarrow Hom(G, T_{K^{\prime}}/V_{K^{\prime}})$ .

2.1. Proof of Theorem 2.
For the proof of Theorem 2 we need Theorem 1 and the following two

lemmas.
LEMMA 3. Let $k$ and $K$ be two complete fields under a discrete valuation and

let $k^{\prime}/k$ be a finite fully ramified cyclic extension. SuppOse that $K$ is an exten-
sion of $k$ with ramification index 1. Put $K^{\prime}=Kk^{\prime}$ . Let $T_{k^{\prime}},$ $V_{k^{\prime}},$ $T_{K^{\prime}}$ and $V_{K^{\prime}}$ be
as in Theorem 2. Then the following (1), (2), (3) are valid:

(1) (Serre [8], p. 104, Exercise.) $G(k^{\prime}/k)\rightarrow\sim T_{k^{\prime}}/V_{k^{\prime}}$ by $\sigma-$ ( $\pi^{\prime(\sigma-1)}$ mod $V_{k^{\prime}}$ ),

where $\pi^{\prime}$ is a prime element of $k^{\prime}$ .
(2) $T_{k^{\prime}}/V_{k^{\prime}\rightarrow}\sim T_{K^{\prime}}/V_{K^{\prime}}$ by ( $x$ mod $V_{k^{\prime}}$ ) $\rightarrow$ ( $x$ mod $V_{K^{\prime}}$ ), where $x\in T_{k^{\prime}}$ .
(3) $V_{K^{\prime}}\cap T_{k^{\prime}}=V_{k^{\prime}}$ .
PROOF. Since $\pi^{\prime}$ is also a prime element of $K^{\prime}$ , it follows from the state-

ment (1) that ( $\pi^{\prime(S- 1)}$ mod $ V_{K}\cdot$ ) generates $T_{K^{\prime}}/V_{K^{\prime}}$ , where $s$ is a generator of
$G(K^{\prime}/K)$ . Therefore the given homomorphism in the statement (2) is surjec-
tive, hence bijective by (1). The statement (2) implies the statement (3).

LEMMA 4. Let $k,$ $k^{\prime},$ $K,$ $K^{\prime},$ $V_{K^{\prime}}$ and $G$ be as in Theorem 2. Let $ u\in$

$U_{k}\cap N_{K^{\prime}/K}(U_{K^{\prime}})$ and $A\in U_{K^{\prime}}$ be such that $N_{K^{\prime}/K}(A)=u$ . SuppOse that $A^{\sigma-1}\in V_{K^{\prime}}$

for all $\sigma\in G$ , identifying $G$ and $G(K^{\prime}/k^{\prime})$ . Then $u\in N_{k^{\prime}1k}(U_{k^{\prime}})$ .
PROOF. Since $V_{K^{\prime}}\subset U_{K^{\prime}}^{(1)}$ , we have $(\overline{A})^{\sigma}=\overline{A}$ for all $\sigma\in G$ , hence $A=aA_{1}$ with

$a\in U_{k^{\prime}}$ and $A_{1}\in U_{K’}^{(1)}$ , since $K^{\prime}/k^{\prime}$ is unramified. Therefore we may suppose
that $A\in U_{K’}^{(1)}$ from the beginning. Suppose that $u\in U_{k}^{(m)}$ with some $m\geqq 1$ . By
applying Theorem 1 to $K^{\prime}/K$, we may suppose that $A\equiv 1+\lambda\pi^{\prime\psi(m)}(mod \pi^{\prime\psi(m)+1})$ ,

where $\pi^{\prime}$ is a prime element of $k^{\prime},$ $\psi$ is the Hasse function of $K^{\prime}/K$ and $\lambda\in O_{K^{\prime}}$ .
Then $A^{\sigma- 1}\equiv 1+(\lambda^{\sigma}-\lambda)\pi^{\prime\psi(m)}(mod \pi^{\prime\psi(m)+1})$ . Since $V_{K^{\prime}}\cap U^{(}\ovalbox{\tt\small REJECT}^{(m))}\subset U_{K}^{(\phi(m)+1)}$ (see

Serre [7], p. 104, Ex. $a$)), we have $(\overline{\lambda})^{\sigma}=\overline{\lambda}$ for all $\sigma\in G$ , hence we can take $\lambda$

in $\mathcal{O}_{k}$ . Put $B=(1-\lambda\pi^{\prime\psi(m)})A$ . Then $B\in U_{K}^{(\psi(m)+1)},$ $A^{\sigma- 1}=B^{\sigma- 1}\in V_{K^{\prime}}$ , and $N_{K^{\prime}/K}(B)$

$\in U_{k}^{(m+1)}$ by Serre [8], Chap. V, Proposition 8. APplying the above procedure
to $B$ , we have $u\in N_{k^{\prime}/k}(U_{k^{\prime}})$ by induction on $m$ .

PROOF OF THEOREM 2. ldentify $G$ with the Galois group $G(K^{\prime}/k^{\prime})$ . For
$u\in N_{K^{\prime}/K}(U_{K^{\prime}})\cap k$ and $\sigma\in G$ , put $f_{u}(\sigma)=A^{\sigma-1}$ mod $V_{K^{\prime}}$ , where $A\in U_{K^{\prime}}$ is such
that $N_{K^{\prime}/K}(A)=u$ . It is easily verified that $f_{u}(\sigma)\in T_{K^{\prime}}/V_{K^{\prime}}$ and that $f_{u}(\sigma)$ is
independent of the choice of $A$ and that $f_{u}\in Hom(G, T_{K^{\prime}}/V_{K^{\prime}})$ . Put $F_{K}(u)=f_{u}$ ,

then it is easily verified that $F_{K}$ is a homomorphism of $N_{K^{\prime}/K}(U_{K^{\prime}})\cap k$ to
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Hom $(G, T_{K^{\prime}}/V_{K^{\prime}})$ . By Lemma 4, Ker $F_{K}=N_{h^{\prime}/k}(U_{k^{\prime}})$ . Now we shall show that
$F_{K}$ is surjective. Let $\chi\in Hom(G, T_{K^{\prime}}/V_{K^{\prime}})$ . Let $L^{\prime}$ be the subfield of $K^{\prime}$ fixed
by Ker $\chi$ and put $L=L^{\prime}\cap K$. Let $\sigma_{1}\in G$ be such that $\chi(\sigma_{1})$ generates ${\rm Im}\chi$ .
By (2) of Lemma 3, $\chi(\sigma_{1})=x^{S-1}mod V_{K^{\prime}}$ with some $x\in k^{\prime\times}$ . If $d=[L^{\prime} : k^{\prime}]$ , then
$\chi(\sigma_{1})^{d}=1$ , hence $(x^{d})^{s-1}\in V_{K^{\prime}}\cap T_{k^{\prime}}$ , so ( $x^{f}()^{s- 1}=y^{S-1}$ with $y\in U_{k^{\prime}}$ , by (3) of Lemma
3. This implies that $x^{d}/y\in k$ . Since $k^{\prime}/k$ is fully ramified, we can take $y$ in
$U_{k’}^{(1)}$ . Since $L^{\prime}/k^{\prime}$ is unramified, $y=N_{L^{\prime}/k^{\prime}}(z)$ with some $z\in U_{L}^{(1)}$ . Put $w=x/z$,

then $N_{L^{\prime}/k^{\prime}}(w)=x^{d}/y\in k$ and $\chi(\sigma_{1})=w^{s-1}$ mod $V_{K^{\prime}}$ . Since $N_{L^{\prime}/k^{\prime}}(w^{S-1})=(x^{a}/y)^{S- 1}$

$=1$ and since $L^{\prime}/k^{\prime}$ is cyclic, by Hilbert’s theorem 90, $w^{s-1}=A^{(\sigma_{1}-1)}$ with $A\in L^{\prime x}$ .
Since $L^{\prime}/k$

‘ is unramified, we may suppose that $A\in U_{L^{\prime}}$ . Since $N_{L^{\prime}/L}(A)^{\sigma_{1}}$
‘

$1_{=1}$

we have $N_{L’/L}(A)=u\in k$ . Then $\chi(\sigma_{1})=f_{u}(\sigma_{1})$ and $x=f_{u}=1$ on Ker $\chi$ . Since $\{\sigma_{1}$ ,

Ker $\chi$ } generates $G$ , we have $x=f_{u}$ on $G$ . This completes the proof.
2.2. Corollaries to Theorem 2.
In this section we shall state the Corollaries to Theorem 2. The Corollary

1 is the statement (1) of the main theorem in the introduction. Corollaries 2
and 3 will be used for the proof of (2) of the main theorem.

COROLLARY 1. Let notations and assumPtions be as in Theorem 2. Put $m=$

$[k^{\prime} : k]$ . SuPpose moreover that $\sigma^{m}=1$ for all $\sigma\in G$ . Let $\chi(G)$ be the character
group of G. Then $G^{*}(K)$ is isomorPhic to $\chi(G)$ .

PROOF. Since $T_{K^{\prime}}/V_{K^{\prime}}$ is a cyclic group of order $m$ by (1) of Lemma 3,
by assumption Hom $(G, T_{K^{\prime}}/V_{K^{\prime}})\cong\chi(G)$ . Hence the assertion follows from
Theorem 2.

COROLLARY 2. Let notations and assumptiOns be as in Theorem 2. Put
$m=[k^{\prime} : k]$ . Let $L$ be the maximal abelian extension of $k$ in $K$ such that $\sigma^{m}=1$

for all $\sigma\in G(L/k)$ . Then $G^{*}(L)=G^{*}(K)$ .
PROOF. It is trivial that $G^{*}(K)\supset G^{*}(L)$ . Put $ H=[G, G]\langle g^{m}|g\in G\rangle$ , then $L$

is the subfield of $K$ fixed by $H$. It is clear that Hom $(G, T_{K^{\prime}}/V_{K^{\prime}})\cong Hom(G/H$,
$T_{K},/V_{K^{\prime}})$ . Hence by Theorem 2, $\#(G^{*}(K))=\#(G^{*}(L))$ , so $G^{*}(K)=G^{*}(L)$ .

COROLLARY 3. Let $K_{1},$ $K_{2}$ be two finite unramified Galois extensions of $k$

such that $K_{1}\supset K_{2}$ , and Put $G_{1}=G(K_{1}/k)$ . Let $G^{*}(K_{i}),$
$T_{K_{i}^{\prime}}$ and $V_{K^{\prime}i}$ be as in Theo-

rem 2, where $K_{i}^{\prime}=K_{i}k^{\prime}$ , and let $F_{K_{1}}$ : $G^{*}(K_{1})\rightarrow Hom(G_{1}, T_{K^{\prime}1}/V_{K^{\prime}1})$ be the canonical

isomorPhism defined in Theorem 2. Put $G(K_{1}/K_{2})^{\perp}=\{f\in Hom(G_{1}, T_{K_{1}}/V_{K_{1}})|f=1$

on $G(K_{1}/K_{2})$ }. Then $F_{K_{1}}(G^{*}(K_{2}))=G(K_{1}/K_{2})^{\perp}$ .
PROOF. By the definition of $F_{K_{1}},$ $F_{K_{1}}(G^{*}(K_{2}))\subset G(K_{1}/K_{2})^{\perp}$ . Since $T_{K^{\prime}}/V_{K^{\prime}}11$

$\cong T_{K_{2}^{\prime}}/V_{K_{2}^{\prime}}$ , by Theorem 2, $\#(F_{K_{1}}(G^{*}(K_{2})))=\#(G(K_{1}/K_{2})^{\perp})$ . Therefore we have
the assertion.
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\S 3. Proof of the main theorem.

Noting the similarity of Theorem 2 to Kummer theory, we shall prove the
statement (2) of the main theorem in the introduction. For the proof we use
Theorem 2, Corollaries 1, 2 and 3 to Theorem 2 and the duality of finite abelian
groups.

PROOF OF THE MAIN THEOREM. The statement (1) of the main theorem
is already proved in Corollary 1 to Theorem 2. By Theorem 2, if $K\in \mathcal{F}_{m}$ ,

then $G^{*}(K)\in\tilde{W}(k^{\prime}/k)$ .
Existence: Let $M\in\pi(k^{\prime}/k)$ . Then by the definition of $W(k^{\prime}/k),$ $G^{*}(K_{1})$

$\supset M$ for some Pnite unramified extension $K_{1}$ of $k$ . By taking the Galois closure
of $K_{1}$ over $k$ , we may suppose that $K_{1}/k$ is a Galois extension. Moreover by
Corollary 2 to Theorem 2, we may suppose that $K_{1}\in \mathcal{F}_{m}$ from the beginning.
Since $K_{1}\in \mathcal{F}_{m}$ , by Corollary 1 to Theorem 2, we can regard Hom $(G(K_{1}/k)$ ,
$T_{K^{\prime}1}/V_{K1})$ as the character group of $G(K_{1}/k)$ . Put $H^{*}=F_{K_{1}}(M)$ , where $F_{K_{1}}$ is
the canonical isomorphism of $G^{*}(K_{1})$ to Hom $(G(K_{1}/k), T_{K_{1}^{\prime}}/V_{K^{\prime}1})$ , dePned in
Theorem 2. Let $H$ be the subgroup of $G(K_{1}/k)$ corresponding to $H^{*}$ by the
duality of finite abelian groups. Then $H^{*}=\{f\in Hom(G(K_{1}/k), T_{K_{1}^{\prime}}/V_{K_{1}^{\prime}})|f=1$

on $H$ }. Let $K$ be the subfield of $K_{1}$ Pxed by $H$, then $K\in \mathcal{F}_{m}$ and $F_{K_{1}}(M)=$

$F_{K_{1}}(G^{*}(K))$ by Corollary 3 to Theorem 2, hence $M=G^{*}(K)$ by Theorem 2.
Uniqueness: Let $K_{1},$ $K_{2}\in \mathcal{F}_{m}$ be such that $G^{*}(K_{1})\supset G^{*}(K_{2})$ . Put $K=K_{1}K_{2}$ ,

$G=G(K/k)$ and $G_{i}=G(K/K_{i})$ for $i=1,2$ . Let $F_{K}$ : $G^{*}(K)\rightarrow Hom(G, T_{K^{\prime}}/V_{K^{\prime}})$ be
the canonical isomorphism defined by Theorem 2. By Corollary 3 to Theorem
2, $F_{K}(G^{*}(K_{i}))=$ { $f\in Hom(G,$ $T_{K^{\prime}}/V_{K^{\prime}})|f=1$ on $G_{i}$ } for $i=1,2$ . Since $K\in \mathcal{F}_{m}$ , by
Corollary 1 to Theorem 2 Hom $(G, T_{K^{\prime}}/V_{K^{\prime}})$ is isomorphic to the character
group of $G$ . Then by the duality of finite abelian groups, $G^{*}(K_{1})\supset G^{*}(K_{2})$

implies $G_{1}\subseteqq G_{2}$ , so $K_{1}\supseteqq K_{2}$ . In particular, $G^{*}(K_{1})=G^{*}(K_{2})$ implies $K_{1}=K_{2}$ .
REMARK 1. Let $k$ be a complete field under a discrete valuation $\nu$ with

arbitrary residue field $\overline{k}$ of characteristic $P\neq 0$ and assume that $p$ is a prime
element of $k$ . Let $k_{0}$ be the subfield of $k$ satisfying the conditions: (i) $k_{0}$ is
complete with respect to the restriction of $\nu$ to $k$ ; (ii) the residue Peld $\overline{k}_{0}$ is

the maximum perfect subfield of $\overline{k},$ $i$ . $e.,\overline{k}_{0}=\bigcap_{n=1}^{\infty}(\overline{k})^{p^{n}}$ . By MacLane [4], such

a $k_{0}$ really exists. Let $k_{n}^{(0)}/k_{0}$ be a fully ramified cyclic extension of degree $p^{n}$

and put $k_{n}=k_{n}^{(0)}k$ . Then it can be Proved that $W(k_{n}/k)=H_{n}(k)/N_{k_{n}/k}(U_{k_{n}})$ ,

where $H_{n}(k)=$ { $x\in U_{k}|x\equiv\sum_{i=0}^{n}\lambda f^{n-i}p^{i}(mod P^{n+1})$ with $\lambda_{i}\in 0_{k}$ }.

REMARK 2. If $\overline{k}$ is perfect, then $W(k^{\prime}/k)=U_{k}/N_{k^{\prime}/k}(U_{k^{\prime}})$ . Hence the main
theorem in the introduction gives an interpretation of a quotient group
$U_{k}/N_{k^{\prime}/k}(U_{k^{\prime}})$ ; it can be regarded as the character group of the Galois group
$G(K_{m}/k)$ , where $K_{m}$ is the composite field of all fields in $\mathcal{F}_{m}$ .
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\S 4. Application.

In this section, we shall apply the main theorem to fully ramified cyclic
extensions and $Z_{p}$-extensions of $k$ .

LEMMA 5. Let $k$ be a comPlete field under a discrete valuation. Let $k_{1},$ $k_{2}$

be two finite fully ramified abelian extensions of $k$ such that $k_{1}L=k_{2}L$ with an
extension $L/k$ of ramification index 1 ( $i$ . $e.$ , a prime element of $k$ is a prime ele-
ment of $L$). Suppose that $N_{k_{1}/k}(k_{1})\cap N_{k_{2}/k}(k_{2})$ contains a prime element of $k$ .
Then $k_{1}=k_{2}$ .

PROOF. We may suppose that $k_{i}/k$ is cyclic and that $L$ is a Galois exten-
sion of $k$ , by taking the Galois closure of $L$ over $k$ . Since $k_{1}(k_{1}k_{2}\cap L)=$

$k_{2}(k_{1}k_{2}\cap L)$ , we may suppose $L\subset k_{1}k_{2}$ . Put $Lk_{1}=Lk_{2}=L_{1}$ and let $s$ be a generator
of $G(L_{1}/L)$ . By assumption, there exist prime elements $\pi_{i}$ of $k_{i}$ such that
$N_{k_{1}/k}(\pi_{1})=N_{k_{2}/k}(\pi_{2})$ . Put $u=\pi_{2}/\pi_{1}$ , then $u\in U_{L_{1}}$ and $N_{L_{1}/L}(u)=1$ . Hence $y^{s- 1}=u$

with a $y\in L_{1}^{\times}$ . Now suppose $k_{1}\neq k_{2}$ . Then there exists $\sigma\in G(L_{1}/k_{1})$ such that
$\sigma|k_{2}\neq 1$ . By the statement (1) of Lemma 3, $\pi_{2}^{\sigma-1}\not\in V_{k_{2}}$ , hence by the statement
(3) of Lemma 3, $\pi_{2}^{\sigma-1}\not\in V_{L_{1}}$ . On the other hand, $\pi_{2}^{\sigma-1}=u^{\sigma- 1}=(y^{\sigma-1})^{s- 1}\in V_{L_{1}}$ , which
is a contradiction. Therefore $k_{1}=k_{2}$ .

LEMMA 6. Let $k$ be as in Lemma 5 and let $k_{1},$ $k_{2}$ be two finite fully ramified
Galois extensions of $k$ such that $k_{1}L=k_{2}L$ with a finite unramified extension $L/k$ .
Then $N_{k_{1}/k}(U_{k_{1}})=N_{k_{2}/k}(U_{k_{2}})$ .

PROOF. By taking the Galois closure of $L$ over $k$ , we may suppose that $L$

is a Galois extension of $k$ . Put $L^{\prime}=Lk_{1}=Lk_{2}$ . Since $L^{\prime}/k_{i}$ is unramified, we
$\xi$ we have $N_{L^{\prime}/k_{i}}(U_{L}^{(1)})=U_{k_{i}}^{(1)}$ , hence $N_{L^{\prime}/k}(U_{k_{1}}^{(1)})=N_{k\ell/k}(U_{k_{i}}^{(1)})$ . Since $k_{i}/k$ is fully

ramified and $[k_{1} : k]=[k_{2} : k]$ , we have the assertion.
THEOREM 3. Let $k,$ $k^{\prime}$ and $W(k^{\prime}/k)$ be as in the main theorem in the intro-

duction. Let $\mathcal{F}=\mathcal{F}(k)=\{k^{\nu}|k^{\prime}$ is a fully ramified cyclic extension of $k$ such
that $k^{\prime}L=k^{r}L$ with an unramified extension $L$ of $k$ }. Let $F_{k^{\prime}}$ : $\mathcal{F}\rightarrow W(k^{\prime}/k)$ be
a map defined by $k^{W}->(N_{k^{\prime}/k}(\pi^{\prime})/N_{k^{\prime}/k}(\pi‘‘) mod N_{k^{\prime}/k}(U_{k^{\prime}}))$ , where $\pi^{\prime}$ and $\pi^{\prime}$ are
Prime elements of $k^{\prime}$ and $k$ “ $resPectively$ . Then $F_{k^{\prime}}$ is bijective and indePendent
of the choice of $\pi^{\prime}$ and $\pi^{\prime}$ .

PROOF. By Lemma 6, $F_{k^{\prime}}$ is independent of the choice of $\pi^{\prime}$ and $\pi^{\prime}$ .
$F_{k^{\prime}}$ is injeclive: Let $k_{i}\in \mathcal{F}$ with $i=1,2$ . By assumption, $Lk_{1}=Lk_{2}=Lk^{\prime}$

with an unramified extension $L$ of $k$ . Suppose that $F_{k^{\prime}}(k_{1})=F_{k^{\prime}}(k_{2})$ . Then by
the definition of $F_{k^{\prime}}$ and by Lemma 6, $N_{k_{1}/k}(k_{1})=N_{k_{2}/k}(k_{2})$ . Hence by Lemma
5, $k_{1}=k_{2}$ . Hence $F_{k^{\prime}}$ is injective.

$F_{k^{\prime}}$ is surjective: Let $u\in W(k/k)$ and let $m^{\prime}$ be the order of $\langle u\rangle$ . Then
$m^{\prime}|m$ . By the main theorem, there exists an unramified cyclic extension $K/k$

of degree $m^{\prime}$ such that $ G^{*}(K)=\langle u\rangle$ . Put $K^{\prime}=Kk^{\prime}$ . By Galois theory, there
exist $m^{\prime}$ cyclic extensions $k_{1},$ $\cdots$ , $k_{m^{\prime}}$ of degree $m$ such that $k^{\prime}\neq k_{i}$ and $k_{i}\subset K^{\prime}$
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for $i=1,2,$ $\cdots$ , $m^{\prime}$ . Clearly $ F_{k^{\prime}}(k_{i})\in\langle u\rangle$ . Since $F_{k^{\prime}}$ is injective, $F_{k^{\prime}}(k_{i})=u$ with
some $i$ . Hence $F_{k^{\prime}}$ is surjective. This completes the proof.

Now we apply Theorem 3 to $Z_{p}$-extensions of $k$ . Fix a fully ramiPed $Z_{p^{-}}$

extension $k_{\infty}$ of $k$ , and let $k_{n}/k$ be the sub-extension of $k_{\infty}/k$ of degree $p^{n}$ .
For $m\geqq n\geqq 1$ , let $\rho_{n}^{m}$ : $W(k_{m}/k)\rightarrow W(k_{n}/k)$ be a homomorphism defined by
$x$ mod $N_{km/k}(U_{km})->x$ mod $N_{kn/k}(U_{k_{n}})$ with $x\in N_{k_{m}^{\wedge}1k_{ur}^{\wedge}}(U_{k_{m}^{\backslash }})\cap k$ , where $\hat{k}_{ur}$ is the
completion of the maximum unramified extension of $k$ and $\hat{k}_{m}=\hat{k}_{ur}k_{m}$ . Then
$\{W(k_{n}/k), \rho_{n}^{m}\}$ is a projective system. Let $W(k_{\infty})$ be the projective limit of
this system. Then we have directly the following Theorem 4 by Theorem 3.

THEOREM 4 Let $k,$ $p,$ $k_{\infty}$ and $W(k_{\infty})$ be as above. Let $\mathcal{F}(k_{\infty})=\{k_{\infty}^{\prime}|k_{\infty}^{\prime}$ is
a fully ramified $Z_{p}$-extension of $k$ such that $k_{\infty}L=k_{\infty}^{\prime}L$ with an unramified exten-
sion $L$ of $k$ }. Let $F_{\infty}$ : $\mathcal{F}(k_{\infty})\rightarrow W(k_{\infty})$ be a map defined by $k^{\prime}-,\{N_{k_{n}^{\prime}/k}(\pi_{n}^{\prime})/N_{k_{n}/k}(\pi_{n})$

mod $N_{kn/k}(U_{kn})$ }, where $k_{n}^{\prime}/k$ and $k_{n}/k$ are the sub-extensions of $k_{\infty}^{\prime}/k$ and $k_{\infty}/k$

of degree $p^{n}$ respectively, and where $\pi_{n}^{\prime}$ and $\pi_{n}$ are prime elements of $k_{n}^{\prime}$ and $k_{n}$

resPectively. Then $F_{\infty}$ is independent of the choice of Prime elements and $F_{\infty}$ is
bijeclive.

REMARK 1. Suppose the conditions: (i) $p$ is a prime element of $k$ , (ii) the
finite Peld $F_{p}$ with $p$ elements is the maximum perfect subfield of $\overline{k},$ $i$ . $e.$ ,

$F_{p}=\bigcap_{n=1}^{\infty}(\overline{k})^{p^{n}}$ . As typical examples, we have $k$ such that $\overline{k}=F_{p}(t)$ (the rational

function field over $F_{p}$ in one variable t) or $F_{p}\{t\}$ (the field of power series
over $F_{p}$ in one variable $t$). In this case, it is easily verified by [6], Theorem
that $\mathcal{F}(k_{\infty})$ is the set of all fully ramified $Z_{p}$ -extensions of $k$ .

REMARK 2. It can be proved that $W(k_{\infty})=\lim_{\leftarrow}H_{n}(k)/N_{kn/k}(U_{kn})$ under the

above conditions (i), (ii), where $H_{n}(k)$ is as in the Remark 1 in \S 3 and the
projective limit is taken with respect to a homomorphism induced by the
natural injection of $H_{n},(k)$ into $H_{n}(k)$ for $n\geqq n$ . Therefore under the above
conditions (i), (ii), as a Corollary to Theorem 4, it can be proved that
$\bigcap_{n=1}^{\infty}N_{k_{n}^{\prime}/k}(k_{n}^{\prime})$ contains a prime element of $k$ if and only if there exists a $Z_{p^{-}}exten-$

sion $k_{c}$ of $Q_{p}$ such that $k_{\infty}^{\prime}=k_{c}k^{(3)}$ Note that $W(k_{\infty})=U2^{1)}$ if $k=Q_{p}$ and that in
this case Theorem 4 follows from local class field theory.

References

[1] E. Artin and J. Tate, Class field theory, Beniamin, New York, 1967.
[2] Y. Ihara, On a problem on some complete $p$-adic function fields (in Japanese),

Kokyuroku of the Research Institute for Mathematical Sciences Kyoto Univ., 41
(1968), 7-17.

(2) This can be regarded as a generalization of [5], \S 6, Corollary 2 to Theorem.
(3) This is [5], \S 6, Corollary 3 to Theorem.



Unramified abelian extensions of a complete field 371

[3] S. Iyanaga (editors), Number theory (in Japanese), Iwanami Shoten, Tokyo,
1969= (in English), North.Holland, Amsterdam, 1975.

[4] S. MacLane, Subfields and automorphism groups of $p$ adic fields, Ann. of Math.,
40 (1939), 424-442.

[5] H. Miki, On cyclic extensions of p.power degree over complete $P$-adic fields (in
Japanese), Master’s thesis, University of Tokyo, 1973.

[6] H. Miki, On $Z_{p}$-extensions of complete $p$-adic power series fields and function
fields, J. Fac. Sci. Univ. Tokyo Sec. IA, 21 (1974), 377-393.

[7] S. Sen, On automorphisms of local fields, Ann. of Math., 90 (1969), 33-46.
[8] J. P. Serre, Corps locaux (2nd edition), Hermann, Paris, 1968.
[9] $0$ . Teichm\"uller, Diskret bewertete perfekte K\"orper mit unvollkommenem Rest-

klassenk\"orper, J. Reine Angew. Math., 176 (1937), 141-152.
[10] E. Witt, Zyklische K\"orper und Algebren der Characteristik $p$ von Grade $p^{n}$ , J.

Reine Angew. Math., 176 (1936), 126-140.

Hiroo MIKI
Department of Mathematics
University of Tokyo

Present address:
Department of Mathematics
Faculty of Engineering
Yokohama National University
Tokiwadai, Hodogaya-ku
Yokohama, Japan


	Introduction.
	Notations.
	\S 1. Norm groups.
	THEOREM 1. ...

	\S 2. Canonical isomorphism.
	THEOREM 2. ...

	\S 3. Proof of the main ...
	\S 4. Application.
	THEOREM 3. ...
	THEOREM 4 ...

	References

