# On unramified abelian extensions of a complete field under a discrete valuation with arbitrary residue field of characteristic $p \neq 0$ and its application to wildly ramified $Z_{p}$-extensions 

By Hiroo Miki*)

(Received Dec. 5, 1974)
(Revised Sept. 30, 1975)

## Introduction.

Let $k$ be a complete field under a discrete valuation with residue field $\bar{k}$ of characteristic $p \neq 0$. In this paper we shall state a theory of unramified abelian extensions of $k$ (see the main theorem below) and apply this result to fully ramified $\boldsymbol{Z}_{p}$-extensions of $k$ (see $\S 4$, Theorem 4, Remarks 1 and 2).

The main result of this paper is as follows.
Fix a fully ramified cyclic extension $k^{\prime}$ of $k$ of degree $m$, and for a finite unramified extension $K$ of $k$, put

$$
G^{*}(K)=N_{K^{\prime} / K}\left(U_{K^{\prime}}\right) \cap k / N_{k^{\prime} / k}\left(U_{k^{\prime}}\right),
$$

where $K^{\prime}=K k^{\prime}$ and $U_{k}$ is the group of units of $k$. Put $W\left(k^{\prime} / k\right)=\bigcup G^{*}(K)$, where the union is taken in $U_{k} / N_{k^{\prime} / k}\left(U_{k^{\prime}}\right)$ over all finite unramified extensions $K$ of $k$. Let $\mathscr{F}_{m}$ be the set of all finite abelian unramified extensions $K$ of $k$ such that $\sigma^{m}=1$ for all $\sigma \in G(K / k)$, where $G(K / k)$ is the Galois group of $K / k$, and let $\widetilde{W}\left(k^{\prime} / k\right)$ be the set of all finite subgroups of $W\left(k^{\prime} / k\right)$. Then we have the following

Main Theorem. ${ }^{(1)}$ Under the above assumptions, the following statements (1) and (2) are valid:
(1) If $K \in \mathscr{F}_{m}$, then $G^{*}(K)$ is canonically isomorphic to the character group of $G(K / k)$.
(2) $\mathscr{F}_{m}$ corresponds bijectively to $\widetilde{W}\left(k^{\prime} / k\right)$ by $K \mapsto G^{*}(K)$. Moreover, we have $G^{*}\left(K_{1}\right) \subset G^{*}\left(K_{2}\right)$ if and only if $K_{1} \subset K_{2}$ for $K_{1}, K_{2} \in \mathscr{F}_{m}$.

[^0]This theorem can be regarded as an analogue of the theory of Kummer extensions and Witt theory [10] and it contains both of them essentially. When $m \not \equiv 0(\bmod p)$, this is equivalent to Kummer theory ; when $m$ is a power of $p$, it is equivalent to Witt theory [10] essentially. However, our formulation is more useful for our application. For $W\left(k^{\prime} / k\right)$, see the Remarks at the end of $\S 3$.

Table of Contents
§ 1. Norm groups
§ 2. Canonical isomorphism
§ 3. Proof of the main theorem
§4. Application

## Notations.

(1) (For a complete field $k$ under a discrete valuation) ord $_{k}$ : the normalized additive valuation of $k . \mathcal{O}_{k}$ : the ring of integers of $k . U_{k}$ : the group of units of $k$. $U_{k}^{(i)}=\left\{u \in U_{k} \mid \operatorname{ord}_{k}(u-1) \geqq i\right\}$ for $i \geqq 1 . \quad \bar{k}$ : the residue field of $k$. $\bar{a}$ (for $a \in \mathcal{O}_{k}$ ): the image of $a$ by the canonical homomorphism of $\mathcal{O}_{k}$ to $\bar{k}$.
(2) $Z$ : the ring of rational integers. $\boldsymbol{Z}_{p}$ : the ring of $p$-adic integers. $\boldsymbol{Q}_{p}$ : the field of $p$-adic numbers. $\boldsymbol{N}=\{z \in \boldsymbol{Z} \mid z \geqq 1\} . \quad m \mid n: m$ divides $n$ for $m, n \in \boldsymbol{N}$.
(3) $K^{\times}$: the multiplicative group of a field $K . \quad G(K / k)$ : the Galois group of a Galois extension $K / k$. Hom $\left(G_{1}, G_{2}\right)$ : the group of homomorphisms of a group $G_{1}$ to an abelian group $G_{2}$. $N_{K / k}$ : the norm map of $K$ to $k$ for a finite Galois extension $K$ of $k$. [G,G]: the commutator group of a group $G$. 〈u〉 or $\langle u \mid u \in S\rangle$ : the subgroup of a group $G$, generated by $u \in G$ or by a subset $S$ of $G$ respectively. $\#(S)$ : the number of elements of a finite set $S$. Ker $F$ (for a homomorphism $F$ of a group $G$ to a group $G^{\prime}$ ): the kernel of $F$. Im $F$ : the image of $F$.

## § 1. Norm groups.

In this section we shall prove the following Theorem 1, which will be used for the proof of Theorem 2. When $\bar{k}$ is finite, Theorem 1 is well known (e. g. Artin-Tate [1], Chap. XI, § 4 and Iyanaga [3], Chap. V, § 2). However, its proof is not valid for arbitrary residue field $\bar{k}$. We use Sen [7], Lemma 1] and Serre [8], Chap. V.

Theorem 1. Let $k$ be a complete field under a discrete valuation with residue field of characteristic $p \neq 0$ and let $k^{\prime}$ be a finite fully ramified cyclic extension of $k$. Then we have $N_{k^{\prime} / k}\left(U_{k^{\prime}}^{(j)}\right)=N_{k^{\prime} / k}\left(U_{k^{\prime}}^{(1)}\right) \cap U_{k}^{(i)}$ for each $i, j \in N$ such that $\psi(i-1)<j \leqq \psi(i)$, where $\psi$ is the Hasse function of $k^{\prime} / k$.

We need also the following
Lemma 1. Let $p$ and $k$ be as in Theorem 1 and let $k_{n}$ be a fully ramified cyclic extension of $k$ of degree $p^{n}$. Let $t_{1}<t_{2}<\cdots<t_{n}$ be the sequence of all the ramification numbers of $k_{n} / k$ and let $\psi$ be the Hasse function of $k_{n} / k$. Put $S_{1}=\left\{N \in \boldsymbol{N} \mid N \neq \phi(m)\right.$ for all $m \in \boldsymbol{N}$ and $\left.N<t_{n}\right\}$ and $S_{2}=\left\{N \in \boldsymbol{N} \mid N=t_{j}+m p^{j-1}\right.$ with $1 \leqq j<n, m \not \equiv 0(\bmod p), m \in \boldsymbol{N}$ and $\left.N<t_{n}\right\}$. Then $S_{1}=S_{2}$.

Proof. Let $s_{i}$ be such that $\psi\left(s_{i}\right)=t_{i}$ for $i=1,2, \cdots, n$ and let $t_{0}=s_{0}=0$. By Hasse-Arf's theorem, $s_{i} \in \boldsymbol{Z}$. Then we have easily $S_{1}=\left\{N \in \boldsymbol{N} \mid N \neq t_{i}+\left(m_{i}-s_{i}\right) p^{i}\right.$ for $s_{i} \leqq m_{i}(\in \boldsymbol{Z})<s_{i+1}$ and $\left.i=0,1, \cdots, n-1\right\}$. Now let $N \in S_{2}$. Then $N=t_{j}+m p^{j-1}$ with $1 \leqq j<n, m \not \equiv 0(\bmod p)$ and $m \in \boldsymbol{N}$. Let $i \in \boldsymbol{N}$ be such that $t_{i} \leqq N<t_{i+1}$. Since $N>t_{j}$, we have $j \leqq i \leqq n-1$. If $N \notin S_{1}$, then $N=t_{i}+s p^{i}$ with $0 \leqq s<s_{i+1}-s_{i}$ and $s \in \boldsymbol{Z}$. Since $t_{i}-t_{j} \equiv 0\left(\bmod p^{j}\right)$ and $i \geqq j$, this implies that $m p^{j-1} \equiv 0\left(\bmod p^{j}\right)$ hence $m \equiv 0(\bmod p)$, which is a contradiction, hence $N \in S_{1}$. Hence $S_{2} \subset S_{1}$. Conversely let $N \in S_{1}$. If $N \in S_{2}$, then $N=t_{j}+m_{j} p^{j}$ with $1 \leqq j \leqq n-1, m_{j} \in \boldsymbol{Z}$ and $m_{j} \geqq 0$. Let $j_{0}$ be the maximum of such $j$, then we have easily $t_{j_{0}} \leqq N<t_{j_{0}+1}$. This implies that $N \notin S_{1}$, which is a contradiction, hence $N \in S_{2}$. Hence $S_{1} \subset S_{2}$. Therefore $S_{1}=S_{2}$.

Lemma 2. Let notations be as in Lemma 1 and let $\sigma$ be a generator of $G\left(k_{n} / k\right)$. Let $N \in \boldsymbol{N}$ be such that $N \neq \psi(m)$ for all $m \in \boldsymbol{N}$ and $N<t_{n}$ and let $A \in k_{n}$ be such that $\operatorname{ord}_{k_{n}}(A)=N$. Then there exists $x \in U_{k_{n}}^{(1)}$ such that $x^{\sigma-1} \equiv 1+A$ $\left(\bmod \pi_{n}^{N+1}\right)$, where $\pi_{n}$ is a prime element of $k_{n}$.

Proof. By Lemma 1, $N=t_{j}+m p^{j-1}$ with $1 \leqq$ some $j<n$, some $m \neq 0(\bmod p)$ and $m \in N$. By Sen [7], Lemma 1, there exists $y \in k_{n}^{\times}$such that $\operatorname{ord}_{k_{n}}(y)=m p^{j-1}$ and $\operatorname{ord}_{k_{n}}\left(y^{\sigma}-y\right)=N$. For $\lambda \in U_{k}$, put $z_{\lambda}=1+\lambda y$ and $B=y^{\sigma}-y$, then $z_{\lambda}^{\sigma}-z_{\lambda}=\lambda B$, hence $\left(z_{\lambda}\right)^{\sigma-1} \equiv 1+\lambda B\left(\bmod \pi_{n}^{N+1}\right)$. There exists $\lambda \in U_{k}$ such that $A \equiv \lambda B\left(\bmod \pi_{n}^{N+1}\right)$. For this $\lambda \in U_{k}$, put $x=z_{\lambda}$, then the assertion follows.

Now we can prove Theorem 1.
Proof of Theorem 1. It is easily verified that it is enough to prove the theorem when $k^{\prime}=k_{n}$, where $k_{n}$ is as in Lemma 1. By Serre [8], Chap. V, $\S 6$, Proposition 8, $N_{k_{n} / k}\left(U_{k_{n}}^{(j)}\right) \subset N_{k_{n} / k}\left(U_{k_{n}}^{(1)}\right) \cap U_{k}^{(i)}$. By Serre [8], Chap. V, §6, Corollary 3 , we may suppose $\psi(i) \leqq t_{n}$. Now conversely let $N_{k_{n} / k}(z) \in N_{k_{n} / k}\left(U_{k_{n}}^{(1)}\right) \cap U_{k}^{(i)}$ with $z \in U_{k_{n}}^{(1)}$. Then by Lemma 2 and Serre [8], Chap. V, §6, Proposition 9, there exists $z_{1} \in k_{n}^{\times}$such that $z \cdot z_{1}^{\sigma-1} \in U_{k_{n}}^{(\varphi(i))}$, hence $N_{k_{n} / k}(z)=N_{k_{n} / k}\left(z \cdot z_{1}^{\sigma-1}\right) \in$ $N_{k_{n} / k}\left(U_{k_{n}}^{(j)}\right)$.

## § 2. Canonical isomorphism.

In this section we shall prove the following Theorem 2 and Corollaries to Theorem 2, which will be used for the proof of the main theorem. The statement (1) of the main theorem is an immediate consequence of Theorem 2 (see

## Corollary 1 to Theorem 2).

THEOREM 2. Let $k$ be a complete field under a discrete valuation with residue field of characteristic $p \neq 0$ and let $k^{\prime} / k$ be a finite fully ramified cyclic extension. Let $K / k$ be a finite unramified Galois extension and put $K^{\prime}=K k^{\prime}, T_{K^{\prime}}=$ $\left\{y^{s-1} \mid y \in K^{\prime x}\right\}, \quad V_{K^{\prime}}=\left\{y^{s-1} \mid y \in U_{K^{\prime}}\right\}, \quad G *(K)=N_{K^{\prime} / K}\left(U_{K^{\prime}}\right) \cap k / N_{k^{\prime} / k}\left(U_{k^{\prime}}\right)$ and $G=$ $G(K / k)$, where $s$ is a generator of $G\left(K^{\prime} / K\right)$. Then there exists a canonical isomorphism $F_{K}: G^{*}(K) \rightarrow \operatorname{Hom}\left(G, T_{K^{\prime}} / V_{K^{\prime}}\right)$.
2.1. Proof of Theorem 2,

For the proof of Theorem 2 we need Theorem 1 and the following two lemmas.

Lemma 3. Let $k$ and $K$ be two complete fields under a discrete valuation and let $k^{\prime} / k$ be a finite fully ramified cyclic extension. Suppose that $K$ is an extension of $k$ with ramification index 1. Put $K^{\prime}=K k^{\prime}$. Let $T_{k^{\prime}}, V_{k^{\prime}}, T_{K^{\prime}}$ and $V_{K^{\prime}}$ be as in Theorem 2. Then the following (1), (2), (3) are valid:
(1) (Serre [8], p. 104, Exercise.) $G\left(k^{\prime} / k\right) \leftrightarrows T_{k^{\prime}} / V_{k^{\prime}}$ by $\sigma \mapsto\left(\pi^{(\sigma-1)} \bmod V_{k^{\prime}}\right)$, where $\pi^{\prime}$ is a prime element of $k^{\prime}$.
(2) $\quad T_{k^{\prime}} / V_{k^{\prime}} \simeq T_{K^{\prime}} / V_{K^{\prime}}$ by $\left(x \bmod V_{k^{\prime}}\right) \mapsto\left(x \bmod V_{K^{\prime}}\right)$, where $x \in T_{k^{\prime}}$.
(3) $V_{K^{\prime}} \cap T_{k^{\prime}}=V_{k^{\prime}}$.

Proof. Since $\pi^{\prime}$ is also a prime element of $K^{\prime}$, it follows from the statement (1) that $\left(\pi^{(s-1)} \bmod V_{K^{\prime}}\right)$ generates $T_{K^{\prime}} / V_{K^{\prime}}$, where $s$ is a generator of $G\left(K^{\prime} / K\right)$. Therefore the given homomorphism in the statement (2) is surjective, hence bijective by (1). The statement (2) implies the statement (3).

Lemma 4. Let $k, k^{\prime}, K, K^{\prime}, V_{K^{\prime}}$ and $G$ be as in Theorem 2. Let $u \in$ $U_{k} \cap N_{K^{\prime} / K}\left(U_{K^{\prime}}\right)$ and $A \in U_{K^{\prime}}$ be such that $N_{K^{\prime} / K}(A)=u$. Suppose that $A^{\sigma-1} \in V_{K^{\prime}}$ for all $\sigma \in G$, identifying $G$ and $G\left(K^{\prime} / k^{\prime}\right)$. Then $u \in N_{k^{\prime} / k}\left(U_{k^{\prime}}\right)$.

Proof. Since $V_{K^{\prime}} \subset U_{K^{\prime}}^{(1)}$, we have $(\bar{A})^{\sigma}=\bar{A}$ for all $\sigma \in G$, hence $A=a A_{1}$ with $a \in U_{k^{\prime}}$ and $A_{1} \in U_{K^{\prime}}^{(1)}$, since $K^{\prime} / k^{\prime}$ is unramified. Therefore we may suppose that $A \in U_{K^{\prime}}^{(1)}$ from the beginning. Suppose that $u \in U_{k}^{(m)}$ with some $m \geqq 1$. By applying Theorem 1 to $K^{\prime} / K$, we may suppose that $A \equiv 1+\lambda \pi^{\prime \psi(m)}\left(\bmod \pi^{\prime \mu(m)+1}\right)$, where $\pi^{\prime}$ is a prime element of $k^{\prime}, \psi$ is the Hasse function of $K^{\prime} / K$ and $\lambda \in \mathcal{O}_{K^{\prime}}$. Then $A^{\sigma-1} \equiv 1+\left(\lambda^{\sigma}-\lambda\right) \pi^{\prime \psi(m)}\left(\bmod \pi^{\prime \psi(m)+1}\right)$. Since $V_{K^{\prime}} \cap U_{K^{\prime}}^{(\psi(m))} \subset U_{K^{\prime}}^{(\psi(m)+1)}$ (see Serre [7], p. 104, Ex. a)), we have ( $\bar{\lambda})^{\sigma}=\bar{\lambda}$ for all $\sigma \in G$, hence we can take $\lambda$ in $\mathcal{O}_{k}$. Put $B=\left(1-\lambda \pi^{\prime(\psi(m)}\right) A$. Then $B \in U_{K^{\prime}}^{(\psi)+1)}, A^{\sigma-1}=B^{\sigma-1} \in V_{K^{\prime}}$, and $N_{K^{\prime} / K}(B)$ $\in U_{k}^{(m+1)}$ by Serre [8], Chap. V, Proposition 8. Applying the above procedure to $B$, we have $u \in N_{k^{\prime} / k}\left(U_{k^{\prime}}\right)$ by induction on $m$.

Proof of Theorem 2. Identify $G$ with the Galois group $G\left(K^{\prime} / k^{\prime}\right)$. For $u \in N_{K^{\prime} / K}\left(U_{K^{\prime}}\right) \cap k$ and $\sigma \in G$, put $f_{u}(\sigma)=A^{\sigma-1} \bmod V_{K^{\prime}}$, where $A \in U_{K^{\prime}}$ is such that $N_{K^{\prime} / K}(A)=u$. It is easily verified that $f_{u}(\sigma) \in T_{K^{\prime}} / V_{K^{\prime}}$ and that $f_{u}(\sigma)$ is independent of the choice of $A$ and that $f_{u} \in \operatorname{Hom}\left(G, T_{K^{\prime}} / V_{K^{\prime}}\right)$. Put $F_{K}(u)=f_{u}$, then it is easily verified that $F_{K}$ is a homomorphism of $N_{K^{\prime} / K}\left(U_{K^{\prime}}\right) \cap k$ to
$\operatorname{Hom}\left(G, T_{K^{\prime}} / V_{K^{\prime}}\right)$. By Lemma 4, $\operatorname{Ker} F_{K}=N_{k^{\prime} k}\left(U_{k^{\prime}}\right)$. Now we shall show that $F_{K}$ is surjective. Let $\chi \in \operatorname{Hom}\left(G, T_{K^{\prime}} / V_{K^{\prime}}\right)$. Let $L^{\prime}$ be the subfield of $K^{\prime}$ fixed by $\operatorname{Ker} \chi$ and put $L=L^{\prime} \cap K$. Let $\sigma_{1} \in G$ be such that $\chi\left(\sigma_{1}\right)$ generates $\operatorname{Im} \chi$. By (2) of Lemma 3, $\chi\left(\sigma_{1}\right)=x^{s-1} \bmod V_{K^{\prime}}$ with some $x \in k^{\prime x}$. If $d=\left[L^{\prime}: k^{\prime}\right]$, then $\chi\left(\sigma_{1}\right)^{d}=1$, hence $\left(x^{d}\right)^{s-1} \in V_{K^{\prime}} \cap T_{k^{\prime}}$, so $\left(x^{d}\right)^{s-1}=y^{s-1}$ with $y \in U_{k^{\prime}}$, by (3) of Lemma 3. This implies that $x^{d} / y \in k$. Since $k^{\prime} / k$ is fully ramified, we can take $y$ in $U_{k^{\prime}}^{(1)}$. Since $L^{\prime} / k^{\prime}$ is unramified, $y=N_{L^{\prime} / k^{\prime}}(z)$ with some $z \in U_{L^{\prime}}^{(1)}$. Put $w=x / z$, then $N_{L^{\prime} / k^{\prime}}(w)=x^{d} / y \in k$ and $\chi\left(\sigma_{1}\right)=w^{s-1} \bmod V_{K^{\prime}}$. Since $N_{L^{\prime} / k^{\prime}}\left(w^{s-1}\right)=\left(x^{d} / y\right)^{s-1}$ $=1$ and since $L^{\prime} / k^{\prime}$ is cyclic, by Hilbert's theorem $90, w^{s-1}=A^{\left(\sigma_{1}-1\right)}$ with $A \in L^{\prime x}$. Since $L^{\prime} / k^{\prime}$ is unramified, we may suppose that $A \in U_{L^{\prime}}$. Since $N_{L^{\prime} / L}(A)^{\sigma_{1}-1}=1$, we have $N_{L^{\prime} / L}(A)=u \in k$. Then $\chi\left(\sigma_{1}\right)=f_{u}\left(\sigma_{1}\right)$ and $\chi=f_{u}=1$ on $\operatorname{Ker} \chi$. Since $\left\{\sigma_{1}\right.$, $\operatorname{Ker} \chi\}$ generates $G$, we have $\chi=f_{u}$ on $G$. This completes the proof.
2.2. Corollaries to Theorem 2.

In this section we shall state the Corollaries to Theorem 2. The Corollary 1 is the statement (1) of the main theorem in the introduction. Corollaries 2 and 3 will be used for the proof of (2) of the main theorem.

Corollary 1. Let notations and assumptions be as in Theorem 2. Put $m=$ $\left[k^{\prime}: k\right]$. Suppose moreover that $\sigma^{m}=1$ for all $\sigma \in G$. Let $\chi(G)$ be the character group of $G$. Then $G^{*}(K)$ is isomorphic to $\chi(G)$.

Proof. Since $T_{K^{\prime}} / V_{K^{\prime}}$ is a cyclic group of order $m$ by (1) of Lemma 3, by assumption $\operatorname{Hom}\left(G, T_{K^{\prime}} / V_{K^{\prime}}\right) \cong \chi(G)$. Hence the assertion follows from Theorem 2.

Corollary 2. Let notations and assumptions be as in Theorem 2. Put $m=\left[k^{\prime}: k\right]$. Let $L$ be the maximal abelian extension of $k$ in $K$ such that $\sigma^{m}=1$ for all $\sigma \in G(L / k)$. Then $G^{*}(L)=G^{*}(K)$.

Proof. It is trivial that $G^{*}(K) \supset G^{*}(L)$. Put $H=[G, G]\left\langle g^{m} \mid g \in G\right\rangle$, then $L$ is the subfield of $K$ fixed by $H$. It is clear that $\operatorname{Hom}\left(G, T_{K^{\prime}} / V_{K^{\prime}}\right) \cong \operatorname{Hom}(G / H$, $\left.T_{K^{\prime}} / V_{K^{\prime}}\right)$. Hence by Theorem 2, $\#\left(G^{*}(K)\right)=\#\left(G^{*}(L)\right)$, so $G^{*}(K)=G^{*}(L)$.

Corollary 3. Let $K_{1}, K_{2}$ be two finite unramified Galois extensions of $k$ such that $K_{1} \supset K_{2}$, and put $G_{1}=G\left(K_{1} / k\right)$. Let $G^{*}\left(K_{i}\right), T_{K_{i}^{\prime}}$ and $V_{K_{i}^{\prime}}$ be as in Theorem 2, where $K_{i}^{\prime}=K_{i} k^{\prime}$, and let $F_{K_{1}}: G^{*}\left(K_{1}\right) \rightarrow \operatorname{Hom}\left(G_{1}, T_{K_{1}^{\prime}} / V_{K_{1}^{\prime}}\right)$ be the canonical isomorphism defined in Theorem 2. Put $G\left(K_{1} / K_{2}\right)^{\perp}=\left\{f \in \operatorname{Hom}\left(G_{1}, T_{K_{1}} / V_{K_{1}}\right) \mid f=1\right.$ on $\left.G\left(K_{1} / K_{2}\right)\right\}$. Then $F_{K_{1}}\left(G^{*}\left(K_{2}\right)\right)=G\left(K_{1} / K_{2}\right)^{\perp}$.

Proof. By the definition of $F_{K_{1}}, F_{K_{1}}\left(G *\left(K_{2}\right)\right) \subset G\left(K_{1} / K_{2}\right)^{\perp}$. Since $T_{K_{1}^{\prime}} / V_{K_{1}^{\prime}}$ $\cong T_{K_{2}^{\prime}} / V_{K_{2}^{\prime}}$, by Theorem 2, \#( $\left.F_{K_{1}}\left(G^{*}\left(K_{2}\right)\right)\right)=\#\left(G\left(K_{1} / K_{2}\right)^{\perp}\right)$. Therefore we have the assertion.

## § 3. Proof of the main theorem.

Noting the similarity of Theorem 2 to Kummer theory, we shall prove the statement (2) of the main theorem in the introduction. For the proof we use Theorem 2, Corollaries 1, 2 and 3 to Theorem 2 and the duality of finite abelian groups.

Proof of the main theorem. The statement (1) of the main theorem is already proved in Corollary 1 to Theorem 2. By Theorem 2, if $K \in \mathscr{F}_{m}$, then $G^{*}(K) \in \widetilde{W}\left(k^{\prime} / k\right)$.

Existence: Let $M \in \widetilde{W}\left(k^{\prime} / k\right)$. Then by the definition of $W\left(k^{\prime} / k\right), G^{*}\left(K_{1}\right)$ $\supset M$ for some finite unramified extension $K_{1}$ of $k$. By taking the Galois closure of $K_{1}$ over $k$, we may suppose that $K_{1} / k$ is a Galois extension. Moreover by Corollary 2 to Theorem 2, we may suppose that $K_{1} \in \mathscr{F}_{m}$ from the beginning. Since $K_{1} \in \mathscr{F}_{m}$, by Corollary 1 to Theorem 2, we can regard Hom ( $G\left(K_{1} / k\right)$, $T_{K_{1}^{\prime}} / V_{K_{1}^{\prime}}$ ) as the character group of $G\left(K_{1} / k\right)$. Put $H^{*}=F_{K_{1}}(M)$, where $F_{K_{1}}$ is the canonical isomorphism of $G^{*}\left(K_{1}\right)$ to $\operatorname{Hom}\left(G\left(K_{1} / k\right), T_{K_{1}^{\prime}} / V_{K_{1}^{\prime}}\right)$, defined in Theorem 2, Let $H$ be the subgroup of $G\left(K_{1} / k\right)$ corresponding to $H^{*}$ by the duality of finite abelian groups. Then $H^{*}=\left\{f \in \operatorname{Hom}\left(G\left(K_{1} / k\right), T_{K_{1}^{\prime}} / V_{K_{1}^{\prime}}\right) \mid f=1\right.$ on $H\}$. Let $K$ be the subfield of $K_{1}$ fixed by $H$, then $K \in \mathscr{F}_{m}$ and $F_{K_{1}}(M)=$ $F_{K_{1}}\left(G^{*}(K)\right)$ by Corollary 3 to Theorem 2, hence $M=G^{*}(K)$ by Theorem 2.

Uniqueness: Let $K_{1}, K_{2} \in \mathscr{I}_{m}$ be such that $G^{*}\left(K_{1}\right) \supset G^{*}\left(K_{2}\right)$. Put $K=K_{1} K_{2}$, $G=G(K / k)$ and $G_{i}=G\left(K / K_{i}\right)$ for $i=1$, 2. Let $F_{K}: G^{*}(K) \rightarrow \operatorname{Hom}\left(G, T_{K^{\prime}} / V_{K^{\prime}}\right)$ be the canonical isomorphism defined by Theorem 2. By Corollary 3 to Theorem $2, F_{K}\left(G^{*}\left(K_{i}\right)\right)=\left\{f \in \operatorname{Hom}\left(G, T_{K^{\prime}} / V_{K^{\prime}}\right) \mid f=1\right.$ on $\left.G_{i}\right\}$ for $i=1,2$. Since $K \in \mathscr{F}_{m}$, by Corollary 1 to Theorem $2 \operatorname{Hom}\left(G, T_{K^{\prime}} / V_{K^{\prime}}\right)$ is isomorphic to the character group of $G$. Then by the duality of finite abelian groups, $G^{*}\left(K_{1}\right) \supset G^{*}\left(K_{2}\right)$ implies $G_{1} \cong G_{2}$, so $K_{1} \supseteq K_{2}$. In particular, $G^{*}\left(K_{1}\right)=G^{*}\left(K_{2}\right)$ implies $K_{1}=K_{2}$.

Remark 1. Let $k$ be a complete field under a discrete valuation $\nu$ with arbitrary residue field $\bar{k}$ of characteristic $p \neq 0$ and assume that $p$ is a prime element of $k$. Let $k_{0}$ be the subfield of $k$ satisfying the conditions: (i) $k_{0}$ is complete with respect to the restriction of $\nu$ to $k$; (ii) the residue field $\bar{k}_{0}$ is the maximum perfect subfield of $\bar{k}$, i. e., $\bar{k}_{0}=\bigcap_{n=1}^{\infty}(\bar{k})^{p n}$. By MacLane [4], such a $k_{0}$ really exists. Let $k_{n}^{(0)} / k_{0}$ be a fully ramified cyclic extension of degree $p^{n}$ and put $k_{n}=k_{n}^{(0)} k$. Then it can be proved that $W\left(k_{n} / k\right)=H_{n}(k) / N_{k_{n} / k}\left(U_{k_{n}}\right)$, where $H_{n}(k)=\left\{x \in U_{k} \mid x \equiv \sum_{i=0}^{n} \lambda_{i}^{n-i} p^{i}\left(\bmod p^{n+1}\right)\right.$ with $\left.\lambda_{i} \in \mathcal{O}_{k}\right\}$.

Remark 2. If $\bar{k}$ is perfect, then $W\left(k^{\prime} / k\right)=U_{k} / N_{k^{\prime} / k}\left(U_{k^{\prime}}\right)$. Hence the main theorem in the introduction gives an interpretation of a quotient group $U_{k} / N_{k^{\prime} / k}\left(U_{k^{\prime}}\right)$; it can be regarded as the character group of the Galois group $G\left(K_{m} / k\right)$, where $K_{m}$ is the composite field of all fields in $\mathscr{F}_{m}$.

## § 4. Application.

In this section, we shall apply the main theorem to fully ramified cyclic extensions and $\boldsymbol{Z}_{\mu}$-extensions of $k$.

Lemma 5. Let $k$ be a complete field under a discrete valuation. Let $k_{1}, k_{2}$ be two finite fully ramified abelian extensions of $k$ such that $k_{1} L=k_{2} L$ with an extension $L / k$ of ramification index 1 (i.e., a prime element of $k$ is a prime element of L). Suppose that $N_{k_{1} / k}\left(k_{1}\right) \cap N_{k_{2} / k}\left(k_{2}\right)$ contains a prime element of $k$. Then $k_{1}=k_{2}$.

Proof. We may suppose that $k_{i} / k$ is cyclic and that $L$ is a Galois extension of $k$, by taking the Galois closure of $L$ over $k$. Since $k_{1}\left(k_{1} k_{2} \cap L\right)=$ $k_{2}\left(k_{1} k_{2} \cap L\right)$, we may suppose $L \subset k_{1} k_{2}$. Put $L k_{1}=L k_{2}=L_{1}$ and let $s$ be a generator of $G\left(L_{1} / L\right)$. By assumption, there exist prime elements $\pi_{i}$ of $k_{i}$ such that $N_{k_{1} / k}\left(\pi_{1}\right)=N_{k_{2} / k}\left(\pi_{2}\right)$. Put $u=\pi_{2} / \pi_{1}$, then $u \in U_{L_{1}}$ and $N_{L_{1} / L}(u)=1$. Hence $y^{s-1}=u$ with a $y \in L_{1}^{\times}$. Now suppose $k_{1} \neq k_{2}$. Then there exists $\sigma \in G\left(L_{1} / k_{1}\right)$ such that $\sigma \mid k_{2} \neq 1$. By the statement (1) of Lemma 3, $\pi_{2}^{\sigma-1} \in V_{k_{2}}$, hence by the statement (3) of Lemma 3, $\pi_{2}^{\sigma-1} \in V_{L_{1}}$. On the other hand, $\pi_{2}^{\sigma-1}=u^{\sigma-1}=\left(y^{\sigma-1}\right)^{s-1} \in V_{L_{1}}$, which is a contradiction. Therefore $k_{1}=k_{2}$.

Lemma 6. Let $k$ be as in Lemma 5 and let $k_{1}, k_{2}$ be two finite fully ramified Galois extensions of $k$ such that $k_{1} L=k_{2} L$ with a finite unramified extension $L / k$. Then $N_{k_{1} / k}\left(U_{k_{1}}\right)=N_{k_{2} / k}\left(U_{k_{2}}\right)$.

Proof. By taking the Galois closure of $L$ over $k$, we may suppose that $L$ is a Galois extension of $k$. Put $L^{\prime}=L k_{1}=L k_{2}$. Since $L^{\prime} / k_{i}$ is unramified, we we have $N_{L^{\prime} / k i}\left(U_{L^{\prime}}^{(1)}\right)=U_{k_{i}}^{(1)}$, hence $N_{L^{\prime} k}\left(U_{k_{1}}^{(1)}\right)=N_{k_{i} / k}\left(U_{k_{i}}^{(1)}\right)$. Since $k_{i} / k$ is fully ramified and $\left[k_{1}: k\right]=\left[k_{2}: k\right]$, we have the assertion.

Theorem 3. Let $k, k^{\prime}$ and $W\left(k^{\prime} / k\right)$ be as in the main theorem in the introduction. Let $\mathscr{F}=\mathscr{F}\left(k^{\prime}\right)=\left\{k^{\prime \prime} \mid k^{\prime \prime}\right.$ is a fully ramified cyclic extension of $k$ such that $k^{\prime} L=k^{\prime \prime} L$ with an unramified extension $L$ of $\left.k\right\}$. Let $F_{k^{\prime}}: \mathscr{I} \rightarrow W\left(k^{\prime} / k\right)$ be a map defined by $k^{\prime \prime} \mapsto\left(N_{k^{\prime} / k}\left(\pi^{\prime}\right) / N_{k^{\prime \prime} / k}\left(\pi^{\prime \prime}\right) \bmod N_{k^{\prime} / k}\left(U_{k^{\prime}}\right)\right)$, where $\pi^{\prime}$ and $\pi^{\prime \prime}$ are prime elements of $k^{\prime}$ and $k^{\prime \prime}$ respectively. Then $F_{k^{\prime}}$ is bijective and independent of the choice of $\pi^{\prime}$ and $\pi^{\prime \prime}$.

Proof. By Lemma 6, $F_{k^{\prime}}$ is independent of the choice of $\pi^{\prime}$ and $\pi^{\prime \prime}$.
$F_{k^{\prime}}$ is injective: Let $k_{i} \in \mathscr{F}$ with $i=1,2$. By assumption, $L k_{1}=L k_{2}=L k^{\prime}$ with an unramified extension $L$ of $k$. Suppose that $F_{k^{\prime}}\left(k_{1}\right)=F_{k^{\prime}}\left(k_{2}\right)$. Then by the definition of $F_{k^{\prime}}$ and by Lemma 6, $N_{k_{1} / k}\left(k_{1}\right)=N_{k_{2} / k}\left(k_{2}\right)$. Hence by Lemma $5, k_{1}=k_{2}$. Hence $F_{k^{\prime}}$ is injective.
$F_{k^{\prime}}$ is surjective: Let $u \in W\left(k^{\prime} / k\right)$ and let $m^{\prime}$ be the order of $\langle u\rangle$. Then $m^{\prime} \mid m$. By the main theorem, there exists an unramified cyclic extension $K / k$ of degree $m^{\prime}$ such that $G^{*}(K)=\langle u\rangle$. Put $K^{\prime}=K k^{\prime}$. By Galois theory, there exist $m^{\prime}$ cyclic extensions $k_{1}, \cdots, k_{m^{\prime}}$ of degree $m$ such that $k^{\prime} \neq k_{i}$ and $k_{i} \subset K^{\prime}$
for $i=1,2, \cdots, m^{\prime}$. Clearly $F_{k^{\prime}}\left(k_{i}\right) \in\langle u\rangle$. Since $F_{k^{\prime}}$ is injective, $F_{k^{\prime}}\left(k_{i}\right)=u$ with some $i$. Hence $F_{k^{\prime}}$ is surjective. This completes the proof.

Now we apply Theorem 3 to $\boldsymbol{Z}_{p^{\prime}}$-extensions of $k$. Fix a fully ramified $\boldsymbol{Z}_{p^{-}}$. extension $k_{\infty}$ of $k$, and let $k_{n} / k$ be the sub-extension of $k_{\infty} / k$ of degree $p^{n}$. For $m \geqq n \geqq 1$, let $\rho_{n}^{m}: W\left(k_{m} / k\right) \rightarrow W\left(k_{n} / k\right)$ be a homomorphism defined by $x \bmod N_{k_{m} / k}\left(U_{k_{m}}\right) \mapsto x \bmod N_{k_{n} / k}\left(U_{k_{n}}\right)$ with $x \in N_{\hat{k}_{m} / \hat{k}_{u r}}\left(U_{\hat{k}_{m}}\right) \cap k$, where $\hat{k}_{u r}$ is the completion of the maximum unramified extension of $k$ and $\hat{k}_{m}=\hat{k}_{u r} k_{m}$. Then $\left\{W\left(k_{n} / k\right), \rho_{n}^{m}\right\}$ is a projective system. Let $W\left(k_{\infty}\right)$ be the projective limit of this system. Then we have directly the following Theorem 4 by Theorem 3,

THEOREM 4. ${ }^{(2)}$ Let $k, p, k_{\infty}$ and $W\left(k_{\infty}\right)$ be as above. Let $\mathscr{F}\left(k_{\infty}\right)=\left\{k_{\infty}^{\prime} \mid k_{\infty}^{\prime}\right.$ is a fully ramified $\boldsymbol{Z}_{p}$-extension of $k$ such that $k_{\infty} L=k_{\infty}^{\prime} L$ with an unramified extension L of $k\}$. Let $F_{\infty}: \mathscr{F}\left(k_{\infty}\right) \rightarrow W\left(k_{\infty}\right)$ be a map defined by $k^{\prime} \mapsto\left\{N_{k_{n}^{\prime} k}\left(\pi_{n}^{\prime}\right) / N_{k_{n} / k}\left(\pi_{n}\right)\right.$ $\left.\bmod N_{k_{n} / k}\left(U_{k_{n}}\right)\right\}$, where $k_{n}^{\prime} / k$ and $k_{n} / k$ are the sub-extensions of $k_{\infty}^{\prime} / k$ and $k_{\infty} / k$ of degree $p^{n}$ respectively, and where $\pi_{n}^{\prime}$ and $\pi_{n}$ are prime elements of $k_{n}^{\prime}$ and $k_{n}$ respectively. Then $F_{\infty}$ is independent of the choice of prime elements and $F_{\infty}$ is bijective.

Remark 1. Suppose the conditions: (i) $p$ is a prime element of $k$, (ii) the finite field $\boldsymbol{F}_{p}$ with $p$ elements is the maximum perfect subfield of $\bar{k}$, i. e., $\boldsymbol{F}_{p}=\bigcap_{n=1}^{\infty}(\bar{k})^{p^{n}}$. As typical examples, we have $k$ such that $\bar{k}=\boldsymbol{F}_{p}(t)$ (the rational function field over $\boldsymbol{F}_{p}$ in one variable $t$ ) or $\boldsymbol{F}_{p}\{t\}$ (the field of power series over $\boldsymbol{F}_{p}$ in one variable $t$ ). In this case, it is easily verified by [6], Theorem that $\mathscr{F}\left(k_{\infty}\right)$ is the set of all fully ramified $\boldsymbol{Z}_{p}$-extensions of $k$.

Remark 2. It can be proved that $W\left(k_{\infty}\right)=\lim _{\leftarrow} H_{n}(k) / N_{k_{n} / k}\left(U_{k_{n}}\right)$ under the above conditions (i), (ii), where $H_{n}(k)$ is as in the Remark 1 in $\S 3$ and the projective limit is taken with respect to a homomorphism induced by the natural injection of $H_{n^{\prime}}(k)$ into $H_{n}(k)$ for $n^{\prime} \geqq n$. Therefore under the above conditions (i), (ii), as a Corollary to Theorem 4, it can be proved that $\bigcap_{n=1}^{\infty} N_{k_{n}^{\prime} / k}\left(k_{n}^{\prime}\right)$ contains a prime element of $k$ if and only if there exists a $\boldsymbol{Z}_{p}$-extension $k_{c}$ of $\boldsymbol{Q}_{p}$ such that $k_{\infty}^{\prime}=k_{c} k .{ }^{(3)}$ Note that $W\left(k_{\infty}\right)=U_{k}^{(1)}$ if $k=\boldsymbol{Q}_{p}$ and that in this case Theorem 4 follows from local class field theory.

## References

[1] E. Artin and J. Tate, Class field theory, Benjamin, New York, 1967.
[2] Y. Ihara, On a problem on some complete $p$-adic function fields (in Japanese), Kokyuroku of the Research Institute for Mathematical Sciences Kyoto Univ., 41 (1968), 7-17.
(2) This can be regarded as a generalization of [5], §6, Corollary 2 to Theorem.
(3) This is [5], §6, Corollary 3 to Theorem.
[3] S. Iyanaga (editors), Number theory (in Japanese), Iwanami Shoten, Tokyo, $1969=$ (in English), North-Holland, Amsterdam, 1975.
[4] S. MacLane, Subfields and automorphism groups of $p$-adic fields, Ann. of Math., 40 (1939), 424-442.
[5] H. Miki, On cyclic extensions of $p$-power degree over complete $p$-adic fields (in Japanese), Master's thesis, University of Tokyo, 1973.
[6] H. Miki, On $\boldsymbol{Z}_{p}$-extensions of complete $p$-adic power series fields and function fields, J. Fac. Sci. Univ. Tokyo Sec. IA, 21 (1974), 377-393.
[7] S. Sen, On automorphisms of local fields, Ann. of Math., 90 (1969), 33-46.
[8] J. P. Serre, Corps locaux (2nd edition), Hermann, Paris, 1968.
[9] O. Teichmüller, Diskret bewertete perfekte Körper mit unvollkommenem Restklassenkörper, J. Reine Angew. Math., 176 (1937), 141-152.
[10] E. Witt, Zyklische Körper und Algebren der Characteristik p von Grade $p^{n}$, J. Reine Angew. Math., 176 (1936), 126-140.

Hiroo Miki<br>Department of Mathematics<br>University of Tokyo<br>Present address:<br>Department of Mathematics<br>Faculty of Engineering<br>Yokohama National University<br>Tokiwadai, Hodogaya-ku<br>Yokohama, Japan


[^0]:    *) Partly supported by Fūjukai Foundation.
    (1) We found this theorem to simplify the proof of [5], §6, Theorem and its Corollary 2, which is the original form of Theorem 4 in this paper. Our first motivation of [5] was to consider the problem of finding the class field theory of $\boldsymbol{Q}(t)_{p}$ (see Ihara [2]).

