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In this paper we deal with two formal number theories, $i$ . $e$ . a classical
and an intuitionistic one. They are obtained from Gentzen’s well-known
logical systems $LK$ and $LJ$ by adding the principle of mathematical induction
as an inference rule. Our aim is to prove that we can transform any deriva-
tion in these systems into its so-called normal form. We shall explain later
what a normal derivation is. To put it briefly, it means a proof without
redundancy. It will be defined not as the derivation which can not be trans-
formed any more but as the derivation satisfying some conditions on variables
and inference rules. In the proof of our assertion we apply the transfinite
induction up to $\epsilon_{0}$ just as Gentzen did in his second consistency proof of num-
ber theory.

Our normalization theorem yields some by-products. Examining structures
of normal derivations, we shall obtain the following results: the consistency
of number theory, and Harrop’s result (a disjunctive and an existential pro-
perty for intuitionistic number theory). These results are obtained as the
direct consequences of our theorem.

There are several investigations on normalization theorems in formal num-
ber theories. For example, Jervell [5], Martin-L\"of [6], Prawitz [7], Troelstra
[13] and Zucker [14] study them for several systems of natural deduction.
And Scarpellini $[8]-[11]$ obtain some related results for systems of sequent

calculus. Later we shall refer to them again.
In \S 1 we introduce our formal systems. We state our main theorem and

show its aPplications there. In \S 2 we paraphrase the theorem so that we
could simplify our way of thinking for the proof. After some preparations
the paraphrased theorem is proved. In these sections we treat both the classical
and the intuitionistic system simultaneously. And, if necessary, we give a
certain notice to distinguish them.

Most of our concepts are due to Gentzen [2]. With a few exceptions we
use the same terminology in the same senses as those in the English transla-
tion of it.
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The author expresses his hearty thanks to Professor Maehara who made
invaluable discussions with him in course of this work.

\S 1. Main theorem and its applications.

1. Formal systems.
1.1. In our systems we use only $0$ (zero) as the individual constant and

only ’ (successor function) as the function symbol. We use different letters
to represent the free and the bound variables. Predicate symbols are admitted
according to the need. The logical symbols which we shall use are $A,$ $V,$ $7$ ,
$\supset,$

$\forall$ and $\exists$ .
The concepts ‘term’, ‘formula’ and ‘sequent’ are defined as usual. A term,

a formula, or a sequent is said to be closed, if it contains no free variables.
In intuitionistic case any sequent shall have at most one formula in the suc-
cedent.

1.2. We use all the inference figures admitted in Gentzen [2] and the ones
concerning the implication $\supset$ introduced in the original $LK$ or $LJ$ of Gentzen
[1]. But the CJ-inference figures (VJ-SchluBfiguren) are used in the following
reformed form:

$\frac{\Gamma\rightarrow\Theta,F(0)F(a),\Gamma\rightarrow\Theta,F(a^{\prime})F(t),\Delta\rightarrow\Lambda}{I^{7},\Delta\rightarrow\Theta,\Lambda}$

where the free variable designated by $a$–which we call the eigenvariable of
the inference figure–must not occur in the sequence $F(O),$ $F(t),$ $\Gamma,$ $\Delta,$ $\Theta,$

$\Lambda$ . In
each CJ-inference figure the formula designated by $F(a)$ and the term desig-
nated by $t$ are called the induction formula and the induction term, respectivelv.

A free variable in an inference figure is said to be redundant, if it appears
in one or more upper sequents but does not in the lower sequent, and if it is
not the eigenvariable of the inference figure.

1.3. The concept ‘derivation (Herleitung)’ is defined similarly as in [2].

We use, however, only basic logical sequents (logische Grundsequenzen) as the
basic sequents (Grundsequenzen); consequently, every uppermost sequent of a
derivation must have the form $D\rightarrow D$ .

If a derivation includes an inference figure with a redundant variable,

then we say simply that the derivation contains a redundant variable.

2. Main theorem.
2.1. A CJ-inference figure is said to be irreducible, if the induction formula

contains at least one occurrence of the eigenvariable and if the induction term

1) The same terminology has been used in different meanings: Cf. Jervell [5],

Troelstra [13] and Zucker [14].
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is a free variable.
We shall often use the following property:
I. If an irreducible CJ-inference figure is included in a derivation without

any redundant variables, then the lower sequent must contain the same
free variable as the induction term.

2.2. Our main theorem holds both in the classical system and in the intui-
tionistic system.

MAIN THEOREM. We can transform any derivation into the one with the
same end sequent and having the following properties:

N1. It includes no cuts.
N2. It includes no CJ-inference figures excePt irreducible ones.
N3. It contains no redundant variables.
The derivation having the properties $N1-N3$ is said to be normal or $in$

normal form. We Postpone the proof of this theorem until \S 2.

3. Applications of the Main Theorem.
We show two applications as the immediate consequences of our Main

Theorem. The concepts ‘path (Faden)’ and ‘a sequent stands below (unter)

another sequent’ will be used in the same senses as those of the same termino-
logy in Gentzen [2].

3.1. Consistency. We remark in advance that ordinary number-theoretic
axioms can be expressed in closed formulas in universal prenex normal form.
On the consistency of number theory we can prove the following result.

PROPOSITION 1. Let $\Gamma$ be any sequence of closed formulas in universal Pre-
nex normal form. If $\Gamma$ is consistent in $LK$ or $LJ$, then so is $\Gamma$ in our classical
or intuitionistic number-theoretic system, respectively.

PROOF. We prove both cases simultaneously. Suppose the contrary. And
assume that the sequent $\Gamma\rightarrow$ is derivable in one of our systems. From the
normal derivation we take, if any, a lowermost sequent containing a free vari-
able. Clearly it is not the end sequent, nor an upper sequent of an inference
Pgure. This is impossible. Therefore the derivation contains no free variables
and hence includes no CJ-inference figures: $i$ . $e.$ , it is a derivation in $LK$ or
$LJ$. This contradicts our hypothesis.

In the intuitionistic case the above assertion can be slightly sharpened as
follows: If a closed sequent which contains neither a positive occurrence of
the symbol $\forall$ nor a negative occurrence of the symbol $\exists$ is derivable in our
number-theoretic system, then so is the sequent in $LJ$. We use the termino-
logy ‘positive’ and ‘negative’ in the usual senses.

3.2. HarroP’s result. We give a proof for some results in Harrop [3]. We
treat here only the intuitionistic system. First we list some conditions on a
set of formulas:
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$Hp1$ . If $A\Lambda B$ is contained in the set, then so are both $A$ and $B$ .
$Hp2$ . If $A\supset B$ is contained in the set, then so is $B$ .
$Hp3$ . If $\forall xF(x)$ is contained in the set, then so is $F(\overline{n})$ for each numeral $\overline{n}$ .
$Hp4$ . $A\vee B$ is not contained in the set.
$Hp5$ . $\exists xF(x)$ is not contained in the set.

All of these conditions are satisfied, for example, by the empty set and by the
set of formulas which, in Harrop’s terminology, contain neither relevant occur-
rences of the disjunction nor those of the existential quantifiers. We remark
that ordinary number-theoretic axioms can be expressed by formulas in some
suitably chosen set satisfying all of these conditions.

PROPOSITION 2. Let $\Gamma$ be a finite (possibly empty) sequence of elements in
a set, say $X$, of closed formulas which satisfies $Hp1-Hp5$ . And let $A\vee B$ and
$\exists xF(x)$ be closed forrnulas.

1) If the sequent $\Gamma\rightarrow A\vee B$ is derivable, then so is at least one of the sequ-
ents $\Gamma\rightarrow A$ and $\Gamma\rightarrow B$ .

2) If the sequent $\Gamma\rightarrow\exists xF(x)$ is derivable, then so is the sequent $\Gamma\rightarrow F(\overline{n})$

for some numeral $\overline{n}$ .
PROOF. We treat both cases simultaneously. Let $D$ be either AVB or

$\exists xF(x)$ , and suPpose that the sequent $\Gamma\rightarrow D$ is derivable.
From the rightmost path in the normal derivation of this sequent we

choose the uppermost sequent, say $S$, satisfying the following: The succedent
of the sequent concerned as well as that of any sequent standing below the
sequent is $D$ . We denote by $\mathcal{P}$ the (sub)path starting with $S$ and ending with
the end sequent.

We take, if any, the lowermost sequent, say $s*$ , from $\mathcal{P}$ whose antecedent
includes a formula not contained in $X$. Clearly $s*$ is not the end sequent.
By the properties $Hp1-Hp5,$ $N1$ and $N3$ the sequent must be an upper
sequent of a CJ-inference figure, since $D$ is in the succedent of every sequent

of $\mathcal{P}$ . But the properties $N2$ and $I$ derive a contradiction from this. Thus
the antecedent of each sequent in $\mathcal{P}$ contains at most some elements of $X$.

Consequently $S$ is not a basic sequent. It must be either the lower sequent
of a thinning (Verd\"unnung) introducing $D$ on the succedent or the lower
sequent of an operational inference figure (Verkn\"upfungs-SchluBfigur) introduc-
ing $D$ as the principal formula (Hauptformel) on the succedent.

Since each antecedent formula in any sequent of $\mathcal{P}$ does not contain the
disjunction as the outermost logical symbol, we can transform $\mathcal{P}$ so as to
prove the assertions.

4. Others’ works.
There are several papers on normalization theorems in formal number

the ries.
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Applying Gentzen’s reduction-method in [2] to classical and intuitionistic
system of sequent calculus, Scalpellini [8] obtains several results. By one of
his theorems we see that any derivation with the closed end sequent can be
reduced to a kind of normal form, $i$ . $e$ . to a derivation of it without redundant
variables which itself coincides with its final Part or which includes an
operational inference figure2) with the lower sequent in the final part whose
principal formula has an image in the end sequent. The consistency of num-
ber theory can be obtained as an immediate consequence; he carries out
further Gentzen-type reductions to obtain Harrop’s result. We can conclude
the above assertion from our Main Theorem. In $[9]-[11]$ he obtains similar
results in variously extended systems.

Making use of his correspondence between a natural deduction and a
sequent calculus, Zucker [14] gets a normalization theorem for intuitionistic
system of natural deduction. But, as he remarks it, his theorem works only
for the derivations in a restricted class. Let $A,$ $\Gamma$ be the conclusion and the
sequence of assumptions of a derivation, respectively. He uses the following
conditions. The sequent $\Gamma\rightarrow A$ is closed; the logical symbol $\forall$ does not occur
positively in the sequent, while the logical symbol(s) $\exists$ (and V) do(es) not
occur negatively in it. Under these assumptions he reduces each derivation to
a normal form, which includes no CJ-inference figures. The result can be
obtained, as remarked before, as the immediate consequence of our Main
Theorem.

In relation to the investigations of Sanchis’s and Tait’s on computability
of terms of finite type, Jervell [5] and Martin-L\"of [6] obtain their normaliza-
tion theorems for several systems of natural deduction. Jervell [5] exemplifies
an important property of redundant variables. The elimination of redundant
variables is essential for the normalization theorem to be practical. In the
intuitionistic case our Main Theorem is essentially the same as his theorem.
In the classical case, however, the expression of his theorem seems not so
complete. Martin-L\"of [6], which treats an intuitionistic system, is likely to
intend to take consideration on redundant variables by using the rules of
inference for the elimination of an inductively defined predicate. But his con-
traction-rules for reductions seem to lack those for permutative reductions in
Troelstra [13], which Troelstra remarks.

Troelstra [13] proves several normalization theorems for an intuitionistic
system of natural deduction and shows their applications. Our definition of a
normal form, however, differs from his. He dePnes it as the deduction which

1) Essentially, it corresponds to our ‘end place’ (cf. 1.2 in \S 2).
2) This inference figure corresponds to our ‘boundary’ (cf. 1.2 in \S 2) satisfying

the condition in 2.251 of \S 2.
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can not be reduced any more. He adapts and extends Prawitz’s method which
he used in APpendix A of [7] to prove a normalization theorem for some
logical systems. Their ideas are based on ‘strong validity’ of deductions. Then
he formalizes the normalization theorem (for subsystems of bounded logical
complexity) in his intuitionistic system itself. He argues also on a normaliza-
tion theorem for a second order intuitionistic arithmetic.

\S 2. Proof of the Main Theorem.

1. Preparations for the proof.
1.1. We shall prove the following theorem instead of the Main Theorem.

From now on $\Gamma^{*}$ means the result obtained from $\Gamma$ by omitting some formulas.
THEOREM. Let the sequent $\Delta\rightarrow\Lambda$ be derivable. We can transform any

derivation of the sequent into the one with the end sequent $\Delta^{*}\rightarrow\Lambda*and$ having
the following properties:

1) It includes no cuts.
2) It includes no CJ-inference figures excePt irreducible ones.
3) It contains no redundant variables.
This theorem holds, as later seen, both in the classical system and in the

intuitionistic system. Therefore we can see that it implies our Main Theorem.
1.2. We define here some concepts. The end Place of a derivation consists

of the end sequent and the sequents below which only the lower sequents of
contractions (Zusammenziehungen), or of interchanges (Vertauschungen), or of
cuts are standing. Gentzen’s concept ‘ending (Endst\"uck)’ and ours ‘end place’
are similar but different. The uppermost sequents of the end place are the
uppermost sequents of the entire derivation, or the lower sequents of thinnings,
or those of operational inference figures, or those of CJ-inference figures. The
inference figure which divides a derivation into the end place and the other
part is called the boundary of the end place.

The concept ‘clustered (verbunden)’ is defined similarly as in Gentzen [2].

And the concepts ‘cluster of formulas (Formelbund)’ and ‘the cluster associated
with $\cdots$ (der zu $\cdots$ geh\"orige Bund)’ can be also defined similarly, since the end
place includes at most contractions, interchanges and cuts as the inference
figures. But a cut is not always associated with every cluster.

1.3. We use the following terminology in the same senses as those in [2]:

the ‘degrees (Grade)’ of a formula, a cut and a CJ-inference figure;
the ‘level (H\"ohe)’ of a derivation sequent (Herleitungssequenz).
We assign an ordinal number to each line of inference (SchluBstrich) in a

derivation. We do this just as in [2] for each inference figure except the
one concerning the implication and the CJ-inference figure.

For the former we correspond an ordinal number to the line of inference
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similarly as to those for the other operational inference figures.
For the latter we do this as follows. Let $\alpha,$

$\beta$ and $\gamma$ be the ordinal num-
bers of the three upper sequents of a CJ-inference figure, and especially $\beta$ be
that of the central sequent. If $\beta$ is expressed in Cantor’s normal form as

$\omega^{\beta_{1}}+\cdots+\omega^{\beta_{n}}$ ,

then the ordinal number of the line of inference is defined as
$\alpha\#\omega^{\beta_{1}+1}\#\gamma$ ,

where $\#$ means the natural sum of two ordinal numbers.
Thus we can calculate the ordinal number of any derivation in our systems.

2. Proof of the Main Theorem.
2.1. Course of the proof. We prove the theorem stated in 1.1 of this sec-

tion. Our method of the proof is fundamentally based upon those of Gentzen
[2] and Takeuti [12]. And the same idea is also applied to the author’s earlier
paper [4] which Zucker [14] refers to.

We take arbitrarily a derivation, say $P$. If there are no boundaries, then
it can be easily transformed into a required derivation. If there are any
boundaries, then we need to classify this case according to the types and the
kinds of the boundaries. And we reduce the problem concerning $P$ to the one
concerning a simpler derivation with less ordinal number.

To carry out this program we reduce the derivation itself. Of the reduc-
tion of a derivation, there are two kinds, $i$ . $e$ . the auxiliary and the essential
reduction. The ordinal number of a derivation does not always decrease after
an auxiliary reduction. Sometimes it is unchanged. But the reduction is
necessary for the elimination of redundant variables and for some essential
reductions in succeeding steps, which decrease really the ordinal number of
the derivation.

When we are concerned with a case in the following, we suppose that $P$

satisfies none of the conditions of the preceding cases. If $P$ does not become
a required derivation after the possible reductions in a case, then we go back
to a preceding case or ahead to the next case, according as the resulting
derivation satisfies the condition of some preceding case or not, respectively.
We omit actual calculation of ordinal numbers for derivations, since it can be
carried out just as in Gentzen [2].

In 2.2 we prove our theorem for the classical system, and in 2.3 we modify
the proof into the one for the intuitionistic system.

2.2. Proof for the classical system. SuPpose that a derivation $P$ is given.
2.21. The case where $P$ contains redundant variables. Substituting $0$ for

suitable occurrences of these free variables, we can eliminate all redundant
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variables from $P$. We omit the minor details here. This is an auxiliary
reduction. The ordinal number of the new derivation is equal to that of $P$.

2.22. The case where the end place of $P$ includes basic logical sequents.
We take arbitrarily such a sequent. If it is $P$ itself, then it is also a required
derivation for $P$. If it is an upper sequent of an inference figure, then the
inference figure must be a cut. Removing both uPper sequents of the cut,
we reduce $P$ to a new derivation, say $P_{1}$ . This is an essential reduction. The
level of each sequent in $P_{1}$ is not greater than that of the corresponding
sequent in $P$. Therefore the ordinal number of $P_{1}$ is less than that of $P$. By
induction hypothesis $P_{1}$ can be transformed into a required derivation, which
is also a required derivation for $P$ .

REMARK. Suppose that $P$ includes no boundaries, $i$ . $e$ . that $P$ coincides
with its end place. If there are any cuts in $P$, then we take one of the uPper-

most ones. Then both upper sequents of this cut must be basic logical sequ-
ents. If there are no cuts in $P$, then $P$ itself is a basic logical sequent.
Consequently we shall treat henceforth only the case that $P$ includes some
boundaries.

2.23. The case where $P$ includes thinnings as boundaries. By a series of
auxiliary reductions we can exclude from $P$ all the thinnings used as boundaries.
In these reductions some formulas of the end sequent may be canceled. Let
$\Im$ be one of such thinnings and $D$ be the thinning formula of $\Im$ .

First we cancel $D$ in the lower sequent of $\Im$ . Then we cancel in the next
lower sequent the formula clustered with $D$ , and then in the subsequent lower
sequent the formula clustered with this canceled formula, $\cdots$ We continue
this procedure until we cancel a formula in one of the following sequents:

1) The upper sequent of the uppermost contraction that contracts the
two formulas belonging to the cluster associated with $D$ .

2) An uPper sequent of the cut whose cut formulas belong to the cluster
associated with $D$ .

3) The end sequent.

In the cases 1) and 3) we stop our procedure. In the case 2) we replace the
ex-cut by some thinnings and interchanges so as to obtain the same sequent
as the lower sequent of the ex-cut and we stop the procedure. Then we con-
tract the same successive sequents into one to obtain a new derivation $P_{1}$ .

The level of each sequent in $P_{1}$ is not greater than that of the correspond-
ing sequent in $P$. Therefore the ordinal number of $P_{1}$ is not greater than
that of $P$.

Let $m$ and $n$ be the total number of cuts in $P$ and that of thinnings in $P$,

respectively. Our assertion stated at the beginning can be proved by trans-
finite induction on $\omega\cdot m+n$ .
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2.24. The case where $P$ includes CJ-inference figures as boundaries. Let $\Im$

be one of such CJ-inference Pgures. And let $P$ be of the form:

According to the forms of the induction term $t$ and the induction formula $F(a)$ ,
we need to classify this case furthermore. In each case the reduction of $P$ is
essential.

2.241. The case where the induction term is a numeral, or where the induc-
tion formula does not actually contain the eigenvariable. We reduce $P$ to a
derivation $P_{1}$ by replacing $\Im$ by some cuts, interchanges and contractions.
Then the level of each sequent in $P_{1}$ is equal to that of the corresponding
sequent in $P$. And the ordinal number of $P_{1}$ is less than that of $P$, since the
number of these consecutive cuts are finite. Therefore, by induction hypothesis,
$P_{1}$ can be transformed into a required derivation, which is also a required
derivation for $P$. We omit the minor details here.

2.242. The case where the induction term is not a numeral and the induction
formula contains actually the eigenvariable. First we reduce $P$ to three pre-
paratory derivations $P_{1},$ $P_{2}$ and $P_{3}$ . The first two derivations are obtained
from $P$ by replacing $\Im$ by some thinnings and interchanges and by substitut-
ing a free variable, say $b$ , not contained in $P$ for suitable occurrences of $a$

in $P$.

Since $t$ is not a numeral, it should have one of the forms $c,$
$c^{\prime},$ $c^{\prime\prime},$ $\cdots$ , where $c$

is a free variable. Changing appropriate free variables into new ones, we can
suppose that all the eigenvariables in $P$ differ from $c$ . We obtain $P_{3}$ from $P$

by substituting $c,$
$c^{\prime},$ $c^{\prime},$ $\cdots$ for suitable occurrences of $a$ and by replacing $\Im$

by some cuts, interchanges and contractions.
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In the case where $t$ is $c$ itself there does not appear in $P_{3}$ the derivation end-
ing with the left upPer sequent of $\Im_{1}$ . And the lower sequent of $\Im_{1}$ is directly
obtained by adding some thinnings and interchanges to the derivation ending
with the rightmost upper sequent of $\Im$ in $P$.

The level of each sequent in every Preparatory derivation is not greater
than that of the corresponding sequent in $P$. Accordingly the ordinal number
of each preparatory derivation is less than that of $P$. Thus, by induction
hypothesis, we get a required derivation, say $Q_{i}$ , for each $P_{i}$ . Since $b$ is not
contained in the sequence $F(O),$ $F(c),$ $\Delta,$ $\Lambda$ , we can combine these three deriva-
tions by an irreducible CJ-inference figure, say $\Im_{2}$ , to obtain the following
derivation $Q$ :

Now we consider again the original derivation $P$. Since $P$ is supposed
here not to contain redundant variables, the free variables in $F(t)$ must appear
in the lower sequent of $\Im$ . And, since the lower sequent of $\Im$ is included in
the end place, these free variables must appear also in the end sequent. Al-
lowing for the properties of each $Q_{i}$ , we can conclude from this that $Q$ is a
required derivation for $P$.

2.25. The case where $P$ includes oPerational inference figures as boundaries.
According to the types of these boundaries, we calassify this case furthermore.
All the reductions are essential.

2.251. The case where there exists an inference figure among these boundaries
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whose Principal formula and a formula in the end sequent belong to the same
cluster of formulas. Let $\Im$ be one of such inference Pgures. We treat repre-
sentatively only the case that $\Im$ is an inference Pgure introducing a universal
quantifier. All the other cases can be treated similarly.

2.251.1. The case where $\Im$ is an inference figure introducing a universal
quantifier on the antecedent. We reduce $P$ to a preparatory derivation $P_{1}$ by
replacing $\Im$ by some thinnings and interchanges.

The level of each sequent in $P_{1}$ is equal to that of the corresponding sequent
in $P$. Therefore the ordinal number of $P_{1}$ is less than that of $P$. By induc-
tion hypothesis we get a required derivation, say $Q_{1}$ , for $P_{1}$ . Adding some
inference figures to $Q_{1}$ as above, we obtain a new derivation $Q$ . Note that $\Delta$

contains $\forall xF(x)$ . Since neither $P$ nor $Q_{1}$ contains redundant variables, $Q$ does
not contain them, too. Thus, allowing for the properties of $Q_{1}$ , we see that
$Q$ is a required derivation for $P$.

2.251.2. The case where $\Im$ is an inference figure introducing a universal
quantifier on the succedent. Let $a$ be the eigenvariable of $\Im$ . Substituting a
free variable, say $b$ , not contained in $P$ for suitable occurrences of $a$ in $P$, we
change the eigenvariable of $\Im$ into $b$ . Then, just as in 2.251.1, we reduce this
new derivation to $P_{1}$ and obtain a required derivation $Q$ for $P$ via a required
derivation $Q_{1}$ for $P_{1}$ .

2.252. The case where there exists an inference figure among these boun-
daries whose principal formula and a cut formula belong to the same cluster of
formulas. Recall that $P$ is supposed here to satisfy none of the conditions of
the preceding cases. First we show that the end place of $P$ includes a cut
with special Properties. Then we reduce $P$, using the Properties of the cut.

We consider the following condition $C$ to each sequent in the end place
of $P$ :
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C. Starting with a formula in the sequent concerned, we trace upward the
cluster associated with the formula to meet with the Principal formula
of a boundary.

The lower sequent of each boundary satisfies $C$ , since $P$ satisfies none of the
conditions of the cases 2.23 and 2.24; on the other hand the end sequent does
not, since $P$ does not satisfy the condition of the case 2.251. And, ascending
each path from the end sequent, we encounter necessarily the lower sequent
of a boundary since $P$ does not satisfy the condition of the case 2.22. Thus
there must be an inference Pgure in each path (one of) whose upper sequent(s)
satisPes $C$ but whose lower sequent does not. We take one of the uppermost
ones and denote it by $\Im$ . $\Im$ should be a cut. And, above each uPper sequent
of $\Im$ , there must be a boundary whose principal formula and the cut fomulas
of $\Im$ belong to the same cluster of formulas.

According to the kind of the outermost logical connective of the cut for-
mula of $\Im$ , we need to classify this case furthermore. We concern here only
the case that the logical connective is a universal quantifier, since all the
other cases can be treated similarly. Then $P$ must be of the following form:

Both $\Im_{1}$ and $\Im_{2}$ are boundaries. $\Im$ is the above-mentioned cut. Let $\rho$ be the
level of the upper sequent of $\Im$ . Since $\rho$ is positive and the level of the end
sequent is zero, there must be an inference figure, say $\Im_{3}$ , whose upper sequent
has the level $\rho$ and whose lower sequent has the less level, say $\tau$ , than $\rho$ .

Changing appropriate free variables into new ones, we can suppose that
all the eigenvariables in $P$ differ from the free variable contained in $t$ . We
cut off from $P$ the derivation ending with the lower sequent of $\Im_{3}$ . By replac-
ing $\Im_{1}$ or $\Im_{2}$ by some thinnings and interchanges, and by substituting $t$ for
suitable occurrences of $a$ , we obtain two derivations which are expressed be-
low as those ending with the lower sequents of $\Im_{3}^{\prime}$ and $\Im_{3}^{\prime\prime}$ , respectively.
Then, after addition of some interchanges, we combine them by a cut, say $\Im_{4}$ ,
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to obtain a new derivation $P_{1}$ :

The degree of $F(t)$ is less than that of $\forall xF(x)$ by one. Therefore the level
$\sigma$ of the upper sequent of $\Im_{4}$ is less than $\rho$ . And $\sigma$ is not less than $\tau$ . Con-
sequently the ordinal number of $P_{1}$ is less than that of $P$. By induction
hypothesis $P_{1}$ can be transformed into a required derivation, which is also a
required derivation for $P$.

2.3. Proof for the intuitionistic system. If we attempt to prove our theorem
for the intuitionistic system quite similarly as for the classical system, we
shall often get stuck since there may exist at most one formula in the suc-
cedent of each sequent. If we treat a universal quantifier representatively
just as before, we can not obtain the derivations corresponding to the follow-
ing ones in the classical case: $P_{1}$ and $P_{2}$ in 2.242, $P_{1}$ in 2.251.2 and the deriva-
tion in 2.252 which ends with the left upper sequent of $\Im_{4}$ . All the other cor-
responding derivations can be obtained similarly as in the classical case.

Now we state how to reduce $P$ in those cases. Our method is due to
Scarpellini [8]. We can summarize it as follows. Suppose that an intuitionistic
derivation $P$ is given. Regarding it as a classical derivation, we first reduce
$P$. The result is, of course, not necessarily intuitionistic. There may appear
some sequence of successive sequents each of which has two formulas in the
succedent. Then we cancel Proper one of them in the succedent of each of
such sequents, and, if necessary, we replace some ex-cuts by thinnings and
interchanges. After contracting the same successive sequents into one, we
obtain an intuitionistic derivation to which we want to reduce $P$. The level
of each sequent of this new derivation is not greater than that of the corre-
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sponding sequent of $P$, and the ordinal number of the new derivation is less
than that of $P$.
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