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\S 0. Introduction.

We consider the following eigenvalue problem:

$-\Delta u-p(x)u=\lambda u^{0)}$ , $u\in L^{2}(R^{n})$ .
If $p(x)$ does not decay too rapidly at infinity, the above problem has an in-
finite sequence of negative eigenvalues (bound states) approaching to zero.
We denote by $n(r;p)(r>0)$ the number of eigenvalues less than $-r$. In this
paper we are concerned with the asymptotic behavior of $n(r;p)$ as $r$ tends to
zero.

The asymptotic distribution of negative eigenvalues for the Sch\"odinger
operators has been studied in Brownell and Clark [4] and McLeod [6] under
the condition that the potential $p(x)$ is non-negative and sufficiently close to a
spherically symmetric potential.

The purpose of the present paper is to study the distribution of eigenvalues
by a different method from those in [4] and [6] without assuming the above
condition.

we shall briefly explain our approach. Our method is based on the follow-
ing proposition (see Birman [1]).

PROPOSITION 0.1. Let $H_{0}$ be the unique self-adjoint realization of $-\Delta$ with
domain $\mathcal{D}(H_{0})=H^{2}(R^{n})$ (the Sobolev sPace of order 2). Assume that $|p|^{1/2}$ is a
$H_{0}^{1/2}$-compact operatOr as a multiplicative operatOr. Let $\mathcal{D}$ be a core of $H_{0}^{1/2}$ .
Then, $n(r;p)$ coincides with the maximal dimension of subspaces lying in $\mathcal{D}$ such
that

$(H_{0}^{1/2}u, H_{0}^{1/2}u)-(Pu, u)<-r(u, u)$ ,

where $(, )$ stands for the usual scalar Product in $L^{2}(R^{n})$ .
By making use of this proposition, we shall prove the following theorem.

0) It is convenient to write the Schr\"odinger operator as $-\Delta-p(x)$ instead of as
the usual notation $-\Delta+p(x)$ since we are mainly concerned with an eigenvalue problem
of the following form: $-\Delta u+u=\lambda P(x)u,$ $P(x)>0$ .
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THEOREM 0.2. Under the assumpti0n of Prop0siti0n 0.1, $n(r;p)$ is equal to
the number of positive eigenvalues less than one of the following problem:

(0.1) $-\Delta v+rv=\lambda p(x)v$ , $v\in \mathcal{D}(H_{0}^{1/2})$ ,

where $\mathcal{D}(H_{0}^{1/2})$ is the domain of the operator $H_{0}^{1/2}$ .
PROOF. It follows from Proposition 0.1 that $n(r;p)$ coincides with the

maximal dimension of subspaces lying in $\mathcal{D}$ such that

$((H_{0}+r)^{1/2}u, (H_{0}+r)^{1/2}u)<(pu, u)$ ,

since $(H_{0}^{1/2}u, H_{0}^{1/2}u)+r(u, u)=((H_{0}+r)^{1/2}u, (H_{0}+r)^{1/2}u)$ for $u\in \mathcal{D}(H_{0}^{1/2})$ . We put $v=$

$(H_{0}+r)^{1/2}u$ . Note that this transform preserves a linear independence and that
$\mathcal{D}^{\prime}=(H_{0}+r)^{1/2}\mathcal{D}=\{(H_{0}+r)^{1/2}w|w\in \mathcal{D}\}$ is a dense subspace in $L^{2}(R^{n})$ . Then we
see that $n(r;p)$ is equal to the maximal dimension of subspaces lying in $\mathcal{D}^{\prime}$

such that

(0.2) $(v, v)<((H_{0}+r)^{-1/2}p(H_{0}+r)^{-1/2}v, v)$ .
Furthermore we note that the operator $(H_{0}+r)^{-1/2}p(H_{0}+r)^{-1/2}$ is a compact
operator in $L^{2}(R^{n})$ by the assumption that $|p|^{1^{\prime}2}$ is a $H_{0}^{1/2}$-compact operator.
(0.2) implies that $n(r;p)$ is equal to the number of positive eigenvalues greater
than one of the operator $(H_{0}+r)^{-1/2}p(H_{0}+r)^{-1/2}$ . Therefore, if we put $w=$

$(H_{0}+r)^{-1/2}v$ in the eigenvalue problem

$(H_{0}+r)^{-1/2}p(H_{0}+r)^{-1/2}v=\mu v$ , $\mu>1$ ,

then we have
$-\Delta w+rw=\lambda pw$ , $0<\lambda=1/\mu<1$ .

This completes the proof. $q$ . $e$ . $d$ .
Putting $r=1/h$ in (0.1), we have the following eigenvalue problem with a

parameter $h$ :
(0.3) $-h\Delta v+v=\lambda p(x)v$ .
Without loss of generality, we may assume that $h\geqq 1$ . Let $N_{h}(\lambda;p)$ be the
number of positive eigenvalues less than $\lambda$ of problem (0.3). Under some as-
sumptions on $p(x)$ , we shall show in \S 3 that for any $\delta>0$ small enough,
there exists a constant $C(\delta)$ independent of $h$ and $\lambda$ such that for $\lambda\geqq C(\delta)h^{\alpha}$ ,

(0.4) $|N_{h}(\lambda;p)-Ch^{-n/2}\lambda^{\beta}|\leqq\delta h^{-n/2}\lambda^{\beta}$ ,

where $\alpha$ and $\beta$ are some positive constants satisfying $0<\alpha<1$ and $\beta>n/2$

respectively, and $C$ is a constant independent of $h,$ $\lambda$ and $\delta$ . Since $0<\alpha<1$ ,

we see that there exists a constant $h(\delta)$ such that for $h>h(\delta)$ ,

(0.5) $|N_{h}(h;P)-Ch^{-n/2+\beta}|\leqq\delta h^{-n/2+\beta}$ .
Noting that $n(r;P)=N_{h}(h;p)$ with $r=1/h$ , we can obtain the asymptotic formula
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for $n(r;p)$ .
We shall give an outline of this paper. In \S 1 we introduce some notations

and state our main theorem in this Paper. In \S 2 we prove some lemmas
which will be often used later. In \S 3 we study the eigenvalue problem (0.3)
in the case where $p(x)$ is a smooth positive function satisfying some conditions
and obtain the asymptotic formula for $n(r;p)$ . In \S 4 we investigate an eigen-
value problem with zero boundary conditions in an unbounded domain. Let
$p(x)$ be a not necessarily positive function (smooth) and let $\Omega$ be the open set
given by $\Omega=\{x|p(x)>0\}$ . Then we consider the following eigenvalue problem:

$-\Delta u-p(x)u=\lambda u$ , $u\in H_{0}^{1}(\Omega)$ ,

where $H_{0}^{1}(\Omega)$ is the usual Sobolev space. We denote by $n(r;p, \Omega)$ the number
of negative eigenvalues less than $-r(r>0)$ of the above problem. We give
the estimate of $n(r;p, \Omega)$ from below for $r\rightarrow 0$ by studying the eigenvalue
problem

$-h\Delta v+v=\lambda p(x)v$ , $v\in H_{0}^{1}(\Omega)$ .
This result is applied to the estimate of $n(r;p)$ from below. In fact, we easily
see that $n(r;P)\geqq n(r;p, \Omega)$ . In \S 5 we give the estimate of $n(r;p)$ from above
for the singular potentials $p(x)$ , using the result obtained for smooth potentials
in \S 3 and the theorems by Birman and Borzov [2], Birman and Solomjak [3],

and Rozenbljum [8] and we prove the main theorem in \S 6, combinig the
result in \S 5 with the estimate from below obtained in \S 4. In \S 7 we aPply
the method developed for the Schr\"odinger operators to the Dirac operators
with scalar potentials. The further development of our method to the Dirac
operators with not necessarily scalar potentials will be discussed in a forth-
coming paper [11]. Some of results of this paper were reported in [9] without
detailed proofs.

Finally we note that throughout this paper we use the same symbol $C$ to
denote positive constants which may differ from each other. When we specify
the dependence of such a constant on a parameter, say $m$ , we denote it by
$C(m)$ . When we take integrations over the whole space, we write $\int f(x)dx$

instead of $\int_{R^{n}}f(x)dx$ .

\S 1. Notations and main results.

Let us introduce some classes of functions. Consider a smooth function
$p(x)$ (real-valued) satisfying the following condition:

(K-1) $\lim_{\sim\infty}r^{m}p(r\omega)=a(\omega;p)$
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uniformly for $\omega\in S^{n-1}$ , where $m>0,$ $r=|x|,$ $x=r\omega,$ $S^{n-1}$ is the $n-1$ dimensional
unit sphere and $a(\omega;p)$ is a continuous function defined on $S^{n-1}$ .

Let $\Omega$ be the open set defined by $\Omega=\{x|p(x)>0\}$ and $\Sigma_{r}$ be the subset in
$S^{n-1}$ defined by $\Sigma_{r}=\{\omega|a(\omega;p)>\gamma\}$ for each fixed $\gamma>0$ . Then, by the condi-
tion (K-1), we can take a constant $R(\gamma)$ so large that $\Omega$ contains $(R(\gamma), \infty)\times$

$\Sigma_{\gamma}=G_{\gamma}$ in the polar coordinate system. From now on, we fix $G_{\gamma}$. In addition,
we assume that $p(x)$ satisfies the following condition:

(K-2) There exist constants $C_{1}(\gamma)$ and $C_{2}(\gamma)$ such that for $x\in G_{\gamma}$ and

$|x-y|\leqq C_{2}(\gamma)(1+|x|^{2})^{1/2}$ ,

$|P(x)-p(y)|\leqq C_{1}(\gamma)p(x)(1+|x|^{2})^{-1/2}|x-y|$ ,

where we note that $C_{2}(\gamma)$ is taken small so that $y$ belongs to $\Omega$ .
From now on, for brevity, we put $\rho(x)=(1+|x|^{2})^{1/2}$ .
DEFINITION 1.1 (Class $K(m)$ ). If a smooth function $p(x)$ satisfies the con-

ditions (K-1) and (K-2), we say that $p(x)$ belongs to $K(m)$ .
DEFINITION 1.2 (Class $K^{+}(m)$ ). We denote by $K^{+}(m)$ the set of all functions

$p(x)$ satisfying the following conditions:

$(K^{+}-1)$ $p(x)$ belongs to $K(m)$ ;

$(K^{+}-2)$ There exist constants $C_{1}$ and $C_{2}$ such that

$C_{1}\rho(x)^{-m}\leqq p(x)\leqq C_{2}\rho(x)^{-m}$ ;

$(K^{+}-3)$ For $|x-y|\leqq 1/2\rho(x)$ ,

$|p(x)-p(y)|\leqq Cp(x)\rho(x)^{-1}|x-y|$ .
Here constants $C_{1},$ $C_{2}$ and $C$ are independent of $x$ and $y$ .

From the condition $(K^{+}-2)$ it readily follows that for $|x-y|\leqq 1/2\rho(x)$ ,

(1.1) $c_{3}p(x)\leqq p(y)\leqq C_{4}p(x)$ .
DEFINITION 1.3 (Class $S(m)$ ). We denote by $S(m)$ the set of all real-valued

functions satisfying the following conditions:

(S-1) $p(x)$ is decomposed into $p(x)=p_{1}(x)+p_{2}(x)$ ;

(S-2) $p_{1}(x)$ belongs to $K(m)$ and there exists a sequence $\{q_{k}(x)\}_{k=1}^{\infty}$ such that

for each $kq_{k}(x)$ belongs to $K^{+}(m)$ and satisfies $C\rho(x)^{-m}\geqq q_{k}(x)\geqq p^{+}(x)=$

max $(0, p(x))$ with some constant $C$ independent of $k$ and $x$ and that

for each $\omega a(\omega;q_{k})$ tends to $a^{+}(\omega;P_{1})=\max(0, a(\omega;p_{1}))$ as $ k\rightarrow\infty$ ;

(S-3) $p_{2}(x)$ is a non-negative function such that if $n\leqq 2,$ $p_{2}(x)$ has compact

support and belongs to $L^{p}(R^{n}),$ $P>1$ , and that if $n\geqq 3,$ $p_{2}(x)$ belongs
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to $L^{p}(R^{n})\cap L^{n/2}(R^{n}),$ $P>n/2$ .
We denote the usual scalar product in $L^{2}(R^{n})$ by $(, )$ and the norm by

$\Vert\Vert$ . For a domain $G$ , we denote by $H^{j}(G)$ the usual Sobolev space of order $j$

with the norm $\Vert\Vert_{j}$ on $G$ and by $H_{0}^{j}(G)$ the subspace of $H^{j}(G)$ obtained by the
completion of $C_{0}^{\infty}(G)$ (the set of all smooth functions with compact support in
$G)$ under the norm $\Vert\Vert_{j}$ .

For a linear operator $A$ , we denote by $\mathcal{D}(A)$ and $\mathcal{R}(A)$ the domain and
the range of $A$ respectively.

Now we shall state our main result in the present paper, which will be
proved in \S 6.

Let $p(x)$ be a function belonging to $S(m)$ with $0<m<2$ . Consider the
following eigenvalue problem:

(1.2) $Hu=-\Delta u-p(x)u=\lambda u$ , $u\in L^{2}(R^{n})$ .

Here $H$ is the semi-bounded self-adjoint operator associated with the symmetric
bilinear form

$h(u, v)=\sum_{j=1}^{n}(\frac{\partial}{\partial x_{j}}u,$ $\frac{\partial}{\partial x_{j}}v)-(Pu, v)$ , $u,$ $v\in H^{1}(R^{n})$ .

Then we have the following theorem.
THEOREM 6.1. Assume that $p(x)$ belongs to $S(m)$ with $0<m<2$ and that

according to (S-1) in Definition 1.3 $p(x)$ is decomPosed into two parts; $p(x)=$

$p_{1}(x)+p_{2}(x)$ . Let $n(r;p)$ be the number of eigenvalues less than $-r$ of prOblem
(1.2). Then, as $r\rightarrow 0$ ,

$n(r;P)=C_{0}r^{n/2-n/m}+o(r^{n/2-n/m})$ ,

where

(1.3) $ C_{0}=(2\pi)^{-n}(2n)^{-1}\sigma_{n-1}\frac{\Gamma(n/m-n/2)\Gamma(n/2)}{\Gamma(n/m)}\int_{S^{n-1}}a^{+}(\omega;P_{1})^{n/m}d\omega$ ,

$a^{+}(\omega;P_{1})=\max(0, a(\omega;p_{1})),$ $\sigma_{n-1}$ is the surface measure of $S^{n-1}$ ( $\sigma_{0}=2$ if $n=1$),
and $ d\omega$ is the Lebesgue measure on $S^{n-1}$ .

As an immediate consequence of Theorem 6.1, we have
COROLLARY 6.2. Let $\lambda_{j}$ be the j-th eigenvalue of Problem (1.2). Then, $\lambda_{j}$ is

asymptOtically represented as
$\lambda_{j}\sim-C_{0}^{-a}j^{\alpha}$

as $ j\rightarrow\infty$ , where $\alpha=(n/2-n/m)^{-1}$ .
REMARK. The constant $C_{0}$ given by (1.3) does not depend on the way of

the decomposition of $p(x)$ . In fact, it is not difficult to show that $a(\omega;P)=0$

a.e. for $p(x)\in L^{n/2}(R^{n})$ .
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\S 2. Preliminaries.

In this section we shall state some lemmas which will be often used later.
LEMMA 2.1. Assume that $p(x)$ belongs to $K^{+}(m)$ . Let $k$ and $j$ be Positive

numbers such that $km>n$ and $n>(k-j)m>0$ . Then, as $\lambda\rightarrow\infty$ ,

$\int p(x)^{k}(1+\lambda p(x))^{-j}dx=C_{1}\lambda^{n/m-k}+o(\lambda^{n/m-k})$ ,

where

$ C_{1}=m^{-1}\frac{\Gamma(n/m-(k-j))\Gamma(k-n/m)}{\Gamma(j)}\int_{Sn-1}a(\omega;p)^{n/m}d\omega$ .

PROOF. By the condition $(K^{+}-1)$ , for any $\epsilon>0$ small enough, there exists
a constant $R(\epsilon)$ such that for $|x|=r\geqq R(\epsilon)$ ,

(2.1) $(a(\omega;P)-\epsilon)r^{-m}\leqq p(x)\leqq(a(\omega;p)+\epsilon)r^{-m}$ .
Since $f(t)=t^{k}(1+\lambda t)^{-j}(t>0)$ is a monotone increasing function, we have for
$|x|\geqq R(\epsilon)$ ,

(2.2) $f((a(\omega;p)-\epsilon)r^{-m})\leqq f(p(x))\leqq f((a\omega;p)+\epsilon)r^{-m})$ .
We shall first give the estimate from above. It follows from (2.2) that

(2.3) $\int p(x)^{k}(1+\lambda p(x))^{-j}dx\leqq\int_{|x|\geqq R(\epsilon)}f((a(\omega;P)+\epsilon)r^{-m})dx+C(\epsilon)\lambda^{-j1)}$

Furthermore, a change of variable and the obvious relation $0(\lambda^{-j})=o(\lambda^{n/m-k})$

which follows from the condition $n>(k-j)m$ yield that the right side of (2.3)

is equal to

(2.4) $\lambda^{n/m-k\int_{S^{n- 1}}(a(\omega;p)+\epsilon)^{n/m}\int_{R(\lambda.\epsilon)}^{\infty}t^{(j- k)m+n-1}(t^{m}+1)^{-j}dt+o(\lambda^{n/m-k})}$ ,

where $R(\lambda, \epsilon)=\lambda^{-1/m}(a(\omega;P)+\epsilon)^{-1/m}R(\epsilon)$ . Since $g(t)=t^{(j- k)m+n- 1}(t^{m}+1)^{-j}$ is integr-
able on $(0, \infty)$ by the conditions $km>n$ and $n>(k-j)m$ , we have

$\int_{R(\lambda,\epsilon)}^{\infty}g(t)dt=\int_{0}^{\infty}g(t)dt+o(1)=m^{-1}\frac{\Gamma(n/m-(k-j))\Gamma(k-n/m)}{\Gamma(j)}+o(1)$

as $\lambda\rightarrow\infty$ . This gives the desired estimate from above. Similarly we can
obtain the estimate from below. Thus the proof is completed since $\epsilon$ is
arbitrary. $q$ . $e$ . $d$ .

LEMMA 2.2. Assume that $p(x)$ belongs to $K^{+}(m)$ with $0<m<k$ . Let $j>0$ .
Then, if we take a constant $q,$ $q>0$ , large enough, we have

(2.5) $\int\rho(x)^{-q+j}(1+\lambda p(x))^{-q/k}dx=0(\lambda^{-q/k})$ , as $\lambda\rightarrow\infty$ .

1) This estimate follows from the following estimate:
$C_{1}(\in)\leqq p(t)\leqq C_{2}(\epsilon)$ , for $|t|\leqq R(\epsilon)$ .
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PROOF. (2.5) is a consequence of the fact that by the condition $m<k$ , we
can choose a constant $q$ such that $\rho(x)^{-q+j}p(x)^{-q/k}$ is integrable. In fact, the
function $\rho(x)^{-q+j}p(x)^{-q/k}$ behaves like $C|x|^{-(1- m/k)q+j}$ as $|x|\rightarrow\infty$ . Hence, from
this our assertion follows. $q$ . $e$ . $d$ .

Next we shall introduce some operators. Let $p(x)$ belong to $K^{+}(m)$ . For
each Pxed $t\in R^{n},$ $h\geqq 1$ and $\lambda>0$ , we define the operator $R_{t,h}(\lambda)(=R_{t.h}^{(0)}(\lambda))$ as
(2.6) $R_{t,h}(\lambda)=(-h\Delta+1+\lambda p\zeta t))^{-1}$

and $R_{t,h}^{(j)}(\lambda)$ ( $j$ ; positive integer) as

(2.6) $R_{t,h}^{(j)}(\lambda)=(\frac{d}{d\lambda})^{j}R_{t,h}(\lambda)=(-1)^{j}(j1)p(t)^{j}(-h\Delta+1+\lambda p(t))^{-(f+1)}$ .

The operator $R_{t.h}^{(j)}(\lambda)$ ( $j$ ; non-negative integer) is an integral operator with
kernel $F_{t,h}^{(j)}(x-y;\lambda)$ (real-valued), which is defined by

(2.7) $ F_{t.h}^{(j)}(y;\lambda)=(-1)^{j}(j1)p(t)^{j}(2\pi)^{-n}\int e^{iy\xi}(h|\xi|^{2}+1+\lambda p(t))^{-(f+1)}d\xi$

$=(-1)^{j}(j1)(2\pi)^{-n}h^{-n/2}p(t)^{j}(1+\lambda p(t))^{n/2-(j+1)}G^{(j)}(g(t, h, \lambda)y)$ ,

$(i=\sqrt{-1})$

where
$g(t, h, \lambda)=h^{-1/2}(1+\lambda p(t))^{1/2}$ ,

$ G^{(j)}(y)=\int e^{iy\xi}(|\xi|^{2}+1)^{-(j+1)}d\xi$ .

We shall state the well-known properties of the fundamental solution
$G^{(j)}(y)$ (Mizohata [7]).

LEMMA 2.3. $G^{(j)}\backslash (y)$ satisfies the following estimates;

$|G^{(j)}(y)|\leqq H(y)|y|^{2(j+1)- n}$ , if $n>2(j+1)$ ,

$\leqq H(y)|y|^{-1}$ , if $n=2(j+1)$ ,

$\leqq H(y)$ , if $n<2(j+1)$ ,

$|\frac{\partial}{\partial y_{k}}G^{(j)}(y)|\leqq H(y)|y|^{2(j+1)-(n+1)}$ , if $n>2(j+1)-1$ ,

$\leqq H(y)|y|^{-1}$ if $n=2(j+1)-1$ ,

$\leqq H(y)$ , if $n<2(j+1)-1$ .
Here $H(y)$ is a raPidly decreasing bounded function.

Finally we shall state the Tauberian theorem of Hardy and Littlewood.
LEMMA 2.4. Let $\alpha$ and $\beta$ be Positive numbers satisfying $\beta>\alpha>0$ . Let $\sigma_{h}(\lambda)$

be a non-negative non-decreasing function on $[0, \infty$ ) with a positive parameter
$h$ and let $\sigma_{h}(+0)=\lim_{\lambda\rightarrow 0}\sigma_{h}(\lambda)=0$ . Assume that for any $\delta>0$ small enough, there

exists a constant $C(\delta)$ independent of $h$ such that for $t\geqq C(\delta)h^{\gamma},$ $\gamma>0$ ,
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$|\int_{0}^{\infty}(\lambda+r)^{-\beta}d\sigma_{\hslash}(\lambda)-r^{a-\beta 1\leqq\delta t^{\alpha-\beta}}$ .

Then, there exists a constant $C_{1}(\delta)$ independent of $h$ such that for $\lambda\geqq C_{1}(\delta)h^{\gamma}$ ,

$|\sigma_{h}(\lambda)-\frac{\Gamma(\beta)}{\Gamma(\alpha+1)\Gamma(\beta-\alpha)}\lambda^{a}|<\delta\lambda^{a}$ .

The proof of this lemma is done by examining the proof of the Tauberian
theorem in [5].

\S 3. Eigenvalue problem on the whole space.

In the Prst half of this section, we shall consider the following auxiliary
problem:

(3.1) $H(k)v=h(-\Delta)^{k}v+v=\lambda q(x)v$ , $v\in L^{2}(R^{n})$ ,

where $q(x)$ is assumed to belong to $K^{+}(m)$ with $n<m<2k$ . It is clear that
$H(k)$ is a positive self-adjoint operator with domain $\mathcal{D}(H(k))=H^{2k}(R^{n})$ .

Problem (3.1) is transformed into an equivalent eigenvalue problem of the
following form:

(3.2) $A(k)u=q^{-1/2}(h(-\Delta)^{k}+1)q^{-1/2}u=\lambda u$ .
Here the operator $A(k)$ is a positive self-adjoint operator with domain $\mathcal{D}(A(k))$

$=\mathcal{R}(q^{1/2}H(k)^{-1}q^{1/2})$ .
For each fixed $t\in R^{n}$ we define the operator $E_{t,h}(\lambda)(h\geqq 1, \lambda>0)$ as

$E_{t,h}(\lambda)=(h(-\Delta)^{k}+1+\lambda q(t))^{-1}$ .
The operator $E_{t,h}(\lambda)$ is an integral operator with kernel

(3.3) $ K_{t,h}(x-y;\lambda)=(2\pi)^{-n}\int e^{i(x- y)\xi}(h|\xi|^{2k}+1+\lambda q(t))^{-1}d\xi$

$=(2\pi)^{-n}h^{-n/2k}(1+\lambda q(t))^{n/2k- 1}E(f(t, h, \lambda)(x-y))$ ,

where
$f(t, h, \lambda)=h^{-1/2k}(1+\lambda q(t))^{1/2k}$ ,

$ E(y)=\int e^{iy\cdot\xi}(|\xi|^{2k}+1)^{-1}d\xi$ .

It is clear that $E(y)$ is a rapidly decreasing bounded function by the condition
$n<2k$ .

We note that all constants appearing throughout this section are independ-
ent of $h,$ $\lambda$ and $t$.

THEOREM 3.1. Assume that $q(x)$ belongs to $K^{+}(m)$ with $n<m<2k$ . Let
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$\{\nu_{j}\}_{j=1}^{\infty}$ be eigenvalues of problem (3.2). Then, there exist constants $C$ and $\alpha$ ,
$0<\alpha<1$ , such that for $\lambda\geqq h^{a}$ ,

(3.4) $\sum_{j=1}^{\infty}(\nu_{j}+\lambda)^{-2}\leqq Ch^{-n/2k}\lambda^{n/m-2}$

PROOF. Define the operator $E_{h}(\lambda)$ as $E_{h}(\lambda)=(h(-\Delta)^{k}+1+\lambda q)^{-1}$ . Then we
have

(3.5) $q^{1/2}E_{h}(\lambda)q^{1/2}=q^{1/2}E_{t,h}(\lambda)q^{1/2}+\lambda q^{1/2}E_{t,h}(\lambda)(q(t)-q)E_{h}(\lambda)q^{1/2}$

Let $\{v_{j}\}_{j=1}^{\infty}$ be the normalized eigenfunctions (real-valued) corresponding to the
eigenvalues $\{\nu_{j}\}_{j=1}^{\infty}$ . Then, letting (3.5) operate on each $v_{j}$ , we have

(3.6) $(\nu_{j}+\lambda)^{-1}v_{j}=q^{1/2}E_{t,h}(\lambda)q^{1/2}v_{j}+\lambda(\nu_{j}+\lambda)^{-1}q^{1/2}E_{t,h}(\lambda)(q(t)-q)q^{-1/2}v_{j}$

since $q^{1/2}E_{h}(\lambda)q^{1/2}v_{j}=(\nu_{j}+\lambda)^{-1}v_{j}$ . Set $\tilde{\theta}_{j}(t, y)=(q(t)-q(y))q(y)^{-1/2}v_{j}(y)$ . Then, re-
writing (3.6) in the form of the integral equation, we have

(3.7) $(\nu_{j}+\lambda)^{-1}v_{j}(x)=q(x)^{1,2}\int K_{t,h}(x-y;\lambda)q(y)^{1/2}v_{j}(y)dy$

$+\lambda(\nu_{j}+\lambda)^{-1}q(x)^{1/2}\int K_{t,h}(x-y;\lambda)\theta_{j}(t, y)dy$

$=a_{j}(x, t)+b_{j}(x, t)$ (cf. [10]).

Since each $v_{j}(x)$ is a smooth function by the regularity theorem for elliptic
operators, (3.7) is well-defined for all $X$ . Hence, putting $x=t$ in (3.7), we have

(3.8) $(\nu_{j}+\lambda)^{-1}v_{j}(t)=a_{j}(t)+b_{j}(t)$ ,

where we have set $a_{j}(t)=a_{j}(t, t)$ and $b_{j}(t)=b_{j}(t, t)$ . By taking the square of
both sides of (3.8), summing uP with respect to $j$ , and integrating over the
whole space, we have

(3.9) $\sum_{j=1}^{\infty}(\nu_{j}+\lambda)^{-2}\leqq 2(\sum_{j=1}^{\infty}\int a_{j}(t)^{2}dt+\sum_{j=1}^{\infty}\int b_{j}(t)^{2}dt)$ .

The proof is completed as an immediate consequence of the following lemma.
LEMMA 3.2. There exists a constant $\alpha,$ $0<\alpha<1$ , such that for $\lambda\geqq h^{\alpha}$ ,

(3.10) $\sum_{j=1}^{\infty}\int a_{j}(t)^{2}dt\leqq Ch^{-n/2k}\lambda^{n/m- 2}$ ,

(3.11) $\sum_{f=1}^{\infty}\int b_{j}(t)^{2}dt\leqq Ch^{-n/2k}\lambda^{n/m- 2}$

PROOF. We shall Prst prove (3.10). Using the Parseval equality, we have

$\sum_{f=1}^{\infty}a_{j}(t)^{2}=q(t)\int K_{t,h}(t-y;\lambda)^{2}q(y)dy=I(t)$ .

We write $I(t)$ as follows:
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$I(t)=q(t)^{2}\int K_{t,h}(t-y;\lambda)^{2}dy+q(t)\int_{\Omega_{1^{/}2}}K_{t,h}(t-y;\lambda)^{2}(q(y)-q(t))dy$

$+q(t)\int_{\Omega_{1/2}^{c}}K_{t,h}(t-y;\lambda)^{2}(q(y)-q(t))dy$

$=I_{1}(t)+I_{2}(t)+I_{3}(t)$ ,

where we denote by $\Omega_{1/2}$ and $\Omega_{1/2}^{c}$ the set $\{y||t-y|\leqq 1/2\rho(t)\}$ and its comple-
ment respectively. We shall first consider the term $I_{1}(t)$ . By the Parseval
equality and a change of variable, we obtain

$\int K_{t,h}(t-y;\lambda)^{2}dy=(2\pi)^{-n}\int(h|\xi|^{2k}+1+\lambda q(t))^{-2}d\xi$

$=Ch^{-n/2k}(1+\lambda q(t))^{n/2k-2}$ .
Hence, by means of Lemma 2.1, we have

(3.12) $\int I_{1}(t)dt=Ch^{-n/2k}\int q(t)^{2}(1+\lambda q(t))^{n/2k-2}dt\leqq Ch^{-n/2k}\lambda^{n/m-2}$ .

Next we investigate the term $I_{2}(t)$ . By the condition $(K^{+}-3)$ in Definition 1.2,
we have for $y\in\Omega_{1/2}$ ,

$|q(y)-q(t)|\leqq Cq(t)$ .
Using this inequality, we have

(3.13) $\int I_{2}(t)dt\leqq C\int q(t)^{2}dt\int_{\Omega_{1/2}}K_{t,h}(t-y;\lambda)^{2}dy\leqq C\int I_{1}(t)dt\leqq Ch^{-n/2k}\lambda^{n/m-2}$ .

Finally we shall estimate the term $I_{3}(i)$ . We have

(3.14) $\int I_{3}(t)dt\leqq\int q(t)^{2}dt\int_{\Omega_{1/2}^{c}}K_{t,h}(t-y;\lambda)^{2}dy+\int q(t)dt\int_{q_{1/2}^{r}}K_{t,h}(t-y;\lambda)^{2}q(y)dy$ .

We see that the first term on the right side of (3.14) is dominated by
$Ch^{-n/2k}\lambda^{n/m-2}$ . On the other hand, recalling the definition of $K_{t,h}(t-y;\lambda)$ given
by (3.3), we have for any $P>0$ large enough and $y\in\Omega_{1/2}^{c}$ ,

(3.15) $|K_{t,h}(t-y;\lambda)|\leqq Ch^{(p-n)/2k}(1+\lambda q(t))^{(n-p)/2k-1}|t-y|^{-p}$

$\leqq Ch^{(p-n)/2k}(1+\lambda q(t))^{(n-p)/2k-1}\rho(t)^{-p}$ ,

since $E(y)$ is a rapidly decreasing bounded function. Hence, by means of
Lemma 2.2 and (3.15), the second term on the right side of (3.14) is dominated
by

(3.16) $ch^{(p-n)/k\int q(t)(1+\lambda q(t))^{(n-p)/k-2}\rho(t)^{-2p}dt\int q(y)dy}$

$\leqq Ch^{-n/2k}\lambda^{n/m-2}h^{\gamma}\lambda^{-\beta}$ ,
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where $\gamma=P/k-n/2k<\beta=p/k-n/k+n/m$ and we have used the fact that $q(y)$

is integrable by the condition $n<m$ . Choosing $p$ appropriately and setting
$\alpha=\gamma/\beta$ , we can obtain (3.10).

Next we shall prove (3.11). Using the Parseval equality, we have

$\sum_{j=1}b_{j}(t)^{2}\infty\leqq q(t)\int K_{t,h}(t-y;\lambda)^{2}(q(t)-q(y))^{2}q(y)^{-1}dy$

$\leqq 2q(t)\int K_{t,h}(t-y;\lambda)^{2}q(y)dy+2q(t)^{3}\int_{\Omega_{1/2}}K_{t,h}(t-y;\lambda)^{2}q(\lambda)^{-1}dy$

$+2q(t)^{3}\int_{\Omega_{1/2}^{c}}K_{t,h}(t-y;\lambda)^{2}q(y)^{-1}dy$

$=I(t)+II(t)+III(i)$ .

The term $\int I(t)dt$ has been already estimated in the proof of (3.10) and satis-

fies the desired estimate. By (1.1), we easily see that $q(y)^{-1}\leqq Cq(t)^{-1}$ for $ y\in$

$\Omega_{1/2}$ . Hence, it readily follows that the $term_{l}\int II(t)dt$ is dominated by

$Ch^{-n/2k}\lambda^{n/m-2}$ . It remains to show that $\int III(t)dt$ satisPes the desired estimate.

Noting that for any $P>0$ large enough,

$\int_{\Omega_{1/2}^{c}}|t-y|^{-2p}q(y)^{-1}dy\leqq C\rho(t)^{-2p+n+m}$ ,

we have by means of Lemma 2.2 and (3.15) that

$\int III(t)dt\leqq Ch^{(p- n)/k}\int q(t)^{3}(1+\lambda q(t))^{(n- p)/k-2}\rho(t)^{-2p+m+n}dt$

$\leqq Ch^{-n/2k}\lambda^{n/m-2}h^{\gamma}\lambda^{-\beta}$ ,

where $\gamma=P/k-n/2k<\beta=p/k+n/m-n/k$ . This completes the proof of (3.11).
$q$ . $e$ . $d$ .

We now study the following eigenvalue problem:

(3.17) $Au=P^{-1/2}(-h\Delta+1)p^{-1/2}u=\lambda u$ , $u\in L^{2}(R^{n})$ ,

where $p(x)$ is assumed to belong to $K^{+}(m)$ with $0<m<2$ , and $A$ is a positive
self-adjoint operator with domain $\mathcal{D}(A)=\mathcal{R}(p^{1/2}(-h\Delta+1)^{-1}p^{1/2})$ .

Problem (3.17) is equivalent to problem (0.3). Let $\{\mu_{j}\}_{j=1}^{\infty}$ be eigenvalues
of problem (3.17).

We now fix a positive integer 1 such that $k_{0}=2^{t}>n/m$ . Then, we have
LEMMA 3.3. Let $k_{0}=2^{l}$ . Assume that $p(x)$ belongs to $K^{+}(m)$ with $0<m<2$ .

Let $\{\nu_{j}(k)\}_{j=1}^{\infty}$ be eigenvalues of the problem
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$h^{k}(-\Delta)^{k}v+v=\lambda p(x)^{k}v$ , $v\in L^{2}(R^{n})$ .
Then, we have for each $j$

$\mu_{J^{0}}^{k}\geqq\nu_{j}(k_{0})$ .
PROOF. We first note that for any $v\in H^{2}(R^{n})$ ,

(3.18) $((-h\Delta+1)v, (-h\Delta+1)v)\geqq((h^{2}(-\Delta)^{2}+1)v, v)$ .
Let $\mu_{j}$ and $w_{j}$ be the j-th eigenvalue of problem (0.3) and the eigcnfunction
corresponding to $\mu_{j}$ respectively. Then, by (3.18), we have

(3.19) $((h^{2}(-\Delta)^{2}+1)w_{j}, w_{f})\leqq\mu_{j}^{2}(p^{2}w_{j}, w_{j})$ ,

from which it follows that $\mu_{j}^{2}\geqq\nu_{f}(2)$ . In fact, by (3.19), we see that there ex-
ists a subspace of j-dimensions lying in $H^{2}(R^{n})$ such that

$((h^{2}(-\Delta)^{2}+1)u, u)\leqq\mu_{j}^{2}(p^{2}u, u)$ .
This implies that $\mu_{j}^{2}\geqq\nu_{j}(2)$ . By repeating this step, we obtain the conclusion.

$q$ . $e$ . $d$ .
From now on, we denote by $\alpha$ some constants satisfying $0<\alpha<1$ and in-

dependent of $h,$ $\lambda$ and $\delta$ , which may differ from each other.
LEMMA 3.4. Let $k$ be an integer satisfying $k\geqq k_{0}$ . Then, we have for $\lambda\geqq h^{\alpha}$ ,

(3.20) $\sum_{J=1}^{\infty}(\mu_{j}+\lambda)^{-2k}\leqq Ch^{-n/2}\lambda^{n/m-2k}$ .

PROOF. (3.20) is an immediate consequence of Theorem 3.1 and Lemma
3.3. In fact, we have for $\lambda\geqq h^{a}$ ,

$\sum_{f=1}^{\infty}(\mu_{j}+\lambda)^{-2k}\leqq\lambda^{-2(k- k_{0})}\sum_{=J1}^{\infty}(\mu_{j}+\lambda)^{-2k_{0}}\leqq\lambda^{-2(k- k_{0})}\sum_{f=1}^{\infty}(\nu_{j}(k_{0})+\lambda^{k_{0}})^{-2}$

$\leqq Ch^{-n/2}\lambda^{n/m-2k}$ .
This completes the proof.

Now we shall state the main result of this section.
THEOREM 3.5. Assume that $p(x)$ belongs to $K^{+}(m)$ with $0<m<2$ . Let

$N_{h}(\lambda;p)$ be the number of eigenvalues less than $\lambda$ of problem (3.17). Then, for
any $\delta>0$ small enough, there exists a constant $C(\delta)$ independent of $h$ and $\lambda$ such
that for $\lambda\geqq C(\delta)h^{\alpha},$ $0<\alpha<1$ ,

$|N_{h}(\lambda;p)-\tilde{C}_{0}h^{-n/2}\lambda^{n/m}|\leqq\delta h^{-n/2}\text{{\it \‘{A}}}^{n/m}$ ,
where

$ C_{1}=(2\pi)^{-n}(2n)^{-1}\sigma_{n- 1}\frac{\Gamma(n/m-n/2)\Gamma(n/2)}{\Gamma(n/m)}\int_{S^{n-1}}a(\omega;p)^{n/m}d\omega$ .

PROOF. For each fixed $t\in R^{n}$ , we begin with the following equation:

(3.21) $(\mu_{j}+\lambda)^{-1}u_{j}=p^{1/2}R_{t,h}(\lambda)p^{1/2}u_{j}+\lambda(\mu_{j}+\lambda)^{-1}R_{t,h}(\lambda)(p(t)-p)p^{-1/2}u_{j}$ ,
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where $u_{j}$ is the normalized eigenfunction corresponding to $\mu_{j}$ and $R_{t,h}(\lambda)$ is
the operator defined by (2.6). (3.21) is the equation corresponding to (3.6) in
the proof of Theorem 3.1 and is obtained exactly in the same way as (3.6).

We now fix an integer $k$ such that

$k>\max(n/2-1, n/2m-1)+k_{0}=\max(n/2-1, n/2m-1)+2^{t}>n/m$ .
Then, by differentiating (3.21) k-times with respect to $\lambda$ in the sense of $L^{2}(R^{n})$ ,

we have

(3.22) $(-1)^{k}(k!)(\mu_{j}+\lambda)^{-(k+1)}u_{j}=p^{1/2}R_{t,h}^{(k)}(\lambda)p^{1/2}u_{j}$

$+\sum_{s=0}^{k-1}C(s)(\mu_{j}+\lambda)^{-(k-s)}p^{1/2}R_{t,h}^{(s)}(\lambda)(p(t)-p)p^{-1/2}u_{j}$

$+\lambda\sum_{r=0}^{k}C(r)(\mu_{j}+\lambda)^{-(k- r+1)}p^{1/2}R_{t,h}^{(r)}(\lambda)(p(t)-p)p^{-1/2}u_{j}$ .

Set $\theta_{j}(t, y)=(P(t)-p(y))p(y)^{-1/2}u_{j}(y)$ . Then, rewriting (3.22) in the form of the
integral equation, we have

(3.23) $(-1)^{k}(k!)(\mu_{j}+\lambda)^{-(k+1)}u_{j}(x)=p(x)^{1/2}\int F_{t,h}^{(k)}(x-y;\lambda)p(y)^{1/2}u_{j}(y)dy$

$+\sum_{s=0}^{k-1}C(s)(\mu_{j}+\lambda)^{-(k- s)}p(x)^{1/2}\int F_{t,h}^{(s)}(x-y;\lambda)\theta_{j}(t, y)dy$

$+\lambda\sum_{r=0}^{k}C(r)(\mu_{j}+\lambda)^{-(k- r+1)}p(x)^{1/2}\int F_{t,h}^{(r)}(x-y;\lambda)\theta_{j}(t, y)dy$

$=a_{j}(x, t)+\sum_{s=0}^{k-1}C(s)b_{j,s}(x, t)+\lambda(\mu_{j}+\lambda)^{-1}\sum_{r=0}^{k}C(r)b_{j,r}(x, t)$ .

Since each $u_{j}(x)$ is a smooth function, (3.23) is well-defined for all $x$ . Hence,
putting $x=t$ , in particular, in (3.23), we have

(3.24) $(-1)^{k}(k!)(\mu_{j}+\lambda)^{-(k+1)}u_{j}(t)=a_{j}(t)+\sum_{s=0}^{k-1}C(s)b_{j,s}(t)$

$+\lambda(\mu_{j}+\lambda)^{-1}\sum_{r=0}^{k}C(r)b_{j,r}(t)$

$=a_{j}(f)+b_{j}(t)$ ,

where we have set $a_{j}(t)=a_{j}(t, t)$ and $b_{j,s}(t)=b_{j,s}(t, t)$ . This is our basic equality
in proving this theorem.

As in the proof of Theorem 3.1, taking the square of both sides of (3.24),
summing up with respect to $j$ , and integrating over the whole space, we have

$(k!)^{2}\sum_{j=1}^{\infty}(\mu_{j}+\lambda)^{-2(k+1)}=\sum_{j=1}^{\infty}\int a_{j}(f)^{2}dt+2\sum_{f=1}^{\infty}\int a_{j}(t)b_{j}(t)dt+\sum_{j=1}^{\infty}\int b_{j}(t)^{2}dt$ .

Further it follows that for any $\delta>0$ small enough,
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(3.25) $|(k!)^{2}\sum_{f=1}^{\infty}(\mu_{j}+\lambda)^{-2(k+1)}-\sum_{f=1}^{\infty}\int a_{j}(t)^{2}dt|$

$\leqq\delta\sum_{j=1}^{\infty}\int a_{j}(t)^{2}dt+C(\delta)\sum_{j=1}^{\infty}\int b_{j}(t)^{2}dt$ .

In order to complete the proof, we need the following lemmas concerning the

estimates for $\sum_{j=1}^{\infty}\int a_{j}(t)^{2}dt$ and $\sum_{j=1}^{\infty}\int b_{j}(t)^{2}dt$ . These lemmas will be proved after

the completion of the proof of this theorem.
LEMMA 3.6. For any $\delta>0$ small enough, there exists a constant $C(\delta)$ in-

dependent of $h$ and $\lambda$ such that for $\lambda\geqq C(\delta)h^{a},$ $0<\alpha<1$ ,

$|\sum_{j=1}^{\infty}\int a_{f}(t)^{2}dt-C_{0}(k)h^{-n/2}\lambda^{n/m-2(k+1)1}\leqq\delta h^{-n/2}\lambda^{n/m- 2(k+1)}$ ,

where $C_{0}(k)=(k!)^{2}n/m_{\Gamma}\frac{)-n/m)\Gamma(n/m)}{(2(k+1))}\underline{\Gamma(2(k+}1C_{0}$ and $C_{0}$ is the constant defined in

Theorem 3.5.
LEMMA 3.7. For any $\delta>0$ small enough, there exists a constant $C(\delta)$ in-

dependent of $h$ and $\lambda$ such that for $\lambda\geqq C(\delta)h^{\alpha},$ $0<\alpha<1$ ,

$\sum_{j=1}^{\infty}\int b_{j,r}(t)dt\leqq\delta h^{-n/2}\lambda^{n/m- 2(k+1)}$ , $(r=0, 1, k)$ .

Completion of the proof on Theorem 3.5. By vitue of Lemmas 3.6 and
3.7, it follows from (3.25) that for $\lambda\geqq C(\delta)h^{\alpha}$ ,

(3.26)

$\leqq\delta h^{-n/2}\lambda^{n^{\prime}m-2(k+1)}$ .
Now we are in a position to apply the Tauberian theorem of Hardy and
Littlewood (Lemma 2.4) to (3.26). Then, we get the conclusion. $q$ . $e$ . $d$ .

Now we shall prove Lemmas 3.6 and 3.7.
PROOF OF LEMMA 3.6. Using the Parseval equality, we calculate as

follows:

(3.27) $\sum_{j=1}^{\infty}a_{j}(t)^{2}=p(t)\int F_{t,h}^{(k)}(t-y;\lambda)^{2}p(y)dy$

$=p(t)^{2}\int F_{t,h}^{(k)}(t-y;\lambda)^{2}dy+p(t)\int_{\Omega_{\delta}}F_{t,h}^{(k)}(t-y;\lambda)^{2}(p(y)-p(t))dy$

$+p(r)\int_{\Omega S^{F_{t,h}^{(k)}(t-y;\lambda)^{2}(p(y)-p(t))dy}}$

$=I(t)+II(t)+III(t)$ ,

where we denote by $\Omega_{\delta}$ and $\Omega_{\delta}^{c}$ the set $\{y||t-y|\leqq\delta\rho(t)\}$ and its complement
respectively. We shall first deal with the term $I(t)$ . Recalling the definition
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of $F_{t,h}^{(k)}(t-y;\lambda)$ given by (2.7), and using the Parseval equality and the condition
$k>n/2-1$ , we have

(3.28) $\int F_{t.h}^{(k)}(t-y;\lambda)^{2}dy=(2\pi)^{-n}(k!)^{2}p(t)^{2k}\int(h|\xi|^{2}+1+\lambda p(t))^{-2(k+1)}d\xi$

$=(2\pi)^{-n}C_{1}(k)h^{-n/2}p(t)^{2k}(1+\lambda p(t))^{n/2- 2(k+1)}$ ,

where

$C_{1}(k)=(k!)^{2}\int(|\xi|^{2}+1)^{-2(k+1)}d\xi=(k!)^{2}\sigma_{n- 1}\frac{\Gamma(2(k+1)-n/2)\Gamma(n/2)}{2\Gamma(2(k+1))}$ .

Hence, by means of Lemma 2.1, we have that as $\lambda\rightarrow\infty$ ,

$\int I(t)dt=(2\pi)^{-n}C_{1}(k)h^{-n/2}\int p(t)^{2(k+1)}(1+\lambda p(t))^{n/2- 2(k+1)}dt$

$=C_{0}(k)h^{-n/2}\lambda^{n/m-2(k+1)}+h^{-n/2}o(\lambda^{n/m-2(k+1)})$ ,

where we note that o-estimate is uniform with respect to $h$ , and $C_{0}(k)$ is the
constant defined in Lemma 3.6.

Next we shall show that

$\int|II(t)|dt\leqq C\delta h^{-n/2}\lambda^{n/m-2(k+1)}$ .
But this is easily done since $|p(t)-p(y)|\leqq C\delta p(t)$ for $y\in\Omega_{\delta}$ by the condition
$(K^{+}-3)$ in Definition 1.2. Finally we shall consider the term III(i). Since $k>$

$n/2-1$ . $F_{t,h}^{(k)}(y;\lambda)$ is a rapidly decreasing function. Hence, by a method similar
to that given to the term $I_{3}(t)$ in the proof of Lemma 3.2 we can show that
there exist positive constants $\beta$ and $\gamma$ satisfying $\beta>\gamma$ such that

(3.29) $\int|III(t)|dt\leqq C(\delta)h^{-n/2}\lambda^{n/m-2(k+1)}h^{\gamma}\lambda^{-\beta}$ .

Therefore, choosing $\lambda$ in (3.29) so that $ C(\delta)h^{\gamma}\lambda^{-\beta}\leqq\delta$ , we have for $\lambda\geqq C(\delta)h^{\alpha}(\alpha=$

$\gamma/\beta)$ ,

$\int|III(t)|dt\leqq\delta h^{-n/2}\lambda^{n/m- 2(k+1)}$ .

Combining the above estimates for $\int I(t)dt,$ $\int|II(t)|dt$ and $\int|III(t)|dt$ , we

obtain the conclusion.
PROOF OF LEMMA 3.7. The proof is divided into two cases and two dif-

ferent methods of estimates are employed.

2) Instead of the integrability of $q(y)$ in (3.16), we use the following estimate
with some constant $C(\delta)$ independent of $t$ :

$\int_{9_{\delta}^{r}}|t-y|^{-(n+1)}p(y)\leqq C(\delta)$ .
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Case 1, $k\geqq r\geqq k-k_{0}>\max(n/2-1, n/2m-1)$ : Using the Parseval equality,
we calculate as follows:

$\sum_{j=1}^{\infty}b_{j,r}(t)\leqq\lambda^{-2(k- r)}p(t)\int F_{t,h}^{(r)}(t-y;\lambda)^{2}(p(t)-p(y))^{2}p(y)^{-1}dy$

$\leqq\lambda^{-2(k- r)}p(t)\int_{\Omega_{\delta}}F_{t.h}^{(r)}(t-y;\lambda)^{2}(p(t)-p(y))^{2}p(y)^{-1}dy$

$+2\lambda^{-2(k- r)}p(t)^{3}\int_{\Omega_{\delta}^{r}}F_{t.h}^{(r)}(t-y;\lambda)^{2}p(y)^{-1}dy$

$+2\lambda^{-2(k-r)}p(t)\int_{\Omega_{\delta}^{r}}F_{t,h}^{(r)}(t-y;\lambda)^{2}p(y)dy$

$=I(t)+II(t)+III(t)$ ,

where we should note that since $r>n/2-1,$ $F_{t,h}^{(r)}(t-y;\lambda)$ is a rapidly decreasing
bounded function as a function of $y$.

We shall first consider the term $I(t)$ . By the condition $(K^{+}-3)$ and (1.1),
we have

(3.30) $(p(y)-p(t))^{2}p(y)^{-1}\leqq C\delta^{2}p(t)$

for $y\in\Omega_{\delta}$ . On the other hand, it is easily seen that

(3.31) $\int F_{t,h}^{(r)}(t-y;\lambda)^{2}dy=Ch^{-n/2}p(t)^{2r}(1+\lambda p(t))^{n/2-2(r+1)}$ .

Hence, in view of (3.30) and (3.31), it follows from Lemma 2.1 and the assump-
tion $2(r+1)m>n$ that

(3.32) $\int|I(t)|dt\leqq C\delta^{2}h^{-n/2}\lambda^{n^{\prime}m-2(k+1)}$ .

Next we shall investigate the term $II(t)$ ; the term $III(t)$ can be dealt with
in the same way. Since $F_{t,h}^{(r)}(y;\lambda)$ is a rapidly decreasing bounded function, it
follows from the definition of $F_{t.h}^{(r)}(t-y;\lambda)$ given by (2.7) and Lemma 2.3 that
for any $P>0$

(3.33) $|F_{t.h}^{(r)}(t-y;\lambda)|\leqq Ch^{(p- n)/2}p(t)^{r}(1+\lambda p(t))^{(n-p)/2-(r+1)}|t-y|^{-p}$ .
Furthermore, we have for any $P>0$ large enough,

$\int_{\Omega@}|t-y|^{-p}p(y)^{-1}dy\leqq C(\delta)\rho(t)^{-p+m+n}$

By using these estimates and Lemma 2.2, $\int|II(t)|dt$ is estimated as follows:

$\int|II(t)|dt\leqq C(\delta)h^{(p-n)}\lambda^{-2(k-r)}\int p(t)^{2r+3}(1+\lambda p(t))^{n-p-2(r+1)}\rho(t)^{-2p+n+m}dt$

$\leqq C(\delta)h^{-n/2}\lambda^{n/m-2(k+1)}h^{\gamma}\lambda^{-\overline{p}}$ ,
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where $\gamma=P-n/2<\beta=p+n/m-n$ . Therefore, choosing $p$ appropriately and $\lambda$

so that $ C(\delta)h^{\gamma}\lambda^{-\beta}\leqq\delta$ , we have

(3.34) $\int|II(t)|dt\leqq\delta h^{-n/2}\lambda^{n/m- 2(k+1)}$

for $\lambda\geqq\tilde{C}(\delta)h^{\alpha},$
$\alpha=\gamma/\beta$ . Combining (3.34) with (3.32), we obtain the conclusion.

Case 2, $0\leqq r<k-k_{0}$ . We calculate as follows:

$\sum_{j=1}^{\infty}b_{j,r}(t)^{2}=\sum_{f=1}^{\infty}(\mu_{j}+\lambda)^{-2(k- r)}p(t)(\int F_{t.h}^{(r)}(t-y;\lambda)\theta_{j}(t, y)dy)^{2}$

$\leqq 2\sum_{j=1}^{\infty}(\mu_{j}+\lambda)^{-2(k- r)}p(t)(\int_{\Omega_{\delta}}F_{t.h}^{(r)}(t-y;\lambda)\theta_{j}(t, y)dy)^{2}$

$+2\sum_{j=1}^{\infty}(\mu_{j}+\lambda)^{-2(k- r)}p(t)(\int_{\Omega\S}F_{t,h}^{(r)}(t-y;\lambda)\theta_{j}(t, y)dy)^{2}$

$=I(t)+II(l)$ .
We note that for any $r\geqq 0F_{t.h}^{(r)}(t-y;\lambda)$ is a rapidly decreasing bounded func-
tion on $\Omega_{\delta}^{c}$ as a function of $y$. Hence, by applying the Parseval equality to

$II(t)$ , the estimate for $\int|II(t)|dt$ is carried out exactly in the same way as in

the proof of Case 1 and we obtain

$\int|II(t)|dt\leqq\delta h^{-n/2}\lambda^{n/m-2(k+1)}$

for $\lambda\geqq C(\delta)h^{\alpha}$ .
Next we consider the term $I(t)$ . We shall show that

(3.35) $III=\int p(t)dt(\int_{g_{\delta}}F_{t,h}^{(r)}(t-y;\lambda)\theta_{f}(t, y)dy)^{2}\leqq C\delta^{2}\lambda^{-2(r+1)}$ ,

where $C$ is a constant independent of $j,$ $h,$ $\lambda$ and $\delta$ . If we are able to prove
(3.35), the desired estimate is obtained as follows: Since $k-r>k_{0}=2^{l}>n/m$ ,

we have by virtue of Lemma 3.4

(3.36) $\sum_{f=1}^{\infty}(\mu_{j}+\lambda)^{-2(k-r)}\leqq Ch^{-n/2}\lambda^{n/m-2(k-\gamma)}$

for $\lambda\geqq h^{\alpha}$ . Hence, combining (3.36) with (3.35), we have for $\lambda\geqq h^{\alpha}$ ,

$\int|I(t)|dt\leqq C\sum_{j=1}^{\infty}(\mu_{j}+\lambda)^{-2(k-r)}\int p(t)dt(\int_{\Omega_{\delta}}F_{t,h}^{(r)}(t-y;\lambda)\theta_{j}(t, y)dy)^{2}$

$\leqq C\delta^{2}h^{-n/2}\lambda^{n/m-2(k+1)}$ .
This completes the proof.

Now we shall prove (3.35). To do so, we note the following two facts.

(a) There exists a constant $C$ independent of of $y,$ $z,$ $j$ and $\delta$ such that for
$|y|\leqq\delta$ and $|z|\leqq\delta$ ,
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$\int|u_{j}(t+y\rho(t))||u_{j}(t+z\rho(t))|dt\leqq C$ .

(b) The following estimate holds:

$|F_{t,h}^{(r)}(t-y;\lambda)|\leqq Cp(t)^{r}(1+\lambda p(t))^{-(r+1)}|t-y|^{-n}$ .
(a) is obtained by the Schwarz inequality and changes of variables. (b) is
proved with the aid of Lemma 2.3. In fact, it follows from the definition of
$F_{t,h}^{(r)}(y;\lambda)$ given by (2.7) and Lemma 2.3 that for $2(r+1)<n$ ,

$|F_{t,h}^{(r)}(y;\lambda)|\leqq Ch^{-n/2}p(t)^{\tau}(1+\lambda p(t))^{n/2-(r+1)}|G^{(r)}(g(t, h, \lambda)y)|$

$\leqq Ch^{-n/2}p(t)^{r}(1+\lambda p(t))^{n/2-(r+1)}|g(t, h, \lambda)y|^{2(r+1)-n}H(g(t, h, \lambda)y)$ ,

where $g(t , h, \lambda)=h^{-1/2}(1+\lambda p(t))^{1/2}$ and $H(y)$ is a rapidly decreasing bounded
function. Hence, using the estimate

$|g(t, h, \lambda)y|^{2(r+1)}H(g(t, h, \lambda)y)\leqq C$ ,

we easily obtain the statement (b) in the case of $2(r+1)<n$ . Also in the case
of $2(r+1)\geqq n$ , we can obtain the desired estimate in a similar manner.

Taking the above facts (a) and (b) into account and using the following
estimate obtained from the condition $(K^{+}-3)$ and (1.1);

$|\theta_{j}(t, y)|=|(p(t)-p(y))p(y)^{-1/2}u_{j}(y)|\leqq Cp(t)^{1/2}\rho(t)^{-1}|t-y||u_{j}(y)|$

for $y\in\Omega_{\delta}$ , we have by changes of variables

$III\leqq C\int p(t)^{2(r+1)}(1+\lambda p(t))^{-2(r+1)}\rho(t)^{-2}dt\int_{\Omega_{\delta}}|t-y|^{1-n}|u_{j}(y)|dy\int_{\Omega_{\delta}}|t-z|^{1-n}|u_{j}(z)|dz$

$\leqq C\lambda^{-2(\tau+1)}\int_{|\eta|\leqq\delta}|\eta|^{1-n}d\eta\int_{1}|\zeta|^{1-n}d\zeta\int|u_{j}(t+\eta\rho(t))||u_{j}(t+\zeta\rho(t))|dt\zeta|\leqq\delta$

$\leqq C\delta^{2}\lambda^{-2(r+1)}$ ,

from which (3.35) follows. Thus the proof is completed. $q$ . $e$ . $d$ .
As a direct application of Theorem 3.5, we have the following theorem.
THEOREM 3.8. Assume that $p(x)$ belongs to $K^{+}(m)$ with $0<m<2$ . Let $n(r;p)$

be the number of eigenvalues less than $-r$ of prOblem(1.2). Then, as $r\rightarrow 0$ ,

$n(r;p)=C_{0^{\gamma^{n\prime 2-n/m}}}+o(r^{n/2-n/m})$ ,

where $\tilde{C}_{0}$ is the constant defined in Theorem 3.5.
PROOF. We first note that $n(r;P)=N_{h}(h;p)$ with $r=1/h$ . On the other

hand, since $0<\alpha<1$ , Theorem 3.5 shows that for any $\delta>0$ small enough, there
exists a constant $h(\delta)$ such that for $h\geqq h(\delta)$ ,

$|N_{h}(h;p)-\tilde{C}_{0}h^{n/m-n/2}|\leqq\delta h^{n/m-n/2}$ .
From this fact we can easily obtain the conclusion. $q$ . $e$ . $d$ .
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The method developed above can be applied to more general elliptic
operators.

Let us consider the following eigenvalue problem:

$A(D)u-p(x)u=\lambda u$ , $u\in L^{2}(R^{n})$ ,

where $A(D)$ is a homogeneous elliptic operator of order $2l$ with constant coef-
ficients and $p(x)$ is a function belonging to $K^{+}(m)$ with $0<m<2l$. Let $n(r;P$ ,
$A(D))$ be the number of eigenvalues less than $-r$ of the above problem. Then,
we have

$n(r;p, A(D))=C_{0}r^{n/2l-n/m}+o(r^{n/2l-n/m})$ ,

where we can give the explicit expression of the constant $\tilde{C}_{0}$ but we do not
refer to it here (see [9]).

\S 4. Eigenvalue problem in an unbounded domain.

Let $p(x)$ be a function belonging to $K(m)$ with $0<m<2$ and let $\Omega$ be the
open set given by $\Omega=\{x|p(x)>0\}$ . Then, consider the following eigenvalue
problem:

(4.1) $Au=-h\Delta u+u=\lambda p(x)u$ , $u\in H_{0}^{1}(\Omega)$ .
Here $A$ is the positive self-adjoint operator associated with the symmetric
bilinear form

$a(u, v)=h\sum_{k=1}^{n}(\frac{\partial}{\partial x_{k}}u,$ $\frac{\partial}{\partial x_{k}}v)_{0}+(u, v)_{0}$ , $u,$ $v\in H_{0}^{1}(\Omega)$ ,

where $(, )_{0}$ stands for the scalar product in $L^{2}(\Omega)$ . As in \S 3, we transform
problem (4.1) into the following equivalent eigenvalue problem:

(4.2) $Su=p^{-1/2}(-h\Delta+1)p^{-1/2}u=\lambda u$ ,

where $S$ is a positive self-adjoint operator with domain

$\mathcal{D}(S)=\mathcal{R}(p^{1/2}(-h\Delta+1)^{-1}p^{1/2}).3)$

Throughout this section, we use the notations $G_{\gamma}$ and $\Sigma_{\gamma}$ which were dePned
in \S 1.

Our aim of this section is to prove the following theorem.
THEOREM 4.1. Assume that $p(x)$ belongs to $K(m)$ with $0<m<2$ . Let $ N_{h}(\lambda$ ;

$p,$
$\Omega$ ) be the number of eigenvalues less than $\lambda$ of pr0blem (4.2). Let $\gamma>0$ be

fixed arbitrarily. Then, for any $\delta>0$ small enough, there exists a constant $C(\delta)$

3) The operator $p^{1/2}(-h\Delta+1)^{-1}p^{1/2}$ is a compact operator in $L^{2}(\Omega)$ since $p^{1/2}$ is a
compact operator from $H_{0}^{1}(\Omega)$ to $L^{2}(\Omega)$ . Hence, problem(4.2) has only discrete eigen-

values.



208 H. TAMURA

indePendent of $h$ and $\lambda$ such that for $\lambda\geqq C(\delta)h^{\alpha},$ $0<\alpha<1$ ,

$N_{h}(\lambda;p, \Omega)\geqq C_{0}(\gamma)h^{-n/2}\lambda^{n/m}-\delta h^{-n/2}\lambda^{n/m}$ ,

where

$ C_{0}(\gamma)=(2\pi)^{-n}(2n)^{-1}\sigma_{n- 1}\frac{\Gamma(n/m-n/2)\Gamma(n/2)}{\Gamma(n/m)}\int_{\Sigma\gamma}a(\omega;p)^{n/m}d\omega$ .

Before proving this theorem, we introduce some functions and operators.
Let $\varphi(x),$ $\psi(x)$ and $\chi(x)$ be real-valued $C_{0}^{\infty}$ -functions defined on $R^{n}$ such

that $\varphi(x),$ $\psi(x)$ and $\chi(x)=1$ if $|x|\leqq 1$ , $=0$ if $|x|\geqq 2$ and that $\varphi(x)\psi(x)=\varphi(x)$

and $\psi(x)\chi(x)=\psi(x)$ . For each fixed $t$ in $R^{n}$ and any $\epsilon>0$ , we define $\varphi_{t,\epsilon}(x)$

as

$\varphi_{t,\epsilon}(x)=\varphi(\frac{x-t}{\epsilon\rho(t)})$ .

Similarly we define $\psi_{t,\epsilon}(x)$ and $\chi_{t,\epsilon}(x)$ .
Next we define the operators $A_{h}(\lambda)$ and $R_{h}(\lambda)$ for $\lambda>0$ as

$A_{h}(\lambda)=-h\Delta+1+\lambda p$ ,

$R_{h}(\lambda)=(-h\Delta+1+\lambda p)^{-1}=A_{h}(\lambda)^{-1}$

where $A_{h}(\lambda)$ is a positive self-adjoint operator with domain $\mathcal{D}(A_{h}(\lambda))=\mathcal{D}(A)$ ,

and $A_{h}(\lambda)$ and $R_{h}(\lambda)$ are regarded as operators acting in $L^{2}(\Omega)$ . Furthermore
we define the operator $A_{t,h}(\lambda)$ for each fixed $t\in G_{\gamma}$ as

$A_{t,h}(\lambda)=-h\Delta+1+\lambda p(t)$

where $A_{t,h}(\lambda)$ is a positive self-adjoint operator with domain $\mathcal{D}(A_{t,h}(\lambda))=H^{2}(R^{n})$ .
PROOF OF THEOREM 4.1. Let $t\in G_{\gamma}$. Then, we choose a constant $C(\gamma)$

independent of $t$ such that the set $\{y||t-y|\leqq C(\gamma)\rho(t)\}$ is included in $\Omega$ . Let
$\epsilon$ be fixed so that $\epsilon<C(\gamma)/2$ . Then, for each fixed $t\in G_{\gamma}$ , we have the follow-
ing equality:

(4.3) $\varphi_{t,\epsilon}R_{h}(\lambda)=\psi_{t,\epsilon}R_{t,h}(\lambda)\varphi_{t,\epsilon}+\psi_{t,\epsilon}R_{t,h}(\lambda)(A_{t,h}(\lambda)\varphi_{t,\epsilon}-\varphi_{t,\epsilon}A_{h}(\lambda))^{\chi_{t,\epsilon}}R_{h}(\lambda)$ ,

where $R_{t,h}(\lambda)=A_{t,h}(\lambda)^{-1}$ , which is an integral operator with kernel $F_{t,h}(x-y;\lambda)$

defined by (2.7). (4.3) is easily obtained by using the equality $\varphi_{t,\epsilon}A_{h}(\lambda)x_{t,\epsilon}=$

$\varphi_{t,\epsilon}A_{h}(\lambda)$ , which follows from the relation $\varphi(x)\chi(x)=\varphi(x)$ . From now on, we
simply write $\varphi_{\epsilon},$

$\psi_{\epsilon}$ and $\chi_{\epsilon}$ instead of $\varphi_{t,\epsilon},$
$\psi_{t,\epsilon}$ and $\chi_{t,\epsilon}$ respectively.

Let $\{\zeta_{j}\}_{j=1}^{\infty}$ be eigenvalues of problem (4.2) and $\{w_{j}\}_{j=1}^{\infty}$ be the normalized
eigenfunction corresponding to $\{\zeta_{j}\}_{j=1}^{\infty}$ . Then, it follows from (4.3) that

(4.4) $(\zeta_{j}+\lambda)^{-1}\varphi_{\epsilon}w_{j}=\psi_{\epsilon}p^{1/2}R_{t,h}(\lambda)\varphi_{\epsilon}p^{1/2}w_{j}$

$+(\zeta_{j}+\lambda)^{-1}\psi_{\epsilon}p^{1/2}R_{t,h}(\lambda)(A_{t,h}(\lambda)\varphi_{\epsilon}-\varphi_{\epsilon}A_{h}(\lambda))\chi_{\epsilon}p^{-1/2}w_{j}$ .
By the same method as in the proof of Theorem 3.5, we have the following
equality corresponding to (3.23):
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(4.5) $(-1)^{k}(k!)(\zeta_{j}+\lambda)^{-(k+1)}w_{j}(t)=p(t)^{1/2}\int F_{t,h}^{(k)}(t-y;\lambda)\varphi_{\epsilon}(y)p(y)^{1/2}w_{j}(y)dy$

$+\sum_{r=0}^{k-1}C(r)(\zeta_{j}+\lambda)^{-(k-\gamma)}p(t)^{1/2}\int F_{t.h}^{(r)}(t-y;\lambda)\theta_{j}(t, y, \epsilon)dy$

$+\lambda\sum_{\tau=0}^{k}C_{1}(r)(\zeta_{j}+\lambda)^{-(k-r+1)}p(t)^{1/2}\int F_{t.h}^{(r)}(t-y;\lambda)\theta_{j}(t, y,\epsilon)dy$

$+h\sum_{\tau=1}^{k}C_{2}(r)(\zeta_{j}+\lambda)^{-(k-r+1)}p(t)^{1/2}\int F_{t,h}^{(r)}(t-y;\lambda)B(t, D, \epsilon)p(y)^{-1/2}w_{j}(y)dy$

$=a_{j}(t, \epsilon)+\sum_{r=0}^{k-1}C(r)e_{j,r}(t, \epsilon)+\lambda(\zeta_{j}+\lambda)^{-1}\sum_{r=0}^{k}C_{1}(r)e_{j,r}(t, \epsilon)$

$+h\sum_{r=0}^{k}C_{2}(r)g_{j,r}(t, \epsilon)$ ,

where
$\theta_{j}(t, y, \epsilon)=\varphi_{\epsilon}(y)(p(t)-p(y))p(y)^{-1/2}w_{j}(y)$ ,

$ B(t, D, \epsilon)=\Delta\varphi_{\epsilon}-\varphi_{\epsilon}\Delta$ ,

and $k$ is the integer fixed in the proof of Theorem 3.5. As in the proof of
Theorem 3.5, by taking the square of both sides of (4.5), summing up with
respect to $j$ , and integrating over $G_{\gamma}$ , we have for any $\delta>0$ small enough,

(4.6) $|\sum_{j=1}^{\infty}(\zeta_{j}+\lambda)^{-2(k+1)}\int_{G_{\gamma}}w_{j}(t)^{2}dt-(k!)^{-2}\sum_{j=1}^{\infty}\int_{G_{\gamma}}a_{j}(t. \epsilon)^{2}dl|$

$\leqq\delta\sum_{j=1}^{\infty}\int_{G_{\gamma}}a_{j}(t, \epsilon)^{2}dt+C(\delta)\sum_{r=0}^{k}\sum_{j=1}^{\infty}\int_{G_{7}}e_{j,r}(t, \epsilon)^{2}dt$

$+C(\delta)h^{2}\sum_{r=0}^{k}\sum_{j=1}^{\infty}\int_{G_{\gamma}}g_{j,r}(t, \epsilon)^{2}dt$ .

In order to complete the proof, we have to prepare some lemmas. The proofs
of these lemmas are very similar to those of Lemmas 3.6 and 3.7, and so we
shall give only outlines. Constants appearing in these lemmas and their
proofs may depend on $\epsilon$ and $\gamma$ .

LEMMA 4.2. For any $\delta>0$ small enough, there exists a constant $C(\delta)$ in-
dependent of $h$ and $\lambda$ such that for $\lambda\geqq C(\delta)h^{\alpha},$ $0<\alpha<1$ ,

$|\sum_{j=1}^{\infty}\int_{G_{T}}a_{j}(t, \epsilon)^{2}dt-C_{0}(\gamma, k)h^{-n/2}\lambda^{n/m- 2(k+1)}|\leqq\delta h^{-n/2}\lambda^{n/m- 2(k+1)}$ ,

where $C_{0}(\gamma, k)=(k!)^{2}n/m\frac{\Gamma(2(k+1)-n/m)\Gamma(n/m)}{\Gamma(2(k+1))}C_{0}(\gamma)$ and $C_{0}(\gamma)$ is the constant

given in Theorem 4.1.
PROOF. By means of the Parseval equality, we get

$\sum_{j=1}^{\infty}a_{j}(t, \epsilon)^{2}=p(t)\int F_{t,h}^{(k)}(t-y;\lambda)^{2}\varphi_{\epsilon}(y)^{2}p(y)dy$ .
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If we have only to note the following fact (a), the proof is carried out in the
same way as in the proof of Lemma 3.6.

(a)4) For any $\delta>0$ small enough, there exists a constant $C(\delta)$ such that for
$\lambda\geqq C(\delta)$ ,

$|\int_{G_{\gamma}}p(t)^{2(k+1)}(1+\lambda p(t))^{n/2-2(k+1)}dt-C_{1}(\gamma)\lambda^{n/m-2(k+1)1\leqq\delta\lambda^{n/m-2(k+1)}}$ ,

where

$ C_{1}(\gamma)=1/m\frac{\Gamma(n/m-n/2)\Gamma(2(k+1)-n/m)}{\Gamma(2(k+1)-n/2)}\int_{\Sigma\gamma}a(\omega;p)^{n/m}d\omega$ .
$q$ . $e$ . $d$ .

LEMMA 4.3. For any $\delta>0$ small enough, there exists a constant $C(\delta)$ in-
dePendent of $h$ and $\lambda$ such that for $\lambda\geqq C(\delta)h^{\alpha},$ $0<\alpha<1$ ,

$\sum_{j=1}^{\infty}\int_{G_{\gamma}}e_{j,r}(t, \epsilon)^{2}dt\leqq\delta h^{-n/2}\lambda^{n/m- 2(k+1)}$ .

PROOF. We note the following three facts (a), (b) and (c). Taking these
facts into account, we obtain the proof by an argument similar to that given
in the proof of Lemma 3.7.

(a) There exists a constant $C$ independent of $y,$ $z,$ $j$ and $\delta$ (small enough)

such that for $|y|\leqq\delta$ and $|z|\leqq\delta$ ,

$\int_{G_{\gamma}}|w_{j}(t+y\rho(t))||w_{j}(t+z\rho(t))|dt\leqq C$ .

(b) There exists a constant $C$ independent of $h$ and $\lambda$ such that for $r\geqq k_{0}>$

$n/m$ and $\lambda\geqq h^{\alpha}$ ,

$\sum_{j\Rightarrow 1}^{\infty}(\zeta_{j}+\lambda)^{-2r}\leqq Ch^{-n/2}\lambda^{n/m- 2(r+1)}$ .

(b) is proved as follows: Let $p_{0}(x)$ be a function belonging to $K^{+}(m)$ such
that $p_{0}(x)\geqq p^{+}(x)=\max(0, p(x))$ . Then, consider the following eigenvalue prob-

lem:
$p_{0}^{-1/2}(-h\Delta+1)p_{0}^{-1/2}u=\lambda u$ , $u\in L^{2}(R^{n})$ .

Let $\{\zeta_{0,j}\}_{j=1}^{\infty}$ be eigenvalues of the above problem. Then, it holds that $\zeta_{0,j}\leqq\zeta_{j}$

for each $i$ . Hence, by virtue of Lemma 3.4, we obtain the proof of (b).

(c) If $\delta$ is taken sufficiently small, we have for $y\in\Omega_{\delta}=\{y||t-y|\leqq\delta\rho(t)\}$ ,

$C_{1}p(t)\leqq p(y)\leqq C_{2}p(t)$ .
(c) is easily obtained from the condition (K-2). $q$ . $e$ . $d$ .

4) This fact can be verified in the same way as in the proof of Lemma 2.1.
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LEMMA 4.4. For any $\delta>0$ small enough, there exis $ts$ a constant $C(\delta)$ in-
dependent of $h$ and $\lambda$ such that for $\lambda\geqq C(\delta)h^{\alpha}$ ,

$\sum_{j=1}^{\infty}\int_{G_{\gamma}}g_{j,r}(t, \epsilon)^{2}dt\leqq\delta h^{-n/2- 2}\lambda^{n/m- 2(k+1)}$ .

PROOF. Integration by parts yields

$g_{j,r}(t, \epsilon)=(\zeta_{j}+\lambda)^{-(k- r+1)}p(t)^{1/2}\int_{\epsilon}\Omega_{2\text{\’{e}}}(B^{*}(t, D, \epsilon)F_{t,h}^{(r)}(t, y;\lambda))p(y)^{-1/2}w_{j}(y)dy$ ,

where $B^{*}(t, D, \epsilon)$ is the formal adjoint of the operator $B(t, D, \epsilon)$ and we denote
by $\epsilon\Omega 2\epsilon$ the set $\{y|\epsilon\rho(t)\leqq|t-y|\leqq 2\epsilon\rho(t)\}$ . The coefficients of the operator
$B^{*}(t, D, \epsilon)$ vanish outside the domain $\epsilon 2\epsilon\Omega$ . Hence, $B^{*}(t, D, \epsilon)F_{t.h}^{(r)}(t-y;\lambda)$ is a
smooth function. Furthermore, by virtue of Lemma 2.3 and the definition of
$F_{t,h}^{(r)}(t-y;\lambda)$ given by (2.7), the following estimate holds for any $P>0$ lar $ge$

enough and $y\in_{\text{\’{e}}}\Omega_{2\text{\’{e}}}$ ;

(4.7) $|B^{*}(t, D, \epsilon)F_{t,h}^{(r)}(t-y;\lambda)|\leqq C(\epsilon)h^{(p- n)/2}p(t)^{r}(1+\lambda p(t))^{(n- p)/2-(r+1)}\rho(t)^{-p}$ .

If $\epsilon$ is taken sufficiently small, it follows from the fact (c) in the proof of
Lemma 4.3 that for $y\in_{\epsilon}\Omega_{2\epsilon}$ ,

(4.8) $p(y)^{-1/2}\leqq C(\epsilon)p(t)^{-1/2}$

Using the Parseval equality and the estimates (4.7) and (4.8), we have

$\sum_{j=1}^{\infty}g_{j,r}(t, \epsilon)^{2}\leqq C(\epsilon)\lambda^{-2(k- r+1)}h^{p- n}p(t)^{2\tau}(1+\lambda p(t))^{n- p- 2(\tau+1)}\rho(t)^{-2p+n}$ ,

from which we obtain by means of Lemma 2.2 that

(4.9) $\sum_{j=1}^{\infty}\int_{G_{\gamma}}g_{j,r}(t, \epsilon)^{2}dt\leqq C(\epsilon)h^{-n/2- 2}\lambda^{n/m-2(k+1)}h^{\gamma}\lambda^{-\beta}$ ,

where $\gamma=P+2-n/2<\beta=p+2+n/m-n$ . Hence, we can choose $C(\delta)$ and $\alpha$ so
that for $\lambda\geqq C(\delta)h^{\alpha}$ , the righthand side of (4.9) is dominated by $\delta h^{-n/2-2}\lambda^{n/m- 2(k+1)}$ .

$q$ . $e$ . $d$ .
Completion of the proof of Theorem 4.1. By virtue of Lemmas 4.2, 4.3

and 4.4, it follows from (4.6) that for any $\delta>0$ small enough and $\lambda\geqq C(\delta)h^{\alpha}$ ,
$0<\alpha<1$ ,

(4.10) $|\sum_{j=1}^{\infty}(\zeta_{j}+\lambda)^{-2(k+1)}\sigma_{j}-(k!)^{-2}C_{0}(\gamma, k)h^{-n/2}\lambda^{n/m- 2(k+1)}|\leqq\delta h^{-n/2}\lambda^{n/m- 2(k+1)}$ ,

where $\sigma_{j}=\int_{G_{\gamma}}w_{j}(t)^{2}dt$ , and $C_{0}(\gamma, k)$ is the constant given in Lemma 4.2.

Now we put $N_{h,\gamma}(\lambda;P, \Omega)=\sum_{c_{j}\nwarrow\lambda}\sigma_{j}$
, and apply Lemma 2.4 with $\sigma_{h}(\lambda)=$

$h^{n/2}N_{h,\gamma}(\lambda;p, \Omega)$ to (4.10). Then, we have
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$|N_{h,\gamma}(\lambda;p, \Omega)-C_{0}(\gamma)h^{-n/2}\lambda^{n/m}|\leqq\delta h^{-n/2}\lambda^{n/m}$

for $\lambda\geqq C(\delta)h^{\alpha}$ , where $C_{0}(\gamma)$ is the constant defined in this theorem. Noting
that $N_{h}(\lambda;p, \Omega)\geqq N_{h,\gamma}(\lambda;p, \Omega)$ for each $\gamma>0$ , we immediately obtain the con-
clusion. $q$ . $e$ . $d$ .

As a direct application of Theorem 4.1, we have the following theorem.
THEOREM 4.5. Assume that $p(x)$ belongs to $K(m)$ with $0<m<2$ . Let $n(r$ ;

$p,$
$\Omega$ ) be the number of eigenvalues less that $-r$ of the problem

$-\Delta u-p(x)u=\lambda u$ , $u\in H_{0}^{1}(\Omega)$ .
Then, we have

$\lim_{\rightarrow}\inf_{0}r^{n/m- n/2}n(r;p, \Omega)\geqq C_{3}$ ,

where

$ C_{3}=(2\pi)^{-n}(2n)^{-1}\sigma_{n-1}\frac{\Gamma(n/m-n/2)\Gamma(n/2)}{\Gamma(n/m)}\int_{S^{n-1}}a^{+}(\omega;p)^{n/m}d\omega$ .

PROOF. We Prst note that $n(r;p, \Omega)=N_{h}(h;P, \Omega)$ with $r=1/h$ . Hence, by
virtue of Theorem 4.1, it follows that for each $\gamma>0$ ,

$\lim_{\rightarrow}\inf_{0}r^{n/m- n/2}n(r;P, \Omega)=\lim_{h\rightarrow}\inf_{\infty}h^{n/2- n/m}N_{h}(h;P, \Omega)\geqq C_{0}(\gamma)$ ,

where $C_{0}(\gamma)$ is the constant given in Theorem 4.1. Since $\gamma$ is arbitrary, we
get the conclusion. $q$ . $e$ . $d$ .

\S 5. Eigenvalue problem with singular potentials.

In this section, using the results in [2], [3] and [8], we shall study the
eigenvalue problem with a singular potential.

PROPOSITION 5.1 (H. Weyl). Let $T,$ $T_{1}$ and $T_{2}$ be self-adjoint compact oper-
ators in a separable Hilbert space $\mathcal{H}$ . Assume that $T$ is expressed as $T=T_{1}+T_{2}$ .
We denote by $\lambda_{n}^{+}(T)$ and $\lambda_{n}^{+}(T_{t})(i=1,2)$ the n-th positive eigenvalue of $T$ and
$T_{t}$ respectively. Then,

$\lambda_{n+m- 1}^{+}(T)\leqq\lambda_{n}^{+}(T_{1})+\lambda_{m}^{+}(T_{2})$ .
PROPOSITION 5.2 ([2], [3] and [8]). Let $p_{2}(x)$ be a non-negative function.

Assume that if $n\leqq 2,$ $p_{2}(x)$ has compact supp0rt and belongs to $L^{p}(R^{n})$ and that
if $n>2,$ $p_{2}(x)$ belongs to $L^{n/2}(R^{n})\cap L^{p}(R^{n})$ , where $p>\max(1, n/2)$ . Let $M(\lambda, r)$ be
the number of eigenvalues less than $\lambda$ of the following pr0blem for each fixed $r$

$(0\leqq r\leqq 1)$ :
$-\Delta u+ru=\lambda p_{2}(x)u$ , $u\in H^{1}(R^{n})$ .

Then, as $\lambda\rightarrow\infty$ ,

(5.1) $M(\lambda, y)=C\int p_{2}(x)^{n/2}dx\lambda^{n/2}+o(\lambda^{n/2})$ ,
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where $C$ is a constant independent of $r$ and $p_{2}(x)$ , and the remainder estimate is
uniform with respect to $r$.

Let $p_{1}(x)$ be a function belonging to $K^{+}(m)(0<m<2)$ and let $p_{2}(x)$ be a
function satisfying the assumption in Proposition 5.2. For each fixed $0<r<1$

we define the operators $T(r),$ $T_{1}(r)$ and $T_{2}(r)$ as follows:

$T(r)=(-\Delta+r)^{-1}(p_{1}+p_{2})$ ,

$T_{1}(r)=(-\Delta+r)^{-1}p_{1},$ $T_{2}(r)=(-\Delta+r)^{-1}p_{2}$ .
We note that the operators $T(r),$ $T_{1}(r)$ and $T_{2}(r)$ are self-adjoint compact oper-
ators in the Hilbert space $H^{1}(R^{n})$ with the scalar product

$[u, v]_{r}=((-\Delta+r)^{1/2}u, (-\Delta+r)^{1/2}v)$ .
LEMMA 5.3. There exists a constant $\epsilon_{0}$ independent of $0<r\leqq 1$ such that

for any $0<\epsilon<\epsilon_{0}$ and $r,$ $T_{2}(r)$ has at least one eigenvalue in $(\epsilon/3, \epsilon/2)$ .
PROOF. The above statement is obvious from the following two facts:

(a) The number of eigenvalues greater than $\epsilon/3$ of the operator $\mathcal{T}_{2}(r)$ is

equal to $M(3/\epsilon, r)$ ;

(b) The remainder estimate in (5.1) is uniform with respect to $r$ . $q$ . $e$ . $d$ .
LEMMA 5.4. Let $m(\epsilon, r)$ be the number of eigenvalues greater than $\epsilon 0\int$

the operat0r $T_{2}(r)$ . Then there exists a constant $C(\epsilon)$ independent of $r$ such that

(5.2) $m(\epsilon, r)\leqq C(\epsilon)$ .
PROOF. (5.2) is an immediate consequence of Proposition 5.2. $q$ . $e$ . $d$ .
LEMMA 5.5. For any $\epsilon>0$ small enough, there exists a constant $r(\epsilon)$ such

that for any $r<r(\epsilon),$ $th(j$ operator $T_{1}(r)$ has at least one eigenvalue in $(1-2\epsilon$,
$1-\epsilon)$ .

PROOF. We note that the number of eigenvalues greater than $(1-2\epsilon)$ of
the operator $T_{1}(r)$ is equal to $n(r;(1-2\epsilon)^{-1}p_{1})$ . In fact, $n(r;(1-2\epsilon)^{-1}p_{1})$ coincides
with the maximal dimension of subspaces lying in $H^{1}(R^{n})$ such that

$(1-2\epsilon)((-\Delta+r)^{1/2}u, (-\Delta+r)^{1/2}u)<((-\Delta+r)^{1/2}(-\Delta+r)^{-1}p_{1}u, (-\Delta+r)^{1/2}u)$ .
This shows the above fact. On the other hand, by virtue of Theorem 3.5, we
have

$n(r;(1-2\epsilon)^{-1}p_{1})=C(1-2\epsilon)^{-n/m}r^{n/2-n/m}+o(r^{n/2-n/m})$ ,

where the constant $C$ is independent of $\epsilon$ and the remainder estimate is uniform
for any $\epsilon>0$ small enough. This completes the proof. $q$ . $e$ . $d$ .

THEOREM 5.6. Let $p(x)$ be a function satisfying the following assumptions:
(i) $p(x)$ is decomposed into $p(x)=p_{1}(x)+p_{2}(x)$ ;
(ii) $p(x)$ belongs to $K^{+}(m)(0<m<2)$ ;
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(iii) $p_{2}(x)$ satisfies the assumption in Prop0siti0n 5.2.
Then, for any $\epsilon>0$ small enough, there exist constants $r(\epsilon)$ and $C(\epsilon)$ such that
for $r<r(\epsilon)$ ,

$n(r;p)\leqq n(r;(1-2\epsilon)^{-1}p_{1})+C(\epsilon)$ .
PROOF. We first note that $n(r;p)$ is equal to the number of eigenvalues

greater than one of the operator $T(r)$ . By virtue of Lemmas 5.3 and 5.4, for
any $\epsilon<\epsilon_{0}$ , the $m(\epsilon/3, r)(\leqq C(\epsilon))$ -th eigenvalue of the operator $T_{2}(r)$ is less than
$\epsilon/2$ . On the other hand, by Lemma 5.5, it follows that for any $0<\epsilon<\epsilon_{0}$ there
exists $r(\epsilon)$ such that for any $r<r(\epsilon)$ , the $n(r, (1-2\epsilon)^{-1}p_{1})$ -th eigenvalue of the
operator $T_{1}(r)$ is less than $(1-\epsilon)$ . Hence, by proposition 5.1, the $(n(r;(1-$

$2\epsilon)^{-1}p_{1})+C(\epsilon))$ -th eigenvalue of the operator $T(r)$ is less than $1-\epsilon/2$ . This
completes the proof. $q$ . $e$ . $d$ .

\S 6. Proof of the main theorem.

In this section, we shall prove our main theorem stated in \S 1.

THEOREM 6.1. Assume that $p(x)$ belongs to $S(m)$ with $0<m<2$ . Let $n(r;P)$

be the number of eigenvalues less than $-r$ of prOblem(1.2). Then, as $r\rightarrow 0$ ,

$n(r;p)=C_{0}r^{n/2- n/m}+o(r^{n/2-n/m})$ ,

where $C_{0}$ is the constant given by (1.3).

PROOF. By the condition (S–1), $p(x)$ is decomposed into two parts:

$p(x)=p_{1}(x)+p_{2}(x)$ ,

where $p_{1}(x)$ and $p_{2}(x)$ are functions satisfying the conditions (S-2) and (S-3)

respectively. Furthermore, by the condition (S-2), there exists a sequence
$\{q_{k}(x)\}_{k=1}^{\infty}$ such that for each $kq_{k}(x)$ belongs to $K^{+}(m)$ and that

(6.1.1) $a(\omega;q_{k})\leqq C$ ,

(6.1.2) $\lim_{k\rightarrow\infty}a(\omega;q_{k})=a^{+}(\omega;p_{1})$ .

We shall first give the estimate from above for $n(r;p)$ . It is clear that
for each $k$ $n(r;P)\leqq n(r;q_{k}+p_{2})$ . Furthermore, in virtue of Theorem 5.6, it
follows that for each $k$ and any $\epsilon>0$ small enough,

$n(r;q_{k}+p_{2})\leqq n(r;(1-2\epsilon)^{-1}q_{k})+C(k, \epsilon)$ .
Hence, we have by means of Theorem 3.8 that

$\lim_{r\rightarrow}\sup_{0}r^{n/m- n/2}n(r;q_{k}+p_{2})\leqq(1-2\epsilon)^{-n/m}C_{4}\int_{Sn-1}a(\omega;q_{k})^{n/m}d\omega$ ,

where

$C_{4}=(2\pi)^{-n}(2n)^{-1}\sigma_{n- 1}\frac{\Gamma(n/m-n/2)\Gamma(n/2)}{\Gamma(n/m)}$ .
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Since $\epsilon$ is arbitrary, it follows from (6.1.1), (6.1.2) and the Lebesgue conver-
gence theorem that

(6.2) $\lim_{\rightarrow}\sup_{0}r^{n/m- n/2}n(r;p)\leqq C_{0}$ ,

where $C_{0}$ is the constant given by (1.3). Thus we have established the estimate
from above.

Next we shall give the estimate from below. Let $\Omega$ be the open set given
by $\{x|P_{1}(x)>0\}$ . Then, consider the following eigenvalue problem with zero
boundary conditions:

$-\Delta u-p_{1}(x)u=\lambda u$ , $u\in H_{0}^{1}(\Omega)$ .
Let $n(r;p_{1}, \Omega)$ be the number of eigenvalues less than $-r$ of the above prob-
lem. Then, we can easily see that $n(r;P)\geqq n(r;p_{1}, \Omega)$ . Hence, we have by

virtue of Theorem 4.5,

(6.3) $\lim_{r\rightarrow}\inf_{0}r^{n/m- n/2}n(r;p)\geqq\lim_{r\rightarrow}\inf_{0}r^{n/m-n/2}n(r;p_{1}, \Omega)\geqq C_{0}$ .

Combining (6.2) and (6.3), we obtain the conclusion. q..e. $d$ .

\S 7. The asymptotic distribution of discrete eigenvalues
for the Dirac operators.

In this section, we shall apply the method developed in the preceding
sections to the Dirac operators. Let us consider the following eigenvalue
problem:

(7.1) $ S\varphi=S_{0}\varphi-p(x)\varphi$

$=(\sum_{k=1}^{3}\alpha_{k}\xi_{k}+\alpha_{4})\varphi-p(x)\varphi=\lambda\varphi$ .

Here $\xi_{k}=-i(\frac{\partial}{\partial x_{k}})(i=\sqrt{-1}, k=1,2,3);\varphi=(\varphi_{1}, \varphi_{4})$ is a four-component

function belonging to $[L^{2}(R^{3})]^{4}$ ; $\alpha_{k}(k=1,2,3,4)$ are the Dirac numerical $4\times 4$

matrices satisfying the relationship $\alpha_{j}\alpha_{k}+\alpha_{k}\alpha_{j}=2\delta_{jk}$ ; $p(x)$ is a scalar potential
which we suppose, for brevity, to belong to $K^{+}(m)(0<m<2)$ . For later use,
we write the explicit form of $\alpha_{4}$ :

$\alpha_{4}=\left\{\begin{array}{llll}1 & & & 0\\ & 1 & & \\ & & -1 & \\0 & & & -1\end{array}\right\}$

.

We denote by $n_{0}(r;p)(r>0)$ the number of eigenvalues lying in $(-1+r$,
$1-r)$ of problem (7.1). We remark that since $p(x)>0$ , discrete eigenvalues
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cannot admit $\lambda=-1$ as a cluster point.
LEMMA 7.1. For any $\delta>0$ small enough, there exist operators $A(\pm\delta)$ such

that for any $\varphi\in[C_{0}^{\infty}(R^{3})]^{4}$ ,

$[A(-\delta)\varphi, \varphi]\leqq[(S^{2}-1)\varphi, \varphi]\leqq[A(+\delta)\varphi, \varphi]$ ,

where

$A(\pm\delta)=\left\{\begin{array}{lll}B_{1}(\pm\delta) & & \\ & & 0\\ & B_{1}(\pm\delta) & \\ & B_{2}(\pm\delta) & \\0 & & B_{2}(\pm\delta)\end{array}\right\}$ ,

$B_{1}(\pm\delta)=(-1\mp\delta)\Delta-2p\pm C(\delta)p^{2}$ and $B_{2}(\pm\delta)=(-1\mp\delta)\Delta+2p\pm C(\delta)p^{2}$ , while $[, ]$

stands for the usual scalar product in $[L^{2}(R^{3})]^{4}$ , that is,

$[\varphi, \psi]=\sum_{f=1}^{4}(\varphi_{f}, \psi_{j})$ and $[\varphi]^{2}=\sum_{j=1}^{4}(\varphi_{f}, \varphi_{j})$ .

PROOF. A simple calculation yields

(7.2) $[(S^{2}-1)\varphi, \varphi]=[(S_{0}^{2}-1)\varphi, \varphi]+[p^{2}\varphi, \varphi]$

$-2{\rm Re}[(S_{0}-\alpha_{4})\varphi, p\varphi]-2[\alpha_{4}\varphi, p\varphi]$ .

Noting that $\alpha_{4}=\left|\begin{array}{lllll}1 & & & & 0\\ & & 1 & & \\ & & & -1 & \\ & 0 & & & -1\end{array}\right|$ , we see that

(7.3) $[\alpha_{4}\varphi, p\varphi]=\sum_{j-1}^{2}(p\varphi_{j}, \varphi_{j})-\sum_{f=3}^{4}(p\varphi_{j}, \varphi_{j})$ .

On the other hand, we have for any $\delta>0$ ,

(7.4) $2|[(S_{0}-\alpha_{4})\varphi, p\varphi]|\leqq\delta[(S_{0}-\alpha_{4})\varphi]^{2}+1/\delta[p\varphi]^{2}$

$=\delta\sum_{j=1}^{4}(-\Delta\varphi_{j}, \varphi_{j})+1/\delta\sum_{f=1}^{4}(p\varphi_{j}, \varphi_{j})$ .

Hence, in view of (7.2), (7.3) and (7.4), we obtain the proof since $ S_{0}^{2}-1=-\Delta$ .
$q$ . $e$ . $d$ .

THEOREM 7.2. Assume that $p(x)$ belongs to $K^{+}(m)$ with $0<m<2$ . Then, $as$

$r\rightarrow 0$ ,

$n_{0}(r;p)=C_{5}r^{3/2-3/m}+o(r^{3/2-3/m})$ ,

where

$ C_{5}=1/12(2\pi^{-1})^{3/2}\frac{\Gamma(3/m-3/2)}{\Gamma(3/m)}\int_{S^{2}}a(\omega;p)^{8/m}d\omega$ .
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PROOF. Only an outline of the proof will be presented. We note that
$n_{0}(r;p)$ is equal to the maximal dimension of subspaces lying in $[C_{0}^{\infty}(R^{3})]^{4}$

such that

$[S^{2}\varphi, \varphi]<(1-r)^{2}[\varphi, \varphi]$ .
Therefore, by virtue of Lemma 7.1, we can apply the same argument as in
the proof of Theorem 3.5 to the operators $(-1\mp\delta)\Delta-2p\pm C(\delta)p^{2}$ in obtaining
the estimates from above and from below for $n_{0}(r;p)$ . We should note that
since $p(x)^{2}$ decays at infinity faster than $p(x),$ $C(\delta)p(x)^{2}$ has no contribution to
the leading term of the asymptotic formula for $n_{0}(r;p)$ . $q$ . $e$ . $d$ .

\S 8. Concluding remark.

REMARK 1. The assumption (K-1) is weakened as follows. Consider a
smooth function $p(x)$ satisfying

$(K^{\prime}-1)$
$\lim_{\rightarrow\infty}r^{m}p(r\omega)=r(\omega;p)$ ,

where we do not assume that the convergence is uniform with respect to $\omega$

and that $a(\omega;p)$ is a continuous bounded function on $S^{n-1}$ .
Let $\Sigma^{+}$ be the set given by $\Sigma^{+}=\{\omega|a(\omega;P)>0\}$ . Then, we assume the

following conditions:
$(K^{\prime}-3)$ $\Sigma^{+}$ is an open set in $S^{n-1}$ ;

$(K^{\prime}-4)$ The convergence in $(K^{\prime}-1)$ is locally uniform in $\Sigma^{+}$ and $a(\omega;p)$ is a

continuous function in $\Sigma^{+}$ .

We denote by $K^{\prime}(m)$ the set of all smooth functions satisfying $(K^{\prime}-1)$ , (K-2),
$(K^{\prime}-3)$ and $(K^{\prime}-4)$ and define $S^{\prime}(m)$ corresponding to $S(m)$ with $K(m)$ replaced
by $K^{\prime}(m)$ in (S-2). Then, for a function belonging to $S^{\prime}(m)(0<m<2)$ , we have
the same conclusion as Theorem 6.1.
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