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Introduction.

At the beginning of this century E. Cartan developed the theory of infinite
Lie groups in his series of papers [1], [2], [3], and one of his main achieve-
ments was the classification of the simple infinite Lie groups [3].

With the increasing interest in this field, modern formulations and treat-
ments were made around 1960 (especially in [9], [5], [13]), and then the
rigorous and systematic proof of the classification of the simple infinite Lie
groups was given in the transitive case ([8], [6], [10]).

On the other hand in the intransitive case, only a few attempts were made
by several authors. N. Tanaka [14] and K. Ueno [15] studied the generalized
G-structures towards the equivalence problem of the intransitive Lie groups.
V. Guillemin [7] studied a Jordan-H\"older decomposition of the transitive Lie
algebras and introduced simple intransitive Lie algebras occuring in the de-
composition. But in his treatment the intransitive Lie algebras considered are
limited to those which are ideals of some Lie algebras.

It seems that there are no satisfactory formulations and treatments of the
intransitive infinite Lie groups. In particular, in spite of the early work of
Cartan, the classification of the simple intransitive infinite Lie groups has not
yet been rigorously settled.

The purpose of this paper is to contribute to the classification of the simple
intransitive infinite Lie groups.

According to Cartan [3], the classification problem is divided into the
following three problems:

(I) To reduce the problem to (II) and (III).
(II) To determine all intransitive Lie groups whose restrictions to the

orbits are infinite and primitive.
(III) To determine all intransitive infinite Lie groups whose restrictions

to the orbits are finite, simple, and simply transitive on the orbits.
In this paper we take up the problem (II). We shall formulate it in the

category of the formal Lie algebras, and carry it through.
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Now we explain our main results, describing the construction of this paper.
Let $V$ be a finite dimensional vector space, and $D(V)$ be the Lie algebra

of all formal vector Pelds on $V$ (see \S 1). The closed Lie subalgebras $A$ of
$D(V)$ are the formal objects corresponding to the Lie algebra sheaves on a
manifold, and are what we are concerned with.

In \S 2 we establish a formal version of the Frobenius’ theorem with singu-
larities which was obtained by T. Nagano [12] in the analytic category. By
the theorem we can consider the (formal) orbit of $A$ through the origin of $V$ ,

and the restriction of $A$ to the orbit, which we call the transitive part of $A$ .
Then our problem is stated as follows: Determine all closed intransitive

Lie subalgebras $A$ of $D(V)$ whose transitive parts are infinite and primitive.
To carry out the problem, we assume that the ground field is the complex

number field $C$, and we impose on $A$ the following reasonable regularity con-
ditions:

$(A_{1})$ The orbit of $A$ through the origin is a regular orbit.
$(A_{2})$ The associated graded Lie algebra $\mathfrak{g}\mathfrak{r}^{k}(A)$ of $A$ satisfies

$(R)$ [V, $\mathfrak{g}\mathfrak{r}^{k}(A)$] $\subset \mathfrak{g}\mathfrak{r}^{k- 1}(A)$ for all $k$ .
The condition $(R)$ is suggested by the work of Tanaka, loc. cit., where he

proved that $(R)$ is always satisfied if $A$ comes from the Lie algebra sheaf $d$

which satisfies the condition that dim $\llcorner fl_{x}/d_{x}^{k}$ is independent of the point $x$ ,

where $d_{x}^{k}$ is the subalgebra of the stalk $cd_{x}$ consisting of those germs vanish-
ing to order $k$ .

The formal version of this fact is explained in \S 4, after we introduce the
prolongation of $D(V)$ in \S 3.

Our main theorem is then stated as follows (see \S 6):
THEOREM. Let $A$ be a closed Lie subalgebra of $D(V)$ satisfying $(A_{1})$ and

$(A_{2})$ . Assume that the transitive part $L$ of $A$ is infinite and primitive. Then $A$

is isomorphic to a subalgebra of $L[W^{*}]$ containing $L^{\prime}[W^{*}]$ for a certain vector
space $W$.

Here $L[W^{*}]$ denotes the intransitive extension of $L$ by $W$ (see \S 5 for the
definition). It is well-known that there are six classes of infinite primitive Lie
algebras. Four of them are simple and the other two are not; each has the
ideal of codimension 1. We have denoted by $L^{\prime}$ either $L$ itself or the ideal
of $L$ , according as $L$ is simple or not.

Thus the algebra $A$ is completely determined up to $W$ if the transitive
part $L$ is simple. Though $A$ is not uniquely determined if $L$ is not simple,
it is not so essential in the sense that $L[W^{*}]/L^{\prime}[W^{*}]$ is abelian and isomorphic
to the ring $F(W)$ of formal function on $W$ (see \S 11).

In \S 5 we introduce the notion of essential invariants due to E. Cartan [4].

If we reduce $A$ by excluding the inessential invariants out of $A$ , then $W$ is
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determined by $V=U\oplus W$, and the isomorphism of $A$ to a subalgebra of $L[W^{*}]$

is given by a formal (power series) isomorphism of $V$.
In \S 7 we review briefly some known results for the primitive infinite Lie

algebras, especially for irreducible ones.
In \S 8 we study the contact Lie algebra and determine its structure

thoroughly.
In \S 9, 10 and 11, the proof of the theorem is carried out. First we determine

the associated bi-graded Lie algebra $\sum \mathfrak{a}^{p,q}$ of $A$ in \S 9. Then starting from
the associated bi-graded Lie algebra, we determine $A$ in \S 10 and 11. Since the
most difficult is the case where $L$ is contact, we devote ourselves mainly to
this case and the proof for the case where $L$ is irreducible is only outlined in
\S 11.

In this way the problem (II) is solved. For the other problems, especially
for (I), it seems that further studies of intransitive Lie groups will be needed.

The author would like to express his deep gratitude to Professor N. Tanaka
who first introduced him to infinite Lie groups and has encouraged him with
kind advice.

\S 1. Formal functions, vector fields and mappings.

Let $V$ be a finite dimensional vector space over a field $k$ of characteristic
$0$ . Let $V^{*}$ be the dual space of $V$ and $S^{p}(V^{*})$ be the $p$-times symmetric tensor

of $V^{*}$ . The complete direct sum $ p=0IIS^{p}(V^{*})\propto$ is denoted by $F(V)$ and elements

of $F(V)$ are called formal functions on $V$. If we fix a basis $x^{1},$
$\cdots,$

$x^{n}$ of $V^{*}$ ,

formal functions are regarded as formal power series in $n$ indeterminates
$x^{1},$

$\cdots,$
$x^{n}$ . We endow a topology on $F(V)$ by assigning a filtration $\{F^{p}(V)\}$ as

a fundamental system of neighbourhoods of the origin, where we set $F^{p}(V)$

$=\prod_{k\geqq p}S^{k}(V^{*})$ .
By a formal vector field on $V$ we mean a continuous derivation of $F(V)$ .

We denote by $D(F(V))$ or $D(V)$ the Lie algebra of all formal vector fields on
V. Since any continuous derivation is uniquely determined by its value on
$V^{*},$ $D(V)$ is identiPed with $V\otimes F(V)$ . Let $\frac{\partial}{\partial x^{1}}$ , $-\frac{\partial}{x^{n}}\partial$ be the basis of $V$ dual

to $x^{1},$ $\cdots$ , $x^{n}$ . Then each $X\in D(V)$ is written uniquely as
$ X=\sum f^{i}-\frac{\partial}{x^{i}}\partial$

where $f^{i}$ is given by $f^{i}=X\cdot x^{i}$ . Let $D^{p}(V)$ be the subspace of $D(V)$ consisting
of formal vector fields $X$ such that $X\cdot F(V)\subset F^{p+1}(V)$ . Then $D^{p}(V)$ is identi-
fied with $V\otimes F^{p+1}(V)$ and it is easy to verify that

$[D^{p}(V), D^{q}(V)]\subset D^{p+q}(V)$ .
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We also endow a topology on $D(V)$ by the filtration $\{D^{p}(V)\}$

Let $A$ be a Lie subalgebra of $D(V)$ . The filtration $\{D^{p}(V)\}$ of $D(V)$ induces
a filtration $\{A^{p}\}$ of $A$ , where we set $A^{p}=A\cap D^{p}(V)$ . Putting $\mathfrak{g}\mathfrak{r}^{p}(A)=A^{p}/A^{p+1}$ ,

we get the associated graded Lie algebra $gr(A)=\sum gr^{p}(A)$ of $A$ . Since $\mathfrak{g}\mathfrak{r}^{p}(D(V))$

is canonically isomorphic to $V\otimes S^{p+1}(V^{*}),$ $\mathfrak{g}\mathfrak{r}^{p}(A)$ is identified with a subspace
of $V\otimes S^{p+1}(V^{*})$ . In particular $\mathfrak{g}\mathfrak{r}^{-1}(A)$ is a subspace of V. $A$ is called transitive
if $\mathfrak{g}\mathfrak{r}^{-1}(A)=V$ and intransitive otherwise.

Let $W$ be another vector space. By a formal maPping from $V$ to $W$ we
mean a ring homomorphism $\varphi^{*}:$ $F(W)\rightarrow F(V)$ with $\varphi^{*}(1)=1$ . If $\varphi^{*}$ is an iso-
morphism, $\varphi$ is called a formal isomorPhism.

Let $\varphi_{k}$ be the S $(V^{*})$ -component of $\varphi^{*}|W^{*}$ . $\varphi_{k}$ is considered as an element
of $W\otimes S^{k+1}(V^{*})$ . Since $\varphi^{*}$ is uniquely determined by its value on $W^{*}$ , the
correspondence

(1.1) $\varphi\rightarrow(\varphi_{k})_{k\geqq-1}$ , $\varphi_{k}\in W\otimes S^{k+1}(V^{*})$ ,

is bijective. Note that $\varphi$ is an isomorphism if and only if $\varphi_{0}$ is.
Let $f^{1},$ $\cdots$ , $f^{s}$ be a set of formal functions. It is called independent if the

projection of 1, $f^{1},$ $\cdots$ , $f^{s}$ on $F(V)/F^{2}(V)$ is independent. In other words, if we
denote by $f(O)$ the constant term of $f$ and by $d_{0}f$ the projection of $f-f(O)$ on
$V^{*},$ $f^{1},$ $\cdots$ , $f^{s}$ is independent if and only if $d_{0}f^{1},$ $\cdots$ , $d_{0}f^{s}$ is linearly independent.
If $n=\dim V$, an independent set of $n$ formal functions $f^{1},$ $\cdots$ , $f^{n}$ on $V$ forms a
formal coordinate system of $V$.

Let $f^{1},$ $\cdots$ , $f^{s}$ and $g^{1},$ $\cdots$ , $g^{s}$ be independent, then there exists a formal iso-
morphism $\varphi$ of $V$ such that $\varphi^{*}g^{i}=f^{i}$ for $i=1,$ $\cdots$ , $s$ .

Let $\varphi$ be a formal isomorphism of $V$ to $W$. Then it induces the Lie algebra
isomorphism

$\varphi_{*}:$ $D(V)\rightarrow D(W)$

defined by $\varphi_{*}X=(\varphi^{*})^{-1}\circ X\circ\varphi^{*}$ for $X\in D(V)$ .
Let $\varphi$ be a formal isomorphism of $V$ such that $\varphi^{*}F^{1}(V)\subset F^{1}(V)$ . Then

clearly we have $\varphi^{*}F^{p}(V)\subset F^{p}(V)$ . From this we see that
$\varphi_{*}D^{p}(V)\subset D^{p}(V)$ for all $p$ .

Therefore $\varphi*induces$ the map

(1.2) $\varphi_{*}^{\#}$ : $V\otimes S^{p+1}(V^{*})\rightarrow V\otimes S^{p+1}(V^{*})$ .
Let $\varphi=(\varphi_{k})$ , where $\varphi_{k}\in V\otimes S^{k+1}(V^{*})$ , with respect to the identification of

(1.1), then $\varphi_{-1}=0$ and $\varphi_{0}$ is non-singular in this case. It is easily verified that
tbe map (1.2) coincides with the following map:

$\varphi_{0}\otimes\otimes^{p+1}\varphi_{0}^{-1}$ : $V\otimes S^{p+1}(V^{*})\rightarrow V\otimes S^{p+1}(V^{*})$ .
Moreover we have
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PROPOSITION 1.1. Let $\varphi$ be a formal isomorphism of $V$, and let $\varphi=(\varphi_{k})_{k\geqq- 1}$

with $\varphi_{k}\in V\otimes S^{k+1}(V^{*})$ . Assume that $\varphi_{- 1}=0,$ $\varphi_{0}=id$, and $\varphi_{i}=0$ for $0<i<p$ . Then

$\varphi_{*}X_{q}=X_{q}-[\varphi_{p}, X_{q}]$ $(mod D^{p+q+1}(V))$

for any $X_{q}\in V\otimes S^{q+1}(V^{*})$ .
The proof is omitted.
Throughout this paper we confine ourselves to the formal category. So

we shall hereafter often omit the adjective “ formal ‘’.

\S 2. Formal version of Frobenius’ theorem with singularities.

Let $A$ be a Lie subalgebra of $D(V)$ . $A$ function $f$ is called an invariant
of $A$ if $X\cdot f=0$ for all $X\in A$ , and an ideal $\mathcal{I}$ of $F(V)$ is called invariant by $A$

if $X\cdot \mathcal{I}\subset \mathcal{I}$ for all $X\in A$ .
The following theorem is a formal version of the Frobenius’ theorem with

singularities (for the analytic case refer to [12]):
THEOREM 2.1. Let $A$ be a Lie subalgebra of $D(V)$ , and $s$ be the codimension

of $\mathfrak{g}\mathfrak{r}^{-1}(A)$ . Then there exist $s$ independent functions $f^{1},$ $\cdots$ , $f^{s}$ such that the closed
ideal $(f^{1}, \cdots , f^{s})$ generated by $f^{1},$ $\cdots$ , $f^{s}$ is invariant by $A$ .

PROOF. Let $A^{F}$ be the $F(V)$ -module generated by $A$ . Then $A^{F}$ is a Lie
subalgebra of $D(V)$ and satisfies $\mathfrak{g}\mathfrak{r}^{-1}(A^{F})=\mathfrak{g}\mathfrak{r}^{-1}(A)$ . Note that an ideal $\mathcal{I}$ is
invariant by $A^{F}$ if and only if it is invariant by $A$ . Therefore we assume,
without loss of generality, that $A^{F}=A$ .

For the proof we need the following lemma:
LEMMA 2.1. Let $A$ be a Lie subalgebra of $D(V)$ satisfying $A^{F}=A$ , with

dim $\mathfrak{g}\mathfrak{r}^{-1}(A)=r$. Then there exist $r$ vectors $X_{1},$ $\cdots$ , $X_{r}$ in $A$ such that by a suitable
coordinate system $x^{1},$ $\cdots$ , $x^{r},$ $y^{1},$ $\cdots$ , $y^{s}$ of $V$ with $x^{i},$ $y^{a}\in F^{1}(V)$ each $X_{i}$ is ex-
pressed in the following form:

$X_{i}=\frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{s}\xi_{i}^{\alpha}\frac{\partial}{\partial y^{\alpha}}$ for $1\leqq i\leqq r$ ,

where each $\xi_{i}^{\alpha}$ belongs to the ideal $(y^{1}, \cdots, y^{s})$ .
Taking this lemma for granted, we can prove the theorem immediately:

Let $X_{1},$ $\cdots$ , $X_{r}$ and $x^{1},$ $\cdots$ , $x^{r}$ . $y^{1},$ $\cdots$ , $y^{s}$ , be as in the lemma. Then we assert
that the ideal $(y^{1}, \cdots, y^{s})$ is invariant by $A$ .

Let $U$ be the vector subspace of $A$ spanned by $X_{1},$ $\cdots$ , $X_{r}$ and $B$ be the Lie
subalgebra of $A$ consisting of those $Y\in A$ of the form

$Y=\sum_{\alpha=1}^{s}\eta^{a}\frac{\partial}{\partial y^{\alpha}}$

in the coordinate system $x^{1},$
$\cdots,$

$x^{r},$ $y^{1},$ $\cdots$ , $y^{s}$ . Then it is obvious that $A=U^{F}+B$ .
Therefore it suffices to prove that $(y^{1}, \cdots , y^{s})$ is invariant by $B$ .



40 T. MORIMOTO

If $\sum_{\alpha=1}^{s}\eta^{\alpha}\frac{\partial}{\partial y^{a}}\in B$ , then we see easily that $\eta^{\alpha}(0)=0$ for $\alpha=1,$ $\cdots$ , $s$. It is also

easy to see that

(2.1) $\left\{\begin{array}{l}[U,U]\subset B\\[B,U]\subset B.\end{array}\right.$

Therefore, for $Y=\sum\eta^{\alpha}\frac{\partial}{\partial y^{\alpha}}\in B$ , if we set

$[X_{k}, \cdots[X_{j}, [X_{i}, Y]], ]=\sum_{\alpha=1}^{s}\eta_{\ell j\cdots k}^{a}\frac{\partial}{\partial y^{\alpha}}$

We have $\eta_{ij\cdots k}^{a}(0)=0$ , from which by a simple calculation we get

$\frac{\partial\cdot.\cdot.\cdot\partial\eta^{\alpha}}{\partial_{X^{k}}\cdot\partial x^{j}\partial \mathfrak{r}^{t}}(0)=0$
$\left(\begin{array}{lllll}1\leqq & \alpha\leqq s & & & \\1\leqq i,j, & \cdots & k & \cdots & \leqq r\end{array}\right)$ .

This implies that $Y\cdot y$ belongs to the ideal $(y^{1}, \cdots, y^{s})$ . Thus the proof of the
theorem is completed.

The proof of the lemma proceeds as follows: Taking account of the
assumption that $A^{F}=A$ , we can find $X_{1},$

$\cdots,$ $X_{r}\in A$ and a coordinate system
$u^{1},$ $\cdots$ , $u^{r},$ $v^{1},$

$\cdots,$
$v^{s}$ , with $u^{1}(0)=\ldots=v^{s}(0)=0$ such that

(2.2) $X_{i}=\frac{\partial}{\partial u^{i}}+\sum_{\alpha=1}^{s}\xi_{t^{-}}^{a_{\partial}}\frac{\partial}{v^{\alpha}}$ , $\xi_{i}^{a}(0)=0$ .

We want to find functions $\varphi^{\alpha},$ $\lambda_{i\beta}^{a}(1\leqq\alpha, \beta\leqq s, 1\leqq i\leqq r)$ satisfying the equa-
tions:

$s$

(2.3) $\left\{\begin{array}{l}X_{i}f^{\alpha}=\sum_{\beta=1}\lambda_{i\beta}^{a}f^{\beta}\\f^{\alpha}=v^{\alpha}-\varphi^{\alpha}\end{array}\right.$

plus the condition:

(2.4) $\varphi^{\alpha}$ is a power series in $u^{1},$ $\cdots$ , $u^{r}$ and $\varphi^{\alpha}(0)=0$ .
In order to obtain $\varphi^{\alpha},$ $\lambda_{i\beta}^{\alpha}$ , we expand them in power series of $u^{1},$

$\cdots,$
$u^{r}$ :

(2.5) $\left\{\begin{array}{l}\varphi^{\alpha}=\varphi^{\alpha(1)}+\varphi^{\alpha(2)}+\ldots+\varphi^{a(p)}-\vdash\ldots\\\lambda_{i\beta}^{a}=\lambda_{i\beta}^{\alpha(0)}+\ldots+\lambda_{i\beta}^{a(p)}+\ldots\end{array}\right.$

and we are to determine inductively $\varphi^{\alpha(p)}$ and $\lambda_{i\beta}^{arp)}$ so as to satisfy (2.3) and
(2.4). In each inductive step, we need certain compatibility conditions in $’$)$rder$

to find $\varphi^{\alpha(p)}$ . It is in effect satisfied by the following fact: If we put

(2.6) $[X_{k}, \cdots[X_{j}, X_{i}]\cdots]=\sum_{\alpha=1}^{s}\eta_{ij\cdots k}^{\alpha}-\partial\frac{\partial}{v^{\alpha}}$ ,

then we have

(2.7) $\eta_{ij\cdots k}^{a}(0)=0$ .
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In this way, though we omit the details, we can determine $\varphi^{\alpha(p)}$ and $\lambda_{i\beta}^{a(p)}$

uniquely. Then each $X_{i}$ is expressed in the desired form by the coordinate
system $u^{1},$

$\cdots,$
$u^{r},$ $f^{1},$ $\cdots$ , $f^{s}$ , which completes the proof of Lemma 2.1.

The ordinary Frobenius’ theorem has the following formal version:
THEOREM 2.2. Let $X_{1},$

$\cdots,$
$X_{r}$ be independent vectors in $D(V)$ and satisfy

$[X_{i}, X_{j}]=\sum_{k=1}^{r}f_{ij}^{k}X_{k}$ for some $f_{tj}^{k}\in F(V)$ .

Then there exist $s$ functions $y^{1},$
$\cdots,$ $y^{s}(s=\dim V-r)$ which are independent and

are invariants of $X_{1},$ $\cdots$ , $X_{r},$ $i$ . $e.$ ,

$X_{t}\cdot y^{\alpha}=0$ for $1\leqq i\leqq r$ , $1\leqq\alpha\leqq s$ .
The proof is also carried out quite formally.

\S 3. Prolongation of $D(V)$ .
For a vector space $V$, we put $V^{(k)}=V\otimes\sum_{=l0}^{k}S^{k}(V^{*})$ and consider the ring

$F(V^{(k)})$ of the formal functions on $V^{(k)}$ . Since $S^{p}(V)^{*}$ is identified with $S^{p}(V^{*})$

by the natural pairing $\langle$ , $\rangle$ , we identify $V^{(k)*}$ with $V^{*}\otimes\sum_{l=0}^{k}S^{i}(V)$ . By this
identification, there is a natural inclusion:

$\iota_{ik}$ ; $F(V^{(k)})\rightarrow F(V^{(l)})$ for $l\geqq k$ .
We set $ F(V^{(\infty)})=\lim_{k}F(V^{(k)})\rightarrow$

.

Let $\{x^{1}, \cdots , x^{n}\}$ be a basis of $V^{*}$ , and $\{p_{\alpha}^{i} ; i=1, \cdots , n, \alpha=(\alpha_{1}, \cdots, \alpha_{n}), |\alpha|\leqq k\}$

be a basis of $V^{(k)*}$ such that $\iota_{k0}x^{i}=p_{0}^{i}$ , then each element of $F(V^{(k)})$ is regarded
as a (formal) function of $\{p_{\alpha}^{i}\}$ . For $f\in F(V)$ , by the substitution:

$\overline{x}^{i}=\sum_{|\alpha|\leqq k}\frac{1}{\alpha!}p_{\alpha^{X^{\alpha}}}^{i}$ .
We get a function $j^{k}f$

$j^{k}f=f(\overline{x}^{1},$ $\cdots\prime^{\overline{X}^{n})}$

Then $j^{k}f$ is regarded as an element of $F(V\oplus V^{(k)})$ . Thus we get a map
$j^{k}$ ; $F(V)\rightarrow F(V\oplus V^{(h)})$ . We note that $F(V\oplus V^{(k)})$ is identified with $ F(V)\otimes F(V^{(k)})\wedge$

( $F(V)\otimes F(V^{(k)})$ is endowed with the topology defined by the filtration $\{\Phi^{p}\}$ ,

where $\Phi^{p}=\sum_{=r+bp}F^{r}(V)\otimes F^{s}(V^{(k)})$ and $\otimes\wedge$ denotes the completion with respect to

this topology). Since $F(V)$ is the dual space of $S(V)$ by the pairing $\langle$ , $\rangle$ , there
is defined the pairing $S(V)\times F(V+V^{(k)})\rightarrow F(V^{(k)})$ , which we also denote by $\langle$ , $\rangle$ .

Now for $f\in F(V)$ , we define the derivative $\Delta f$ of $f$ as an element of

Hom $(S(V), F(V^{(\infty)}))$ in the following way: For $\xi\in\sum_{i=0}^{k}S^{i}(V)$ and $l\geqq k$ , we put

$\Delta_{\xi}^{l}f=\langle\xi, j^{l}f\rangle$ ,
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then we see that
$\iota_{l^{\prime}l}\Delta\xi f=\Delta\xi^{\prime}f$ for $l^{\prime}\geqq l$ .

We define $\Delta f$ to be the injective limit of $\Delta^{l}f$.
It being prepared, for $X\in D(V)$ the k-th prolongation $\overline{\beta}^{k}X$ is defined to be

the derivation of $F(V^{(k)})i$ . $e$ . the element of $D(V^{(k)})$ by the following condition:

(3.1) $\overline{p}^{k}X(\alpha\otimes\xi)=\Delta_{\xi}(X\cdot\alpha)$ for $\alpha\otimes\xi\in V^{*}\otimes\sum_{i=0}^{k}S^{i}(V)$ .

Since any derivation of $F(V^{(k)})$ is uniquely determined by its value on $V^{(k)*}$ ,
$\overline{p}^{k}x$ is uniquely determined by (3.1).

PROPOSITION 3.1. The map
$\overline{p}^{k}$ ; $D(V)\rightarrow D(V^{(k)})$

is an injective Lie algebra homomorphism.
PROOF. This proposition can be verified by a direct calculation.
It is convenient for our purpose to modify $\overline{p}^{k}$ by a translation. Let $\theta$ be

the formal isomorphism of $V^{(k)}$ , defined by $\theta^{*}(p_{\alpha}^{i})=p_{\alpha}^{i}-\delta_{\alpha}^{i}$ , where

if
$\alpha=(0, \vee 1i\ldots 0)$

$\delta_{\alpha}^{i}=\{01$

otherwise.

We set $p^{k}=\theta_{*}\cdot\overline{p}^{k}$ , then we have
PROPOSITION 3.2. The map

$p^{k}$ ; $D(V)\rightarrow D(V^{(k)})$

is an injective Lie algebra homomorphism, and for $l\geqq 0,$ $X\in D^{k+l}(V)$ if and only

if $p^{k}X\in D^{l}(V^{(k)})$ .
The proof is omitted, since it is obtained by a simple calculation.

\S 4. Regularity conditions.

Let $A$ be an intransitive Lie subalgebra of $D(V)$ . By the Frobenius’ theorem,
Theorem 3.1, we see that there exists an A-invariant ideal $(f^{1}, \cdots, f^{s})$ of $F(V)$ ,
such that $s=co\dim \mathfrak{g}\mathfrak{r}^{-1}(A)$ and $f^{1},$ $\cdots f^{s}$ is independent. Then the ideal
$(f^{1}, \cdots, f^{s})$ can be considered to define the orbit of $A$ through the origin. Thus
we may speak of the orbit of $A$ through the origin, and we can consider the
restriction of $A$ to the orbit. More precisely, since $(f^{1}, \cdots , f^{s})$ is invariant by
$A$ and $X\in A$ induces the derivation $\varphi(X)$ of $F(V)/(f^{1}, \cdots, f^{s})$ . Since $f^{1},$ $\cdots$ , $f^{s}$

is independent, $F(V)/(f^{1}, \cdots , f^{s})$ is identified with $F(U)$ , where $U$ is the subspace
of $V$ annihilated by $d_{0}f^{1},$

$\cdots,$
$d_{0}f^{s}$ . Let $L$ be the image of $\varphi:A\rightarrow D(U)$ . Then

$L$ is a transitive Lie subalgebra of $D(U)$ , which we call the transitive Part of $A$ .
In general the orbit of $A$ through the orign may be singular. We say that
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$A$ is regular if it is a regular orbit, that is, if $A$ satisfies the following condition:
There exist independent s-functions $f^{1},$ $\cdots$ , $f^{s}\in F(U)$ such that $s=co\dim \mathfrak{g}\mathfrak{r}^{-1}(A)$

and that $X\cdot f^{i}=0$ for all $X\in A$ and $i=1,$ $\cdots$ , $s$ .
We say that $A$ is k-regular if the orbit of the k-th prolongation $p^{k}A$ is

regular.
We have the following proposition which was originally proved by N.

Tanaka [14] in the category of Lie algebra sheaves.
PROPOSITION 4.1. If a subalgebra $A$ of $D(V)$ is k-regular, then

$[\mathfrak{g}\mathfrak{r}^{k}(A), V]\subset \mathfrak{g}\mathfrak{r}^{k- 1}(A)$ .
PROOF. First of all note that the statement is equivalent to the following

statement

(4.1) $[A^{k}, D(V)]\subset A^{k- 1}+D^{k}(V)$ .
Let $\rho$ be the codimension of $\mathfrak{g}\mathfrak{r}^{-1}(p^{k}A)$ in $V^{(k)}$ . Since the orbit of $p^{k}A$ is re-
gular, we can Pnd independent $\rho$ functions $h_{1},$ $\cdots$ , $h_{\rho}$ in $F(V^{(k)})$ such that

$Z\cdot h_{i}=0$ for $Z\in p^{k}A$ , $i=1,$ $\cdots$ , $\rho$ .
Let $X\in A^{k}$ and $Y\in D(V)$ . Then we have

$[p^{k}X, p^{k}Y]h_{i}=(p^{k}X)(p^{k}Y)h_{i}$ .
On the other hand since we see $P^{k}X\in D^{0}(V^{(k)})$ by Proposition 3.2, we have

$[p^{k}x, p^{k}Y]h_{i}(0)=0$ .
Then there exists a $Z\in A$ such that

$[p^{k}X, p^{k}Y]-p^{k}Z\in D^{0}(V^{(k)})$ .
Again by Proposition 3.2, we have

[X, $Y$] $-Z\in D^{k}(V)$ .
While it is obvious that [X, $Y$] $\in D^{k- 1}(V)$ . Hence we have $Z\in A^{k-1}$ , and the
proposition is proved.

COROLLARY. If $A\subset D(V)$ is k-regular for all $k\geqq 0$ , then the graded Lie
algebra $\mathfrak{g}\mathfrak{r}(A)$ satisfies the following condition $(R)$ :
$(R)$ $[\mathfrak{g}\mathfrak{r}^{p}(A), V]\subset \mathfrak{g}\mathfrak{r}^{p- 1}(A)$ for all $p\geqq 0$ .

REMARK. If $A$ is transitive, the condition $(R)$ is always satisfied.
Now assuming $(R)$ , we can introduce the associated bi-graded Lie algebra

$\sum \mathfrak{a}^{p,q}$ of $A$ .
Let $\sum \mathfrak{g}\mathfrak{r}^{p}(A)$ be the associated graded Lie algebra of $A$ . Put $\mathfrak{g}\mathfrak{r}^{-1}(A)=U$ .

Then by condition $(R)$ , we have $\mathfrak{g}\mathfrak{r}^{p}(A)\subset U\otimes S^{p+1}(V^{*})$ for all $p$ . For any integer
$r$ we define a subspace $\Phi^{r}\mathfrak{g}\mathfrak{r}^{p}(A)$ by
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(42) $\Phi^{r}\mathfrak{g}\mathfrak{r}^{p}(A)=\{X\in \mathfrak{g}\mathfrak{r}^{p}(A)|_{fora11u_{1},,u_{s}\in}^{[\cdots[X,u_{1}]..\cdot.\cdot\cdot,u_{s}]}U,w=0$

,

ith
$s=p+2-r\}$

where we define that $\Phi^{r}g\mathfrak{r}^{p}(A)=0$ for $r\geqq p+2$ . We set $\Phi^{r}\mathfrak{g}\mathfrak{r}(A)=\sum_{p}\Phi^{r}\mathfrak{g}\mathfrak{r}^{p}(A)$ ,

then we have

(4.3) $\left\{\begin{array}{l}...\supset\Phi^{r}\mathfrak{g}\mathfrak{r}(A)\supset\Phi^{r+1}\mathfrak{g}\mathfrak{r}(A)\supset\cdots\\[\Phi^{r}\mathfrak{g}\mathfrak{r}(A), \Phi^{s}\mathfrak{g}\mathfrak{r}(A)]\subset\Phi^{r+s}\mathfrak{g}\mathfrak{r}(A).\end{array}\right.$

Thus we get a filtration $\{\Phi^{r}\mathfrak{g}\mathfrak{r}(A)\}$ of $gr(A)$ . We put $\mathfrak{a}^{p,r}=\Phi^{r}\mathfrak{g}\mathfrak{r}^{p}(A)/\Phi^{r+1}\mathfrak{g}\mathfrak{r}^{p}(A)$ ,
then we have

(4.4) $[\mathfrak{a}^{p,r}, \mathfrak{a}^{q,s}]\subset \mathfrak{a}^{p+q,r+s}$

with respect to the induced Lie algebra structure, and we get the associated
bi-graded Lie algebra $\sum \mathfrak{a}^{p,\tau}$ .

If we choose a complementary subspace $W$ to $U$ , then $\mathfrak{a}^{p,r}$ is considered
as $\mathfrak{a}^{p,r}\subset U\otimes S^{p-r+1}(U^{*})\otimes S^{r}(W^{*})$ .

Let $L$ be the transitive part of $A$ . Then we see obviously that

(4.5) $\mathfrak{a}^{p,0}=\mathfrak{g}r^{p}(L)$ ,

where $\sum \mathfrak{g}\mathfrak{r}^{p}(L)$ is the associated graded Lie algebra of $L$ .

\S 5. Essential invariants.

Let $A$ be a Lie subalgebra of $D(V)$ which is regular and satisfies $(R)$ , then
the orbit of $A$ is defined by independent invariant functions, say $y^{1},$ $\cdots$ , $y^{s}$ . Let
$\eta$ be the subspace of $V^{*}$ generated by $d_{0}y^{1},$ $\cdots$ , $d_{0}y^{s}$ and put $U=\eta^{\perp}$ . Then we
have $\mathfrak{g}\mathfrak{r}^{-1}(A)=U$ , moreover, in view of the condition $(R)$ , we see that

$\mathfrak{g}\mathfrak{r}^{p}(A)\subset U\otimes S^{p+1}(V^{*})$ for all $p$ .
Let $L$ be the transitive part of $A$ , which is identified with a subalgebra

of $D(U)$ . We define $\mathfrak{n}^{p}\subset U\otimes S^{p+1}(V^{*})$ by the following exact sequence:

(5.1) $0\rightarrow \mathfrak{n}^{p}\rightarrow \mathfrak{g}\mathfrak{r}^{p}(A)\rightarrow \mathfrak{g}\mathfrak{r}^{p}(L)\rightarrow 0$ .
We put

(5.2) $V_{0}=\{v\in V ; [v, \mathfrak{n}^{0}]=0\}$ ,

then clearly we have $V_{0}\supset U$ . Let $\eta_{0}=V_{0}^{\perp}$ . Then we have $\uparrow\iota^{0}\subset U\otimes\eta_{0}$ . From
this, making use of $(R)$ , we have

$\mathfrak{n}^{p}\subset U\otimes S^{p+1}(\eta_{0})$ .
DEFINITION. If $V_{0}=U$ , we say tbat $A$ is effective in $D(V)$ and that the in-

variants $y^{1},$ $\cdots$ , $y^{s}$ are essential.
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We can always exclude from $A$ inessential invariants in the following
way:

PROPOSITION 5.1. Let $A$ be a regular Lie subalgebra of $D(V)$ satisfying $(R)$ .
Then there exist independent invariant functions $f^{1},$ $\cdots$ , $f^{\tau}(r\geqq 0)$ such that the
map

$\varphi$ : $A\rightarrow D(F^{\prime})$ , where $F^{\prime}=F/(f^{1}, \cdots, f^{r})$

is injective and the image $A^{\prime}$ is regular and satisfies $(R)$ and effective in $D(F^{\prime})$ .
PROOF. Let $y^{1},$ $\cdots$ , $y^{s}$ be independent invariants of $A$ with $s=\dim \mathfrak{g}\mathfrak{r}^{-1}(A)$ .

Assume that $U\subsetneqq V_{0}$ . Let $\eta_{1}$ be a complementary subspace to $\eta_{0}$ in $\eta$ . By a
suitable linear change, we may assume that $\eta_{1}$ is generated by $d_{0}y^{1},$ $\cdots$ , $d_{0}y^{r}$ .
Let $F^{\prime}=F(V)/(y^{1}, \cdots , y^{r})$ , then it is easy to see that $\varphi:A\rightarrow D(F^{\prime})$ satisfies the
statements of the proposition. $q$ . $e$ . $d$ .

Here we give a typical example of intransitive Lie algebras: Let $L$ be a
closed transitive Lie subalgebra of $D(U)$ and $W$ be a finite dimensional vector
space. Then the topological completion of the Lie algebras $L\otimes F(W)$ is also
endowed with the Lie algebra structure, which we denote by $L[W^{*}]$ and call
the intransitive extension of $L$ by $W^{*}$ .

Let $V=U\oplus W$ , then there is a natural imbedding of $L[W^{*}]$ into $D(V)$ . It
is uniquely determined by the following condition: $(X\otimes f)(\alpha)=fX(\alpha)$ and
$(X\otimes f)(\beta)=0$ for $X\in L,$ $f\in F(W),$ $\alpha\in U^{*},$ $\beta\in W^{*}$ , where $U^{*},$ $W^{*}$ and $F(W)$ are
regarded as the subspaces of $F(V)$ in the natural manner. By the above im-
bedding we always regard $L[W^{*}]$ as the closed subalgebra of $D(V)$ . In
particular, $D(U)[W^{*}]$ is identified with the closed subalgebra $D(V;U)$ of $D(V)$

consisting of those vector fields $X$ such that $X\beta=0$ for all $\beta\in W^{*}$ .
Evidently, the transitive part of $L[W^{*}]$ is $L$ , and $L[W^{*}]$ is effective in

$D(V)$ .

\S 6. Statement of the main theorem.

Now our main problem can be stated as follows.
Problem: Determine all closed Lie subalgebras $A$ of $D(V)$ whose transitive

parts are infinite and primitive.
As explained in introduction, this problem is deeply related to the classi-

fication of simple intransitive infinite Lie algebras.
It is reasonable to impose on $A$ some regularity conditions. In view of \S 4,

we assume the following conditions $(A_{1}),$ $(A_{2})$ .
$(A_{1})$ $A$ is regular, $i$ . $e.$ , the orbit of $A$ through the origin is regular,
$(A_{2})$ the associated graded Lie algebra $\mathfrak{g}\mathfrak{r}(A)$ of $A$ satisfies the condition

$(R)$ .
In this paper we assume:
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$(A_{0})$ the ground field is the complex number field $C$.
Under these assumptions we shall solve the problem in the following way.
MAIN THEOREM. Let $A$ be a closed Lie subalgebra of $D(V)$ satisfying $(A_{0})$ ,

$(A_{1})$ and $(A_{2})$ . Assume that its transitive part $L$ is infinite and primitive. Then
$A$ is isomorphic to a subalgebra of $L[W^{*}]$ containing $L^{\prime}[W^{*}]$ for a certain
vector space $W$.

In the statement $L^{\prime}$ denotes either $L$ itself or the ideal of codimension 1
according as $L$ is simple or not (cf. \S 7).

Thus the theorem completely determines $A$ up to the dimension of $W^{*}$ in
the case where $L$ is simple.

If $L$ is not simple, then there is some ambiguity. However, it is not
essential in the sense that $L[W^{*}]/L^{\prime}[W^{*}]$ is abelian and isomorphic to $F(W)$ .

In view of Proposition 5.1, we may further assume the following condition:

$(A_{3})$ $A$ is effective in $D(V)$ .
Under this assumption dim $W^{*}$ is uniquely determined, and the isomorphism

is given by a formal isomorphism of $V$ (Theorem 10.2 and 11.2).

The proof of the main theorem will be carried out in the subsequent sec-
tions.

\S 7. Primitive infinite Lie algebras.

It is a well known fact that there are only six classes of infinite primitive
Lie algebras over $C$, and any primitive infinite subalgebra $L$ of $D(U)$ is iso-
morphic to one of the following Lie algebras:

(I) $L_{\mathfrak{g}1}(U)=D(U)$ ,
(II) $L_{3I}(U)$ : the Lie subalgebra of $D(U)$ consisting of all vector fields of

divergence zero,
(II’) $L_{\mathfrak{c}eI}(U)$ : the Lie subalgebra of $D(U)$ consisting of all vector fields of

constant divergence,
(III) $L_{8}\mathfrak{p}(U)$ : the Lie subalgebra of $D(U)$ consisting of all vector fields

which leave invariant a hamiltonian form,
(III’) $L_{\mathfrak{c}s0}(U)$ : the Lie subalgebra of $D(U)$ consisting of all vector fields

which leave invariant a hamiltonian form up to constant factors,
(IV) $L_{\mathfrak{c}t}$ : the Lie subalgebra of $D(U)$ consisting of vector fields which

leave invariant a contact structure.

In the list above, (I), (II), (III) and (IV) are simple, (II’) and (III’) are not
simple: $L_{8I}$ and $L_{gb}$ are ideals of $L_{C\S|}$ and $L_{r\S \mathfrak{h}}$ respectively of codimension 1.
All except (IV) are irreducible.

The structures of irreducible infinite Lie algebras are well known. We
shall explain some facts which will be necessary for our purpose.
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Let $L$ be one of irreducible infinite Lie algebras, (I), (II), (II’), (III) and (III’),

and $\mathfrak{g}(L)=\sum \mathfrak{g}^{p}(L)$ be its associated graded Lie algebra. Then $L$ is isomorphic
to the complete graded Lie algebra $\Pi \mathfrak{g}^{p}(L)$ . The structures of the graded Lie
algebras $\mathfrak{g}(L)$ are as follows:

(I) $\mathfrak{g}(L_{I}(U))=U+\mathfrak{g}\mathfrak{l}(U)+\mathfrak{g}\mathfrak{l}(U)^{(1)}+\cdots+gI(U)^{(p)}+\cdots$ ,

(II) $\mathfrak{g}(L_{@1}(U))=U+\S I(U)+\mathfrak{s}I(U)^{(1)}+$ $+\mathfrak{s}I(U)^{(p)}+\cdots$

$(II^{\prime})$ $\mathfrak{g}(L_{c@\mathfrak{l}}(U))=U+\mathfrak{g}I(U)+\S I(U)^{(1)}+\cdots+\mathfrak{s}1(U)^{(p)}+\cdots$ ,

(III) $\mathfrak{g}(L_{\S}(U))=U+@\mathfrak{p}(U)+e\mathfrak{p}(U)^{(1)}+$ $+e\mathfrak{p}(U)^{(p)}+\cdots$ ,

(III’) $\mathfrak{g}(L_{t\epsilon \mathfrak{p}}(U))=U+\mathfrak{c}\mathfrak{s}\mathfrak{p}(U)+\S \mathfrak{p}(U)^{(1)}+$ $+\mathfrak{c}5\mathfrak{p}(U)^{(p)}+\cdots$

where $\mathfrak{s}I(U),$ $\mathfrak{s}\mathfrak{p}(U)$ and $\mathfrak{c}\mathfrak{s}\mathfrak{p}(U)$ are the subalgebras of $\mathfrak{g}I(U)$ in the usual notation,
and $\mathfrak{s}I(U)^{(p)}$ (resp. $\mathfrak{s}\mathfrak{p}(U)^{(p)}$ ) denotes the $P$-th prolongation of @I(U) (resp. $e\wedge \mathfrak{p}(U)$ ).

Thus the linear isotropy algebra $\mathfrak{g}^{0}(L)$ is either simple, or a direct sum of
the simple ideal and the l-dimensional center.

By the representation theory it is known that the representation of $\mathfrak{s}t(U)$

on $\mathfrak{s}\mathfrak{l}(U)^{(p)}$ is irreducible, from which it is easily seen that

$[U, \mathfrak{s}\downarrow(U)^{(p)}]=\mathfrak{s}I(U)^{(p- 1)}$ for $P\geqq 1$ .
The same statement holds also for $?\rightarrow\backslash \mathfrak{p}(U)$ . Hence we see that $\sum \mathfrak{g}^{p}(L)$ is
generated by $\mathfrak{g}^{-1}(L),$ $\mathfrak{g}^{0}(L)$ and $\mathfrak{g}^{1}(L)$ .

Finally we mention some facts about the Spencer cohomology group
$\sum H^{p,q}(\mathfrak{g}(L))$ of $\mathfrak{g}(L)$ . For the definition refer $e$ . $g.$ , to [5].

1) $H^{p,q}(\mathfrak{g}(L))=0$ for $P\geqq 1$ and $q\geqq 0$ , except that $H^{11}(\mathfrak{g}(L_{ceI}(U))\cong C$.
2) Let $c\in H^{02}(\mathfrak{g}(L))$ . If $X\cdot c=0$ for any elements $X$ of the simple part of

$\mathfrak{g}^{0}(L)$ , then $c=0$ . (Refer to [8].)

\S 8. Contact Lie algebras.

Let $V$ be a $(2n+1)$ -dimensional vector space and $z,$ $x^{1},$ $\cdots$ , $x^{n},$ $y^{1},$ $\cdots$ , $y^{n}$ be
a basis of the dual space $V^{*}$ , which will be fixed throughout this section.

The contact Lie algebra $\mathfrak{c}$ (or more precisely $c(V)$ ) on $V$ is by definition
the Lie algebra consisting of those formal vector fields $X$ on $V$ which preserve
the contact form, $\omega=dz+\sum_{i=1}^{n}x^{i}dy^{i}-y^{i}dx^{i}$ , up to functional factors, $i$ . $e.,$ $ L_{X}\omega=f\omega$

for some $f\in F(V)$ .
As a subalgebra of $D(V),$ $\mathfrak{c}$ has a usual filtration $\Phi^{p}\mathfrak{c}$ , where $\Phi^{p}\mathfrak{c}=\mathfrak{c}\cap D^{p}(V)$ .

Putting $\mathfrak{g}^{p}(c)=\Phi^{p}c/\Phi^{p+1}\mathfrak{c}$ , we have the usual associated graded Lie algebra,
$\mathfrak{g}(c)=\sum \mathfrak{g}^{p}(c)$ , of $\mathfrak{c}$ . Note that $\mathfrak{c}$ is not flat, that is, $c$ is not isomorphic to the
complete graded Lie algebra $\Pi \mathfrak{g}^{p}(c)$ , since the 1st structure function of $\mathfrak{c}$ does
not vanish. (For the definition of structure function refer to [12].)

To clarify the structure of $c$ , first of all we observe that there is a bijective
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correspondence between $\mathfrak{c}(V)$ and $F(V)$ . It is given by the map assigning
$X\in c$ , to $X\lrcorner\omega\in F(V)$ . Then the inverse map; $\xi$ : $F(V)\rightarrow \mathfrak{c}$ is given by

(8.1) $\left\{\begin{array}{l}\xi(f)\lrcorner\omega=f\\\xi(f)\lrcorner d\omega=_{\partial}^{\partial}-\frac{f}{z}\omega-df,\end{array}\right.$

or explicitly by

(8.2) $\xi(f)=\sum_{i}--12-(\frac{\partial f}{\partial y^{i}}-\chi^{t}\frac{\partial f}{\partial z})\frac{\partial}{\partial x^{i}}+\sum_{i}\frac{1}{2}(\frac{\partial f}{\partial x^{i}}+y^{i}\frac{\partial f}{\partial z})\frac{\partial}{\partial y^{i}}$

$+(f-\frac{1}{2}\sum_{j}x_{\partial}^{j-}\partial\frac{f}{X^{j}}+y^{j}\frac{\partial f}{\partial y^{f}})\frac{\partial}{\partial z}$ .

The generalized Poisson bracket is defined by $[f, g]=\xi^{-1}[\xi(f), \xi(g)]$ for
$f,$ $g\in F(V)$ . From (8.2) we have the following classical formula:

(8.3) $[f, g]=_{2}^{1}--\dagger f,$ $g$} $+(f_{2}^{1}---If)\frac{\partial g}{\partial z}-(g_{2\partial}^{1\partial}---Ig)-\frac{f}{z}$ ,

where
$\{f, g\}=\sum_{i}-\partial\frac{f}{X^{i}}\frac{\partial g}{\partial y^{i}}--\partial\frac{f}{y^{i}}\frac{\partial g}{\partial x^{i}}\partial\partial$ ,

and

$I=\sum_{i}x^{i}-\partial\frac{\partial}{X^{t}}+y^{i}\frac{\partial}{\partial y^{t}}$

Using the letters $u^{1},$ $\cdots$ , $u^{2n}$ instead of $x^{1},$ $\cdots$ , $x^{n},$ $y^{1},$
$\cdots,$

$y^{n}$ , we denote by $u^{\alpha}$ the
monomial $(u^{1})^{a_{1}}\cdots(u^{2n})^{\alpha_{2n}}$ of degree $|\alpha|$ , where $\alpha=(\alpha_{1}, \cdots , \alpha_{2n})$ and $|\alpha|=\sum\alpha_{i}$ .
The following formula is a direct consequence of (8.3), but is important for
examining the structure of the contact Lie algebra:

(8.4) $[z^{r}u^{\alpha}, z^{s}u^{\beta}]=\frac{1}{2}z^{r+s}\{u^{\alpha}, u^{\beta}\}$

$+(--12-|\alpha|s+-12-|\beta|r+s-r)z^{r+s- 1}u^{\alpha+\beta}$ .
In particular we have

(8.5) $[1, z^{s}u^{\beta}]=s\cdot z^{s-1}u^{\beta}$ .
Let us introduce the order of $f$ with respect to the contact structure. For

a monomial $z^{r}u^{\alpha}$ it is defined as ord $(z^{r}u^{\alpha})=2r+|\alpha|-2$ , and for any function $f$,
ord $(f)$ is defined to be the minimum of orders of non-zero monomials of $f$.

We define the subspace $\mathfrak{c}^{p}$ of $c$ by

$\mathfrak{c}^{p}=$ { $\xi(f)|f$ is homogeneous of order $p$ }.

Then we have
PROPOSITION 8.1. The complete direct sum decomPositjon $\mathfrak{c}=\prod_{p}\mathfrak{c}^{p}$ satisfies:
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i) dim $c^{p}<\infty$ for all $p$ , and $c^{p}=(0)$ for $p<-2$ .
ii) $[c^{p}, \mathfrak{c}^{q}]\subset \mathfrak{c}^{p+q}$ for all $p,$ $q$ .

iii) For $p\geqq-1$ and $X_{p}\in \mathfrak{c}^{p}$ , the condition that $[X_{p}, X_{-1}]=0$ for all $X_{-1}\in \mathfrak{c}^{-1}$

implies $X_{p}=0$ .
PROOF. i) is clear. ii) and iii) follow from (8.4).

Now we make a more refined decomposition of $c^{p}$ . We define the subspace
$f_{p}^{r}$ of $c^{p+2r}$ to be the linear hull of $\{\xi(z^{r}u^{\alpha})||\alpha|=p+2\}$ . Then we have $c^{p}=$

$\sum_{q+2r=p}f_{q}^{r}$ and $f_{q}^{\gamma}=(0)$ for $q<-2$ or $r<0$ , and in particular $\mathfrak{c}^{-2}=f_{-2}^{0},$ $\mathfrak{c}^{-1}=f_{-1}^{0}$ . Note

that $\frac{\partial}{\partial z}(=\xi(1))$ is a basis of $c^{-2}$ . By Proposition 8.1, ii) and iii), the skew-

symmetric 2-form $\theta$ on $\mathfrak{c}^{-1}$ defined by

$[u_{-1}, v_{-1}]=\theta(u_{-1}, v_{-1})\frac{\partial}{\partial z}$ , $u_{-1},$
$v_{-1}\in \mathfrak{c}^{-1}$ ,

is non-degenerate. From (8.5) we see that

$[X_{p},$ $\frac{\partial}{\partial z}]=0$ for $X_{p}\in f_{p}^{0}$ .
Hence we have

(8.6) $[[X_{p}, u_{-1}],$ $v_{-1}$] $=[u_{-1}, [X_{p}, v_{-1}]]=0$ ,

for $X_{p}\in f_{p}^{0}$ and $u_{-1},$ $v_{-1}\in f_{-1}^{0}$ . Noting that $[\mathfrak{k}_{p}^{0}, c^{-1}]\subset \mathfrak{k}_{p-1}^{0}$ , we define the map
$\rho:f_{p}^{0}\rightarrow Hom(c^{-1}, f_{p- 1}^{0})$ by $\rho(X_{p})\cdot u=[X_{p}, u]$ for $X_{p}\in f_{p}^{0},$

$u\in \mathfrak{c}^{-1}$ . Then $\rho$ is injective
by Proposition 8.1, iii). (8.6) implies that $\rho(\mathfrak{k}_{p}^{0})=\mathfrak{s}\mathfrak{p}(\mathfrak{c}^{-1})^{(p)}$ for $p\geqq 0$ , where $\mathfrak{s}\mathfrak{p}(\mathfrak{c}^{-1})$

is the Lie algebra consisting of all endomorphisms of $\mathfrak{c}^{-1}$ which leave invariant
$\theta$ , and $s\mathfrak{p}(\mathfrak{c}^{-1})^{(p)}$ is the p-th prolongation of $e\mathfrak{p}(c^{-1})$ . Moreover we see that

(8.7) $\rho([X_{p}, X_{q}])=[\rho(X_{p}), \rho(X_{q})]$

for $X_{p}\in f_{p}^{0},$ $X_{q}\in f_{q}^{\gamma},$ $p,$ $q\geqq-1$ except $p=q=-1$ , where the bracket operation on
the right hand side of (8.7) is that of the graded Lie algebra $\sum\wedge a\mathfrak{p}(\mathfrak{c}^{-1})^{(p)}$ .

From (8.4) we see also that $[f_{0}^{0}, f_{p}^{r}]\subset f_{p}^{r}i$ . $e.,$ $f_{p}^{r}$ is $f_{0}^{0}$ -invariant and that the

map $ad(\frac{\partial}{\partial z}):f_{p}^{r+1}\rightarrow f_{p}^{r}(r\geqq 0)$ is a $\mathfrak{k}_{0}^{0}$ -equivariant bijection. Thus we have

PROPOSITION 8.2. The contact Lie algebra $\mathfrak{c}$ is canonically decomp0sed as
$\mathfrak{c}=\prod \mathfrak{c}^{p}$ and $c^{p}=\sum_{q+2r=p}f_{q}^{r}$ and satisfies

i) $f_{q}=0$ for $r<0$ or $q<-2$ .
ii) dim $f_{-2}^{0}=1$ , dim $f_{-1}^{0}=2n$ , and $f_{p}^{0}\cong \mathfrak{s}\mathfrak{p}(c^{-1})^{(p)}$ for $p\geqq 0$ .
iii) $f_{p}^{r}\cong fi$] for $r\geqq 0$ .
iv) $f_{p}^{r}$ is fi]-invariant and irreducible.
PROOF. iv) follows from the fact that representation of $e\sim \mathfrak{p}(\mathfrak{c}^{-1})$ on $\mathfrak{s}\mathfrak{p}(\mathfrak{c}^{-1})^{(p)}$

is irreducible (cf. [8] or [15]).

PROPOSITION 8.3. The bracket operati0n of the contact Lie algebra satisfies
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i) $[r_{p}, \mathfrak{k}_{q}^{s}]\subset f_{p+q}^{+s}+f_{p+q+2}^{r+s-1}$

and moreover,
ii) $[f_{p}, f_{q}^{s}]=f_{p+q}^{r+s}+(rq-ps)f_{p+q+2}^{r+s-1}$ for $r,$ $s\geqq 0$ and $p,$ $q\geqq-1$ ,

iii) $[f_{-2}, f_{q}^{s}]=(rq+2s)f_{q}^{+S-1}$ for $r,$ $s\geqq 0$ and $q\geqq-2$.
PROOF. i) follows from (8.4). ii) and iii) follows from (8.4) and the irre-

ducibility of $f_{p}$ .
PROPOSITION 8.4.
i) $\sum \mathfrak{c}^{p}$ is generated by $f_{-1}^{0},$ $f_{-1}^{1}$ and $f_{1}$ as Lie algebra.

ii)
$p\geqq 0\sum \mathfrak{c}^{p}$ is generated by $f_{0}^{\gamma},$ $f_{-1}^{1},$ $f_{-2}^{1}$ and $f_{1}$ as Lie algebra.

Proposition 8.4 follows easily from Proposition 8.3.
For simplicity, hereafter $\mathfrak{k}_{p}^{0}$ is denoted by $f_{p}$ .
Let us return to the usual associated graded Lie algebra of $\mathfrak{c}$ . Put

$G^{p}(\mathfrak{c})=f_{p}+f_{p-1}^{1}+$ $+f_{-1}^{p^{4}1}+f_{-2}^{p+1}$ ,

then we see from (8.2) that $\Phi^{l}c=\prod_{p\geqq l}G^{p}(\mathfrak{c})$ and that $G^{p}(\mathfrak{c})\cong g^{p}(\mathfrak{c})-$. If we denote

by $\overline{f}_{p}^{r}$ the image of $f_{p}$ by the projection $\Phi^{p}c\rightarrow \mathfrak{g}^{p}(c)$ , then we have
PROPOSITION 8.5.

$\mathfrak{g}^{p}(c)=\overline{f}_{p}+\overline{f}_{p-1}^{1}+$ $+\overline{f}_{-1}^{p+1}+\overline{f}_{-2}^{p+1}$ .
Combining Proposition 8.3 and 8.5, we have
PROPOSITION 8.6.
i) $[\mathfrak{g}^{p}(c), \mathfrak{g}^{-1}(\mathfrak{c})]=\mathfrak{g}^{p- 1}(c)$ for $p\geqq 0$ .
ii) $[\mathfrak{g}^{p}(c), \overline{f}_{-1}]=\S^{p-1}(c)$ for $p\geqq 0$ .

where $\mathfrak{g}^{p}(c)=\overline{f}_{p}+$ $+\overline{f}_{-1}^{p+1}$ .
PROPOSITION 8.7. The Spencer cohomology group $H^{p,q}(\mathfrak{g}(c))$ of the associated

graded Lie algebra $\mathfrak{g}(\mathfrak{c})$ of $c$ vanishes for $p\geqq 1$ and $q\geqq 0$.
PROOF. By a calculation we see that the $P$-th prolongation $\mathfrak{g}^{0}(c)^{(p)}$ coincides

with $\mathfrak{g}^{p}(c)$ and that $\mathfrak{g}^{0}(c)$ is involutive as a linear subspace of Hom (V, $V$ ). From
this the proposition follows (see [5]).

\S 9. Determination of the associated bi-graded Lie algebra.

Let $A$ be a closed Lie subalgebra of $D(V)$ satisfying $(A_{1}),$ $(A_{2})$ and $(A_{3})$ .
In this section we shall determine the associated bi-graded Lie algebra of $A$

under the assumption that its transitive part $L$ is infinite and primitive.
In view of the assumption $(A_{1})$ , if necessary, by transforming $A$ by a formal

isomorphism, we may assume that $A$ is a closed Lie subalgebra of $D(V;U)$

for a subspace $U$ of $V$, and that $L$ is a transitive infinite primitive subalgebra
of $D(U)$ .

Let $\sum \mathfrak{a}^{p}$ be the associated graded Lie algebra of $A$ . Then $\sum \mathfrak{a}^{p}$ is con-
sidered as a subspace of $U\otimes S^{p+1}(V^{*})$ . Let $\sum \mathfrak{a}^{p,q}$ be the associated bi-graded
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Lie algebra of $A$ . Choosing a subspace $W$ of $V$ complementary to $U$ , we
identify $\mathfrak{a}^{p,q}$ with a subspace of $U\otimes S^{p+1-q}(U^{*})\otimes S^{q}(W^{*})$ . Let $\sum \mathfrak{g}^{p}(L)$ be the
associated graded Lie algebra of $L$ , where $\mathfrak{g}^{p}(L)$ is considered as a subspace
of $U\otimes S^{p+1}(U^{*})$ . Then by our assumption we have

(9.1) $\mathfrak{a}^{p,0}=\mathfrak{g}^{p}(L)$ for all $p$ .
The first non-trivial term of $\sum \mathfrak{a}^{p,q}$ is $\mathfrak{a}^{01}$ . By definition we have the follow-

ing exact sequences.

$00\rightarrow\rightarrow U\bigotimes_{\mathfrak{a}^{01}}W^{*}\mathcal{O}\rightarrow U\otimes U^{*}+U\otimes W^{*}\rightarrow U\bigotimes_{)d,-\rightarrow\backslash }U^{*}\rightarrow \mathfrak{a}^{0}\mathfrak{g}^{0}\rightarrow 0\rightarrow 0$

.
Since $\mathfrak{a}^{0,1}$ is an abelian ideal of $\mathfrak{a}^{0}$ , the representation of $\mathfrak{g}^{0}$ on $\mathfrak{a}^{01}$ is induced

by the adjoint representation of $\mathfrak{a}^{0}$ . It is nothing but the restriction to $\mathfrak{a}^{01}$ of
the natural representation of $\mathfrak{g}^{0}$ on $U\otimes W^{*}$ , where the representation of $\mathfrak{g}^{0}$ on
$W^{*}$ is considered to be trivial.

The space $\mathfrak{a}^{0,1}$ is characterized by the following properties:

i) $\mathfrak{a}^{0,1}$ is a $\mathfrak{g}^{0}$ -invariant subspace of $U\otimes W^{*}$ ,
(9.2)

ii) $\delta(w)\mathfrak{a}^{01}\neq(0)$ for any non zero $w\in W$ ,

where $\delta(w)$ denotes the contraction by $w$ .
The property ii) follows from $(A_{3})$ .
To determine $\mathfrak{a}^{01}$ , we prepare the following lemma:
LEMMA 9.1. Let $\mathfrak{g}$ be a finite dimensional simple Lie algebra over $C$, and

$\rho:\mathfrak{g}\rightarrow gI(E)$ be a representati0n of $\mathfrak{g}$ on a finite dimensional vector space $E$ , and
assume that none of the g-irreducible comp0nents of $E$ are isomorphic to another.
Given a subspace $P$ of $E\otimes W^{*}$ , where $W$ is a finite dimensional vector space.
If $P$ is $\mathfrak{g}$ -invariant and satisfies $\delta(w)P=E$ , for all non-zero $w\in W$ , where $\delta(w)$

denotes the contraction by $w$ . Then $P=E\otimes W^{*}$ .
PROOF. First we shall prove this lemma under the assumption that $\rho$ is

irreducible. Since $\mathfrak{g}$ is simple, we can decompose $P$ to g-irreducible components:
$P=P_{1}+\cdots+P_{r}$ . For a fixed $i(1\leqq i\leqq r)$ there exists a $w\in W$ such that $\delta(w)P_{i}$

$\neq 0$ . Then $\delta(w)$ gives an isomorphism of $P_{i}$ onto $E$ , for $\delta(w)$ is a g-homo-
morphism and $P_{i}$ and $E$ are g-simple. Suppose that $\delta(w^{\prime})P_{i}\neq 0$ for another
$w^{\prime}\in W$. Then $\delta(w)\circ\delta(w^{\prime})^{-1}$ is a $\mathfrak{g}$ -automorphism of $E$ . Since $E$ is $\mathfrak{g}$ -simple, in
view of Schur’s Lemma we see that $\delta(w)\circ\delta(w^{\prime})^{-1}=\lambda id_{E}$ for some complex
number $\lambda$ . Hence we have $\delta(w-\lambda w^{\prime})P_{i}=0$ . Therefore, if we put $N(P_{i})$

$=\{w\in W|\delta(w)P_{i}=0\}$ , we see that $N(P_{i})$ is a subspace of $W$ of condimension 1.
We can thus find non-zero $\alpha_{i}\in W^{*}$ such that $\alpha_{i}(N(P_{i}))=0$ . Now it is easy to
see that $P_{i}=E\otimes\{\alpha_{i}\}$ . By the assumption that $\delta(w)P\neq 0$ for any non-zero $w\in W$ ,

we see that $\alpha_{1},$ $\cdots,$ $\alpha_{r}$ is a basis of $W^{*}$ and we have $P=E\otimes W^{*}$ .
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Next we shall prove without the assumption that $\rho$ is irreducible. Let
$E=E_{1}+\cdots+E_{s}$ be a $\mathfrak{g}$ -irreducible decomposition of $E$. By our assumption $E_{i}$

is not isomorphic to $E_{j}$ as a $\mathfrak{g}$ -module if $i\neq j$ . Let $P=P_{1}+$ $+P_{r}$ be a g-
irreducible decomposition of $P$. Since there exists a $w_{i}\in W$ such that $\delta(w_{i})P_{i}$

$\neq 0,$ $P_{i}$ is isomorphic to only one of $\{E_{j}\}$ . Let $P_{1}^{(j)},$ $\cdots$ , $P_{rj}^{(j)}$ be the set of those
$P_{i}$ that are isomorphic to $E_{j}$ and put $P^{(j)}=P_{1}^{(j)}+\cdots+P_{rj}^{(f)}$ . Then we see that
$P^{(j)}\subset E_{j}\otimes W^{*}$ and that $\delta(w)P^{(j)}=E_{j}$ for all non-zero $w\in W$. Hence we have
$P^{(j)}=E_{j}\otimes W^{*}$ by our previous argument. Therefore we have $P=E\otimes W^{*}$ .

$q$ . $e$ . $d$ .
In the case where $L$ is irreducible, the simple part of $\mathfrak{g}^{0}(L)$ being transitive

on $U$ , we can apply Lemma 9.1 to this case and obtain the following
PROPOSITION 9.1. If the transitive part $L$ of $A$ is irreducible, then

(9.3) $\mathfrak{a}^{01}=U\otimes W^{*}$ .
From this proposition we can determine the bi-graded Lie algebra $\sum \mathfrak{a}^{p,q}$

in the case $L$ is irreducible.
PROPOSITION 9.2. Assume that $L$ is irreducible. Then the associated bi-

graded Lie algebra $\Sigma \mathfrak{a}^{p,q}$ of $A$ is determined by
i) For $p\neq q,$ $\mathfrak{a}^{p,q}=g^{p-q}(L)\otimes S^{q}(W^{*})$ .

ii) For $p=q,$ $g^{0}(L^{\prime})\otimes S^{p}(W^{*})\subset \mathfrak{a}^{p,p}\subset \mathfrak{g}^{0}(L)\otimes S^{p}(W^{*})$ .
PROOF. By virtue of our assumption $(A_{2})$ . We see easily that

$\mathfrak{a}^{p,q}\subset \mathfrak{g}^{p- q}(L)\otimes S^{q}(W^{*})$ .
Generally it holds that $[0^{p,r}, \mathfrak{a}^{q,s}]\subset \mathfrak{a}^{p+q,r+s}$ . Since $\mathfrak{a}^{01}=\mathfrak{a}^{-1}(L)\otimes W^{*}$ by Proposition
9.1, in particular we have

(9.4) $[\mathfrak{a}^{p,r}, \mathfrak{g}^{-1}(L)\otimes W^{*}]\subset \mathfrak{a}^{p- 1,r+1}$

As we explained in \S 7, the graded Lie algebra $\sum \mathfrak{g}^{p}(L)$ satisfies

$[\mathfrak{g}^{p}(L), \mathfrak{g}^{-1}(L)]=\mathfrak{g}^{p- 1}(L)$ for $p\neq 1$

and
$[\mathfrak{g}^{1}(L), \mathfrak{g}^{-1}(L)]=\mathfrak{g}^{0}(L^{\prime})$ .

Applying (9.4) repeatedly to (9.1) we see that

$\mathfrak{a}^{p,r}=\mathfrak{g}^{p}$

‘

$r(L)\otimes S^{r}(W^{*})$ for $p\neq r$

and
$\mathfrak{g}^{0}(L^{\prime})\otimes S^{p}(W^{*})\subset \mathfrak{a}^{p,p}\subset \mathfrak{g}^{0}(L)\otimes S^{p}(W^{*})$ .

$q$ . $e$ . $d$ .
REMARK. Since $\mathfrak{g}^{0}(L)=\mathfrak{g}^{0}(L^{\prime})+\{I\},$ $\mathfrak{a}^{p,p}$ is represented in the following form:

$\mathfrak{a}^{p,p}=\mathfrak{g}^{0}(L^{\prime})\otimes S^{p}(W^{*})+\{I\}\otimes \mathfrak{b}^{p}$

where $\mathfrak{b}^{p}$ is a subspace of $S^{p}(W^{*})$ and satisfies $\delta(w)\mathfrak{b}^{p}\subset \mathfrak{b}^{p- 1}$ for any $w\in W$.
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Now we turn to the case where $L$ is a contact Lie algebra $\mathfrak{c}$ . Let $U_{0}$ be
the subspace of $U$ of codimension 1 which is left invariant by $\mathfrak{g}^{0}(\mathfrak{c})$ .

Put $W_{0}=\{w\in W|\delta(w)\mathfrak{a}^{0,1}\subset U_{0}\}$ .
Then we have:
PROPOSITION 9.3. There exists a subspace $W_{1}$ of $W$ complementary to $W_{0}$

such that
$\mathfrak{a}^{01}=U_{0}\otimes W_{1}^{\perp}\oplus U\otimes W_{0}^{\perp}$

where $W_{t}^{\perp}$ denotes the subspace of $W^{*}$ consisting of the annihilators of $W_{i}$ .
PROOF. In the proof, for simplicity we write $\mathfrak{a}^{0,1}$ as $\mathfrak{a}$ . Let $W_{1}$ be a sub-

space of $W$ complementary to $W_{0}$ . We make the following identification:
$W_{0}^{\perp}=W_{1}^{*}$ , $W_{1}^{\perp}=W_{0}^{*}$ and $U\otimes W^{*}=U\otimes W_{0}^{*}+U\otimes W_{1}^{*}$ .

Let $p_{i}(i=0,1)$ be the projection of $U\otimes W^{*}$ to $U\otimes W_{i}^{*}$ . Then we have $p_{0}(\mathfrak{a})$

$=U_{0}\otimes W_{\cup}^{*}$ and $p_{1}(\mathfrak{a})=U\otimes W_{1}^{*}$ . In fact, $p_{1}(\mathfrak{a})$ is invariant by the action of the
simple part $f_{0}$ of $\mathfrak{g}_{0}(c)$ . From the definition of $W_{0}$ and (9.2) ii) we see that
$\delta(w)p_{1}(\mathfrak{a})=U$ for any non-zero $w\in W_{1}$ . Moreover $U$ decomposes to $f_{0}$ -irreducible
subspaces; $U=U_{0}+U_{1}$ and $f_{0}$ acts trivially on $U_{1}$ . Hence by Lemma 9.1 we
have $p_{1}(\mathfrak{a})=U\otimes W_{1}^{*}$ . Analogously we have $p_{0}(\mathfrak{a})=U_{0}\otimes W_{0}^{*}$ . Thus we get
$\mathfrak{a}\subset U_{0}\otimes W_{0}^{*}+U\otimes W_{1}^{*}$ .

In the following exact sequence of $f_{0}$ -morphisms,

$0\rightarrow \mathfrak{a}()U\otimes W_{1}^{*}\rightarrow \mathfrak{a}\rightarrow<-\frac{p}{\sigma_{0}}U_{0}\otimes W_{0}^{*}0\rightarrow 0$ ,

since $f_{0}$ is simple, there exists a $f_{0}$-splitting $\sigma_{0}$ of $p_{0}$ . If we put $\tau=\sigma_{0}-P_{0}\circ\sigma_{0}$ ,

then $\tau$ is a $f_{0}$-morphism: $U_{0}\otimes W_{0}^{*}\rightarrow U\otimes W_{1}^{*}$ . Since $\overline{f}_{0}$ acts trivially on $U_{1}$ , we
see that $\tau$ maps $U_{0}\otimes W_{0}^{*}$ to $U_{0}\otimes W_{1}^{*}$ . Moreover, using the $f_{0}$ -simplicity of $U_{0}$ ,
we can find a linear map, $f:W_{0}^{*}\rightarrow W_{1}^{*}$ such that $\tau=id_{Uo}\otimes f$. Put

$W_{1}^{\prime}=$ { $w\in W|\langle w,$ $\alpha+f(\alpha)\rangle=0$ for all $\alpha\in W_{0}^{*}$ }.

Then we have $W=W_{0}+W_{1}^{\prime}$ (direct sum), and now it is easy to see that $\mathfrak{a}^{01}=$

$U_{0}\otimes W_{1}^{\prime\perp}+U\otimes W_{0}^{\perp}$ . Replacing $W_{1}$ by $W_{1}^{\prime}$ , we have obtained the proposition.
$q$ . $e$ . $d$ .

In the special case when $W_{0}$ is trivial, making use of Proposition 9.3, we
can determine the bi-graded Lie algebra $\sum \mathfrak{a}^{p,q}$ .

PROPOSITION 9.4. Notation and assumpti0n be as above.
i) If $W_{0}=(0)$ , then $\mathfrak{a}^{p,r}=\mathfrak{g}^{p- r}(\mathfrak{c})\otimes S^{r}(W^{*})$ .

ii) If $W_{0}=W$, then $\mathfrak{a}^{p,r}=\check{\mathfrak{g}}^{p- r}(\mathfrak{c})\otimes S^{r}(W^{*})$ ,

where $\check{\mathfrak{g}}^{q}(\mathfrak{c})=\overline{f}_{q}+\overline{f}_{q- 1}^{1}+\cdots+\overline{f}_{-1}^{+1}$ .
PROOF. By the assumption $(A_{2})$ we see that

$\mathfrak{a}^{p,q}\subset \mathfrak{g}^{p- q}(c)\otimes S^{q}(W^{*})$ .
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On the other hand we have
$[\mathfrak{a}^{p,q}, \mathfrak{a}^{01}]\subset \mathfrak{a}^{p,q+1}$

While we kn $:w$ that

$[\mathfrak{g}^{p}(\mathfrak{c}), \mathfrak{g}^{-1}(c)]=\mathfrak{g}^{p- 1}(c)$ for $p\geqq 0$

and
$[\check{\mathfrak{g}}^{p}(\mathfrak{c}), \mathfrak{g}^{-1}(\mathfrak{c})]=J^{p- 1}(\mathfrak{c})$ for $p\geqq 0$ .

Hence it follows easily the statement of i) and that

$\check{\mathfrak{g}}^{p-q}(\mathfrak{c})\otimes S^{q}(W^{*})\subset \mathfrak{a}^{p,q}\subset \mathfrak{g}^{p- q}(c)\otimes S^{q}(W^{*})$ if $W_{0}=W$ .

But in this case taking account of the facts that $\mathfrak{a}^{01}=\overline{f}_{-1}\otimes W^{*}$ and $[\overline{f}_{-2}^{p},\overline{f}_{-2}]$

$=\overline{f}_{-2}^{p-1}$ for $p\geqq 0$ , we have $\mathfrak{a}^{p,q}=\check{\mathfrak{g}}^{p- q}(\mathfrak{c})\otimes S^{q}(W^{*})$ . $q$ . $e$ . $d$ .
Though we have heretofore reserved the $poS3ibility$ that $W_{0}$ might not be

trivial, we shall prove the following proposition in the next section:
PROPOSITION 9.5. $W_{0}=(0)$ .

\S 10. Proof of the main theorem (contact case).

In the preceding sections we have studied the associated bi-graded Lie
algebra $\mathfrak{a}=\sum \mathfrak{a}^{p,q}$ of $A$ . In this and the next section we shall determine the Lie
algebra $A$ starting from its associated bi-graded Lie algebra $\mathfrak{a}$ , and obtain our
main theorem.

In this section we shall be concerned with the case where the transitive
part is a contact Lie algebra. Our present aim is the following

THEOREM 10.1. Let $A$ be a closed Lie subalgebra of $D(V;U)$ . Assume that
the bi-graded Lie algebra $\mathfrak{a}=\sum \mathfrak{a}^{p,q}$ of $A$ satisfies

$\mathfrak{a}^{p,q}=\mathfrak{g}^{p- q}(c)\otimes S^{q}(W^{*})$ for all $p,$ $q$

and that the first structure function $C_{A}$ of $A$ is not zero. Here $\mathfrak{g}(c)=\sum \mathfrak{g}^{p}(c)$ is
the associated graded Lie algebra of the contact Lie algebra $c$ with $\mathfrak{g}^{-1}(\mathfrak{c})=U$ ,
and $W$ is a complementary subspace to $U$ in V. Then $A$ is isomorphic to the
intransitive extension $c[W^{*}]$ of $\mathfrak{c}$ by $W^{*}$ , and the isomorphism is induced by a
formal isomorphism of $V$.

PROOF. We follow the notation in \S 8. Since $\mathfrak{c}=\Pi G^{p}$ and $c[W^{*}]=\prod_{p.r}G^{p}$

$\otimes S^{r}(W^{*})$ , the theorem follows immediately if we prove the following lemma:
LEMMA 10.1. Under the same assumpti0n as in Theorem 10.1, there exists

a sequence $\{\varphi^{(l)}\}_{l\geqq 0}$ of formal isomorphisms of $V$ satisfying the following con-
ditions:

i) $\varphi^{(l)}=I_{0}+\xi^{(l)}$ , where $I_{0}$ is the identity in $V\otimes V^{*}$ and $\xi^{(l)}\in D^{l}(V;U)$

$=D^{l}(V)\cap D(V;U)$ ,
ii) $\mathfrak{B}\subset\varphi i^{l)}\circ\cdots\circ\varphi_{*}^{(0)}A+D^{l+1}(V;U)$ ,
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iii) $G^{q}\otimes S^{r}(W^{*})\subset\varphi_{*}^{(l)}\circ\cdots\circ\varphi_{*}^{(0)}A+D^{l}(V;U)$ for all $q,$ $r$.
PROOF. We shall construct $\varphi^{(l)}$ by induction on 1. For $l=0$ we put $\varphi^{(0)}=I_{0}$ .

Then it is obvious that i), ii) and iii) are satisfied.
Now supposing that we are given $\varphi^{(i)}$ for $0\leqq i\leqq l$ , we construct $\varphi^{(l+1)}$ so as

to satisfy i), ii), iii) for 1+1 instead of 1. The procedure is rather long, and
we carry it out in several steps. For simplicity, the modiPed $\varphi_{*}^{(l)}\circ\cdots\circ\varphi_{*}^{(0)}A$

is also denoted by $A$ .
1) We can modify $A$ by a formal isomorphism $\phi_{1}$ so as to satisfy

(10.1) $f_{0}\subset A+D^{l+2}(V;U)$ .
Moreover $\phi_{1}$ can be taken to satisfy

$\phi_{1}=I_{0}+\xi$ , $\xi\in U\otimes S^{l+2}(V^{*})$ .
First of all note that $f_{0}$ is a simple Lie algebra. By induction assumption

we can find a subspace $\underline{f}_{0}$ of $A$ such that $\underline{f}_{0}$ is isomorphic to $f_{0}$ and that

$\underline{f}_{0}\equiv f_{0}$ $(mod. D^{l+1}(V;U))$ ,

that is, for $X\in f_{0}$ the corresponding $\underline{X}\in\xi_{0}$ is written as

$\underline{X}=X+\sum_{p+q\geqq l+1}X_{p,q}$ , $X_{p,q}\in U\otimes S^{p+1}(U^{*})\otimes S^{q}(W^{*})$ .

Let $E^{p,q}$ be a $f_{0}$ -invariant subspace of $U\otimes S^{p+1}(U^{*})\otimes S^{q}(W^{*})$ complementary to
$\mathfrak{g}^{p}(c)\otimes S^{q}(W^{*})$ . Since $\mathfrak{a}^{p,q}=\mathfrak{g}^{p-q}(\mathfrak{c})\otimes S^{q}(W^{*})$ by our assumption, we may assume
that $X_{p,q}\in E^{p,q}$ by a suitable choice of $\underline{f}_{0}$ . We define the map $ f:f_{0}\rightarrow$

$\sum_{p+q=l+1}$
$E^{p,q}$ ,

by $f(X)=\sum_{p+q=l+1}X_{p,q},$
$X\in f_{0}$ . Then, expanding $[\underline{X}, \underline{Y}]$ , we see easily that

$[f(X), Y]+[X, f(Y)]=f[X, Y]$ for $X,$ $Y\in f_{0}$ .
Since the 1st cohomology group of the representation of $f_{0}$ vanishes, we can
find $\xi\in\sum_{p+q=l+1}E_{p,q}\subset U\otimes S^{l+2}(V^{*})$ , such that

$f(X)=[\xi, X]$ for all $X\in f_{0}$ .
Let $\phi_{1}$ be a formal isomorphism defined by $\phi_{1}=I_{0}+\xi$ . In view of Proposition
1.1, we have $\phi_{1*}X=X(mod. D^{l+2}(V;U))$ for $X\in f_{0}$ . Thus, if we change $A$ by
$\phi_{1*}A$ , we get (10.1).

Note that the induction assumption is not violated by this transformation.
2) We can modify $A$ by a formal isomorphism $\phi_{2}$ with $\phi_{2}=I_{0}+\xi_{2}$ , $\xi_{2}\in$

$U\otimes S^{l+1}(V^{*})$ , so as to satisfy

(10.2) $G^{-1}\subset A+U\otimes U^{*}\otimes S^{l}(W^{*})+D^{l+1}(V;D)$ ,

without violating (10.1).

If $l=0,$ $(10.2)$ is always satisPed, since $\mathfrak{a}^{01}=U\otimes W^{*}$ . Therefore we assume
$l\geqq 1$ . By the induction assumption we can find a subspace $\underline{G}^{-1}$ of $A$ which is
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isomorphic to $G^{-1}$ and satisfies
$\underline{G}^{-1}\equiv G^{-1}$ $(mod.D^{l}(V;U))$ .

Therefore, each $\underline{X}\in\underline{G}^{-1}$ corresponding to $X\in G^{-1}$ , is written as

$\underline{X}\equiv X+\sum_{(p+1=l}X_{p,q}$ $(mod.D^{l+1}(V;U))$ ,

where we may assume that $X_{p,q}\in E^{p,q}$ .
Note that any $X\in G^{-1}$ is written uniquely as $X=X_{-1}+X_{0}$ for $X_{-1}\in \mathfrak{g}^{-1}(\mathfrak{c})$

$(=U)$ and $X_{0}\in \mathfrak{g}^{0}(c)$ , and that the projection $X\rightarrow X_{-1}$ is bijective.
For $X,$ $Y\in G^{-1}$ , we have

$[\underline{X}, \underline{Y}]=[X, Y]+\sum_{4p+=\iota}[X_{-1}, Y_{p,q}]+[X_{p,q}, Y_{-1}]$ $(mod. D^{l}(V;U))$

and
[X, $Y$] $=[X, Y]$ $(mod. D^{l}(V;U))$ .

Therefore we have

$\sum_{p+q=l}[X_{-1}, Y_{p,q}]+[X_{p,q}, Y_{-1}]\in A+D^{l}(V;U)$ .

Suppose that $X_{p,q}=0$ for $p>r\geqq 2$ and for all $X\in G^{-1}$ , then we see that

$\underline{C}(X_{-1}, Y_{-1})=[X_{-1}, Y_{r,l-r}]+[X_{r,l- r}, Y_{-1}]\in g^{r- 1}(\mathfrak{c})\otimes S^{l-r}(W^{*})$

and we get an element $\underline{C}$ of Hom $(\wedge^{2}\mathfrak{g}^{-1}(\mathfrak{c}), \mathfrak{g}^{\tau- 1}(\mathfrak{c}))\otimes S^{l-r}(W^{*})$ . It is not difficult
to see that

(10.3) $\partial\underline{C}=0$ ,

(10.4) $a\cdot C=0$ , $a\in f_{0}$ ,

where $\partial$ is the coboundary operator of the Spencer complex associated to the
graded Lie algebra $\sum_{p}g^{p}(\mathfrak{c})$ . Since the Spencer cohomology group $H^{p,q}(\sum \mathfrak{g}^{p}(\mathfrak{c}))$

vanishes for $p\geqq 1$ (Proposition 8.7), we can find $\alpha\in Hom(\mathfrak{g}^{-1}(c), g^{\tau}(\mathfrak{c}))\otimes S^{l- r}(W^{*})$

so as to satisfy

(10.5) $\partial\alpha+\underline{C}=0$ ,

(10.6) $a\cdot\alpha=0$ for all $a\in f_{0}$ .
Since $\alpha\in Hom(g^{-1}(c), g^{r}(\mathfrak{c})\otimes S^{l-\gamma}(W^{*}))$ , there exists a subspace $\underline{G}^{-1}$ of $A$ such
that $\zeta^{-1}$ is isomorphic to $G^{-1}$ and that

(10.7)
$\underline{X}=X_{-1}+X_{0}+\sum_{p\leqq rp+q=l}X_{p,q}+\alpha(X_{-1})\in\zeta^{-1}+D^{l+1}(V;U)$

for $X=X_{-1}+X_{0}\in G^{-1}$ and $X_{p,q}\in E^{p,q}$ .
If we replace $\underline{G}^{-1}$ by $\underline{G}^{-1}$ , then we see from (10.5) and (10.7) that $\underline{C}=0$ . Hence
there exists a $\xi_{r+1,l-r}\in U\otimes S^{r+2}(U^{*})\otimes S^{l-r}(W^{*})$ such that
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(10.8) $X_{-1}+X_{0}+[\xi_{\tau+1,l-r}, X_{-1}]$

$\in A+\sum_{p<r}U\otimes S^{p}(U^{*})\otimes S^{l-p}(W^{*})+D^{l+1}(V;U)$

for all $X_{-1}+X_{0}\in G^{-1}$ .
Moreover (10.6) and (10.7) imply that

(10.9) $[a, \xi_{\tau+1,l-r}]=0$ , $a\in f_{0}$ .

Therefore if we modify $A$ by the formal isomorphism $I_{0}+\xi_{r+1,l-\gamma}$ , we get

$G^{-1}\subset A+\sum_{p<r}U\otimes S^{p}(U^{*})\otimes S^{l-p}(W^{*})+D^{l+1}(V;U)$ ,

and finally by induction on $r$ we have (10.2).

Observe that by such modification of $A,$ $(10.1)$ remains valid by virtue of
(10.9).

3) By the argument above and the fact that $\mathfrak{a}^{l,l+1}=U\otimes S^{l+1}(W^{*})$ , we may
assume that there exist subspaces $\underline{f}_{0},$ $g$ of $A$ isomorphic to $f_{0}$ and $\mathfrak{m}$ respectively
and each $\underline{a}\in\underline{f}_{0}$ and $\underline{X}\in\underline{\mathfrak{m}}$ is expressed in the following form:

$\left\{\begin{array}{l}\underline{a}\equiv a\\\underline{X}\equiv X+X_{0,l} (mod.D^{l+1}(V.\cdot U)),\end{array}\right.$

$(mod. D^{l+2}(V;U))$ ,

where $a\in f_{0},$ $X\in \mathfrak{m}$ and $X_{0,l}\in E^{0l}$ . Since $[\underline{a}, \underline{X}]-[\underline{a,X]}\in A$ and $E^{0,l}$ is $f_{0^{-}}$

invariant, we see that

$f[a, X]=[a, f(x)]$ $a\in f_{0}$ , $X\in \mathfrak{m}$ ,

where $f$ is the map from $\mathfrak{m}$ to $E^{0l}$ defined by $f(X)=X_{0,l}$ for $X\in \mathfrak{m}$ .
So we examine the representation of $f_{0}$ on $E^{0l}$ . It is convenient to write

down explicitly in a coordinate system. Let $z,$ $x^{1},$
$\cdots,$

$x^{n},$ $y^{1},$
$\cdots,$

$y^{n},$ $t^{1},$ $\cdots$ , $t^{m}$

be a basis of $V^{*}$ such that $z\in f_{-2}^{\overline{*}},$ $x^{i},$ $y^{j}\in\overline{f}_{-1}^{*}$ and $t^{\alpha}\in W^{*}$ and $-\partial\overline{z}\partial-\frac{\partial}{x}-\partial^{1}$ $-\frac{\partial}{\chi^{n}}\partial$ ,

$\frac{\partial}{\partial y^{1}}$ , , $\frac{\partial}{\partial y^{n}}$ , $\frac{\partial}{\partial t^{1}}$ , , $-\frac{\partial}{t^{m}}\partial$ be the dual basis of $V$. Then $f_{-2},$ $f_{-1}$ are generated

by the following elements:

$\left\{\begin{array}{ll}f_{-2} : & -\partial\overline{z}\partial\\f_{-1} : & -\partial_{\overline{X^{i}}}-y^{i}\partial\overline{z}\partial\partial -\frac{\partial}{y^{i}}+\chi^{i}-\partial (1\leqq i\leqq n).\end{array}\right.$

The decomposition of $U\otimes U^{*};$

$U\otimes U^{*}=U_{0}\otimes U_{0}^{*}+U_{0}\otimes Z^{*}+Z^{*}\otimes U_{0}^{*}+Z\otimes Z^{*}$

is $f_{0}$ -invariant, where we put $Z=\{-\partial\partial\overline{z}\},$ $U_{0}=\{\frac{\partial}{\partial x^{i}}$ , $\frac{\partial}{\partial y^{i}}\}$ . Since $f_{0}$ is the Lie

algebra consisting of those linear maps of $U_{0}$ which leave invariant the non-
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degenerate two form $\theta=\sum_{l=1}^{n}x^{i}\wedge y^{i}$ , the isomorphism $\mu$ : $U_{0}\rightarrow U_{0}^{*}$ , given by

$\langle\mu(u), u^{\prime}\rangle=\theta(u, u^{\prime})$ for $u,$ $u^{\prime}\in U_{0}$ , is a $f_{0}$ -isomorphism. The representations of
$f_{0}$ on Zand $z*$ are trivial. Hence $U_{0}\otimes Z^{*}$ and $Z\otimes U_{0}^{*}$ are $f_{0}$ -isomorphic to $U_{0}$

and irreducible. On the other hand, $U_{0}\otimes U_{0}$ decomposes to three $f_{0}$ -irreducible
components:

$U_{0}\otimes U_{0}=S^{2}(U_{0})+q+\{\theta\}$ ,

where $q$ is the $f_{0}$ -invariant subspace of $\wedge^{2}(U_{0})$ complementary to the l-dimen-
sional subspace $\{\theta\}$ generated by $\theta$ . By the isomorphism $id_{U^{0}}\otimes\mu,$ $U_{0}\otimes U_{0}^{*}$ de-
composes to three $f_{0}$ -irreducible subspaces:

$U_{0}\otimes U_{0}^{*}=f_{0}+\mathfrak{p}+\{I\}$

where
$\mathfrak{p}=(id_{U_{0}}\otimes\mu)(q)$ ,

$I=(id_{U_{0}}\otimes\mu)\theta=\sum_{i=1}^{n}x^{i}\frac{\partial}{\partial x^{i}}+y^{i}\frac{\partial}{\partial y^{i}}$

Note that $f_{0}$ and $\mathfrak{p}$ are not isomorphic to each other.
On the other hand, we see that $g^{0}(\mathfrak{c})=f_{0}+f_{-2}^{\overline{1}}+f_{-1}^{\overline{1}}$ , and that

$f_{-2}^{\overline{1}}=\{J=2z_{\partial\overline{z}}-\partial+I\}$ ,

$\overline{f}_{-1}^{1}=\{z-\partial\frac{\partial}{x^{i}},$ $z-\partial\frac{\partial}{y^{i}}\}=U_{0}\otimes Z^{*}$ .
Therefore we may put

$E^{0,0}=\mathfrak{p}+Z\otimes U_{0}^{*}+Z\otimes Z^{*}$

and
$E^{0,l}=\mathfrak{p}\otimes S^{l}(W^{*})+(Z\otimes U_{0}^{*})\otimes S^{l}(W^{*})+(Z\otimes Z^{*})\otimes S^{l}(W^{*})$ .

Since $f:U\rightarrow E^{0l}$ is a $f_{0}$ -homomorphism we can find $\lambda(t),$ $\tau(t)\in S^{l}(W^{*})$ , such that

$ f(-\partial\frac{\partial}{X^{i}})=-\lambda(t)y_{\partial_{Z}}^{i}-\partial$ $f(-\partial\frac{\partial}{y^{i}})=\lambda(t)^{\partial}x_{\partial\overline{z}}^{i_{-}}$ , $f\left(\begin{array}{l}\partial\\-\partial\overline{z}\end{array}\right)=\tau(t)_{Z-}^{\partial}\partial\overline{z}$

Hence $\underline{\mathfrak{m}}$ is generated by

$\left\{\begin{array}{l}-\partial\frac{\partial}{X^{i}}-\lambda(i)y^{i}-+\partial\overline{z}\partial\ldots\\-\partial+\lambda(t)x^{\iota_{-+}}\partial\partial\\-+\tau(t)z-+\partial\partial\ldots\end{array}\right.$

whe $e$ the higher order terms written by dots are in $D^{l+1}(V;U)$ .
Here we note that $\lambda(t)$ is a scalar for $l=0$ , and that it is not zero because
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of the assumption that the 1st structure function $C_{A}$ does not vanish. Let $\phi_{3}$

be the formal isomorphism defined by

$\left\{\begin{array}{l}\phi_{3}^{*}x^{i}=\sqrt{1+\lambda(t)}x^{i}\\\phi_{3}^{*}y^{i}=\sqrt 1\overline{+\lambda(t)}y^{i}\\\phi_{3}^{*}z=\int_{0}^{z}\frac{d}{1+\tau}\zeta(\overline{t)\zeta}\\\phi_{3}^{*}t=t.\end{array}\right.$

By a simple calculation we see that

$\phi_{3*}(\frac{\partial}{\partial x^{i}}-\lambda(t)y^{t}-\partial\frac{\partial}{z}+$
$)$

$=(1+\nu(t))(\frac{\partial}{\partial x^{i}}y^{i}-\partial\partial\overline{z})+\cdots$

$\phi_{3*}(\frac{\partial}{\partial y^{i}}+\lambda(t)^{\partial}x^{i}-+\partial\overline{z}$ $)$

$=(1+\nu(t))(\frac{\partial}{\partial y^{i}}+x^{i}\frac{\partial}{\partial z})+\cdots$

$\phi_{s*}(-\partial\overline{z}+\tau(t)z\frac{\partial}{\partial z}+\partial$ $)$

$=-\partial\frac{\partial}{z}+\cdots$

where dots are in $D^{l+1}(V;U)$ . It is easy to check that $\phi_{3}$ is expressed as
$\phi_{3}=I_{0}+\xi_{3},$ $\xi_{3}\in D^{l}(V;U)$ and that (10.1) is preserved by this modiPcation.
Applying the formal isomorphisms $\phi_{1},$ $\phi_{2}$ and $\phi_{3}$ to $A$ , we have the following:

We can modify $A$ by a formal isomorPhism $\varphi^{(l+1)}$ with $\varphi^{(l+1)}=id+\xi$ ,
$\xi\in D^{l}(V;U)$ , so as to satisfy:

(10.10) $\left\{\begin{array}{ll}i) & f_{0}\subset A+D^{l+2}(V;U)\\ii) & \frac{\partial}{\partial z}\in A+D^{l+1}(V;U)\\iii) & there exists \nu(t)\in S^{l}(W^{*}) such that\end{array}\right.$

$(1+\nu(t))(\frac{\partial}{\partial x^{i}}y^{i}-\partial\partial\overline{z})$

$\in A+D^{l+1}(V;U)$ .
$(1+\nu(t))(\frac{\partial}{\partial y^{i}}+x^{i}\frac{\partial}{\partial z})$

4) To complete our induction, we shall show that (10.10) implies

(10.11) $G^{q}\otimes S^{r}(W^{*})\subset A+D^{l+1}(V;U)$ for all $q,$ $r$ .



60 T. MORIMOTO

In view of Proposition 8.4 and the fact that $[\mathfrak{c}, \iota \mathfrak{n}]=\mathfrak{c}$ , we see that $\sum_{q+r\geqq 0}G^{q}\otimes S^{r}(W^{*})$

is generated by $G^{0},$ $f_{1},$ $G^{-1}\otimes W^{*}$ as a Lie algebra. Therefore to prove (10.11)
it suffices to verify (10.11) only for $G^{-1},$ $\mathfrak{m}^{1},$ $f_{1}$ and $G^{-1}\otimes W^{*}$ , where $\mathfrak{m}^{1}=f_{-2}^{1}+f_{-1}^{1}$ .

5) First we show that

(10.12) $\mathfrak{m}^{1}\subset A+U\otimes U^{*}\otimes S^{l}(W^{*})+D^{l+1}(V;U)$ .
For $l\leqq 0$ it is obvious, so we assume that $1\geqq 1$ . Let $\underline{\mathfrak{m}}^{1}$ be a subspace of

$A$ which is isomorphic to $\mathfrak{m}^{1}$ and $\underline{\mathfrak{m}}^{1}\equiv \mathfrak{m}^{1}(mod. D^{l}(V;U))$ . Then each $\underline{X}\in\underline{\mathfrak{m}}^{1}$ is
written as

$\underline{X}=X+\sum_{p+q\geqq l}X_{p,q}$ , $X\in \mathfrak{m}^{1}$

and we may also assume that $X_{p,q}\in E^{p,q}$ . Then we have

(10.13) $X_{p,q}=0$ for $p+q=l,$ $p\geqq 1$ .
In fact, let 4 be any element of $A$ such that

$\mu=u_{-1,0}+u_{0,0}+u_{0,1}+\sum_{p+q>l}u_{p,q}$

where $u=u_{-1,0}+u_{0,0}\in G^{-1}$ and $u_{p,q}\in U8S^{p+1}(U^{*})\otimes S^{q}(W^{*})$ , then we have

$LX,$ $\underline{u}$] $=[X, u]+\sum_{p+q=\iota}[X_{p,q}, u_{-1,0}]$ $(mod. D^{l}(V;U))$ .

Since [X, $u$] $\in G^{-1}+G^{0}$ and $G^{-1}+G^{0}\subset A+D^{l}(V;U)$ , we have

$\sum_{p+q=l}[X_{p,q}, u_{-1,0}]\in A+D^{\iota}(V;U)$ .

If $X_{p,q}=0$ for $p>r\geqq 1$ and $p+q=l$ , we have

$[X_{r,l-r}, u_{-1,0}]\in \mathfrak{g}^{\tau-1}(\mathfrak{c})\otimes S^{l-\gamma}(W^{*})$ for all $u_{-1,0}\in U$ .
Hence $X_{r,l-\gamma}\in \mathfrak{g}^{\gamma-1}(c)^{(1)}\otimes S^{l- r}(W^{*})$ , where $\mathfrak{g}^{r-1}(c)^{(1)}$ is the prolongation of $\mathfrak{g}^{\gamma- 1}(\mathfrak{c})$ .
By Proposition 8.7, we see that $\mathfrak{g}^{\tau- 1}(\mathfrak{c})^{(1)}=\mathfrak{g}^{\tau}(c)$ . Therefore $X_{r,l-\gamma}\in \mathfrak{g}^{r}(\mathfrak{c})$

$\otimes S^{l-r}(W^{*})$ , which implies $X_{r,l- r}=0$ . Finally we see that $X_{p,q}=0$ for $p+q=l$ ,
$p\geqq 1$ , proving (10.13).

REMARK. If $G^{-1}\subset A+D^{l+1}(V;U)$ , by the same argument as above we see
that $X_{p,q}=0$ for $p+q=l$ or $l+1$ and $p\geqq 1$ .

Next we examine the $(0, l)$ -component of $\underline{X}\in\underline{\mathfrak{m}}^{1}$ . Note that $f_{-2}^{1}$ and $f_{-1}^{1}$ are
generated by

$f_{-2}^{1}=\{J=2z\partial\overline{z}\partial+\sum x^{t}\partial\frac{\partial}{X^{i}}+y\frac{\partial}{\partial y^{i}}\}$ ,

$f_{-1}^{1}=\left\{\begin{array}{l}z\frac{\partial}{\partial y^{t}}+x^{i}e\\z-\partial\frac{\partial}{x^{\gamma}}y^{i}e\end{array}\right\}$
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where $e=z\frac{\partial}{\partial z}+\sum x^{i}-\partial\frac{\partial}{x^{i}}+y^{i}\frac{\partial}{\partial y^{3}}$ .
By examining the representation of $f_{0}$ on $U\otimes U^{*}\otimes S^{l}(W^{*})$ , we see that the

following elements:

$\left\{\begin{array}{l}\underline{Y}_{i}=z\frac{\partial}{\partial y^{i}}+x^{i}e+g(t)x^{i}-\partial\overline{z}\partial . ..\\(i=1, \cdots , r\iota)\\\underline{X}_{i}=z\partial\frac{\partial}{x^{t}}y^{i}e-g(t)y_{\partial_{Z}}^{\iota_{-}}\partial ...\\\underline{J}=J+f(t)z-\partial\overline{z}\partial ...\end{array}\right.$

are contained in $A$ for some $g(t),$ $f(t)\in S^{l}(W^{*})$ , where dots are in $D^{l+1}(V;U)$ .
Tben we have

$\underline{Y}_{i}-[\underline{.r}, \underline{Y}_{t}]\equiv 2^{\partial}gx_{\partial\overline{z}}^{i}--fz\frac{\partial}{\partial y^{i}}$ $(mod. D^{l+1}(V;U))$

$a_{-}\eta d$

$2^{\partial}g_{\partial\overline{z}}x^{i}--fz\frac{\partial}{\partial y^{i}}\in \mathfrak{g}^{0}\otimes S^{l}(W^{*})$ .

From this we see that $g=0$ . Thus we have $f_{-1}^{1}\subset A+D^{l+1}(V;U)$ . The fact that
$f_{-2}^{1}\subset A+D^{l+1}(V;U)$ can be proved immediately as soon as we get $G^{-1}\subset A$

$+D^{l+1}(V;U)$ . In fact it follows easily from the remark after (10.13) and the
fact that

$[z\frac{\partial}{\partial x^{i}}y^{i}e,$ $\frac{\partial}{\partial y^{i}}+x^{i}\frac{\partial}{\partial z}]=J-\Sigma x^{t}-\partial\frac{\partial}{x^{i}}+y^{i}\frac{\partial}{\partial y^{t}}$

6) Now we show that

$G^{-1}\otimes W^{*}\subset A+D^{l+1}(V;U)$ .
In the same way as in 5) we see that

$\underline{t^{\alpha}-\partial\overline{z}\partial\overline{z}\partial\overline{z}}=t^{\alpha}-+\tau_{\sigma}(f)z-\in A+D^{l+1}(V;\partial\partial\partial U)$

for some $\tau_{\alpha}(t)\in S^{l}(W^{*})$ . On the other hand we have seen that

$-r=J+f(t)z_{\partial\overline{z}}-\in A+D^{l+1}(V;\partial U)$

for some $f(t)\in S^{l}(W^{*})$ . From this we see

$[\underline{J},$ $\underline{t_{\partial\overline{z}\partial\overline{z}\partial\overline{z}}^{\alpha}-\partial}]=-2t^{\alpha}--f(t)\cdot f^{\alpha}-\in A+D^{l+1}(V;\partial\partial U)$ .

Since $ f(t)\cdot t_{\partial\overline{z}}^{\alpha}-\in A+D^{l+1}\partial$ we have

$t_{\partial\overline{z}}^{\alpha_{-}}\in A+D^{l+1}(V;\partial U)$ .
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From the fact that

$[t^{a}\frac{\partial}{\partial z},$ $z\frac{\partial}{\partial x^{i}}y^{i}e]=t^{\alpha}(\frac{\partial}{\partial x^{i}}y^{i}\frac{\partial}{\partial z})$ ,

we $\backslash qee$ that

$t^{a}(-\partial\frac{\partial}{X^{l}}y^{i}\frac{\partial}{\partial z})\in A+D^{l+1}$ .

Thus we have
$G^{-1}\otimes W^{*}\subset A+D^{l+1}(V;U)$ .

7) The verification of the fact that

$f_{1}\subset A+D^{l+1}(V;U)$

can be carried out similarly, and we omit the proof.
8) Observe that $[f_{1}, f_{-1}\otimes W^{*}]=f_{0}\otimes W^{*}$ and that $[f_{0}\otimes W^{*}, f_{-1}\otimes S^{q}(W^{*})]$

$=f_{-1}\otimes S^{q+1}(W^{*})$ . From this and the results of 6) and 7), we see that
$f_{-1}\otimes S^{l-1}(W^{*})\subset A+D^{l+1}(V;U)$ . Hence, recalling (10.10) iii), we have

$f_{-1}\subset A+D^{l+1}(V;U)$ .
Therefore we have

$G^{-1}\subset A+D^{l+1}(V;U)$ .
Thus we have proved (10.11) and completed our induction.

This completes the proof of Lemma 10.1 and Theorem 10.1.
Here we are in a position to give a proof of Proposition 9.5.
PROOF OF PROPOSITION 9.5. Suppose that $W_{0}=(0)$ . Let us regard $F(U+W_{0})$

as the quotient ring of $F(V)$ factored by the ideal generated by $(U+W_{0})^{\perp}$ .
Since $(U+W_{0})^{\perp}$ is invariant by $A$ , there is a homomorphism of $A$ into $D(U+W_{0})$ .
Let $A^{\prime}$ be its image, then $A^{\prime}$ satisfies the same conditions as those of $A$ except
that $W_{1}=(0)$ for $A^{\prime}$ . So we may assume that $A$ satisPes that

$W_{0}=7V\neq(0)$ .

Let $t^{a}\frac{\partial}{\partial x^{i}},$
$t^{\alpha}\frac{\partial}{\partial y^{i}}\in\overline{f}_{-1}\otimes W^{*}$ and $-\frac{\partial}{y^{i}}\partial\in\overline{f}_{-1}$ . In the same way as in the proof of

Lemma 10.1, we can find representatives $\underline{r}_{i}^{\alpha},$ $\underline{Y}_{i,-}^{\alpha}Y_{i}\in A$ of those elements such
that

$\underline{X}_{i}^{\alpha}\equiv t^{\alpha}\frac{\partial}{\partial x^{i}}\tau^{\alpha}y^{i}\frac{\partial}{\partial z}$ $(mod. D^{2}(V;U))$

(10.14) where $\tau^{\alpha}\in W^{*}$

$\underline{V}_{i}^{a}\equiv t^{\alpha}\frac{\partial}{\partial y^{i}}+\tau^{a}x_{\partial\overline{z}}^{i_{-}}\partial$ $(mod. D^{2}(V;U))$

and

(10.15) $\underline{Y}_{i}=\frac{\partial}{\partial y^{i}}+\chi^{i}\frac{\partial}{\partial z}$ $(mod. D^{2}(V;U)+W^{*}\cdot D^{2}(V;U))$ .
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From (10.14) we see that
$[\underline{X}_{l}^{\alpha}, \underline{Y}_{i}^{\alpha}]=2t^{\alpha}\tau^{\alpha}\frac{\partial}{\partial z}$ $(mod. D^{2}(V;U))$ .

Hence we have $\tau^{\alpha}=0$ , because we know that $\mathfrak{a}^{12}=\overline{f}_{-1}\otimes S^{2}(W^{*})$ by Proposition
9.4. Therefore, in view of (10.15) we see that

$LX_{i}^{a},$ $\underline{V}_{i}$] $=t^{a}-\partial\overline{z}\partial$ $(mod. D^{1}(V;U))$ .

Hence we have $ t^{\alpha}-\in \mathfrak{a}^{0,1}\partial\overline{z}\partial$ which contradicts the fact that $\mathfrak{a}^{0,1}=\overline{f}_{-1}\otimes W^{*}$ . Thus

we have proved that $W_{0}=0$ . $q$ . $e$ . $\prime J$ .
Combining Theorem 10.1 with Proposition 9.4 and Proposition 9.5, we have:
THEOREM 10.2. Let $A$ be a closed Lie subalgebra of $D(V)$ satisfying $(A_{1})$ ,

$(A_{2})$ and $(A_{3})$ . Assume that the transitive part $L$ of $A$ is a contact Lie algebra.
Then $A$ is isomorphic to $L[W^{*}]$ by a formal isomorphism of $V$ , where $W^{*}$ is
the subspace of $V^{*}$ annihilating $\mathfrak{g}\mathfrak{r}^{-1}(A)$ .

\S 11. Proof of the main theorem (irreducible case).

In this section we consider the case where the transitive part $L$ of $A$ is
inPnite and irreducible. For an irreducible infinite Lie algebra $L,$ $L^{\prime}$ denotes
the ideal of $L$ of codimension 1 if it exists and denotes $L$ itself otherwise.

THEOREM 11.1. Let $A$ be a closed Lie subalgebra of $D(V;U)$ . Assume that
the associated bi-graded Lie algebra $\sum \mathfrak{a}^{p,q}$ satisfies

$\mathfrak{g}^{p- q}(L^{\prime})\otimes S^{q}(W^{*})\subset \mathfrak{a}^{p,q}\subset \mathfrak{g}^{p-Q}(L)\otimes S^{q}(W^{*})$ for all $p,$ $q$

where $L$ is an irreducible infinite transitive Lie algebra in $D(V)$ and $W$ is a
complementary subspace of $V$ to U. Then $A$ is isomorphic, by a formal iso-
morphism of $V$ , to a Lie subalgebra of $L[W^{*}]$ containing $L^{\prime}[W^{*}]$ .

This theorem is obtained by the following lemmas.
LEMMA 11.1. Under the same assumpti0n as in Theorem 11.1, there exists a

sequence $\{\varphi^{(l)}\}_{l\geqq 0}$ of formal isomorphisms of $V$ satisfying the following conditions:
i) $\varphi^{(l)}=I_{0}+\xi^{(l)}$ where $\xi^{(l)}\in D^{l}(V;U)$ .

ii) $\mathfrak{g}^{0}(L^{\prime})\subset\varphi_{*}^{(l)}\circ\cdots\circ\varphi_{*}^{(0)}A+D^{l+1}(V;U)$ .
iii) $\mathfrak{g}^{q}(L^{\prime})\otimes S^{\tau}(W^{*})\subset\varphi_{*}^{(l)}\circ\cdots\circ\varphi_{*}^{(0)}A+D^{l}(V;U)$ .
We can prove this lemma on the same lines as the Lemma 10.1. But the

proof is much simpler than that of Lemma 10.1, mainly because $L$ is flat. So
we omit the proof.

LEMMA 11.2. Under the same assumpti0n as in Theorem 11.1, further assume
that $A\supset L^{\prime}[W^{*}]$ . Then $A\subset L[W^{*}]$ .

PROOF. Since $\mathfrak{g}^{0}(L)=\mathfrak{g}^{0}(L^{\prime})+\{I\}$ , we have only to verify that for any
element of $\mathfrak{a}^{q,q}$ of the form $I\otimes\tau,$ $\tau\in S^{q}(W^{*})$ , we can find a representative
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$\underline{I\otimes\tau}\in A^{q}$ satisfying $\underline{I\otimes\tau}\in L[W^{*}]$ .
Let $E^{p,q}$ be a $\mathfrak{g}^{0}(L^{\prime})$ -invariant complementary subspace of $U\otimes S^{p+1}(U^{*})$

$\otimes S^{q}(W^{*})$ to $\mathfrak{g}^{p}(L^{\prime})\otimes S^{q}(W^{*})$ . Then we can find a representative $\underline{I\otimes\tau}\in A^{q}$ of
$ I\otimes\tau$ such that it is written as

$\underline{I\otimes\tau}=I\otimes\tau+\sum_{p+\tau>q}X_{p,\tau}$ , $X_{p,r}\in E^{p,r}$ .

By the same way as in Lemma 10.1, we see that $X_{p,\tau}=0$ for $p>0$ . As to $X_{0,r}$ ,
taking into consideration the representation of $\mathfrak{g}^{0}(L^{\prime})$ , we see that

$X_{0,r}=I\otimes\sigma^{r}$

for some $\sigma^{r}\in S^{r}(W^{*})$ . The components $X_{-1,r}$ are trivial of course. Hence we
have proved Lemma 11.2 and Theorem 11.1.

Combining Theorem 11.1 and Proposition 9.2, we have the following
THEOREM 11.2. Let $A$ be a closed Lie subalgebra of $D(V)$ satisfying $(A_{1})$ ,

$(A_{2})$ and $(A_{3})$ . Assume that the transitive part $L$ of $A$ is irreducible and infinite.
Then $A$ is isomorphic, by a formal isomorphism of $V$, to a subalgebra of $L[W^{*}]$

containing $L^{\prime}[W^{*}]$ , where $W^{*}$ is the subspace of $V^{*}$ annihilating $\mathfrak{g}\mathfrak{r}^{-1}(A)$ .
REMARK. In the case $L$ is not simple, $i$ . $e.$ , (II’) or (III’), $L[W^{*}]$ is identified

with $L^{\prime}[W^{*}]+F(W)$ and $F(W)$ is the center of $L[W^{*}]$ . There is a bijective
correspondence between the subalgebra $A$ of $L[W^{*}]$ containing $L^{\prime}[W^{*}]$ and
the subspace $P$ of $F(W)$ . Put $P^{k}=P\cap F^{k}(W)$ and $\mathfrak{p}^{k}=P^{k}/P^{k+1}\subset S^{k}(W^{*})$ . Then
$L^{\prime}[W^{*}]+P$ satisfies $(A_{2})$ if and only if the graded vector space $\Sigma \mathfrak{p}^{k}$ satisfies

$\delta(w)\mathfrak{p}^{k}\subset \mathfrak{p}^{k- 1}$ for all $k$ and $w\in W$ .
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